1
|
Bellieni CV, Anand KJS. Direct evidence of fetal responses to noxious stimulations: A systematic review of physiological and behavioral reactions. Early Hum Dev 2025; 201:106196. [PMID: 39813901 DOI: 10.1016/j.earlhumdev.2025.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Fetal pain is usually debated using data extrapolated from physiology and anatomy; whereas direct observation of fetal pain reactions is only marginally used. We present the first systematic review to carefully analyse this direct evidence. Our objective was to summarize the scientific literature based on the direct observation of fetal responses to noxious stimulation. We retrieved 17 clinical studies focused on the direct observation of fetal responses to noxious stimulation. This systematic review suggests that direct trials of fetal responses to acute pain/stress caused by tissue injury are scarce, but nonetheless informative for therapeutic interventions using fetal surgery or fetal invasive procedures. The current evidence indicates that responses to fetal pain develop from mid-gestation onward, but further high-quality research is needed to confirm these findings and guide clinical practice.
Collapse
|
2
|
Martini S, Thewissen L, Austin T, da Costa CS, de Boode WP, Dempsey E, Kooi E, Pellicer A, Rhee CJ, Riera J, Wolf M, Wong F. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res 2024; 96:884-895. [PMID: 36997690 DOI: 10.1038/s41390-023-02574-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important associations with pathological conditions including the development of brain injury and adverse neurodevelopmental outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly develop a preventive or curative approach for preterm brain injury. IMPACT: NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of cerebrovascular reactivity into routine monitoring in neonatal clinical practice.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | | | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Cork, Ireland
| | - Elisabeth Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
| | - Christopher J Rhee
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joan Riera
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Technology, Technical University, Madrid, Spain
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Flora Wong
- Monash Newborn, Monash Children's Hospital, Hudson Institute of Medical Research, Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
In infants with congenital heart disease autonomic dysfunction is associated with pre-operative brain injury. Pediatr Res 2022; 91:1723-1729. [PMID: 34963700 PMCID: PMC9237187 DOI: 10.1038/s41390-021-01931-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Brain injury is a serious and common complication of critical congenital heart disease (CHD). Impaired autonomic development (assessed by heart rate variability (HRV)) is associated with brain injury in other high-risk neonatal populations. OBJECTIVE To determine whether impaired early neonatal HRV is associated with pre-operative brain injury in CHD. METHODS In infants with critical CHD, we evaluated HRV during the first 24 h of cardiac ICU (CICU) admission using time-domain (RMS 1, RMS 2, and alpha 1) and frequency-domain metrics (LF, nLF, HF, nHF). Pre-operative brain magnetic resonance imaging (MRI) was scored for injury using an established system. Spearman's correlation coefficient was used to determine the association between HRV and pre-operative brain injury. RESULTS We enrolled 34 infants with median birth gestational age of 38.8 weeks (IQR 38.1-39.1). Median postnatal age at pre-operative brain MRI was 2 days (IQR 1-3 days). Thirteen infants had MRI evidence of brain injury. RMS 1 and RMS 2 were inversely correlated with pre-operative brain injury. CONCLUSIONS Time-domain metrics of autonomic function measured within the first 24 h of admission to the CICU are associated with pre-operative brain injury, and may perform better than frequency-domain metrics under non-stationary conditions such as critical illness. IMPACT Autonomic dysfunction, measured by heart rate variability (HRV), in early transition is associated with pre-operative brain injury in neonates with critical congenital heart disease. These data extend our earlier findings by providing further evidence for (i) autonomic dysfunction in infants with CHD, and (ii) an association between autonomic dysfunction and brain injury in critically ill neonates. These data support the notion that further investigation of HRV as a biomarker for brain injury risk is warranted in infants with critical CHD.
Collapse
|
4
|
Association of cerebral microvascular dysfunction and white matter injury in Alzheimer's disease. GeroScience 2022; 44:1-14. [PMID: 35612774 PMCID: PMC9617002 DOI: 10.1007/s11357-022-00585-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with Alzheimer's disease (AD) often have cerebral white matter (WM) hyperintensities on MRI and microinfarcts of presumed microvascular origin pathologically. Here, we determined if vasodilator dysfunction of WM-penetrating arterioles is associated with pathologically defined WM injury and disturbances in quantitative MRI-defined WM integrity in patients with mixed microvascular and AD pathology. We analyzed tissues from 28 serially collected human brains from research donors diagnosed with varying degrees of AD neuropathologic change (ADNC) with or without cerebral microinfarcts (mVBI). WM-penetrating and pial surface arteriolar responses to the endothelium-dependent agonist bradykinin were quantified ex vivo with videomicroscopy. Vascular endothelial nitric oxide synthase (eNOS) and NAD(P)H-oxidase (Nox1, 2 and 4 isoforms) expression were measured with quantitative PCR. Glial fibrillary acidic protein (GFAP)-labeled astrocytes were quantified by unbiased stereological approaches in regions adjacent to the sites of WM-penetrating vessel collection. Post-mortem diffusion tensor imaging (DTI) was used to measure mean apparent diffusion coefficient (ADC) and fractional anisotropy (FA), quantitative indices of WM integrity. In contrast to pial surface arterioles, white matter-penetrating arterioles from donors diagnosed with high ADNC and mVBI exhibited a significantly reduced dilation in response to bradykinin when compared to the other groups. Expression of eNOS was reduced, whereas Nox1 expression was increased in WM arterioles in AD and mVBI cases. WM astrocyte density was increased in AD and mVBI, which correlated with a reduced vasodilation in WM arterioles. Moreover, in cases with low ADNC, bradykinin-induced WM arteriole dilation correlated with lower ADC and higher FA values. Comorbid ADNC and mVBI appear to synergistically interact to selectively impair bradykinin-induced vasodilation in WM-penetrating arterioles, which may be related to reduced nitric oxide- and excess reactive oxygen species-mediated vascular endothelial dysfunction. WM arteriole vasodilator dysfunction is associated with WM injury, as supported by reactive astrogliosis and MRI-defined disrupted WM microstructural integrity.
Collapse
|
5
|
Greisen G, Hansen ML, Rasmussen MIS, Vestager M, Hyttel-Sørensen S, Hahn GH. Cerebral Oximetry in Preterm Infants-To Use or Not to Use, That Is the Question. Front Pediatr 2021; 9:747660. [PMID: 35186815 PMCID: PMC8847778 DOI: 10.3389/fped.2021.747660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
The Safeguarding the Brains of our smallest Children (SafeBoosC) project was initially established to test the patient-relevant benefits and harms of cerebral oximetry in extremely preterm infants in the setting of a randomized clinical trial. Extremely preterm infants constitute a small group of patients with a high risk of death or survival with brain injury and subsequent neurodevelopmental disability. Several cerebral oximeters are approved for clinical use, but the use of additional equipment may disturb and thereby possibly harm these vulnerable, immature patients. Thus, the mission statement of the consortium is "do not disturb-unless necessary." There may also be more tangible risks such as skin breakdown, displacement of tubes and catheters due to more complicated nursing care, and mismanagement of cerebral oxygenation as a physiological variable. Other monitoring modalities have relevance for reducing the risk of hypoxic-ischemic brain injury occurring during acute illness and have found their place in routine clinical care without evidence from randomized clinical trials. In this manuscript, we discuss cerebral oximetry, pulse oximetry, non-invasive electric cardiometry, and invasive monitoring of blood pressure. We discuss the reliability of the measurements, the pathophysiological rationale behind the clinical use, the evidence of benefit and harms, and the costs. By examining similarities and differences, we aim to provide our perspective on the use or non-use of cerebral oximetry in newborn infants during intensive care.
Collapse
Affiliation(s)
- Gorm Greisen
- Department of Neonatology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Lühr Hansen
- Department of Neonatology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marie Isabel Skov Rasmussen
- Department of Neonatology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Vestager
- Department of Neonatology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Simon Hyttel-Sørensen
- Department of Neonatology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Holst Hahn
- Department of Neonatology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Schlatterer SD, du Plessis AJ. Exposures influencing the developing central autonomic nervous system. Birth Defects Res 2020; 113:845-863. [PMID: 33270364 DOI: 10.1002/bdr2.1847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Autonomic nervous system function is critical for transition from in-utero to ex-utero life and is associated with neurodevelopmental and neuropsychiatric outcomes later in life. Adverse prenatal and neonatal conditions and exposures can impair or alter ANS development and, as a result, may also impact long-term neurodevelopmental outcomes. The objective of this article is to provide a broad overview of the impact of factors that are known to influence autonomic development during the fetal and early neonatal period, including maternal mood and stress during and after pregnancy, fetal growth restriction, congenital heart disease, toxic exposures, and preterm birth. We touch briefly on the typical development of the ANS, then delve into both in-utero and ex-utero maternal and fetal factors that may impact developmental trajectory of the ANS and, thus, have implications in transition and in long-term developmental outcomes. While many types of exposures and conditions have been shown to impact development of the autonomic nervous system, there is still much to be learned about the mechanisms underlying these influences. In the future, more advanced neuromonitoring tools will be required to better understand autonomic development and its influence on long-term neurodevelopmental and neuropsychological function, especially during the fetal period.
Collapse
Affiliation(s)
- Sarah D Schlatterer
- Children's National Hospital, Prenatal Pediatrics Institute, Washington, District of Columbia, USA.,George Washington University School of Health Sciences, Departments of Neurology and Pediatrics, Washington, District of Columbia, USA
| | - Adre J du Plessis
- Children's National Hospital, Prenatal Pediatrics Institute, Washington, District of Columbia, USA.,George Washington University School of Health Sciences, Departments of Neurology and Pediatrics, Washington, District of Columbia, USA
| |
Collapse
|
7
|
The Critical Role of the Central Autonomic Nervous System in Fetal-Neonatal Transition. Semin Pediatr Neurol 2018; 28:29-37. [PMID: 30522725 PMCID: PMC6432941 DOI: 10.1016/j.spen.2018.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this article is to understand the complex role of the central autonomic nervous system in normal and complicated fetal-neonatal transition and how autonomic nervous system dysfunction can lead to brain injury. The central autonomic nervous system supports coordinated fetal transitional cardiovascular, respiratory, and endocrine responses to provide safe transition of the fetus at delivery. Fetal and maternal medical and environmental exposures can disrupt normal maturation of the autonomic nervous system in utero, cause dysfunction, and complicate fetal-neonatal transition. Brain injury may both be caused by autonomic nervous system failure and contribute directly to autonomic nervous system dysfunction in the fetus and newborn. The central autonomic nervous system has multiple roles in supporting transition of the fetus. Future studies should aim to improve real-time monitoring of fetal autonomic nervous system function and in supporting typical autonomic nervous system development even under complicated conditions.
Collapse
|
8
|
Bagi Z, Brandner DD, Le P, McNeal DW, Gong X, Dou H, Fulton DJ, Beller A, Ngyuen T, Larson EB, Montine TJ, Keene CD, Back SA. Vasodilator dysfunction and oligodendrocyte dysmaturation in aging white matter. Ann Neurol 2018; 83:142-152. [PMID: 29283444 PMCID: PMC5876126 DOI: 10.1002/ana.25129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/24/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Microvascular brain injury (mVBI) is a common pathological correlate of vascular contributions to cognitive impairment and dementia (VCID) that leads to white matter (WM) injury (WMI). VCID appears to arise from chronic recurrent white matter ischemia that triggers oxidative stress and an increase in total oligodendrocyte lineage cells. We hypothesized that mVBI involves vasodilator dysfunction of white matter penetrating arterioles and aberrant oligodendrocyte progenitor cell (OPC) responses to WMI. METHODS We analyzed cases of mVBI with low Alzheimer's disease neuropathological change in prefrontal cortex WM from rapid autopsies in a population-based cohort where VCID frequently occurs. Arteriolar vasodilator function was quantified by videomicroscopy. OPC maturation was quantified using lineage specific markers. RESULTS Acetylcholine-mediated arteriolar dilation in mVBI was significantly reduced in WM penetrators relative to pial arterioles. Astrogliosis-defined WMI was positively associated with increased OPCs and was negatively associated with decreased mature oligodendrocytes. INTERPRETATION Selectively impaired vasodilator function of WM penetrating arterioles in mVBI occurs in association with aberrant differentiation of OPCs in WMI, which supports that myelination disturbances in VCID are related to disrupted maturation of myelinating oligodendrocytes. Ann Neurol 2018;83:142-152.
Collapse
Affiliation(s)
- Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Dieter D. Brandner
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239
| | - Phuong Le
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239
| | - David W. McNeal
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239
| | - Xi Gong
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239
| | - Huijuan Dou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thuan Ngyuen
- Department of Preventive Medicine, Oregon Health & Science University, Portland, Oregon 97239
| | | | - Thomas J. Montine
- Department of Pathology, University of Washington, Seattle, Washington
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Stephen A. Back
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
9
|
Eriksen VR, Hahn GH, Greisen G. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:037009. [PMID: 25806662 DOI: 10.1117/1.jbo.20.3.037009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/05/2015] [Indexed: 05/23/2023]
Abstract
The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency domain, outcome variables were coherence and gain, whereas the cerebral oximetry index (COx) and the regression coefficient were the outcome variables in the time domain. Correlation between coherence and COx was poor. The disagreement between the two methods was due to the MAP and cerebral oxygenation signals being in counterphase in three cases. High gain and high coherence may arise spuriously when cerebral oxygenation decreases as MAP increases; hence, time-domain analysis appears to be a more robust—and simpler—method to describe CA.
Collapse
Affiliation(s)
- Vibeke R Eriksen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, 2100 Copenhagen, DenmarkbUniversity of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, Copenhagen, Denmark
| | - Gitte H Hahn
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, 2100 Copenhagen, DenmarkcCopenhagen University Hospital-Rigshospitalet, Department of Paediatrics and Adolescent Medicine, Blegdamsvej 9, Copenhagen, Denmark
| | - Gorm Greisen
- Copenhagen University Hospital-Rigshospitalet, Department of Neonatology, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Bradykinin induces NO and PGF2α production via B2 receptor activation from cultured porcine basilar arterial endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:697-702. [DOI: 10.1007/s00210-014-0989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
11
|
Abstract
PURPOSE OF REVIEW This review presents recent findings on the role of prostaglandins in migraine pathophysiology. RECENT FINDINGS Experimental studies have shown that prostaglandins are distributed in the trigeminal-vascular system and its receptors are localized in the trigeminal ganglion and the trigeminal nucleus caudalis. Prostaglandins were found in smooth muscles of cranial arteries, and functional studies in vivo showed that prostaglandins induced dilatation of cranial vessels. Human studies showed that intravenous infusion of vasodilating prostaglandins such as prostaglandin E₂ (PGE₂), prostaglandin I₂ (PGI₂) and prostaglandin D₂ (PGD₂) induced headache and dilatation of intra-cranial and extra-cranial arteries in healthy volunteers. In contrast, infusion of non-dilating prostaglandin F₂α (PGF₂α) caused no headache or any vascular responses in cranial arteries. PGE₂ and PGI₂ triggered migraine-like attacks in migraine patients without aura, accompanied by dilatation of the intra-cerebral and extra-cerebral arteries. A novel EP4 receptor antagonist could not prevent PGE₂-induced headache in healthy volunteers. SUMMARY Recent in-vitro/in-vivo data demonstrated presence and action of prostaglandins within the trigeminal pain pathways. Migraine induction after intravenous administration of PGE₂ and PGI₂ suggests a specific blockade of their receptors, EP and IP respectively, as a new potential drug target for the acute treatment of migraine.
Collapse
|
12
|
Hahn GH, Hyttel-Sorensen S, Petersen SM, Pryds O, Greisen G. Cerebral effects of commonly used vasopressor-inotropes: a study in newborn piglets. PLoS One 2013; 8:e63069. [PMID: 23700412 PMCID: PMC3659109 DOI: 10.1371/journal.pone.0063069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/27/2013] [Indexed: 11/21/2022] Open
Abstract
Background Despite widespread use in sick infants, it is still debated whether vasopressor-inotropes have direct cerebral effects that might affect neurological outcome. We aimed to test direct cerebrovascular effects of three commonly used vasopressor-inotropes (adrenaline, dopamine and noradrenaline) by comparing the responses to those of nonpharmacologically induced increases in blood pressure. We also searched for reasons for a mismatch between the response in perfusion and oxygenation. Methods Twenty-four piglets had long and short infusions of the three vasopressor-inotropes titrated to raise mean arterial blood pressure (MAP) 10 mmHg in random order. Nonpharmacological increases in MAP were induced by inflation of a balloon in the descending aorta. We measured cerebral oxygenation (near-infrared spectroscopy), perfusion (laser-Doppler), oxygen consumption (co-oximetry of arterial and superior sagittal sinus blood), and microvascular heterogeneity (side stream dark field video microscopy). Results Vasopressor-inotropes increased cerebral oxygenation significantly less (p≤0.01) compared to non-pharmacological MAP increases, whereas perfusion was similar. Furthermore, cerebral total hemoglobin concentration increased significantly less during vasopressor-inotrope infusions (p = 0.001). These physiologic responses were identical between the three vasopressor-inotropes (p>0.05). Furthermore, they induced a mild, although insignificant increase in cerebral metabolism and microvascular heterogeneity (p>0.05). Removal of the scalp tissue did not influence the mismatch (p>0.05). Conclusion We demonstrated a moderate vasopressor-inotrope induced mismatch between cerebral perfusion and oxygenation. Scalp removal did not affect this mismatch, why vasopressor-inotropes appear to have direct cerebral actions. The statistically nonsignificant increases in cerebral metabolism and/or microvascular heterogeneity may explain the mismatch. Alternatively, it may simply reflect a vasopressor-inotrope-induced decrease in the arterial-to-venous volume ratio as detected by near-infrared spectroscopy.
Collapse
Affiliation(s)
- Gitte H Hahn
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
13
|
De Silva TM, Faraci FM. Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Front Physiol 2013; 3:484. [PMID: 23316164 PMCID: PMC3539653 DOI: 10.3389/fphys.2012.00484] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has emerged as a key component of many diseases that affect the vasculature. Oxidative stress is characterized as a cellular environment where the generation of oxidant molecules overwhelms endogenous anti-oxidant defense mechanisms. NADPH oxidases are a family of enzymes whose primary purpose is generation of reactive oxygen species (oxidant molecules) and therefore are likely to be key contributors to oxidative stress. Hypertension is associated with oxidative stress in the vasculature and is a major risk factor for stroke and cognitive abnormalities. Angiotensin II (Ang II) is the main effector peptide of the renin-angiotensin system (RAS) and plays a critical role in promoting oxidative stress in the vasculature. In the cerebral circulation, Ang II has been implicated in reactive oxygen species generation, alterations to vasomotor function, impaired neurovascular coupling, inflammation, and vascular remodeling. Furthermore, studies in humans have shown that cerebral blood flow is altered during hypertension and therapeutically targeting the RAS improves cerebral blood flow. Importantly, many of the aforementioned effects have been shown to be dependent on NADPH oxidases. Thus, Ang II, NADPH oxidases and oxidative stress are likely to play key roles in the pathogenesis of hypertension and associated cerebrovascular disease. This review will focus on our current understanding of the contribution of Ang II and NADPH oxidases to oxidative stress in the cerebral circulation.
Collapse
Affiliation(s)
- T Michael De Silva
- Department of Internal Medicine, Cardiovascular Center, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | | |
Collapse
|
14
|
Antonova M, Wienecke T, Olesen J, Ashina M. Pro-inflammatory and vasoconstricting prostanoid PGF2α causes no headache in man. Cephalalgia 2011; 31:1532-41. [DOI: 10.1177/0333102411423314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: During two decades of migraine provocation studies with naturally occurring signalling molecules, vasodilators such as prostaglandin E2, prostaglandin I2 (prostacyclin) and prostaglandin D2 were shown to be able to induce headache in man. To elucidate the role of inflammation and vasodilatation in the generation of headache, we investigated whether the pro-inflammatory and vasoconstricting prostanoid prostaglandin F2α (PGF2α) would cause headache in a human model of headache. Methods: Twelve healthy volunteers were randomly allocated to receive 3.5 µg/kg/min PGF2α or placebo over 20 min in a two-way crossover study. We recorded headache intensity on a verbal rating scale, middle cerebral artery blood flow velocity (VMCA) and the diameters of the superficial temporal artery (STA) and radial artery (RA). Results: We found no difference in the area under the curve (AUC) for immediate headache (0–90 min) between PGF2α and placebo ( p = 0.144). The McNemar's test showed no difference in the incidence of immediate and delayed headache between verum and placebo ( p = 0.500 and p = 1.000, respectively). There was no difference in VMCA ( p = 0.776) and in the diameter of the STA ( p = 0.460) or RA ( p = 0.780) between PGF2α and placebo. Conclusion: The present study shows that PGF2α, unlike vasodilating prostaglandins, does not provoke headache. We suggest that the vasodilating abilities of prostaglandins are important for the induction of experimental headache in healthy volunteers.
Collapse
|
15
|
Lee TJF, Chang HH, Lee HC, Chen PY, Lee YC, Kuo JS, Chen MF. Axo-axonal interaction in autonomic regulation of the cerebral circulation. Acta Physiol (Oxf) 2011; 203:25-35. [PMID: 21159131 DOI: 10.1111/j.1748-1716.2010.02231.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Noradrenaline (NE) and acetylcholine (ACh) released from the sympathetic and parasympathetic neurones in cerebral blood vessels were suggested initially to be the respective vasoconstricting and dilating transmitters. Both substances, however, are extremely weak post-synaptic transmitters. Compelling evidence indicates that nitric oxide (NO) which is co-released with ACh from same parasympathetic nerves is the major transmitter for cerebral vasodilation, and its release is inhibited by ACh. NE released from the sympathetic nerve, acting on presynaptic β2-adrenoceptors located on the neighbouring parasympathetic nitrergic nerves, however, facilitates NO release with enhanced vasodilation. This axo-axonal interaction mediating NE transmission is supported by close apposition between sympathetic and parasympathetic nerve terminals, and has been shown in vivo at the base of the brain and the cortical cerebral circulation. This result reveals the physiological need for increased regional cerebral blood flow in 'fight-or-flight response' during acute stress. Furthermore, α7- and α3β2-nicotinic ACh receptors (nAChRs) on sympathetic nerve terminals mediate release of NE, leading to cerebral nitrergic vasodilation. α7-nAChR-mediated but not α3β2-nAChR-mediated cerebral nitrergic vasodilation is blocked by β-amyloid peptides (Aβs). This may provide an explanation for cerebral hypoperfusion seen in patients with Alzheimer's disease. α7- and α3β2-nAChR-mediated nitrergic vasodilation is blocked by cholinesterase inhibitors (ChEIs) which are widely used for treating Alzheimer's disease, leading to possible cerebral hypoperfusion. This may contribute to the limitation of clinical use of ChEIs. ChEI blockade of nAChR-mediated dilation like that by Aβs is prevented by statins pretreatment, suggesting that efficacy of ChEIs may be improved by concurrent use of statins.
Collapse
Affiliation(s)
- T J F Lee
- College of Life Sciences, Institute of Life Science, Tzu Chi University, Hualien, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Cassaglia PA, Griffiths RI, Walker AM. Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1255-61. [PMID: 18216142 DOI: 10.1152/ajpregu.00332.2007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction of cerebral vessels has been proposed to be a protective mechanism for the brain, limiting cerebral perfusion and microcirculatory pressure during transient increases in arterial pressure. To furnish direct neural evidence for this proposition, we aimed to develop a method for recording cerebral sympathetic nerve activity (SNA) from the superior cervical ganglion (SCG). We hypothesized that SNA recorded from the SCG increases during imposed hypertension, but not during hypotension. Lambs (n = 11) were anesthetized (alpha-chloralose, 20 mg.kg(-1).h(-1)) and ventilated. SNA was measured using 25-microm tungsten microelectrodes inserted into the SCG. Arterial blood pressure (AP) was pharmacologically raised (adrenaline, phenylephrine, or ANG II, 1-50 microg/kg iv), mechanically raised (intravascular balloon in the thoracic aorta), or lowered (sodium nitroprusside, 1-50 microg/kg iv). In response to adrenaline (n = 10), mean AP increased 135 +/- 10% from baseline (mean +/- SE), and the RMS value of SNA (Square Root of the Mean of the Squares, SNA(RMS)) increased 255 +/- 120%. In response to mechanically induced hypertension, mean AP increased 43 +/- 3%, and SNA(RMS) increased 53 +/- 13%. Generally, (9 of 10 animals), SNA(RMS) did not increase, as AP was lowered with sodium nitroprusside. Using a new model for direct recording of cerebral SNA from the SCG, we have demonstrated that SNA increases in response to large induced rises, but not falls, in AP. These findings furnish direct support for the proposed protective role for sympathetic nerves in the cerebral circulation.
Collapse
Affiliation(s)
- Priscila A Cassaglia
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | | | | |
Collapse
|
17
|
Ramón CL, Cajal Y, Martínez RO. Effects of vitamin E on the response of the fetal middle cerebral artery to the pressure test. J Matern Fetal Neonatal Med 2007; 20:133-9. [PMID: 17437211 DOI: 10.1080/14767050601151136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine the effects of the maternal administration of vitamin E on the vasoreactivity of the middle cerebral artery (MCA) in preterm fetuses. STUDY DESIGN The vasoconstrictive response of the proximal segment of the MCA to brief and partial external occlusions of the umbilical vein (pressure test) was studied in 22 fetuses between 21 and 35 weeks of gestation, before, and 3 to 7 days after, the maternal administration of oral vitamin E (50 mg daily). RESULTS The vasoconstrictive activity of the MCA was eliminated in 15 fetuses (68.2%), unchanged in six (27.3%), and decreased in one (4.5%). In the latter seven cases, vasoconstriction of the proximal MCA in response to the pressure test was eliminated by increasing the vitamin E dosage to 100 mg/day. CONCLUSION Vitamin E administered to the mothers had a pronounced effect on the proximal MCA reactivity in preterm fetuses.
Collapse
Affiliation(s)
- C López Ramón
- Unit of Prenatal Diagnosis, Service of Obstetrics and Gynecology, Xeral Hospital, Vigo, Pontevedra, Spain.
| | | | | |
Collapse
|
18
|
Loesch A, Gajkowska B, Dashwood MR, Fioretto ET, Gagliardo KM, Lima ARD, Ribeiro AACM. Endothelin-1 and endothelin receptors in the basilar artery of the capybara. J Mol Histol 2005; 36:25-34. [PMID: 15703996 DOI: 10.1007/s10735-004-2912-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/02/2004] [Indexed: 11/26/2022]
Abstract
Little is known about cerebral vasculature of capybara, which seems may serve as a natural model of studying changes in cerebral circulation due to internal carotid artery atrophy at animal sexual maturation. This is the first study of the light- and electron-immunocytochemical localisation of endothelin-1 (ET-1) and ETA and ETB endothelin receptors in the basilar artery of capybaras (6 to 12-month-old females and males) using an ExtrAvidin detection method. All animals examined showed similar patterns of immunoreactivity. Immunoreactivity for ET-1 was detected in the endothelium and adventitial fibroblasts, whilst immunoreactivity for ETA and ETB receptors was present in the endothelium, vascular smooth muscle, perivascular nerves and fibroblasts. In endothelial cells immunoreactivity to ET-1 was pronounced in the cytoplasm or on the granular endoplasmic reticulum. Similar patterns of immunolabelling were observed for ETA and ETB receptors, though cytoplasmic location of clusters of immunoprecipitate seems dominant. These results suggest that the endothelin system is present throughout the wall of the basilar artery of capybara.
Collapse
Affiliation(s)
- Andrzej Loesch
- Department of Anatomy and Developmental Biology (Royal Free Campus), Royal Free and University College Medical School, University College London, Rowland Hill Street, London, UK, NW3 2PF,
| | | | | | | | | | | | | |
Collapse
|
19
|
Islam S, Ribeiro AACM, Loesch A. Basilar artery of the capybara (Hydrochaeris hydrochaeris): an ultrastructural study. Anat Histol Embryol 2004; 33:81-9. [PMID: 15027948 DOI: 10.1111/j.1439-0264.2003.00519.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study investigated the ultrastructural features of the basilar artery of the largest rodent species, the capybara. The study suggests that the general ultrastructural morphological organization of the basilar artery of the capybara is similar to that of small rodents. However, there are some exceptions. The basilar artery of the capybara contains a subpopulation of 'granular' vascular smooth muscle cells resembling monocytes and/or macrophages. The possibility cannot be excluded that the presence of these cells reflects the remodelling processes of the artery due to animal maturation and the regression of the internal carotid artery. To clarify this issue, more systemic studies are required involving capybaras of various ages.
Collapse
Affiliation(s)
- S Islam
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
20
|
Bevan JA. The control of the human brain circulation: ideas, ancient and modern. PHARMACOLOGY & TOXICOLOGY 2003; 92:163-4. [PMID: 12753418 DOI: 10.1034/j.1600-0773.2003.920405.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- John A Bevan
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
21
|
Mickey I, Kilford L, Kingsbury A, Loesch A. Endothelin in the middle cerebral artery: a case of multiple system atrophy. THE HISTOCHEMICAL JOURNAL 2002; 34:469-77. [PMID: 12945729 DOI: 10.1023/a:1024758504647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we show the changes in the wall of the middle cerebral artery of a subject who suffered multiple system atrophy with autonomic failure. An electron-immunocytochemical approach was employed to reveal the presence of endothelin-1. Our results demonstrate the presence of immunoreactive endothelin-1 in the endothelial cells of the intima, vascular smooth muscle cells and macrophages of the media and neointima, and perivascular nerves/axons varicosities at the adventitial-medial border of the artery. It is concluded that endothelin-1 may, therefore, play a number of roles within diseased cerebral artery. The finding of endothelin-1-positive varicosities of autonomic innervation to this artery suggests an influence of neural endothelin on vascular smooth muscle in multiple system atrophy with autonomic failure. However, the presence of features such as neointima formation, wall irregularities and foam cells suggest the coexistence of atherosclerosis.
Collapse
Affiliation(s)
- Isla Mickey
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
22
|
Ramón y Cajal CL. Umbilical vein and middle cerebral artery blood flow response to partial occlusion by external compression of the umbilical vein (pressure test). J Matern Fetal Neonatal Med 2002; 12:104-11. [PMID: 12420840 DOI: 10.1080/jmf.12.2.104.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We studied the responses of flow in the umbilical vein and of the circulation in the proximal segment of the middle cerebral artery (MCA) during partial external compression of the umbilical vein. METHODS Partial occlusion of the umbilical vein was achieved by the pressure test, consisting of applying external pressure on the maternal abdominal wall for 1-2 s. RESULTS During 60 pressure tests in 45 fetuses with nuchal cords, we observed complete cessation of the umbilical vein flow, while blood flow in the umbilical arteries was preserved, and proximal MCA flow was moderately or markedly decreased. Blood flow in other segments of the MCA was unchanged. This effect, which was more pronounced before the 32nd week of gestation, was also observed in association with spontaneous fetal movements. CONCLUSION The pressure test decreases flow in the proximal MCA, and interrupts umbilical vein blood flow. Further analysis of this response suggested the presence of associated vasoconstriction of the proximal MCA.
Collapse
|
23
|
Docherty CC, Kalmar-Nagy J, Engelen M, Nathanielsz PW. Development of fetal vascular responses to endothelin-1 and acetylcholine in the sheep. Am J Physiol Regul Integr Comp Physiol 2001; 280:R554-62. [PMID: 11208587 DOI: 10.1152/ajpregu.2001.280.2.r554] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Responses to K(+), endothelin-1 (ET-1), and acetylcholine (ACh) of isolated adrenal, femoral, middle cerebral, and renal arteries from fetal [110--145 days gestational age (dGA, term approximately 148 dGA)] and 0- to 24-h newborn (NB) lambs were evaluated using the technique of wire myography. Responses at distinct developmental ages for each vascular bed were compared. In all arteries sensitivity to K(+)-induced vasoconstriction was similar at all fetal age points examined. In contrast, sensitivity to ET-1 increased with increasing fetal age in arteries from all vascular beds. The magnitude of the maximal vasoconstriction was positively correlated with GA for K(+) in adrenal, femoral, and cerebral arteries and for ET-1 in femoral, cerebral, and renal arteries. Cerebral arteries showed a greater sensitivity when compared with the other systemic arteries to K(+) and ET-1 at all fetal ages and to K(+) in NB. ACh evoked relaxatory responses in fetal and NB femoral and adrenal arteries. However, renal arteries relaxed comparatively less in response to ACh, and no vasodilation was noted in middle cerebral arteries at any age points examined. For femoral arteries ACh-induced vasorelaxation decreased with increasing GA but was restored in arteries from NB lambs. In summary, the responsiveness of isolated resistance arteries varies with developmental age in the fetal and perinatal sheep and these effects are both agonist and vascular bed specific. The augmented sensitivity in response to ET-1 of middle cerebral compared with other systemic arteries may reflect the importance of cerebral blood flow control during this critical developmental period.
Collapse
Affiliation(s)
- C C Docherty
- Laboratory for Pregnancy and Newborn Research, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
24
|
Nauli SM, Ally A, Zhang L, Gerthoffer WT, Pearce WJ. Maturation attenuates the effects of cGMP on contraction, [Ca2+]i and Ca2+ sensitivity in ovine basilar arteries. GENERAL PHARMACOLOGY 2000; 35:107-18. [PMID: 11707317 DOI: 10.1016/s0306-3623(01)00100-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study explores the hypothesis that age-related variations in cerebrovascular responses to vasodilators reflect corresponding age-dependent differences in the mechanisms coupling changes in cytosolic cGMP to vasorelaxation. The experiments focused on cGMP's ability to decrease either [Ca2+]i or myofilament Ca2+ sensitivity, because both effects can contribute to cGMP-induced vasodilation. Use of the cGMP analog 8-pCPT-cGMP minimized problems associated with limited cell permeation or cGMP hydrolysis. In fetal basilars contracted with 10 microM serotonin, the EC30 for 8-pCPT-cGMP-induced relaxation was 6 microM. In fura-2 loaded fetal basilars, pretreatment with 6 microM 8-pCPT-cGMP significantly depressed the sensitivity of [Ca2+]i to 5HT, and also myofilament sensitivity to calcium, but only in fetal arteries. In fetal basilar arteries contracted with 120 mM potassium, the EC30 for 8-pCPT-cGMP-induced relaxation was 25 microM. In fura-2 loaded ovine arteries, pretreatment with 25 microM 8-pCPT-cGMP had no effect on the ability of graded concentrations of potassium to elevate [Ca2+]i but reduced potassium's ability to induce contraction and attenuated myofilament calcium sensitivity; these latter effects were significant only in fetal arteries. In alpha-toxin permeabilized preparations, 25 microM 8-pCPT-cGMP significantly depressed both basal- and agonist-stimulated myofilament calcium sensitivity, only in fetal but not in adult basilars. Together, these results demonstrate that: (1) sensitivity to cGMP is greater in fetal than adult sheep arteries independent of method of contraction; (2) cGMP can reduce [Ca2+]i but only in agonist-contracted and not in potassium-contracted arteries; (3) and cGMP attenuates myofilament calcium sensitivity regardless of method of contraction. Overall, the data demonstrate that variations in the ability of cGMP to produce vasodilatation reflect age-, artery-, and agonist-dependent differences in the combination of mechanisms mediating responses to cGMP.
Collapse
Affiliation(s)
- S M Nauli
- Center for Perinatal Biology, Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|