1
|
Lira KE, May JC, McLean JA. Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry. Adv Clin Chem 2024; 124:123-160. [PMID: 39818435 DOI: 10.1016/bs.acc.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges. Here, we highlight representative IM applications and approaches and describe contemporary commercial offerings of IM technology and how these can be, or are currently being, applied to the field of clinical chemistry.
Collapse
Affiliation(s)
- Kyle E Lira
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
2
|
Hong X, Daiker J, Sadilek M, DeBarber AE, Chiang J, Duan J, Bootsma AH, Huidekoper HH, Vaz FM, Gelb MH. Toward newborn screening of cerebrotendinous xanthomatosis: results of a biomarker research study using 32,000 newborn dried blood spots. Genet Med 2020; 22:1606-1612. [PMID: 32523054 PMCID: PMC7529987 DOI: 10.1038/s41436-020-0846-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Cerebrotendinous xanthomatosis (CTX) is a treatable hereditary disorder caused by the deficiency of sterol 27- hydroxylase, which is encoded by the CYP27A1 gene. Different newborn screening biomarkers for CTX have been described, including 7α,12α-dihydroxy-4-cholesten-3-one ( 7α12αC4 ), 5b-cholestane-3 α, 7α,12α,25-tetrol glucuronide(GlcA-tetrol), GlcA-tetrol to tauro-chenodeoxycholic acid (t-CDCA) ratio (GlcA-tetrol/t-CDCA), and tauro- trihydroxycholestanoic acid (t-THCA) to GlcA-tetrol ratio (t-THCA/GlcA-tetrol ). We set out to evaluate these screening methods in a research study using 32,000–55,000 newborn dried blood spots (DBS). Method Metabolites were extracted from DBS with methanol containing internal standard, which was then quantified by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Results The measurement of 7α12αC4 was complicated by isobaric interferences and was discontinued after 2,033 samples. A total of 55,250 newborns were screened for the GlcA-tetrol/t-CDCA ratio, 32,737 of which had quantitative data on GlcA-tetrol. Only one newborn displayed both highly elevated GlcA-tetrol and a typical CTX biochemical profile. This newborn was interpreted as a CTX-affected patient as CYP27A1 gene sequencing identified two known pathogenic variants. Conclusion The results indicate that both GlcA-tetrol and GlcA-tetrol/t-CDCA ratio are excellent CTX biomarkers suitable for newborn screening. By characterizing the relationship of GlcA-tetrol, t-CDCA, and t-THCA as secondary markers, 100% assay specificity can be achieved.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Andrea E DeBarber
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - John Chiang
- Molecular Vision Laboratory, Hillsboro, OR, USA
| | - Jie Duan
- Molecular Vision Laboratory, Hillsboro, OR, USA
| | - Albert H Bootsma
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Hidde H Huidekoper
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
van Nierop FS, Meessen ECE, Nelissen KGM, Achterbergh R, Lammers LA, Vaz FM, Mathôt RAA, Klümpen HJ, Olde Damink SW, Schaap FG, Romijn JA, Kemper EM, Soeters MR. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am J Physiol Endocrinol Metab 2019; 317:E494-E502. [PMID: 31237451 DOI: 10.1152/ajpendo.00534.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids, glucagon-like peptide-1 (GLP-1), and fibroblast growth factor 19 (FGF19) play an important role in postprandial metabolism. In this study, we investigated the postprandial bile acid response in plasma and its relation to insulin, GLP-1, and FGF19. First, we investigated the postprandial response to 40-h fast. Then we administered glycine-conjugated deoxycholic acid (gDCA) with the meal. We performed two separate observational randomized crossover studies on healthy, lean men. In experiment 1: we tested 4-h mixed meal after an overnight fast and a 40-h fast. In experiment 2, we tested a 4-h mixed meal test with and without gDCA supplementation. Both studies measured postprandial glucose, insulin, bile acids, GLP-1, and FGF19. In experiment 1, 40 h of fasting induced insulin resistance and increased postprandial GLP-1 and FGF19 concentrations. After an overnight fast, we observed strong correlations between postprandial insulin and gDCA levels at specific time points. In experiment 2, administration of gDCA increased GLP-1 levels and lowered late postprandial glucose without effect on FGF19. Energy expenditure was not affected by gDCA administration. Unexpectedly, 40 h of fasting increased both GLP-1 and FGF19, where the former appeared bile acid independent and the latter bile acid dependent. Second, a single dose of gDCA increased postprandial GLP-1. Therefore, our data add complexity to the physiological regulation of the enterokines GLP-1 and FGF19 by bile acids.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Kyra G M Nelissen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Roos Achterbergh
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - Laureen A Lammers
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam University Medical Centers, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, The Netherlands
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - E Marleen Kemper
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
4
|
DeBarber AE, Kalfon L, Fedida A, Fleisher Sheffer V, Ben Haroush S, Chasnyk N, Shuster Biton E, Mandel H, Jeffries K, Shinwell ES, Falik-Zaccai TC. Newborn screening for cerebrotendinous xanthomatosis is the solution for early identification and treatment. J Lipid Res 2018; 59:2214-2222. [PMID: 30135217 DOI: 10.1194/jlr.m087999] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/19/2018] [Indexed: 12/13/2022] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is a progressive metabolic leukodystrophy. Early identification and treatment from birth onward effectively provides a functional cure, but diagnosis is often delayed. We conducted a pilot study using a two-tier test for CTX to screen archived newborn dried bloodspots (DBSs) or samples collected prospectively from a high-risk Israeli newborn population. All DBS samples were analyzed with flow injection analysis (FIA)-MS/MS, and 5% of samples were analyzed with LC-MS/MS. Consecutively collected samples were analyzed to identify CTX-causing founder genetic variants common among Druze and Moroccan Jewish populations. First-tier analysis with FIA-MS/MS provided 100% sensitivity to detect CTX-positive newborn DBSs, with a low false-positive rate (0.1-0.5%). LC-MS/MS, as a second-tier test, provided 100% sensitivity to detect CTX-positive newborn DBSs with a false-positive rate of 0% (100% specificity). In addition, 5β-cholestane-3α,7α,12α,25-tetrol-3-O-β-D-glucuronide was identified as the predominant bile-alcohol disease marker present in CTX-positive newborn DBSs. In newborns identifying as Druze, a 1:30 carriership frequency was determined for the c.355delC CYP27A1 gene variant, providing an estimated disease prevalence of 1:3,600 in this population. These data support the feasibility of two-tier DBS screening for CTX in newborns and set the stage for large-scale prospective pilot studies.
Collapse
Affiliation(s)
- Andrea E DeBarber
- Physiology and Pharmacology Department, Oregon Health and Science University (OHSU), Portland, OR
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel.,Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel; and
| | | | - Shani Ben Haroush
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | | | - Hanna Mandel
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Krystal Jeffries
- Physiology and Pharmacology Department, Oregon Health and Science University (OHSU), Portland, OR
| | - Eric S Shinwell
- Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel; and.,Department of Neonatology, Ziv Medical Center, Tzfat, Israel
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel .,Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel; and
| |
Collapse
|
5
|
Vaz FM, Bootsma AH, Kulik W, Verrips A, Wevers RA, Schielen PC, DeBarber AE, Huidekoper HH. A newborn screening method for cerebrotendinous xanthomatosis using bile alcohol glucuronides and metabolite ratios. J Lipid Res 2017; 58:1002-1007. [PMID: 28314860 DOI: 10.1194/jlr.p075051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Indexed: 12/29/2022] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is a treatable neurodegenerative metabolic disorder of bile acid synthesis in which symptoms can be prevented if treatment with chenodeoxycholic acid supplementation is initiated early in life, making CTX an excellent candidate for newborn screening. We developed a new dried blood spot (DBS) screening assay for this disorder on the basis of different ratios between the accumulating cholestanetetrol glucuronide (tetrol) and specific bile acids/bile acid intermediates, without the need for derivatization. A quarter-inch DBS punch was extracted with methanol, internal standards were added, and after concentration the extract was injected into the tandem mass spectrometer using a 2 min flow injection analysis for which specific transitions were measured for cholestanetetrol glucuronide, taurochenodeoxycholic acid (t-CDCA), and taurotrihydroxycholestanoic acid (t-THCA). A proof-of-principle experiment was performed using 217 Guthrie cards from healthy term/preterm newborns, CTX patients, and Zellweger patients. Using two calculated biomarkers, tetrol:t-CDCA and t-THCA:tetrol, this straightforward method achieved an excellent separation between DBSs of CTX patients and those of controls, Zellweger patients, and newborns with cholestasis. The results of this small pilot study indicate that the tetrol:t-CDCA ratio is an excellent derived biomarker for CTX that has the potential to be used in neonatal screening programs.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert H Bootsma
- Department of Clinical Chemistry and Pediatrics, Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Willem Kulik
- Department of Clinical Chemistry and Pediatrics, Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Aad Verrips
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter C Schielen
- Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andrea E DeBarber
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Amplatz B, Zöhrer E, Haas C, Schäffer M, Stojakovic T, Jahnel J, Fauler G. Bile acid preparation and comprehensive analysis by high performance liquid chromatography–high-resolution mass spectrometry. Clin Chim Acta 2017; 464:85-92. [DOI: 10.1016/j.cca.2016.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
|
7
|
Dai D, Mills PB, Footitt E, Gissen P, McClean P, Stahlschmidt J, Coupry I, Lavie J, Mochel F, Goizet C, Mizuochi T, Kimura A, Nittono H, Schwarz K, Crick PJ, Wang Y, Griffiths WJ, Clayton PT. Liver disease in infancy caused by oxysterol 7 α-hydroxylase deficiency: successful treatment with chenodeoxycholic acid. J Inherit Metab Dis 2014; 37:851-61. [PMID: 24658845 DOI: 10.1007/s10545-014-9695-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/03/2023]
Abstract
A child of consanguineous parents of Pakistani origin developed jaundice at 5 weeks and then, at 3 months, irritability, a prolonged prothrombin time, a low albumin, and episodes of hypoglycaemia. Investigation showed an elevated alanine aminotransferase with a normal γ-glutamyl-transpeptidase. Analysis of urine by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that the major peaks were m/z 480 (taurine-conjugated 3β-hydroxy-5-cholenoic acid) and m/z 453 (sulphated 3β-hydroxy-5-cholenoic acid). Analysis of plasma by gas chromatography-mass spectrometry (GC-MS) showed increased concentrations of 3β-hydroxy-5-cholenoic acid, 3β-hydroxy-5-cholestenoic acid and 27-hydroxycholesterol, indicating oxysterol 7 α-hydroxylase deficiency. The patient was homozygous for a mutation (c.1249C>T) in CYP7B1 that alters a highly conserved residue in oxysterol 7 α-hydroxylase (p.R417C) - previously reported in a family with hereditary spastic paraplegia type 5. On treatment with ursodeoxycholic acid (UDCA), his condition was worsening, but on chenodeoxycholic acid (CDCA), 15 mg/kg/d, he improved rapidly. A biopsy (after 2 weeks on CDCA), showed a giant cell hepatitis, an evolving micronodular cirrhosis, and steatosis. The improvement in liver function on CDCA was associated with a drop in the plasma concentrations and urinary excretions of the 3β-hydroxy-Δ5 bile acids which are considered hepatotoxic. At age 5 years (on CDCA, 6 mg/kg/d), he was thriving with normal liver function. Neurological development was normal apart from a tendency to trip. Examination revealed pes cavus but no upper motor neuron signs. The findings in this case suggest that CDCA can reduce the activity of cholesterol 27-hydroxylase - the first step in the acidic pathway for bile acid synthesis.
Collapse
|
8
|
Zhou K, Lin N, Xiao Y, Wang Y, Wen J, Zou GM, Gu X, Cai W. Elevated bile acids in newborns with Biliary Atresia (BA). PLoS One 2012; 7:e49270. [PMID: 23166626 PMCID: PMC3498146 DOI: 10.1371/journal.pone.0049270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/04/2012] [Indexed: 01/09/2023] Open
Abstract
Biliary Atresia (BA), a result from inflammatory destruction of the intrahepatic and extrahepatic bile ducts, is a severe hepatobiliary disorder unique to infancy. Early diagnosis and Kasai operation greatly improve the outcome of BA patients, which encourages the development of early screening methods. Using HPLC coupled tandem mass spectrometry, we detected primary bile acids content in dried blood spots obtained from 8 BA infants, 17 neonatal jaundice and 292 comparison infants at 3–4 days of life. Taurocholate (TC) was significantly elevated in biliary atresia infants (0.98±0.62 µmol/L) compared to neonatal jaundice (0.47±0.30 µmol/L) and comparison infants (0.43±0.40 µmol/L), with p = 0.0231 and p = 0.0016 respectively. The area under receiver operating characteristic (ROC) curve for TC to discriminate BA and comparison infants was 0.82 (95% confidence interval: 0.72–0.92). A cutoff of 0.63 µmol/L produced a sensitivity of 79.1% and specificity of 62.5%. The concentrations of total bile acids were also raised significantly in BA compared to comparison infants (6.62±3.89 µmol/L vs 3.81±3.06 µmol/L, p = 0.0162), with the area under ROC curve of 0.75 (95% confidence interval: 0.61–0.89). No significant difference was found between the bile acids of neonatal jaundice and that of comparison infants. The early increase of bile acids indicates the presentation of BA in the immediate newborn period and the possibility of TC as newborn screening marker.
Collapse
Affiliation(s)
- Kejun Zhou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Na Lin
- Shanghai Institute of Pediatric Research, Shanghai, China
- Department of Pediatrics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yang Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jie Wen
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Gang-Ming Zou
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - XueFan Gu
- Shanghai Institute of Pediatric Research, Shanghai, China
- Department of Pediatrics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute of Pediatric Research, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Detection of Δ4-3-oxo-steroid 5β-reductase deficiency by LC-ESI-MS/MS measurement of urinary bile acids. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 900:24-31. [PMID: 22695323 DOI: 10.1016/j.jchromb.2012.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/27/2012] [Accepted: 05/18/2012] [Indexed: 11/23/2022]
Abstract
The synthesis of bile salts from cholesterol is a complex biochemical pathway involving at least 16 enzymes. Most inborn errors of bile acid biosynthesis result in excessive formation of intermediates and/or their metabolites that accumulate in blood and are excreted in part in urine. Early detection is important as oral therapy with bile acids results in improvement. In the past, these intermediates in bile acid biosynthesis have been detected in neonatal blood or urine by screening with FAB-MS followed by detailed characterization using GC-MS. Both methods have proved difficult to automate, and currently most laboratories screen candidate samples using LC-MS/MS. Here, we describe a new, simple and sensitive analytical method for the identification and characterization of 39 conjugated and unconjugated bile acids, including Δ(4)-3-oxo- and Δ(4,6)-3-oxo-bile acids (markers for Δ(4)-3-oxo-steroid 5β-reductase deficiency), using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). In this procedure a concentrated, desalted urinary sample (diluted with ethanol) is injected directly into the LC-ESI-MS/MS, operated with ESI and in the negative ion mode; quantification is obtained by selected reaction monitoring (SRM). To evaluate the performance of our new method, we compared it to a validated method using GC-MS, in the analysis of urine from two patients with genetically confirmed Δ(4)-3-oxo-steroid 5β-reductase deficiency as well as a third patient with an elevated concentration of abnormal conjugated and unconjugated Δ(4)-3-oxo-bile acids. The Δ(4)-3-oxo-bile acids concentration recovered in three patients with 5β-reductase deficiency were 48.8, 58.9, and 49.4 μmol/mmol creatinine, respectively by LC-ESI-MS/MS.
Collapse
|
10
|
Chong CPK, Mills PB, McClean P, Gissen P, Bruce C, Stahlschmidt J, Knisely AS, Clayton PT. Bile acid-CoA ligase deficiency--a new inborn error of bile acid metabolism. J Inherit Metab Dis 2012; 35:521-30. [PMID: 22089923 DOI: 10.1007/s10545-011-9416-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 09/30/2011] [Accepted: 10/26/2011] [Indexed: 12/28/2022]
Abstract
Born at 27 weeks gestation, a child of consanguineous parents of Pakistani origin required prolonged parenteral nutrition. She developed jaundice, with extensive fibrosis and architectural distortion at liver biopsy; jaundice resolved with supportive care. Serum γ-glutamyl transpeptidase values were within normal ranges. The bile acids in her plasma and urine were >85% unconjugated (non-amidated). Two genes encoding bile-acid amidation enzymes were sequenced. No mutations were found in BAAT, encoding bile acid-CoA : aminoacid N-acyl transferase. The patient was homozygous for the missense mutation c.1012C > T in SLC27A5, predicted to alter a highly conserved amino-acid residue (p.H338Y) in bile acid-CoA ligase (BACL). She also was homozygous for the missense mutation c.1772A > G in ABCB11, predicted to alter a highly conserved amino-acid residue (p.N591S) in bile salt export pump (BSEP). BACL is essential for reconjugation of bile acids deconjugated by gut bacteria, and BSEP is essential for hepatocyte-canaliculus export of conjugated bile acids. A female sibling born at term had the same bile-acid phenotype and SLC27A5 genotype, without clinical liver disease. She was heterozygous for the c.1772A > G ABCB11 mutation. This is the first report of a mutation in SLC27A5. The amidation defect may have contributed to cholestatic liver disease in the setting of prematurity, parenteral nutrition, and homozygosity for an ABCB11 mutation.
Collapse
Affiliation(s)
- Catherine P K Chong
- Clinical & Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Harpavat S, Finegold MJ, Karpen SJ. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 2011; 128:e1428-33. [PMID: 22106076 PMCID: PMC3387898 DOI: 10.1542/peds.2011-1869] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Healthy infants are thought to acquire biliary atresia (BA) in the first weeks of life. Because those diagnosed earlier have better outcomes, we were interested in determining the earliest time BA could be detected. We started by examining the immediate postnatal period, hypothesizing that newborns would not yet have acquired disease and still have normal direct/conjugated bilirubin (DB/CB) levels. PATIENTS AND METHODS Newborn DB/CB levels were obtained retrospectively from birth hospitals. Subjects with BA were born between 2007 and 2010 and cared for at Texas Children's Hospital. Those with BA splenic malformation syndrome or born prematurely were excluded. Control subjects were term newborns who later never developed neonatal liver disease. RESULTS Of the 61 subjects with BA, 56% had newborn DB/CB levels measured. All DB/CB levels exceeded laboratory norms and rose over time. At 24 to 48 hours of life, subjects with BA had mean DB levels significantly higher than those of controls (1.4 ± 0.43 vs. 0.19 ± 0.075 mg/dL, P < .0001), even while their mean total bilirubin (TB) levels remained below phototherapy limits. Finally, despite the elevated DB/CB levels, the majority of patients (79%) had normal DB:TB ratios ≤ 0.2. CONCLUSIONS Patients with BA have elevated DB/CB levels shortly after birth. To detect affected infants earlier and improve outcomes, the results suggest two possibilities: (1) screen all newborns for elevated DB/CB levels, rather than just those who appear jaundiced; and then (2) follow all newborns with elevated DB/CB levels, rather than just those with DB:TB ratios >0.2.
Collapse
Affiliation(s)
- Sanjiv Harpavat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and
| | - Milton J. Finegold
- Department of Pathology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and
| |
Collapse
|
12
|
Abstract
Hepatic dysfunction during childhood can be due to acquired or inherited etiologies or a combination. The distinction can be difficult to make on liver biopsy, because the inherited disorders are rare and often lack pathognomonic light microscopic features. Recent progress in understanding the pathogenesis of these disorders has led to advances in molecular genetic screening and confirmatory tests. For a majority of these disorders, the liver biopsy continues to play a crucial role in primary diagnosis or confirmation. This article discusses algorithms that may aid pathologists in differential diagnosis of common inherited disorders of the liver, with emphasis on ancillary diagnostic tools and reference assays that are critical in establishing the diagnosis.
Collapse
Affiliation(s)
- Angshumoy Roy
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Milton J Finegold
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Janzen N, Sander S, Terhardt M, Das AM, Sass JO, Kraetzner R, Rosewich H, Rosevich H, Peter M, Sander J. Rapid quantification of conjugated and unconjugated bile acids and C27 precursors in dried blood spots and small volumes of serum. J Lipid Res 2010; 51:1591-8. [PMID: 20093478 DOI: 10.1194/jlr.d003814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of the study was to develop a method for fast and reliable diagnosis of peroxisomal diseases and to facilitate differential diagnosis of cholestatic hepatopathy. For the quantification of bile acids and their conjugates as well as C(27) precursors di- and trihydroxycholestanoic acid (DHCA, THCA), in small pediatric blood samples we combined HPLC separation on a reverse-phase C18 column with ESI-MS/MS analysis in the negative ion mode. Analysis was done with good precision (CV 3,7%-11.1%) and sufficient sensitivity (LOQ: 11-91 nmol/L) without derivatization. Complete analysis of 17 free and conjugated bile acids from dried blood spots and 10 microL serum samples, respectively, was performed within 12 min. Measurement of conjugated primary bile acids plus DHCA and THCA as well as ursodeoxycholic acid was done in 4.5 min. In blood spots of healthy newborns, conjugated primary bile acids were found in the range of 0.01 to 2.01 micromol/L. Concentrations of C(27) precursors were below the detection limit in normal controls. DHCA and THCA were specifically elevated in cases of peroxysomal defects and one Zellweger patient.
Collapse
Affiliation(s)
- N Janzen
- Department of Pediatric Kidney-, Liver-Metabolic Diseases, Children's Hospital Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Scherer M, Gnewuch C, Schmitz G, Liebisch G. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3920-5. [PMID: 19819765 DOI: 10.1016/j.jchromb.2009.09.038] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/10/2009] [Accepted: 09/24/2009] [Indexed: 12/14/2022]
Abstract
Beside their role as lipid solubilizers, bile acids (BAs) are increasingly appreciated as signaling factors. As ligands of G-protein coupled receptors and nuclear hormone receptors BAs control their own metabolism and act on lipid and energy metabolism. To study BA function in detail, it is necessary to use methods for their quantification covering the structural diversity of this group. Here we present a simple, sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the analysis of bile acid profiles in human plasma/serum. Protein precipitation was performed in the presence of stable-isotope labeled internal standards. In contrast to previous LC-MS/MS methods, we used a reversed-phase C18 column with 1.8microm particles and a gradient elution at basic pH. This allows base line separation of 18 bile acid species (free and conjugated) within 6.5min run time and a high sensitivity in negative ion mode with limits of detection below 10nmol/L. Quantification was achieved by standard addition and calibration lines were linear in the tested range up to 28micromol/L. Validation was performed according to FDA guidelines and overall imprecision was below 11% CV for all species. The developed LC-MS/MS method for bile acid quantification is characterized by simple sample preparation, baseline separation of isobaric species, a short analysis time and provides a valuable tool for both, routine diagnostics and the evaluation of BAs as diagnostic biomarkers in large clinical studies.
Collapse
Affiliation(s)
- Max Scherer
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93042 Regensburg, Germany
| | | | | | | |
Collapse
|
15
|
Ramm GA, Shepherd RW, Hoskins AC, Greco SA, Ney AD, Pereira TN, Bridle KR, Doecke JD, Meikle PJ, Turlin B, Lewindon PJ. Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment. Hepatology 2009; 49:533-44. [PMID: 19115220 DOI: 10.1002/hep.22637] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Cholestatic liver diseases, such as cystic fibrosis (CF) liver disease and biliary atresia, predominate as causes of childhood cirrhosis. Despite diverse etiologies, the stereotypic final pathway involves fibrogenesis where hepatic stellate cells (HSCs) are recruited, producing excess collagen which initiates biliary fibrosis. A possible molecular determinant of this recruitment, monocyte chemotaxis protein-1 (MCP-1), an HSC-responsive chemokine, was investigated in CF liver disease and biliary atresia. The bile-duct-ligated rat and in vitro coculture models of cholestatic liver injury were used to further explore the role of MCP-1 in HSC recruitment and proposed mechanism of induction via bile acids. In both CF liver disease and biliary atresia, elevated hepatic MCP-1 expression predominated in scar margin hepatocytes, closely associated with activated HSCs, and was also expressed in cholangiocytes. Serum MCP-1 was elevated during early fibrogenesis. Similar observations were made in bile-duct-ligated rat liver and serum. Hepatocytes isolated from cholestatic rats secreted increased MCP-1 which avidly recruited HSCs in coculture. This HSC chemotaxis was markedly inhibited in interventional studies using anti-MCP-1 neutralizing antibody. In CF liver disease, biliary MCP-1 was increased, positively correlating with levels of the hydrophobic bile acid, taurocholate. In cholestatic rats, increased MCP-1 positively correlated with taurocholate in serum and liver, and negatively correlated in bile. In normal human and rat hepatocytes, taurocholate induced MCP-1 expression. CONCLUSION These observations support the hypothesis that up-regulation of hepatocyte-derived MCP-1, induced by bile acids, results in HSC recruitment in diverse causes of cholestatic liver injury, and is a key early event in liver fibrogenesis in these conditions. Therapies aimed at neutralizing MCP-1 or bile acids may help reduce fibro-obliterative liver injury in childhood cholestatic diseases.
Collapse
Affiliation(s)
- Grant A Ramm
- The Hepatic Fibrosis Group, The Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108:225-46. [PMID: 19131563 DOI: 10.1093/toxsci/kfn268] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfotransferase-2A1 catalyzes the formation of bile acid-sulfates (BA-sulfates). Sulfation of BAs increases their solubility, decreases their intestinal absorption, and enhances their fecal and urinary excretion. BA-sulfates are also less toxic than their unsulfated counterparts. Therefore, sulfation is an important detoxification pathway of BAs. Major species differences in BA sulfation exist. In humans, only a small proportion of BAs in bile and serum are sulfated, whereas more than 70% of BAs in urine are sulfated, indicating their efficient elimination in urine. The formation of BA-sulfates increases during cholestatic diseases. Therefore, sulfation may play an important role in maintaining BA homeostasis under pathologic conditions. Farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor are potential nuclear receptors that may be involved in the regulation of BA sulfation. This review highlights current knowledge about the enzymes and transporters involved in the formation and elimination of BA-sulfates, the effect of sulfation on the pharmacologic and toxicologic properties of BAs, the role of BA sulfation in cholestatic diseases, and the regulation of BA sulfation.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
17
|
Alnouti Y, Csanaky IL, Klaassen CD. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 873:209-17. [PMID: 18801708 PMCID: PMC2582521 DOI: 10.1016/j.jchromb.2008.08.018] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/24/2008] [Accepted: 08/26/2008] [Indexed: 12/30/2022]
Abstract
The differences among individual bile acids (BAs) in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual BAs and their taurine and glycine conjugates. Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 6 major BAs, their glycine, and taurine conjugates in mouse liver, bile, plasma, and urine was developed and validated. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for plasma and liver) was used to extract BAs. This method is valid and sensitive with a limit of quantification ranging from 10 to 40 ng/ml for the various analytes, has a large dynamic range (2500), and a short run time (20 min). Detailed BA profiles were obtained from mouse liver, plasma, bile, and urine using this method. Muricholic acid (MCA) and cholic acid (CA) taurine conjugates constituted more than 90% of BAs in liver and bile. BA concentrations in liver were about 300-fold higher than in plasma, and about 180-fold higher in bile than in liver. In summary, a reliable and simple LC-MS/MS method to quantify major BAs and their metabolites was developed and applied to quantify BAs in mouse tissues and fluids.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| | | | | |
Collapse
|
18
|
Shinka T, Inoue Y, Ohse M, Kuhara T. Simple and quantitative analysis of urinary sulfated tauro- and glycodihydroxycholic acids in infant with cholestasis by electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 855:104-8. [PMID: 17466603 DOI: 10.1016/j.jchromb.2007.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 11/22/2022]
Abstract
Here we report a simple, sensitive, and accurate method for detecting urinary sulfated tauro- and glyco-bile acids that uses electrospray ionization mass spectrometry. The sulfated tauro- and glycodihydroxycholic acids mainly generated [M-2H](2-) negative ions at m/z 288.6 and m/z 263.6, respectively. These doubly charged ions appeared primarily in samples prepared from the urine of patients with cholestasis and were detected quantitatively. Cholestatic jaundice is the primary clinical sign of biliary atresia. The measurement of doubly charged negative ions, especially of sulfated taurodihydroxycholic acid (principally taurochenodeoxycholate-3-sulfate), is a useful screening modality for biliary atresia in neonates.
Collapse
Affiliation(s)
- Toshihiro Shinka
- Division of Human Genetics, Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan.
| | | | | | | |
Collapse
|
19
|
Caron P, Trottier J, Verreault M, Bélanger J, Kaeding J, Barbier O. Enzymatic production of bile Acid glucuronides used as analytical standards for liquid chromatography-mass spectrometry analyses. Mol Pharm 2006; 3:293-302. [PMID: 16749861 DOI: 10.1021/mp060021l] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports a novel method for the production and purification of analytical standards of glucuronide conjugates of bile acids, chenodeoxycholic (CDCA), lithocholic, (LCA) and hyodeoxycholic (HDCA) acids. CDCA-3G (CDCA-3-glucuronide) and -24G, LCA-3G and -24G, and HDCA-6G and -24G were enzymatically formed by using microsomes from human liver, purified by liquid chromatography, digested with recombinant beta-glucuronidase, and quantified by liquid chromatography/electrospray ionization coupled to mass spectrometry (LC-ESI/MS). The position of the glucuronosyl moiety on the bile acids was determined by analyzing the susceptibility to hydrolysis under elevated pH and temperature conditions of the standards. By using the purified analytical standards, a LC-ESI/MS/MS method was developed for the determination of these glucuronide conjugates in in vitro assays. The linearity of the assay ranged from 0.5 to 40 ng/mL for the six glucuronides, and the limit of quantification (LOQ) was 0.5 ng/mL. Intra- and interday precisions and accuracy values were all lower than 10.2%. Furthermore, processed sample stability analyses revealed that the six standards were stable at 4 degrees C for more than 24 h. This method was successfully used for the quantification of CDCA, LCA, and HDCA glucuronides formed by human liver or hepatoma HepG2 cells. In conclusion, such a method allows the purification of high-quality analytical standards of glucuronide derivatives and may easily be used for the quantification of other endo- and xenobiotics that are glucuronidated.
Collapse
Affiliation(s)
- Patrick Caron
- Molecular Endocrinology and Oncology Research Center, CHUL Research Center, and the Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Gan-Schreier H, Okun JG, Kohlmueller D, Langhans CD, Peters V, Ten Brink HJ, Verhoeven NM, Jakobs C, Voelkl A, Hoffmann GF. Measurement of bile acid CoA esters by high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS). JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:882-9. [PMID: 15892178 DOI: 10.1002/jms.864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The novel and rapid assay presented here combines high-performance liquid chromatography and electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS) to directly measure and quantify the CoA esters of 3alpha,7alpha,12alpha-trihydroxy- and 3alpha,7alpha-dihydroxy-5beta-cholestan-26-oic acid (THCA and DHCA). The latter are converted inside peroxisomes to the primary bile acids, cholic and chenodeoxycholic acids, respectively. Prior to MS/MS, esters were separated by reversed-phase HPLC on a C(18) column using an isocratic mobile phase (acetonitrile/water/2-propanol) and subsequently detected by multiple reaction monitoring. For quantification, the CoA ester of deuterium-labelled 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oic acid (d(4)-CA) was used as internal standard. To complete an assay took less than 8 min. To verify the validity of the assay, the effect of peroxisomal proteins on the efficacy of extraction of the CoA esters was tested. To this end, variable amounts of the CoA esters were spiked with a fixed amount of either intact peroxisomes or peroxisomal matrix proteins and then extracted using a solid-phase extraction system. The CoA esters could be reproducibly recovered in the range of 0.1-4 micromol l(-1) (linear correlation coefficient R(2) > 0.99), with a detection limit of 0.1 micromol l(-1). In summary, electrospray ionization tandem mass spectrometry combined with HPLC as described here proved to be a rapid and versatile technique for the determination of bile acid CoA esters in a mixture with peroxisomal proteins. This suggests this technique to become a valuable tool in studies dealing with the multi-step biosynthesis of bile acids and its disturbances in disorders like the Zellweger syndrome.
Collapse
Affiliation(s)
- H Gan-Schreier
- Division of Inherited Metabolic Diseases, University Children's Hospital, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnson DW. Contemporary clinical usage of LC/MS: analysis of biologically important carboxylic acids. Clin Biochem 2005; 38:351-61. [PMID: 15766736 DOI: 10.1016/j.clinbiochem.2005.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 01/07/2005] [Accepted: 01/17/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This review summarizes the current role of LC/MS in the diagnosis and screening of clinical conditions involving the analysis of biologically important carboxylic acids. DESIGN AND METHODS Carboxylic acids are divided into six logical categories of acid size and function. Details of chromatographic separation methods and modes of mass spectrometer operation are described for each category. RESULTS The use of LC/MS in clinical applications such as the diagnosis of inherited and acquired metabolic disorders, gastrointestinal disorders, cancer and diabetes and therapeutic drug monitoring is discussed. CONCLUSIONS The mild conditions, speed and sensitivity advantages of LC/MS analysis, over alternatives, are highlighted. The sensitivity and specificity afforded by the combination of tertiary and quaternary ammonium derivatives and tandem mass spectrometry for the analysis of carboxylic acids is emphasized. Potential for a greater range of LC/MS carboxylic analyses, including stereoisomeric intermediates, is predicted.
Collapse
Affiliation(s)
- David W Johnson
- Department of Genetic Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia 5006, Australia.
| |
Collapse
|
22
|
Abstract
Tandem mass spectrometry is becoming an increasingly important analytical technology in the clinical laboratory environment. Applications in toxicology and therapeutic drug monitoring have opened the door for tandem mass spectrometry and now we are seeing a vast array of new applications being developed. It has been the combination of tandem mass spectrometry with sample introduction techniques employing atmospheric pressure ionization that has enabled this technology to be readily implemented in the clinical laboratory. Although its major research applications started with pharmacology and proteomics, tandem mass spectrometry is being used for a great variety of analyses from steroids to catecholamines to peptides. As with chromatographic methods, tandem mass spectrometry is most cost effective when groups of compounds need to be measured simultaneously. However as the price/performance of this technology continues to improve, it will become even more widely utilized for clinical laboratory applications.
Collapse
Affiliation(s)
- Kent C Dooley
- Department of Pathology and Laboratory Medicine, IWK Health Centre and Department of Pathology, Dalhousie University Medical School, Halifax, Nova Scotia, Canada.
| |
Collapse
|
23
|
Griffiths WJ. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. MASS SPECTROMETRY REVIEWS 2003; 22:81-152. [PMID: 12820273 DOI: 10.1002/mas.10046] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the last 50 years, the mass spectrometry of lipids has evolved to become one of the most mature techniques in biomolecule analysis. Many volatile and non-polar lipids are directly amenable to analysis by gas-chromatography-mass spectrometry (GC-MS), a technique that combines the unsurpassed separation properties of gas-chromatography with the sensitivity and selectivity of electron ionization mass spectrometry. Less volatile and/or thermally labile lipids can be analyzed by GC-MS, following appropriate sample derivatization. However, many complex lipids are not readily analyzed by GC-MS, and it is these molecules that are the subject of the current review. Since the early 1970s, there have been three outstanding developments in mass spectrometry that are particularly appropriate in lipid analysis; i.e., the introduction of (i) fast atom bombardment (FAB); (ii) electrospray (ES); and (iii) tandem mass spectrometry (MS/MS). The FAB and ES ionization techniques will be discussed in relation to MS/MS, and examples of their application in biochemical studies will be presented. The review will concentrate on the analysis of fatty acids, bile acids, steroid conjugates, and neutral steroids.
Collapse
Affiliation(s)
- William J Griffiths
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
24
|
Abstract
Intrahepatic cholestasis of pregnancy (ICP) affects about 0.7% of deliveries in Britain. It is regarded as a benign condition for the mother but is associated with increased fetal mortality in late pregnancy and early delivery is advised. Ursodeoxycholic acid (UDCA) treatment is beneficial to the mother and does not appear to harm the fetus. ICP is often regarded as a disease of the maternal liver already made 'cholestatic' by high levels of circulating progesterone. We propose that ICP should be considered as a feto-maternal disease involving complex interactions between maternal and fetal bile acid metabolism across the placenta. During the late stages of gestation, when there is a rise in fetal and maternal bile acid levels, the placenta may fail to render potentially hepatotoxic bile acids water soluble and hence excretable. This might cause a vicious cycle leading to further cholestasis in the maternal liver already challenged by progesterone.
Collapse
|
25
|
Tagliacozzi D, Mozzi AF, Casetta B, Bertucci P, Bernardini S, Di Ilio C, Urbani A, Federici G. Quantitative Analysis of Bile Acids in Human Plasma by Liquid Chromatography-Electrospray Tandem Mass Spectrometry: A Simple and Rapid One-Step Method. Clin Chem Lab Med 2003; 41:1633-41. [PMID: 14708888 DOI: 10.1515/cclm.2003.247] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bile acids play a pivotal role in the metabolism of cholesterol and lipids. Their blood concentrations are important prognostic and diagnostic indicators of hepatobiliary and intestinal dysfunction. This class of molecules comprises a heterogeneous group of compounds with a common cholesterol scaffold. Recently, the introduction of liquid chromatography coupled to tandem mass spectrometry methods has revealed an innovative path in the quantisation of specific bile acids in biological specimens. A robust and sensitive method has been developed based on high performance liquid chromatography separation coupled to an electrospray triple-quadrupole mass spectrometer. Human plasma samples were analysed on a C18 reverse-phase column. The elution profiles were monitored in multiple reaction-monitoring mode, quantifying and identifying each analyte by its own unique precursor to product patterns. A linear correlation over a broad range of bile acid concentrations (0.1-100 microM) was observed. The average recovery period for all of the analysed bile acids was 98 +/- 3%. Intra-day and inter-day precision averages were 2% and 5.4%, respectively. The determination was achieved within a single chromatographic run for all unconjugated, glycine- and taurine-conjugated isomeric forms of bile acids. As a proof of principle this method has been validated on a small subset of cholestatic patients (n = 7) and compared to appropriate clinical controls (n = 10). Based upon our encouraging experimental results, the described HPLC separation coupled to tandem mass spectrometry method for the analysis of bile acids in biological samples is deemed a robust and accurate procedure. Consequently, we propose this technique as a suitable candidate method for the identification and quantitation of bile acids in routine analysis.
Collapse
Affiliation(s)
- Debora Tagliacozzi
- Laboratorio di Biochimica Clinica, Ospedale Pediatrico del Bambino Gesù - IRCCS, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rashed MS. Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 758:27-48. [PMID: 11482732 DOI: 10.1016/s0378-4347(01)00100-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper reviews the clinical applications of tandem mass spectrometry (MS-MS) in diagnosis and screening for inherited metabolic diseases in the last 10 years. The broad-spectrum of diseases covered, specificity, ease of sample preparation, and high throughput provided by the MS-MS technology has led to the development of multi-disorder newborn screening programs in many countries for amino acid disorders, organic acidemias, and fatty acid oxidation defects. Issues related to sample acquisition, sample preparation, quantification of metabolites, and validation are discussed. Our current experience with the technique in screening is presented. The application of MS-MS in selective screening has revolutionized the field and made a major impact on the detection of certain disease classes such as the fatty acid oxidation defects. New specific and rapid MS-MS and LC-MS-MS methods for highly polar small molecules are supplementing or replacing some of the classical GC-MS methods for a multitude of metabolites and disorders. New exciting applications are appearing in fields of prenatal, postnatal, and even postmortem diagnosis. Examples for pitfalls in the technique are also presented.
Collapse
Affiliation(s)
- M S Rashed
- Metabolic Screening Laboratory, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
27
|
Johnson D, ten Brink H, Schuit R, Jakobs C. Rapid and quantitative analysis of unconjugated C27 bile acids in plasma and blood samples by tandem mass spectrometry. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)32330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Johnson DW. A rapid screening procedure for the diagnosis of peroxisomal disorders: quantification of very long-chain fatty acids, as dimethylaminoethyl esters, in plasma and blood spots, by electrospray tandem mass spectrometry. J Inherit Metab Dis 2000; 23:475-86. [PMID: 10947202 DOI: 10.1023/a:1005612214179] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A rapid method with potential to screen for many of the peroxisomal disorders using 5 microl of plasma or a 3-mm blood spot (3.6 microl blood impregnated on filter paper) is described. Fatty acids are liberated from plasma or blood spots and converted to dimethylaminoethyl esters. Trideuterated fatty acids, added as internal standards, are used to quantify eicosanoic (C20:0), docosanoic (C22:0), tetracosanoic (C24:0) and hexacosanoic (C26:0) acids by electrospray tandem mass spectrometry. The C26:0/C22:0 and C24:0/C22:0 ratios are significantly greater in the plasma of patients with peroxisomal disorders compared to controls. The C20:0/C22:0 ratio is elevated in the plasma of peroxisomal patients who accumulate phytanic acid. Blood spots collected from four peroxisomal patients between 2 and 10 days after birth and stored for up to 17 years, were shown to give between 33% and 233% higher C26:0/C22:0 ratios compared to age-matched controls.
Collapse
Affiliation(s)
- D W Johnson
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| |
Collapse
|
29
|
Johnson DW. Dimethylaminoethyl esters for trace, rapid analysis of fatty acids by electrospray tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 1999; 13:2388-2393. [PMID: 10567939 DOI: 10.1002/(sici)1097-0231(19991215)13:23<2388::aid-rcm803>3.0.co;2-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of a new derivative, the dimethylaminoethyl ester, for the analysis of fatty acids by electrospray tandem mass spectrometry is described. Qualitative and quantitative analyses of long to very long chain fatty acids in plasma, blood, urine and wax were performed. Branched chain, unsaturated, dicarboxylic, hydroxy, amino and keto acids were studied. The quantitative analysis method using the new derivative is simple, rapid and precise with small sample size. It has good potential as a screening method for biologically important fatty acids. Copyright 1999 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- DW Johnson
- Department of Chemical Pathology, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006 Australia
| |
Collapse
|
30
|
Mushtaq I, Logan S, Morris M, Johnson AW, Wade AM, Kelly D, Clayton PT. Screening of newborn infants for cholestatic hepatobiliary disease with tandem mass spectrometry. BMJ (CLINICAL RESEARCH ED.) 1999; 319:471-7. [PMID: 10454398 PMCID: PMC28198 DOI: 10.1136/bmj.319.7208.471] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To assess the feasibility of screening for cholestatic hepatobiliary disease and extrahepatic biliary atresia by using tandem mass spectrometry to measure conjugated bile acids in dried blood spots obtained from newborn infants at 7-10 days of age for the Guthrie test. SETTING Three tertiary referral clinics and regional neonatal screening laboratories. DESIGN Unused blood spots from the Guthrie test were retrieved for infants presenting with cholestatic hepatobiliary disease and from the two cards stored on either side of each card from an index child. Concentrations of conjugated bile acids measured by tandem mass spectrometry in the two groups were compared. MAIN OUTCOME MEASURES Concentrations of glycodihydroxycholanoates, glycotrihydroxycholanoates, taurodihydroxycholanoates, and taurotrihydroxycholanoates. Receiver operator curves were plotted to determine which parameter (or combination of parameters) would best predict the cases of cholestatic hepatobiliary disease and extrahepatic biliary atresia. The sensitivity and specificity at a selection of cut off values for each bile acid species and for total bile acid concentrations for the detection of the two conditions were calculated. RESULTS 218 children with cholestatic hepatobiliary disease were eligible for inclusion in the study. Two children without a final diagnosis and five who presented at <14 days of age were excluded. Usable blood spots were obtained from 177 index children and 708 comparison children. Mean concentrations of all four bile acid species were significantly raised in children with cholestatic hepatobiliary disease and extrahepatic biliary atresia compared with the unaffected children (P<0.0001). Of 177 children with cholestatic hepatobiliary disease, 104 (59%) had a total bile acid concentration >33 micromol/l (97.5th centile value for comparison group). Of the 61 with extrahepatic biliary atresia, 47 (77%) had total bile acid concentrations >33 micromol/l. Taurotrihydroxycholanoate and total bile acid concentrations were the best predictors of both conditions. For all cholestatic hepatobiliary disease, a cut off level of total bile acid concentration of 30 micromol/l gave a sensitivity of 62% and a specificity of 96%, while the corresponding values for extrahepatic biliary atresia were 79% and 96%. CONCLUSION Most children who present with extrahepatic biliary atresia and other forms of cholestatic hepatobiliary disease have significantly raised concentrations of conjugated bile acids as measured by tandem mass spectrometry at the time when samples are taken for the Guthrie test. Unfortunately the separation between the concentrations in these infants and those in the general population is not sufficient to make mass screening for cholestatic hepatobiliary disease a feasible option with this method alone.
Collapse
Affiliation(s)
- I Mushtaq
- Biochemistry Unit, Institute of Child Health, University College London, London WC1N 1EH
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
We summarize the current status of the use of tandem mass spectrometry for the detection of inherited metabolic disorders and the investigation of the pathophysiology of these conditions. We also indicate some of the more recent developments of this technology that have potential diagnostic applications.
Collapse
Affiliation(s)
- K Bartlett
- Spence Biochemical Genetics Unit, Sir James Spence Institute of Child Health, University of Newcastle upon Tyne, Royal Victoria Infirmary, UK.
| | | |
Collapse
|
32
|
Bootsma AH, Overmars H, van Rooij A, van Lint AE, Wanders RJ, van Gennip AH, Vreken P. Rapid analysis of conjugated bile acids in plasma using electrospray tandem mass spectrometry: application for selective screening of peroxisomal disorders. J Inherit Metab Dis 1999; 22:307-10. [PMID: 10384393 DOI: 10.1023/a:1005543802724] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A H Bootsma
- Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|