1
|
Shevtsova Y, Starodubtseva N, Tokareva A, Goryunov K, Sadekova A, Vedikhina I, Ivanetz T, Ionov O, Frankevich V, Plotnikov E, Sukhikh G, Zorov D, Silachev D. Metabolite Biomarkers for Early Ischemic-Hypoxic Encephalopathy: An Experimental Study Using the NeoBase 2 MSMS Kit in a Rat Model. Int J Mol Sci 2024; 25:2035. [PMID: 38396712 PMCID: PMC10888647 DOI: 10.3390/ijms25042035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the most common causes of childhood disability. Hypothermic therapy is currently the only approved neuroprotective approach. However, early diagnosis of HIE can be challenging, especially in the first hours after birth when the decision to use hypothermic therapy is critical. Distinguishing HIE from other neonatal conditions, such as sepsis, becomes a significant problem in diagnosis. This study explored the utility of a metabolomic-based approach employing the NeoBase 2 MSMS kit to diagnose HIE using dry blood stains in a Rice-Vannucci model of HIE in rats. We evaluated the diagnostic fidelity of this approach in a range between 3 and 6 h after the onset of HIE, including in the context of systemic inflammation and concomitant hypothermic therapy. Discriminant analysis revealed several metabolite patterns associated with HIE. A logistic regression model using glycine levels achieved high diagnostic fidelity with areas under the receiver operating characteristic curve of 0.94 at 3 h and 0.96 at 6 h after the onset of HIE. In addition, orthogonal partial least squares discriminant analysis, which included five metabolites, achieved 100% sensitivity and 80% specificity within 3 h of HIE. These results highlight the significant potential of the NeoBase 2 MSMS kit for the early diagnosis of HIE and could improve patient management and outcomes in this serious illness.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Alsu Sadekova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Irina Vedikhina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Tatiana Ivanetz
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
| | - Dmitry Zorov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (N.S.); (A.T.); (K.G.); (A.S.); (I.V.); (T.I.); (O.I.); (V.F.); (E.P.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
2
|
Kulkarni SA, Wachter RM. The Hospitalist Movement 25 Years Later. Annu Rev Med 2024; 75:381-390. [PMID: 37802086 DOI: 10.1146/annurev-med-051022-043301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Hospitalists are generalists who specialize in the care of hospitalized patients. In the 25 years since the term hospitalist was coined, the field of hospital medicine has grown exponentially and established a substantial footprint in the medical community. There are now more hospitalists than practicing physicians in any other internal medicine subspecialty. Several key forces catalyzed the growth in the field of hospital medicine, including the quality, safety, and value movements; residency duty hour restrictions; the emergence of electronic health records; and the COVID-19 pandemic. Looking ahead, we see new opportunities in the realms of technology and telemedicine, and challenges persist in regard to balancing financial considerations with increasing workload and burnout. Hospitalists must remain nimble and seize emerging opportunities to continue supporting the field's prominence and growth.
Collapse
Affiliation(s)
- Shradha A Kulkarni
- Department of Medicine, University of California, San Francisco, California, USA; ,
| | - Robert M Wachter
- Department of Medicine, University of California, San Francisco, California, USA; ,
| |
Collapse
|
3
|
Ouyang R, Ding J, Huang Y, Zheng F, Zheng S, Ye Y, Li Q, Wang X, Ma X, Zou Y, Chen R, Zhuo Z, Li Z, Xin Q, Zhou L, Lu X, Ren Z, Liu X, Kovatcheva-Datchary P, Xu G. Maturation of the gut metabolome during the first year of life in humans. Gut Microbes 2023; 15:2231596. [PMID: 37424334 PMCID: PMC10334852 DOI: 10.1080/19490976.2023.2231596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
The gut microbiota is involved in the production of numerous metabolites that maintain host wellbeing. The assembly of the gut microbiome is highly dynamic, and influenced by many postnatal factors, moreover, little is known about the development of the gut metabolome. We showed that geography has an important influence on the microbiome dynamics in the first year of life based on two independent cohorts from China and Sweden. Major compositional differences since birth were the high relative abundance of Bacteroides in the Swedish cohort and Streptococcus in the Chinese cohort. We analyzed the development of the fecal metabolome in the first year of life in the Chinese cohort. Lipid metabolism, especially acylcarnitines and bile acids, was the most abundant metabolic pathway in the newborn gut. Delivery mode and feeding induced particular differences in the gut metabolome since birth. In contrast to C-section newborns, medium- and long-chain acylcarnitines were abundant at newborn age only in vaginally delivered infants, associated by the presence of bacteria such as Bacteroides vulgatus and Parabacteroides merdae. Our data provide a basis for understanding the maturation of the fecal metabolome and the metabolic role of gut microbiota in infancy.
Collapse
Affiliation(s)
- Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Juan Ding
- Department of Quality Control, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xiao Ma
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxin Zou
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China
| | - Rong Chen
- Department of Respiratory Medicine, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, China
| | - Zhihong Zhuo
- Department of Pediatric, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Xin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Petia Kovatcheva-Datchary
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Molecular Infection Biology, University of Wurzburg, Wurzburg, Germany
- Department of Pediatrics, University of Wurzburg, Wurzburg, Germany
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| |
Collapse
|
4
|
Carnitine Intake and Serum Levels Associate Positively with Postnatal Growth and Brain Size at Term in Very Preterm Infants. Nutrients 2022; 14:nu14224725. [PMID: 36432412 PMCID: PMC9696952 DOI: 10.3390/nu14224725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Carnitine has an essential role in energy metabolism with possible neuroprotective effects. Very preterm (VPT, <32 gestation weeks) infants may be predisposed to carnitine deficiency during hospitalization. We studied the associations of carnitine intake and serum carnitine levels with growth and brain size at term equivalent age (TEA) in VPT infants. This prospective cohort study included 35 VTP infants admitted to Kuopio University Hospital, Finland. Daily nutrient intakes were registered at postnatal weeks (W) 1 and 5, and serum carnitine levels were determined at W1, W5, and TEA. The primary outcomes were weight, length, and head circumference Z-score change from birth to TEA, as well as brain size at TEA in magnetic resonance imaging. Carnitine intake at W1 and W5, obtained from enteral milk, correlated positively with serum carnitine levels. Both carnitine intake and serum levels at W1, W5, and TEA showed a positive correlation with weight, length, and head circumference Z-score change and with brain size at TEA. In linear models, independent positive associations of carnitine intake and serum carnitine levels with length and head circumference Z-score change and brain size at TEA were seen. In VPT infants, sufficient carnitine intake during hospitalization is necessary since it is associated with better postnatal growth and larger brain size at term age.
Collapse
|
5
|
Dave AM, Genaro-Mattos TC, Korade Z, Peeples ES. Neonatal Hypoxic-Ischemic Brain Injury Alters Brain Acylcarnitine Levels in a Mouse Model. Metabolites 2022; 12:metabo12050467. [PMID: 35629971 PMCID: PMC9143624 DOI: 10.3390/metabo12050467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
Hypoxic-ischemic brain injury (HIBI) leads to depletion of ATP, mitochondrial dysfunction, and enhanced oxidant formation. Measurement of acylcarnitines may provide insight into mitochondrial dysfunction. Plasma acylcarnitine levels are altered in neonates after an HIBI, but individual acylcarnitine levels in the brain have not been evaluated. Additionally, it is unknown if plasma acylcarnitines reflect brain acylcarnitine changes. In this study, postnatal day 9 CD1 mouse pups were randomized to HIBI induced by carotid artery ligation, followed by 30 min at 8% oxygen, or to sham surgery and normoxia, with subgroups for tissue collection at 30 min, 24 h, or 72 h after injury (12 animals/group). Plasma, liver, muscle, and brain (dissected into the cortex, cerebellum, and striatum/thalamus) tissues were collected for acylcarnitine analysis by LC-MS. At 30 min after HIBI, acylcarnitine levels were significantly increased, but the differences resolved by 24 h. Palmitoylcarnitine was increased in the cortex, muscle, and plasma, and stearoylcarnitine in the cortex, striatum/thalamus, and cerebellum. Other acylcarnitines were elevated only in the muscle and plasma. In conclusion, although plasma acylcarnitine results in this study mimic those seen previously in humans, our data suggest that the plasma acylcarnitine profile was more reflective of muscle changes than brain changes. Acylcarnitine metabolism may be a target for therapeutic intervention after neonatal HIBI, though the lack of change after 30 min suggests a limited therapeutic window.
Collapse
Affiliation(s)
- Amanda M. Dave
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.M.D.); (Z.K.)
- Children’s Hospital & Medical Center, Omaha, NE 68114, USA
- Child Health Research Institute, Omaha, NE 68198, USA;
| | - Thiago C. Genaro-Mattos
- Child Health Research Institute, Omaha, NE 68198, USA;
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.M.D.); (Z.K.)
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.M.D.); (Z.K.)
- Children’s Hospital & Medical Center, Omaha, NE 68114, USA
- Child Health Research Institute, Omaha, NE 68198, USA;
- Correspondence: ; Tel.: +1-402-955-6140; Fax: +1-402-955-3398
| |
Collapse
|
6
|
He F, Yang R, Huang X, Tian Y, Pei X, Bohn MK, Zou L, Wang Y, Li H, Wang T, Gu M, Jiang T, Chen X, Zou H, Wei H, Tian W, Tang T, Adeli K, Wang Z. Reference Standards for Newborn Screening of Metabolic Disorders by Tandem Mass Spectrometry: A Nationwide Study on Millions of Chinese Neonatal Populations. Front Mol Biosci 2022; 8:719866. [PMID: 34977148 PMCID: PMC8716770 DOI: 10.3389/fmolb.2021.719866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The major clinical problem presently confronting the Chinese newborn screening (NBS) programs by tandem mass spectrometry (MS/MS) is the lack of comprehensive reference intervals (RIs) for disease biomarkers. To close this gap, the Chinese National Center for Clinical Laboratories (NCCL) launched a nationwide study to investigate the dynamic pattern of 35 MS/MS NBS biomarkers and establish accurate and robust RIs. Methods: Blood spot samples from 4,714,089 Chinese neonates were tested in participating centers/laboratories and used for study analysis. MS/MS NBS biomarker trends were visually assessed by their concentrations over age. Specific partitions were determined arbitrarily by each day and sex or by the statistical method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 1th, 25th, 75th and 99th percentiles were calculated for each reference partition using a non-parametric rank approach. Results: Most MS/MS NBS biomarkers fluctuated during the first week of life, followed by a relatively stable concentration. Age and sex-specific RIs were established and presented an improved specificity over the RIs used in participating centers/laboratories. Females demonstrated higher 2.5th and 97.5th percentiles in all amino acids except arginine and ornithine than males, whereas males showed higher 2.5th and 97.5th percentiles in most acylcarnitines. Conclusion: The present study determined the dynamic trends of 35 MS/MS biomarkers and established age and sex-specific RIs, valuably contributing to the current literature and timely evaluation of neonatal health and disease.
Collapse
Affiliation(s)
- Falin He
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaping Tian
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China
| | - Xiaofang Pei
- Department of Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mary Kathryn Bohn
- Department of Pediatric Laboratory Medicine, CALIPER Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lin Zou
- The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China
| | - Haibo Li
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Ting Wang
- Suzhou Municipal Hospital, Suzhou, China
| | - Maosheng Gu
- The Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Tao Jiang
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xigui Chen
- Jining Maternal and Child Health Family Planning Service Center, Jining, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongwei Wei
- Linyi Maternity and Child Health Care Hospital, Linyi, China
| | - Weibing Tian
- W. F. Maternal and Child Health Hospital, Weifang, China
| | - Tian Tang
- Department of Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Khosrow Adeli
- Department of Pediatric Laboratory Medicine, CALIPER Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhiguo Wang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Progressive Metabolic Dysfunction and Nutritional Variability Precedes Necrotizing Enterocolitis. Nutrients 2020; 12:nu12051275. [PMID: 32365850 PMCID: PMC7281969 DOI: 10.3390/nu12051275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Necrotizing Enterocolitis (NEC) is associated with prematurity, enteral feedings, and enteral dysbiosis. Accordingly, we hypothesized that along with nutritional variability, metabolic dysfunction would be associated with NEC onset. Methods: We queried a multicenter longitudinal database that included 995 preterm infants (<32 weeks gestation) and included 73 cases of NEC. Dried blood spot samples were obtained on day of life 1, 7, 28, and 42. Metabolite data from each time point included 72 amino acid (AA) and acylcarnitine (AC) measures. Nutrition data were averaged at each of the same time points. Odds ratios and 95% confidence intervals were calculated using samples obtained prior to NEC diagnosis and adjusted for potential confounding variables. Nutritional and metabolic data were plotted longitudinally to determine relationship to NEC onset. Results: Day 1 analyte levels of alanine, phenylalanine, free carnitine, C16, arginine, C14:1/C16, and citrulline/phenylalanine were associated with the subsequent development of NEC. Over time, differences in individual analyte levels associated with NEC onset shifted from predominantly AAs at birth to predominantly ACs by day 42. Subjects who developed NEC received significantly lower weight-adjusted total calories (p < 0.001) overall, a trend that emerged by day of life 7 (p = 0.020), and persisted until day of life 28 (p < 0.001) and 42 (p < 0.001). Conclusion: Premature infants demonstrate metabolic differences at birth. Metabolite abnormalities progress in parallel to significant differences in nutritional delivery signifying metabolic dysfunction in premature newborns prior to NEC onset. These observations provide new insights to potential contributing pathophysiology of NEC and opportunity for clinical care-based prevention.
Collapse
|
8
|
Bene J, Szabo A, Komlósi K, Melegh B. Mass Spectrometric Analysis of L-carnitine and its Esters: Potential Biomarkers of Disturbances in Carnitine Homeostasis. Curr Mol Med 2020; 20:336-354. [PMID: 31729298 PMCID: PMC7231908 DOI: 10.2174/1566524019666191113120828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE After a golden age of classic carnitine research three decades ago, the spread of mass spectrometry opened new perspectives and a much better understanding of the carnitine system is available nowadays. In the classic period, several human and animal studies were focused on various distinct physiological functions of this molecule and these revealed different aspects of carnitine homeostasis in normal and pathological conditions. Initially, the laboratory analyses were based on the classic or radioenzymatic assays, enabling only the determination of free and total carnitine levels and calculation of total carnitine esters' amount without any information on the composition of the acyl groups. The introduction of mass spectrometry allowed the measurement of free carnitine along with the specific and sensitive determination of different carnitine esters. Beyond basic research, mass spectrometry study of carnitine esters was introduced into the newborn screening program because of being capable to detect more than 30 metabolic disorders simultaneously. Furthermore, mass spectrometry measurements were performed to investigate different disease states affecting carnitine homeostasis, such as diabetes, chronic renal failure, celiac disease, cardiovascular diseases, autism spectrum disorder or inflammatory bowel diseases. RESULTS This article will review the recent advances in the field of carnitine research with respect to mass spectrometric analyses of acyl-carnitines in normal and various pathological states. CONCLUSION The growing number of publications using mass spectrometry as a tool to investigate normal physiological conditions or reveal potential biomarkers of primary and secondary carnitine deficiencies shows that this tool brought a new perspective to carnitine research.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Katalin Komlósi
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Luise D, Bovo S, Bosi P, Fanelli F, Pagotto U, Galimberti G, Mazzoni G, Dall'Olio S, Fontanesi L. Targeted metabolomic profiles of piglet plasma reveal physiological changes over the suckling period. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of carnitine and fatty acids during pregnancy, lactation and perinatal period. Nutritional support in specific groups of pregnant women. Clin Nutr 2019; 39:2337-2346. [PMID: 31732292 DOI: 10.1016/j.clnu.2019.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Pregnancy is characterized by a complexity of metabolic processes that may impact fetal health and development. Women's nutrition during pregnancy and lactation is considered important for both mother and infant. This review aims to investigate the significant role of fatty acids and carnitine during pregnancy and lactation in specific groups of pregnant and lactating women. METHODS The literature was reviewed using relevant data bases (e.g. Pubmed, Scopus, Science Direct) and relevant articles were selected to provide information and data for the text and associated Tables. RESULTS Dynamic features especially of plasma carnitine profile during pregnancy and lactation, indicate an extraordinarily active participation of carnitine in the intermediary metabolism both in pregnant woman and in neonate and may also have implications for health and disease later in life. Maternal diets rich in trans and saturated fatty acids can lead to impairments in the metabolism and development of the offspring, whereas the consumption of long chain-polyunsaturated fatty acids during pregnancy plays a beneficial physiologic and metabolic role in the health of offspring. CONCLUSIONS Pregnant women who are underweight, overweight or obese, with gestational diabetes mellitus or diabetes mellitus and those who choose vegan/vegetarian diets or are coming from socially disadvantaged areas, should be nutritionally supported to achieve a higher quality diet during pregnancy and/or lactation.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition & Dietetics Agia Sofia Children's Hospital, Athens, Greece.
| | | | - Yannis Dotsikas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| | - Yannis L Loukas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| |
Collapse
|
11
|
Lotz-Havla AS, Röschinger W, Schiergens K, Singer K, Karall D, Konstantopoulou V, Wortmann SB, Maier EM. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Orphanet J Rare Dis 2018; 13:122. [PMID: 30029694 PMCID: PMC6053800 DOI: 10.1186/s13023-018-0875-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency are long-chain fatty acid oxidation disorders with particularly high morbidity and mortality. Outcome can be favorable if diagnosed in time, prompting the implementation in newborn screening programs. Sporadic cases missed by the initial screening sample have been reported. However, little is known on pitfalls during confirmatory testing resulting in fatal misconception of the diagnosis. Results We report a series of three patients with MTP and LCHAD deficiency, in whom diagnosis was missed by newborn screening, resulting in life-threatening metabolic decompensations within the first half year of life. Two of the patients showed elevated concentrations of primary markers C16-OH and C18:1-OH but were missed by confirmatory testing performed by the maternity clinic. A metabolic center was not consulted. Confirmatory testing consisted of analyses of acylcarnitines in blood and organic acids in urine, the finding of normal excretion of organic acids led to rejection and underestimation of the diagnosis, respectively. The third patient, a preterm infant, was not identified in the initial screening sample due to only moderate elevations of C16-OH and C18:1-OH and normal secondary markers and analyte ratios. Conclusion Our observations highlight limitations of newborn screening for MTP/LCHAD deficiency. They confirm that analyses of acylcarnitines in blood and organic acids in urine alone are not suitable for confirmatory testing and molecular or functional analysis is crucial in diagnosing MTP/LCHAD deficiency. Mild elevations of primary biomarkers in premature infants need to trigger confirmatory testing. Our report underscores the essential role of specialized centers in confirming or ruling out diagnoses in suspicious screening results.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Wulf Röschinger
- Becker and colleagues laboratory, Fuehrichstr. 70, 81671, Munich, Germany
| | - Katharina Schiergens
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Katharina Singer
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany
| | - Daniela Karall
- Clinic for Pediatrics, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Saskia B Wortmann
- Department of Pediatrics, Paracelsus Medical University Salzburg, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80337, Munich, Germany.
| |
Collapse
|
12
|
Phan NN, Li KL, Lin YC. Arsenic induces cardiac rhythm dysfunction and acylcarnitines metabolism perturbation in rats. Toxicol Mech Methods 2018; 28:423-431. [DOI: 10.1080/15376516.2018.1440679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nam Nhut Phan
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
13
|
Abd El-Wahed M, El-Farghali O, ElAbd H, El-Desouky E, Hassan S. Metabolic derangements in IUGR neonates detected at birth using UPLC-MS. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
El-Farghali OG, El-Chimi MS, El-Abd HS, El-Desouky E. Amino acid and acylcarnitine profiles in perinatal asphyxia: a case-control study. J Matern Fetal Neonatal Med 2017; 31:1462-1469. [PMID: 28412875 DOI: 10.1080/14767058.2017.1319354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To estimate cord blood amino acid and acylcarnitine levels in term newborns exposed to perinatal asphyxia. MATERIALS AND METHODS We studied 45 asphyxiated term newborns (cases) and 20 gestational age-matched healthy newborns (control). 16 cases developed HIE according to clinical scoring and amplitude-integrated electroencephalography. Asphyxiated cases were accordingly subdivided into: HIE group (n = 16) and Asphyxia group (n = 29). Amino acid and acylcarnitine levels were measured in cord blood dried spot samples from all newborns using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Data were analyzed using one-way ANOVA with post hoc test and MetaboAnalyst-2. RESULTS Distinct metabolite alterations were detected in cases versus control, in HIE versus Asphyxia, and in Survivors within HIE group (n = 6) versus nonsurvivors (n = 10). Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed increased levels of methionine and certain acylcarnitines, but reduced levels of ornithine, histidine, and arginine. Metabolite set enrichment analysis (MSEA); compared to KEGG library metabolite sets, identified some disorders with similar metabolomic derangements. CONCLUSIONS We report UPLC-MS detectable alterations of amino acids and acylcarnitines in asphyxiated newborns at birth, that can serve as early diagnostic bedside biomarkers for HIE and predictors for its short-term outcome, and in the near future, as therapeutic targets.
Collapse
Affiliation(s)
- Ola Galal El-Farghali
- a Neonatology Division, Department of Pediatrics, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Mohamed Sami El-Chimi
- a Neonatology Division, Department of Pediatrics, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Heba Salah El-Abd
- b Genetics Division, Department of Pediatrics, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Eman El-Desouky
- c Department of Epidemiology and Biostatistics , National Cancer Institute, Cairo University , Cairo , Egypt
| |
Collapse
|
15
|
Raval DB, Cusmano-Ozog KP, Ayyub O, Jenevein C, Kofman LH, Lanpher B, Hauser N, Regier DS. Diagnosis of LCHAD/TFP deficiency in an at risk newborn using umbilical cord blood acylcarnitine analysis. Mol Genet Metab Rep 2016; 10:8-10. [PMID: 27995076 PMCID: PMC5155040 DOI: 10.1016/j.ymgmr.2016.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 10/31/2022] Open
Abstract
Trifunctional protein deficiency/Long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHAD/TFP) deficiency is a disorder of fatty acid oxidation and ketogenesis. Severe neonatal lactic acidosis, cardiomyopathy, and hepatic dysfunction are caused by the accumulation of toxic long-chain acylcarnitines. The feasibility of umbilical cord blood use in screening for acylcarnitine analysis and free carnitine has been hypothesized but not reported in LCHAD/TFP neonates. We present a 4 week old female who was at risk of inheriting LCHAD/TFP deficiency and was diagnosed at the time of delivery using umbilical cord blood. Umbilical cord blood was collected at delivery and sent for acylcarnitine analysis. Treatment was started immediately. Acylcarnitine analysis demonstrated findings that are consistent with a biochemical diagnosis of LCHAD/TFP deficiency. Patients with LCHAD/TFP deficiency should have treatment initiated as early as possible to avoid acute decompensation and minimize the long-term complications of the disorder including cardiomyopathy. In pregnancies at risk of having a child with LCHAD/TFP deficiency, umbilical cord blood sample is an efficient method to diagnose an inborn error of metabolism such as LCHAD/TFP deficiency.
Collapse
Affiliation(s)
| | | | - Omar Ayyub
- Genetics and Metabolism, Children's National Health System, Washington, DC,USA
| | - Callie Jenevein
- Inova Translational Medicine Institute, Division of Medical Genomics, Falls Church, VA, USA
| | - Laura H Kofman
- Department of Medical Genetics, Kaiser Permanente Mid-Atlantic States, McLean, VA USA
| | - Brendan Lanpher
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | - Natalie Hauser
- Inova Translational Medicine Institute, Division of Medical Genomics, Falls Church, VA, USA
| | - Debra S Regier
- Genetics and Metabolism, Children's National Health System, Washington, DC,USA
| |
Collapse
|
16
|
Kedia K, Smith SF, Wright AH, Barnes JM, Tolley HD, Esplin MS, Graves SW. Global "omics" evaluation of human placental responses to preeclamptic conditions. Am J Obstet Gynecol 2016; 215:238.e1-238.e20. [PMID: 26970495 DOI: 10.1016/j.ajog.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a leading cause of maternal death. Its cause is still debated but there is general agreement that the placenta plays a central role. Perhaps the most commonly proposed contributors to PE include placental hypoxia, oxidative stress, and increased proinflammatory cytokines. How the placenta responds to these abnormalities has been considered but not as part of a comprehensive analysis of low-molecular-weight biomolecules and their responses to these accepted PE conditions. OBJECTIVE Using a peptidomic approach, we sought to identify a set of molecules exhibiting differential expression in consequence of provocative agents/chemical mediators of PE applied to healthy human placental tissue. STUDY DESIGN Known PE conditions were imposed on normal placental tissue from 13 uncomplicated pregnancies and changes in the low-molecular-weight peptidome were evaluated. A t test was used to identify potential markers for each imposed stress. These markers were then submitted to a least absolute shrinkage and selection operator multinomial logistic regression model to identify signatures specific to each stressor. Estimates of model performance on external data were obtained through internal validation. RESULTS A total of 146 markers were increased/decreased as a consequence of exposure to proposed mediators of PE. Of these 75 changed with hypoxia; 23 with hypoxia-reoxygenation/oxidative stress and 48 from exposure to tumor necrosis factor-α. These markers were chemically characterized using tandem mass spectrometry. Identification rates were: hypoxia, 34%; hypoxia-reoxygenation, 60%; and tumor necrosis factor-α, 50%. Least absolute shrinkage and selection operator modeling specified 16 markers that effectively distinguished all groups, ie, the 3 abnormal conditions and control. Bootstrap estimates of misclassification rates, multiclass area under the curve, and Brier score were 0.108, 0.944, and 0.160, respectively. CONCLUSION Using this approach we found previously unknown molecular changes in response to individual PE conditions that allowed development biomolecular signatures for exposure to each accepted pathogenic condition.
Collapse
|
17
|
Chafer-Pericas C, Cernada M, Rahkonen L, Stefanovic V, Andersson S, Vento M. Preliminary case control study to establish the correlation between novel peroxidation biomarkers in cord serum and the severity of hypoxic ischemic encephalopathy. Free Radic Biol Med 2016; 97:244-249. [PMID: 27296840 DOI: 10.1016/j.freeradbiomed.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) has deleterious neurological consequences. To identify patients at risk of neuronal damage deserving implementation of neuroprotective strategies clinicians have relied on prenatal sentinel events, postnatal clinical assessment (Apgar score), and blood gas analysis. This feasibility study aimed to assess if lipid peroxidation byproducts associated with neuronal damage correlated with cord blood metabolic acidemia in patients with HIE. POPULATION AND METHODS This is a case/control study in which cases were newborn infants with severe acidemia (pH<7.00; base excess ≥12mmol/L) while control babies exhibited normal gases (pH=7.20-7.40; base excess=-4 to +4mmol/L) in the first cord blood analysis performed immediately after birth. Concomitantly, lipid peroxidation byproducts were determined using ultra performance liquid chromatography coupled to mass spectrometry in the same cord blood sample. RESULTS A total of 19 controls and 20 cases were recruited. No differences in gestational characteristics were present. However, cases exhibited profound metabolic alterations as compared to controls (Cases vs. CONTROL pH=6.90±0.1 vs. 7.33±0.03; base excess=-15±3 vs. -1±2mmol/L), 85% were admitted to the NICU, and 50% developed symptoms of HIE. 8-iso-15(R)-PGF2α (P=0.01) and total isoprostanes (P=0.045) presented statistically significant differences between cases and control groups and correlated with level of HIE. CONCLUSIONS The 8-iso-15(R)-PGF2α and isoprostanes reflecting oxidative damage are significantly increased in severe postnatal acidemia. Follow up studies with adequate power are necessary to confirm if these biomarkers measured in cord blood serum could be predictive of neonatal encephalopathy.
Collapse
Affiliation(s)
| | - María Cernada
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Leena Rahkonen
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University Hospital, Finland
| | - Vedran Stefanovic
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University Hospital, Finland
| | - Sture Andersson
- Children׳s Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University & Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|
18
|
Abi Salloum B, Veiga-Lopez A, Abbott DH, Burant CF, Padmanabhan V. Developmental programming: exposure to testosterone excess disrupts steroidal and metabolic environment in pregnant sheep. Endocrinology 2015; 156:2323-37. [PMID: 25763641 PMCID: PMC4430607 DOI: 10.1210/en.2014-2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gestational exposure to excess T leads to intrauterine growth restriction, low birth weight, and adult metabolic/reproductive disorders in female sheep. We hypothesized that as early mediators of such disruptions, gestational T disrupts steroidal and metabolic homeostasis in both the mother and fetus by both androgenic and metabolic pathways. Maternal blood samples were measured weekly for levels of insulin, glucose, and progesterone from four groups of animals: control; gestational T (twice weekly im injections of 100 mg of T propionate from d 30 to d 90 of gestation); T plus an androgen antagonist, flutamide (15 mg/kg·d oral; T-Flutamide); and T plus the insulin sensitizer, rosiglitazone (0.11 mg/kg·d oral; T-Rosi) (n = 10-12/group). On day 90 of gestation, maternal and umbilical cord samples were collected after a 48-hour fast from a subset (n = 6/group) for the measurement of steroids, free fatty acids, amino acids, and acylcarnitines. Gestational T decreased maternal progesterone levels by 36.5% (P < .05), which was prevented by flutamide showing direct androgenic mediation. Gestational T also augmented maternal insulin levels and decreased medium chained acylcarnitines, suggesting increased mitochondrial fatty acid oxidation. These changes were prevented by rosiglitazone, suggesting alterations in maternal fuel use. Gestational T-induced increases in fetal estradiol were not prevented by either cotreatment. Gestational T disrupted associations of steroids with metabolites and progesterone with acylcarnitines, which was prevented either by androgen antagonist or insulin sensitizer cotreatment. These findings suggest a future combination of these treatments might be required to prevent alteration in maternal/fetal steroidal and metabolic milieu(s).
Collapse
Affiliation(s)
- B Abi Salloum
- Departments of Pediatrics (B.A.S., A.V.-L., V.P.) and Internal Medicine (C.F.B.) and Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A.), University of Wisconsin, Madison, Wisconsin 53706
| | | | | | | | | |
Collapse
|
19
|
Metabolomic profiling in perinatal asphyxia: a promising new field. BIOMED RESEARCH INTERNATIONAL 2015; 2015:254076. [PMID: 25802843 PMCID: PMC4329862 DOI: 10.1155/2015/254076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022]
Abstract
Metabolomics, the latest “omic” technology, is defined as the comprehensive study of all low molecular weight biochemicals, “metabolites” present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field.
Collapse
|
20
|
Gucciardi A, Zaramella P, Costa I, Pirillo P, Nardo D, Naturale M, Chiandetti L, Giordano G. Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns. Pediatr Res 2015; 77:36-47. [PMID: 25268144 DOI: 10.1038/pr.2014.142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acylcarnitines are biomarkers of fatty acid metabolism, and examining their patterns in preterm newborn may reveal metabolic changes associated with particular conditions related to prematurity. Isomeric acylcarnitines in dried blood spots (DBS) and plasma have never been assessed in preterm infants. METHODS We studied 157 newborn divided into four groups by weeks of gestational age (GA), as follows: 22-27 wk in group 1; 28-31 wk in group 2; 32-36 wk in group 3; and 37-42 wk in group 4. Samples were collected on the third day of life. Acylcarnitines were separated and quantified using ultra-performance liquid chromatography tandem mass spectrometry. RESULTS Acylcarnitine concentrations correlated significantly with GA and birth weight in both DBS and plasma samples. Concentrations were lower in preterm newborn, except for acylcarnitines derived from branched-chain amino acids, which were higher and correlated with enteral feeding. On day 3 of life, no correlations emerged with gender, respiratory distress syndrome, bronchopulmonary dysplasia, surfactant administration, or mechanical ventilation. CONCLUSION We established GA-based reference ranges for isomeric acylcarnitine concentrations in preterm newborn, which could be used to assess nutritional status and the putative neuroprotective role of acylcarnitines.
Collapse
Affiliation(s)
- Antonina Gucciardi
- Department of Women's and Children's Health, Mass Spectrometry Laboratory, University of Padova, Padova, Italy
| | - Patrizia Zaramella
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, University of Padova, Padova, Italy
| | - Irene Costa
- Department of Women's and Children's Health, Mass Spectrometry Laboratory, University of Padova, Padova, Italy
| | - Paola Pirillo
- Department of Women's and Children's Health, Mass Spectrometry Laboratory, University of Padova, Padova, Italy
| | - Daniel Nardo
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, University of Padova, Padova, Italy
| | - Mauro Naturale
- Department of Women's and Children's Health, Mass Spectrometry Laboratory, University of Padova, Padova, Italy
| | - Lino Chiandetti
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, University of Padova, Padova, Italy
| | - Giuseppe Giordano
- Department of Women's and Children's Health, Mass Spectrometry Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
21
|
Differences in circulating carnitine status of preterm infants fed fortified human milk or preterm infant formula. J Pediatr Gastroenterol Nutr 2013; 57:673-6. [PMID: 23783025 DOI: 10.1097/mpg.0b013e31829fad06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of the study was to compare plasma carnitine profiles in fortified human milk (HM)-fed preterm infants or formula-fed preterm infants. METHODS Plasma acylcarnitine concentrations were determined in 20 formula-fed and 18 HM-fed preterm infants (birth weights between 1000 and 2200 g) by isotope dilution ESI MS/MS technique on study days 0, 14, and 28. RESULTS Concentrations of free carnitine (FC) and different acylcarnitines did not change during the 4 weeks of the study in infants fed HM. In contrast, in infants fed formula FC increased markedly (day 0: 29.989 [16.646] μmol/L, median [interquartile range], day 14: 43.972 [8.455], P < 0.05) along with increases of short-chain esters (C2 day 0: 5.300 [3.272], day 14: 6.773 [2.127], P < 0.05; C3 day 0: 0.070 [0.059], day 14: 0.110 [0.069], P < 0.05). In contrast, some medium-chain (C8:1, C12) and long-chain esters (C14, C16) decreased significantly in infant formula by day 14, whereas FC and C2 and C3 esters increased further by day 28 (FC: 47.672 [14.753], C2: 7.430 [4.688], C3: 0.107 [0.047]). CONCLUSIONS The altered carnitine ester profile likely reflects active involvement of the carnitine molecule in the buffering, metabolism, and elimination of nonphysiological acyl moieties.
Collapse
|
22
|
Amino acid and acylcarnitine profiles in premature neonates: a pilot study. Indian J Pediatr 2013; 80:736-44. [PMID: 23404695 DOI: 10.1007/s12098-013-0980-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the longitudinal changes in amino acid (AA) and acylcarnitine (AC) profiles of preterm neonates over the first 2 wk of life, and to detect any significant deviation from full term values that requires change of cut-off values used for detection of metabolic disorders in preterm neonates. METHODS This observational analytical longitudinal study was conducted on 131 premature neonates (gestational age ranged from 27 to 36 wk) and 143 healthy full-term neonates. Dried blood spots were taken on the 5th and 14th postnatal day from the premature neonates and on day 5 from full term neonates for neonatal screening. Samples were analyzed for AA and AC using tandem mass spectrometer. RESULTS Most AA significantly decreased on day 14 compared to day 5 among preterm neonates (p < 0.05). The combined values of total carnitine (TC), total acylcarnitine (tAC) and short-chain acylcarnitines on day 5 among preterm neonates were statistically significantly higher compared to the day 14 sample (p 0.0001), whereas no statistically significant difference was found regarding the values of medium-, long-chain acylcarnitines, tAC/FC, and FC/TC (p > 0.05). The levels of AA of preterm neonates were statistically significantly higher than that of the controls (p < 0.05). The values of TC, tAC, short-, medium- and long-chain acylcarnitines, were significantly higher than those of the controls (p < 0.05). The reference ranges for preterm neonates were determined using the 1st and 99.9th percentiles. CONCLUSIONS AA and AC showed an age-related distribution of their concentrations. This underlines the importance of using appropriate reference values when working with a prematurely born population.
Collapse
|
23
|
Alexandre-Gouabau MC, Courant F, Moyon T, Küster A, Le Gall G, Tea I, Antignac JP, Darmaun D. Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants. J Proteome Res 2013; 12:2764-78. [PMID: 23527880 DOI: 10.1021/pr400122v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the global effect of preterm birth on fetal metabolism and maternal-fetal nutrient transfer, we used a mass spectrometric-based chemical phenotyping approach on cord blood obtained at the time of birth. We sampled umbilical venous, umbilical arterial, and maternal blood from mothers delivering very-low birth weight (VLBW, with a median gestational age and weight of 29 weeks, and 1210 g, respectively) premature or full-term (FT) neonates. In VLBW group, we observed a significant elevation in the levels and maternal-fetal gradients of butyryl-, isovaleryl-, hexanoyl- and octanoyl-carnitines, suggesting enhanced short- and medium chain fatty acid β-oxidation in human preterm feto-placental unit. The significant decrease in glutamine-glutamate in preterm arterial cord blood beside lower levels of amino acid precursors of Krebs cycle suggest increased glutamine utilization in the fast growing tissues of preterm fetus with a deregulation in placental glutamate-glutamine shuttling. Enhanced glutathione utilization is likely to account for the decrease in precursor amino acids (serine, betaine, glutamate and methionine) in arterial cord blood. An increase in both the circulating levels and maternal-fetal gradients of several polyamines in their acetylated form (diacetylspermine and acetylputrescine) suggests an enhanced polyamine metabolic cycling in extreme prematurity. Our metabolomics study allowed the identification of alterations in fetal energy, antioxidant defense, and polyamines and purines flux as a signature of premature birth.
Collapse
|
24
|
Walsh BH, Broadhurst DI, Mandal R, Wishart DS, Boylan GB, Kenny LC, Murray DM. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS One 2012; 7:e50520. [PMID: 23227182 PMCID: PMC3515614 DOI: 10.1371/journal.pone.0050520] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/23/2012] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxic ischaemic encephalopathy (HIE) in newborns can cause significant long-term neurological disability. The insult is a complex injury characterised by energy failure and disruption of cellular homeostasis, leading to mitochondrial damage. The importance of individual metabolic pathways, and their interaction in the disease process is not fully understood. The aim of this study was to describe and quantify the metabolomic profile of umbilical cord blood samples in a carefully defined population of full-term infants with HIE. Methods and Findings The injury severity was defined using both the modified Sarnat score and continuous multichannel electroencephalogram. Using these classification systems, our population was divided into those with confirmed HIE (n = 31), asphyxiated infants without encephalopathy (n = 40) and matched controls (n = 71). All had umbilical cord blood drawn and biobanked at −80°C within 3 hours of delivery. A combined direct injection and LC-MS/MS assay (AbsolutIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria) was used for the metabolomic analyses of the samples. Targeted metabolomic analysis showed a significant alteration between study groups in 29 metabolites from 3 distinct classes (Amino Acids, Acylcarnitines, and Glycerophospholipids). 9 of these metabolites were only significantly altered between neonates with Hypoxic ischaemic encephalopathy and matched controls, while 14 were significantly altered in both study groups. Multivariate Discriminant Analysis models developed showed clear multifactorial metabolite associations with both asphyxia and HIE. A logistic regression model using 5 metabolites clearly delineates severity of asphyxia and classifies HIE infants with AUC = 0.92. These data describe wide-spread disruption to not only energy pathways, but also nitrogen and lipid metabolism in both asphyxia and HIE. Conclusion This study shows that a multi-platform targeted approach to metabolomic analyses using accurately phenotyped and meticulously biobanked samples provides insight into the pathogenesis of perinatal asphyxia. It highlights the potential for metabolomic technology to develop a diagnostic test for HIE.
Collapse
Affiliation(s)
- Brian H Walsh
- Neonatal Brain Research Group, Department of Paediatrics and Child Health, Cork University Maternity Hospital, Wilton, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Carnitine deficiency in OCTN2-/- newborn mice leads to a severe gut and immune phenotype with widespread atrophy, apoptosis and a pro-inflammatory response. PLoS One 2012; 7:e47729. [PMID: 23112839 PMCID: PMC3480427 DOI: 10.1371/journal.pone.0047729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/14/2012] [Indexed: 02/07/2023] Open
Abstract
We have investigated the gross, microscopic and molecular effects of carnitine deficiency in the neonatal gut using a mouse model with a loss-of-function mutation in the OCTN2 (SLC22A5) carnitine transporter. The tissue carnitine content of neonatal homozygous (OCTN2−/−) mouse small intestine was markedly reduced; the intestine displayed signs of stunted villous growth, early signs of inflammation, lymphocytic and macrophage infiltration and villous structure breakdown. Mitochondrial β-oxidation was active throughout the GI tract in wild type newborn mice as seen by expression of 6 key enzymes involved in β-oxidation of fatty acids and genes for these 6 enzymes were up-regulated in OCTN2−/− mice. There was increased apoptosis in gut samples from OCTN2−/− mice. OCTN2−/− mice developed a severe immune phenotype, where the thymus, spleen and lymph nodes became atrophied secondary to increased apoptosis. Carnitine deficiency led to increased expression of CD45-B220+ lymphocytes with increased production of basal and anti-CD3-stimulated pro-inflammatory cytokines in immune cells. Real-time PCR array analysis in OCTN2−/− mouse gut epithelium demonstrated down-regulation of TGF-β/BMP pathway genes. We conclude that carnitine plays a major role in neonatal OCTN2−/− mouse gut development and differentiation, and that severe carnitine deficiency leads to increased apoptosis of enterocytes, villous atrophy, inflammation and gut injury.
Collapse
|
26
|
Chughtai K, Jiang L, Greenwood TR, Glunde K, Heeren RMA. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J Lipid Res 2012; 54:333-44. [PMID: 22930811 DOI: 10.1194/jlr.m027961] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.
Collapse
Affiliation(s)
- Kamila Chughtai
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Vieira Neto E, Fonseca AA, Almeida RF, Figueiredo MP, Porto MAS, Ribeiro MG. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Braz J Med Biol Res 2012; 45:546-56. [PMID: 22488223 PMCID: PMC3854303 DOI: 10.1590/s0100-879x2012007500056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/21/2012] [Indexed: 11/22/2022] Open
Abstract
Acylcarnitine profiling by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a potent tool for the diagnosis and screening of fatty acid oxidation and organic acid disorders. Few studies have analyzed free carnitine and acylcarnitines in dried blood spots (DBS) of umbilical cord blood (CB) and the postnatal changes in the concentrations of these analytes. We have investigated these metabolites in healthy exclusively breastfed neonates and examined possible effects of birth weight and gestational age. DBS of CB were collected from 162 adequate for gestational age neonates. Paired DBS of heel-prick blood were collected 4-8 days after birth from 106 of these neonates, the majority exclusively breastfed. Methanol extracts of DBS with deuterium-labeled internal standards were derivatized before analysis by ESI-MS/MS. Most of the analytes were measured using a full-scan method. The levels of the major long-chain acylcarnitines, palmitoylcarnitine, stearoylcarnitine, and oleoylcarnitine, increased by 27, 12, and 109%, respectively, in the first week of life. Free carnitine and acetylcarnitine had a modest increase: 8 and 11%, respectively. Propionylcarnitine presented a different behavior, decreasing 9% during the period. The correlations between birth weight or gestational age and the concentrations of the analytes in DBS were weak (r ≤ 0.20) or nonsignificant. Adaptation to breast milk as the sole source of nutrients can explain the increase of these metabolites along the early neonatal period. Acylcarnitine profiling in CB should have a role in the early detection of metabolic disorders in high-risk neonates.
Collapse
Affiliation(s)
- E Vieira Neto
- Serviço de Genética Médica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Brasil.
| | | | | | | | | | | |
Collapse
|
28
|
De T, Kruthika-Vinod TP, Nagaraja D, Christopher R. Postnatal variations in blood free and acylcarnitines. J Clin Lab Anal 2011; 25:126-9. [PMID: 21438006 DOI: 10.1002/jcla.20445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alteration in concentrations of blood carnitine and its esters are diagnostic of a number of inherited metabolic disorders. Acylcarnitine (AC) profiles of newborns obtained from dried blood spots by tandem mass spectrometric analysis are being used for the diagnosis of these disorders. There are no data of the postnatal variations of free carnitine (FC) and AC in Indian neonates. OBJECTIVES Evaluation of postnatal variations in free and AC levels in newborns. METHODS Blood FC and AC levels were evaluated in 2,727 healthy neonates of postnatal day 2-30 by electrospray ionization tandem mass spectrometry. RESULTS Blood C2, C5DC, C16, C16:1, C18, C18:1, C18:2, and C18:OH carnitines were increased in groups A (aged 8-14 days) and B (aged 15-30 days), compared with the control group (aged 2-7 days), whereas C3, C4, C4OH, C6, C6DC, and C12 carnitines were increased only in group B. No sex-related differences were found except for C3DC, C4, and C5 carnitine concentrations, which were higher in female neonates. CONCLUSIONS Our data can be used as a reference for the assessment of carnitine status in Indian newborns, hence reducing the risk of misdiagnosis of fatty acid oxidation disorders and organic acidemias during interpretation of the results of tandem mass spectrometry-based newborn screening.
Collapse
Affiliation(s)
- Tanima De
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | | | | |
Collapse
|
29
|
Horgan RP, Broadhurst DI, Walsh SK, Dunn WB, Brown M, Roberts CT, North RA, McCowan LM, Kell DB, Baker PN, Kenny LC. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res 2011; 10:3660-73. [PMID: 21671558 DOI: 10.1021/pr2002897] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Being born small for gestational age (SGA) confers increased risks of perinatal morbidity and mortality and increases the risk of cardiovascular complications and diabetes in later life. Accumulating evidence suggests that the etiology of SGA is usually associated with poor placental vascular development in early pregnancy. We examined metabolomic profiles using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in three independent studies: (a) venous cord plasma from normal and SGA babies, (b) plasma from a rat model of placental insufficiency and controls, and (c) early pregnancy peripheral plasma samples from women who subsequently delivered a SGA baby and controls. Multivariate analysis by cross-validated Partial Least Squares Discriminant Analysis (PLS-DA) of all 3 studies showed a comprehensive and similar disruption of plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9. Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis and offers the promise of a robust presymptomatic screening test.
Collapse
Affiliation(s)
- Richard P Horgan
- The Anu Research Centre, Department of Obstetrics and Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fingerhut R, De Jesus Silva Arevalo G, Baumgartner MR, Häberle J, Rohrbach M, Figueroa AWÁ, Fresse EMD, Polanco OL, Torresani T. Postprandial changes of amino acid and acylcarnitine concentrations in dried blood samples. J Inherit Metab Dis 2010; 33:S235-9. [PMID: 20652412 DOI: 10.1007/s10545-010-9167-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/21/2010] [Accepted: 06/29/2010] [Indexed: 11/28/2022]
Abstract
Blood sampling for newborn screening cannot be standardized as for example blood collection in adults after an overnight fast. Therefore the influence of postprandial changes and individual variation is valuable information for the assessment of sensitivity and specificity of newborn screening for certain disorders. We have analyzed 92 pairs of dried blood samples taken pre- and one hour postprandially, respectively. We have determined the mean increase in metabolite concentration and calculated its significance. Individual variation after an overnight fast in healthy adults (n = 3) was between 12 and 32% (SD). Postprandial increases of acylcarnitines were mostly not significant and not exceeding 10%. Postprandial increase of amino acids was highly significant for most proteinogenic amino acids, but not for all. With the collected data we were able to estimate that mainly decreased levels of methionine and, to a lesser extent, of free carnitine could be "masked" by postprandial increases of the respective metabolites, and could therefore lead to false negative results for the detection of disorders of cobalamin metabolism and carnitine transporter deficiency.
Collapse
|
31
|
Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS One 2010; 5:e9606. [PMID: 20231903 PMCID: PMC2834759 DOI: 10.1371/journal.pone.0009606] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023] Open
Abstract
Background Currently, a limited range of biochemical tests for hypoxia are in clinical use. Early diagnostic and functional biomarkers that mirror cellular metabolism and recovery during resuscitation are lacking. We hypothesized that the quantification of metabolites after hypoxia and resuscitation would enable the detection of markers of hypoxia as well as markers enabling the monitoring and evaluation of resuscitation strategies. Methods and Findings Hypoxemia of different durations was induced in newborn piglets before randomization for resuscitation with 21% or 100% oxygen for 15 min or prolonged hyperoxia. Metabolites were measured in plasma taken before and after hypoxia as well as after resuscitation. Lactate, pH and base deficit did not correlate with the duration of hypoxia. In contrast to these, we detected the ratios of alanine to branched chained amino acids (Ala/BCAA; R2.adj = 0.58, q-value<0.001) and of glycine to BCAA (Gly/BCAA; R2.adj = 0.45, q-value<0.005), which were highly correlated with the duration of hypoxia. Combinations of metabolites and ratios increased the correlation to R2adjust = 0.92. Reoxygenation with 100% oxygen delayed cellular metabolic recovery. Reoxygenation with different concentrations of oxygen reduced lactate levels to a similar extent. In contrast, metabolites of the Krebs cycle (which is directly linked to mitochondrial function) including alpha keto-glutarate, succinate and fumarate were significantly reduced at different rates depending on the resuscitation, showing a delay in recovery in the 100% reoxygenation groups. Additional metabolites showing different responses to reoxygenation include oxysterols and acylcarnitines (n = 8–11, q<0.001). Conclusions This study provides a novel strategy and set of biomarkers. It provides biochemical in vivo data that resuscitation with 100% oxygen delays cellular recovery. In addition, the oxysterol increase raises concerns about the safety of 100% O2 resuscitation. Our biomarkers can be used in a broad clinical setting for evaluation or the prediction of damage in conditions associated with low tissue oxygenation in both infancy and adulthood. These findings have to be validated in human trials.
Collapse
|
32
|
Maier EM, Pongratz J, Muntau AC, Liebl B, Nennstiel-Ratzel U, Busch U, Fingerhut R, Olgemöller B, Roscher AA, Röschinger W. Dissection of biochemical borderline phenotypes in carriers and genetic variants of medium-chain acyl-CoA dehyrogenase deficiency: implications for newborn screening [corrected]. Clin Genet 2009; 76:179-87. [PMID: 19780764 DOI: 10.1111/j.1399-0004.2009.01217.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) represents a potentially fatal fatty acid beta-oxidation disorder. Newborn screening (NBS) by tandem mass spectrometry (MS/MS) has been implemented worldwide, but is associated with unresolved questions regarding population heterogeneity, burden on healthy carriers, cut-off policies, false-positive and negative rates. In a retrospective case-control study, 333 NBS samples showing borderline acylcarnitine patterns but not reaching recall criteria were genotyped for the two most common mutations (c.985A>G/c.199C>T) and compared with genotypes and acylcarnitines of 333 controls, 68 false-positives, and 34 patients. c.985A>G was more frequently identified in the study group and false-positives compared to controls (1:4.3/1:2.3 vs. 1:42), whereas c.199C>T was found more frequently only within the false-positives (1:23). Biochemical criteria were devised to differentiate homozygous (c.985A>G), compound heterozygous (c.985A>G/c.199C>T), and heterozygous individuals. Four false-negatives were identified because our initial algorithm required an elevation of octanoylcarnitine (C(8)) and three secondary markers in the initial and follow-up sample. The new approach allowed a reduction of false-positives (by defining high cut-offs: 1.4 micromol/l for C(8); 7 for C(8)/C(12)) and false-negatives (by sequencing the ACADM gene of few suspicious samples). Our validation strategy is able to differentiate healthy carriers from patients doubling the positive predictive value (42-->88%) and to target NBS to MCADD-subsets with potentially higher risk of adverse outcome. It remains controversial, if NBS programs should aim at identifying all subsets of all diseases included. Because the natural course of milder variants cannot be assessed by observational studies, our strategy could serve as a general model for evaluation of MS/MS-based NBS.
Collapse
Affiliation(s)
- E M Maier
- Research Center, Department of Biochemical Genetics and Molecular Biology, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cobaugh DJ, Amin A, Bookwalter T, Williams M, Grunwald P, LaCivita C, Hawkins B. ASHP–SHM Joint Statement on Hospitalist–Pharmacist Collaboration. Am J Health Syst Pharm 2008; 65:260-3. [DOI: 10.2146/ajhp070474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Alpesh Amin
- Vice Chair for Clinical Affairs and Quality, Department of Medicine; and Associate Program Director, Internal Medicine Residency, University of California, Irvine
| | | | - Mark Williams
- Division of Hospital Medicine, Northwestern University Feinberg School of Medicine; and Editor-in-Chief, Journal of Hospital Medicine
| | | | - Cynthia LaCivita
- Education and Special Programs, ASHP Research and Education Foundation
| | - Bruce Hawkins
- Best Practices for Hospital & Health-System Pharmacy, American Society of Health-System Pharmacists, Bethesda, MD
| |
Collapse
|
34
|
Schulpis KH, Papakonstantinou ED, Vlachos GD, Vlachos DG, Antsaklis A, Papassotiriou I, Tsakiris S. The effect of the mode of delivery on the maternal-neonatal carnitine blood levels and antioxidant status. Clin Chem Lab Med 2008; 46:680-6. [DOI: 10.1515/cclm.2008.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Osorio JH, Pourfarzam M. [Determination of normal acylcarnitine levels in a healthy pediatric population as a diagnostic tool in inherited errors of mitochondrial fatty acid beta-oxidation]. An Pediatr (Barc) 2007; 67:548-52. [PMID: 18053519 DOI: 10.1016/s1695-4033(07)70802-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Acylcarnitine measurement in blood is a useful test for the diagnosis of inherited errors of mitochondrial fatty acid beta-oxidation. However, there are few data in the literature on the reference ranges of the various acylcarnitines and on whether these reference ranges are age- or sex-dependent. OBJECTIVES To draw attention to inherited errors of mitochondrial fatty acid beta-oxidation and to establish reference acylcarnitine values in children. PATIENTS AND METHODS A total of 309 blood samples from healthy children divided into four age groups (group A: <1 month; group B: 1-12 months; group C: 1-7 years; group D: 7-18 years) were obtained and analyzed using tandem mass spectrometry. RESULTS AND CONCLUSION Reference acylcarnitine values in children are provided. No significant differences were found in relation to age or sex. Our results differ from those reported in the literature reviewed. Importantly, hydroxyacylcarnitines and glutaryl carnitine are absent when normal samples are processed. We review the literature on the main clinical and laboratory findings in mitochondrial fatty acid beta-oxidation deficiencies.
Collapse
Affiliation(s)
- J H Osorio
- Universidad de Caldas, Laboratorio de Enfermedades Metabólicas, Departamento de Ciencias Básicas de la Salud, Manizales, Colombia.
| | | |
Collapse
|
36
|
Talián GC, Komlósi K, Decsi T, Koletzko B, Melegh B. Determination of carnitine ester patterns during the second half of pregnancy, at delivery, and in neonatal cord blood by tandem mass spectrometry: complex and dynamic involvement of carnitine in the intermediary metabolism. Pediatr Res 2007; 62:88-92. [PMID: 17515842 DOI: 10.1203/pdr.0b013e3180676cca] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied plasma concentrations of free carnitine and 30 carnitine esters by electron spray ionization (ESI) tandem mass spectrometry in 37 pregnant women at the 20th and 30th weeks of gestation and at delivery, and in their neonates at birth, and in 22 age-matched nonpregnant women. The plasma levels of acetylcarnitine and carnitine esters with more than five carbons were significantly higher, whereas the concentration of free carnitine was significantly lower at term than at the 20th week of pregnancy (16.75 +/- 0.89 versus 19.61 +/- 1.25). Almost all of C2- to C12-carnitine esters were significantly lower, whereas C16- and C18-carnitines with in-chain modifications were significantly higher in mothers at delivery compared with nonpregnant women. Plasma levels of free carnitine and C2-, C3-, C4-, C5-, C6-, and C16-carnitines were significantly lower, while concentrations of carnitine esters with 8, 10, 12 and 18 carbons in the acyl chain as well as C14:1-, C14:2-, and C16:1-OH-carnitines were significantly higher in mothers at term than in their neonates. The data of the present study clearly show dynamic features of plasma carnitine profile during pregnancy and indicate an extraordinarily active participation of the carnitine in the intermediary metabolism both in the pregnant woman and in the neonate.
Collapse
Affiliation(s)
- Gábor C Talián
- Department of Medical Genetics and Child Development, University of Pécs, Pécs, Hungary, H-7624
| | | | | | | | | |
Collapse
|
37
|
Wainwright MS, Kohli R, Whitington PF, Chace DH. Carnitine Treatment Inhibits Increases in Cerebral Carnitine Esters and Glutamate Detected by Mass Spectrometry After Hypoxia-Ischemia in Newborn Rats. Stroke 2006; 37:524-30. [PMID: 16385097 DOI: 10.1161/01.str.0000198892.15269.f7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral ischemic insults disrupt normal respiratory activity in mitochondria. Carnitine plays an essential role in mitochondrial metabolism and in modulating excess acyl-coenzyme A (acyl-CoA) levels. The effects of cerebral ischemia on carnitine metabolism are not well understood, although the newborn may be particularly vulnerable to carnitine deficiency. We used a newborn rat model of hypoxia-ischemia (HI) to test the hypothesis that HI alters acyl-CoA:CoA homeostasis and that this effect can be prevented by treatment with carnitine. METHODS A total of 120 postnatal day 7 rats were subjected to 70 minutes of HI after treatment with 16 mmol/kg intraperitoneal l-carnitine or diluent. Carnitine, acylcarnitines, and excitatory amino acids were measured by mass spectrometry, and carnitine acetyl transferase activity, superoxide, and levels of the mitochondrial phospholipid cardiolipin (CL) were measured at 2- and 24-hour recovery. RESULTS HI and hypoxia were associated with a significant increase in the ratio of acyl-CoA:CoA, which was prevented by treatment with carnitine. Carnitine treatment also prevented increases in glutamate, glycine, superoxide, and decrease of CL. CONCLUSIONS Carnitine metabolic pathways are compromised in HI and hypoxia. The protective effect of carnitine treatment on HI injury may be attributable to maintaining mitochondrial function.
Collapse
Affiliation(s)
- Mark S Wainwright
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
38
|
Olszowy Z, Czech E, Nowicka J. Effect of methanol on endogenous and exogenous carnitine levels in rat plasma. Arch Toxicol 2005; 79:571-81. [PMID: 15889238 DOI: 10.1007/s00204-004-0646-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
The effect of methanol on the levels of endogenous carnitine and its derivatives was studied in male Sprague-Dawley rats aged three months. In addition, the effect of L-carnitine supplementation on metabolic disturbances caused by methanol intoxication was studied. The rats were randomized into six groups, including two control groups. Methanol was given at 1/4 LD(50) and 1/2 LD(50)/kg b.w. (or water in control) through an intragastric tube, and L-carnitine (or 0.9% NaCl in the control) was injected intraperitoneally. The levels of plasma L-carnitine and its derivatives were measured at selected time points for four days. Following methanol administration, the rats exhibited dose-dependent increases in L-carnitine levels and altered ratios of L-carnitine and its derivatives. L-carnitine supplementation accelerated the normalization of metabolic disturbances, as indicated by the acylcarnitine to free carnitine ratio (AC/FC). The protective effect of L-carnitine is supported by the fact that 100% of the methanol-treated rats supplemented with carnitine survived, while 8/60 rats and 27/101 rats died at methanol doses of 1/4 LD(50) and 1/2 LD(50), respectively, in groups without L-carnitine supplementation.
Collapse
Affiliation(s)
- Zofia Olszowy
- Department of Forensic Medicine, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland.
| | | | | |
Collapse
|
39
|
Abstract
Hospitalists are physicians who spend at least 25% of their professional time serving as the physicians-of-record for inpatients, during which time they accept "hand-offs" of hospitalized patients from primary care providers, returning the patients to their primary care providers at the time of hospital discharge. The hospitalist movement is only about 5 years old, yet at least 7000 hospitalists practice today and an estimated 19,000 will ultimately practice, approximately the current number of emergency medicine physicians. The emerging positivist literature on hospitalists' impact is the subject of this review. It traces the nature and evolution of the hospitalist movement; summarizes empirical evidence about costs, clinical outcomes, patient satisfaction, and education; and appraises whether the hospitalist model is indeed novel. The review concludes by outlining research questions about the hospitalist model's viability over time, the mechanisms by which it produces benefits, and especially hospitalists' longitudinal effect on continuity of patient care. A literature "scorecard" might rank evidence to date on costs as positive, evidence on clinical outcomes and education as nonnegative, and evidence on patient satisfaction and continuity of care as inconclusive. Above all, longitudinal research must illuminate whether hospitalists' advantages comeat the cost of the doctor-patient relationship.
Collapse
Affiliation(s)
- David H Freed
- Nyack Hospital, 160 North Midland Avenue, Nyack, NY 10960, USA
| |
Collapse
|
40
|
Cavedon CT, Bourdoux P, Mertens K, Van Thi HV, Herremans N, de Laet C, Goyens P. Age-Related Variations in Acylcarnitine and Free Carnitine Concentrations Measured by Tandem Mass Spectrometry. Clin Chem 2005; 51:745-52. [PMID: 15708951 DOI: 10.1373/clinchem.2004.043646] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground: The acylcarnitine profiles obtained from dried blood spots on “Guthrie cards” have been widely used for the diagnosis and follow-up of children suspected of carrying an inherited error of metabolism, but little attention has been paid to potential age-related variations in the reference values. In this study, we evaluated the variations in free carnitine and acylcarnitine concentrations with age, as measured by tandem mass spectrometry.Methods: Filter-paper blood spots were collected from 433 healthy individuals over a period of 17 months. Eight age groups were defined: cord blood, 3–6 days (control group), 15–55 days, 2–18 months, 19–59 months, 5–10 years, 11–17 years, and 18–54 years. Free carnitine and acylcarnitines were measured for each individual. Mean values were calculated for each age group and compared with those for the control group.Results: Free carnitine was significantly higher in older children than in newborns (P <0.05), but the concentrations of several acylcarnitines tended to be significantly lower in cord blood and in groups of older children than in the control group. Only minor sex-related differences were observed.Conclusion: Although the risk of underdiagnosis of fatty acid oxidation disorders with the use of newborn values as reference can be considered as small, in some circumstances the use of age-related reference values may have a potential impact on the diagnosis and management of inherited errors of metabolism.
Collapse
Affiliation(s)
- Catia Testa Cavedon
- Newborn Screening Center, Laboratory of Pediatrics, Free University of Brussels, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ezgü FS, Atalay Y, Hasanoğlu A, Gücüyener K, Biberoğlu G, Koç E, Ergenekon E, Tümer L. Serum carnitine levels in newborns with perinatal asphyxia and relation to neurologic prognosis. Nutr Neurosci 2005; 7:351-6. [PMID: 15682932 DOI: 10.1080/10284150400017280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neonatal hypoxic encephalopathy is one of the major causes of permanent neurological sequel. This study was conducted to investigate serum total, free and acylcarnitine levels in asphyxiated newborns with or without encephalopathy. Serum total, free and acylcarnitine levels were investigated in 21 newborns with and seven asphyxiated newborns without signs of encephalopathy. The newborns with encephalopathy were further divided into grade 1, 2 and 3 encephalopathy groups. Serum total and acylcarnitine concentrations of the whole encephalopathy group were significantly lower than the non-encephalopathy group (p = 0.042 for both). Serum total and acylcarnitine concentrations of grade 3 encephalopathy group were significantly lower than the non-encephalopathy group (p = 0.014 and p = 0.040, respectively). No significant differences were noticed for free carnitine levels. Total carnitine levels were positively correlated with birth weight and 10th minute apgar score, whereas acylcarnitine levels were found to correlate with cord blood pH and free carnitine levels with birth weight. Cord blood pH, and total carnitine levels were found to be the most significant determinants of the neurological outcome at one year of age. It was emphasized that carnitine deficiency could occur in severely affected asphyxiated newborns and it is related to the outcome at one year of age.
Collapse
Affiliation(s)
- F S Ezgü
- Department of Pediatric Metabolism, Faculty of Medicine, Gazi University, Beşevler, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Thiele IGI, Niezen-Koning KE, van Gennip AH, Aarnoudse JG. Increased plasma carnitine concentrations in preeclampsia. Obstet Gynecol 2004; 103:876-80. [PMID: 15121560 DOI: 10.1097/01.aog.0000125699.60416.03] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Preeclampsia is associated with abnormal lipid metabolism, including fatty acid metabolism. Carnitine plays an indispensable role in the oxidation of fatty acids. The aim of the study was to evaluate the possible role of abnormal fatty acid oxidation in preeclampsia by comparing plasma carnitine levels between preeclamptic and healthy control pregnant women. METHODS Plasma concentrations of free carnitine and short-, medium-, and long-chain acylcarnitines were investigated with electrospray tandem mass spectrometry in pregnant women with preeclampsia (n = 33) and in normotensive healthy pregnant control subjects (n = 28). Excluded were multiple pregnancies and women with preexistent hypertension, diabetes, renal dysfunction, immune disease, and intrauterine fetal death. Control subjects were healthy pregnant women without hypertension or proteinuria. RESULTS The results revealed that, except for the medium-chain plasma acylcarnitines, all plasma carnitines were significantly increased (P <.001) in the preeclamptic group (t test for unpaired samples). Free carnitine and the short- and long-chain acylcarnitine values were increased by approximately 50% compared with the control group. Total and short-chain plasma acylcarnitine levels were significantly correlated to diastolic blood pressure, whereas no relationship could be demonstrated between carnitine concentrations and the variables proteinuria and systolic blood pressure. CONCLUSION The considerable increased plasma carnitine concentrations, together with the accumulation of lipids, support the role of abnormal lipid metabolism in the pathophysiology of preeclampsia. It is suggested that toxic metabolites resulting from abnormal fatty acid oxidation in the placenta contribute to the endothelial dysfunction of preeclampsia.
Collapse
Affiliation(s)
- Ingrit G I Thiele
- Division of Obstetrics, Department of Obstetrics and Gynecology, University Medical Centre, Groningen, The Netherlands
| | | | | | | |
Collapse
|
43
|
Kölker S, Koeller DM, Okun JG, Hoffmann GF. Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol 2004; 55:7-12. [PMID: 14705106 DOI: 10.1002/ana.10784] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutaryl-CoA dehydrogenase deficiency is an inherited organic aciduria with predominantly neurological presentation. Biochemically, it is characterized by an accumulation and enhanced urinary excretion of two key organic acids, glutaric acid and 3-hydroxyglutaric acid. If untreated, acute striatal degeneration is often precipitated by febrile illnesses during a vulnerable period of brain development in infancy or early childhood, resulting in a dystonic dyskinetic movement disorder. The mechanism underlying these acute encephalopathic crises has been partially elucidated using in vitro and in vivo models. 3-Hydroxyglutaric and glutaric acids share structural similarities with the main excitatory amino acid glutamate and are considered to play an important role in the pathophysiology of this disease. 3-Hydroxyglutaric acid induces excitotoxic cell damage specifically via activation of N-methyl-D-aspartate receptors. Furthermore, glutaric and 3-hydroxyglutaric acids indirectly modulate glutamatergic and GABAergic neurotransmission, resulting in an imbalance of excitatory and inhibitory neurotransmission. It also has been suggested that secondary amplification loops potentiate the neurotoxic properties of these organic acids. Probable mechanisms for this effect include cytokine-stimulated nitric oxide production, a decrease in energy metabolism, and reduction of cellular creatine phosphate levels. Finally, maturation-dependent changes in the expression of neuronal glutamate receptors may affect the vulnerability to 3-hydroxyglutaric and glutaric acid toxicity.
Collapse
Affiliation(s)
- Stefan Kölker
- Division of Metabolic and Endocrine Diseases, University Children's Hospital, Heidelberg, Germany.
| | | | | | | |
Collapse
|
44
|
Czech E, Olszowy Z, Nowicka J. The influence of L-carnitine on methanol biotransformation in rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2004; 55:367-77. [PMID: 15088638 DOI: 10.1078/0940-2993-00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
There persists a need for potent and safe inhibitors of alcohol dehydrogenase (ADH), to effectively treat methanol poisoning by slowing its rate of biotransformation to there toxic products, formaldehyde and formic acid. Only a few former papers have reported on the significant effectiveness of L-carnitine in treating ethanol poisoning as well as alcohol abuse. As are no reports on the effectiveness of L-carnitine in treating methanol poisoning till now, the current studies were conducted to investigate the influence of L-carnitine on both oxydative metabolism and elimination of methanol in rats. Male Sprague-Dawley rats, aged 3 months with the body weight of 200-230 g were divided into 6 groups at random, with two of the groups considered to be control. Rats were given drinking water (control) or methanol in two different doses of 3220 mg/kg b.m. or 6440 mg/kg b.m. intragastrically and 0.9% NaCl (control) or 6.2 mmol/kg b.m. of L-carnitine intraperitionelly. Within 96 hours after the administration of methanol and 0.9% NaCl or L-carnitine, the urine was collected and then the animals were decapitated. To determine methanol there were taken blood samples for clot, and to determine carnitine and its derivatives blood was taken into heparinized test tubes. During the autopsy liver was also secured. In all the experimental time points stated the methanol concentrations in blood, urine and liver homogenate were determined by a head-space gas chromatography.
Collapse
Affiliation(s)
- Ewa Czech
- Department of Nuclear Medicine, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
45
|
Napolitano N, Wiley V, Pitt JJ. Pseudo-glutarylcarnitinaemia in medium-chain acyl-CoA dehydrogenase deficiency detected by tandem mass spectrometry newborn screening. J Inherit Metab Dis 2004; 27:465-71. [PMID: 15303003 DOI: 10.1023/b:boli.0000037343.90450.8d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As well as characteristic increases in C(8) carnitine, dried blood spot samples from 11 newborns with medium-chain acyl-CoA dehydrogenase deficiency detected by tandem mass spectrometry screening using butyl esters showed apparent increases in glutarylcarnitine (m / z 388 signals). In four of the newborns in which it was measured, apparent increases in malonylcarnitine (m / z 360) were also detected. It was shown that the apparent increases were caused by interfering acylcarnitines, putatively identified as hydroxyoctanoylcarnitine and hydroxydecanoylcarnitine, respectively, using alternative derivatives for tandem mass spectrometry. Levels of the two abnormal carnitines correlated with C(8) carnitine levels and normalized with repeat testing in 10 cases. These results indicated that the abnormal carnitines were significantly elevated only during periods of increased fatty acid catabolism, as may occur in the immediate postnatal period.
Collapse
Affiliation(s)
- N Napolitano
- Genetic Health Services Victoria, Murdoch Children's Research Institute, Parkville, Vic. 3052, Australia
| | | | | |
Collapse
|
46
|
Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003; 49:1797-817. [PMID: 14578311 DOI: 10.1373/clinchem.2003.022178] [Citation(s) in RCA: 446] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Over the past decade laboratories that test for metabolic disorders have introduced tandem mass spectrometry (MS/MS), which is more sensitive, specific, reliable, and comprehensive than traditional assays, into their newborn-screening programs. MS/MS is rapidly replacing these one-analysis, one-metabolite, one-disease classic screening techniques with a one-analysis, many-metabolites, many-diseases approach that also facilitates the ability to add new disorders to existing newborn-screening panels. METHODS During the past few years experts have authored many valuable articles describing various approaches to newborn metabolic screening by MS/MS. We attempted to document key developments in the introduction and validation of MS/MS screening for metabolic disorders. Our approach used the perspective of the metabolite and which diseases may be present from its detection rather than a more traditional approach of describing a disease and noting which metabolites are increased when it is present. CONTENT This review cites important historical developments in the introduction and validation of MS/MS screening for metabolic disorders. It also offers a basic technical understanding of MS/MS as it is applied to multianalyte metabolic screening and explains why MS/MS is well suited for analysis of amino acids and acylcarnitines in dried filter-paper blood specimens. It also describes amino acids and acylcarnitines as they are detected and measured by MS/MS and their significance to the identification of specific amino acid, fatty acid, and organic acid disorders. CONCLUSIONS Multianalyte technologies such as MS/MS are suitable for newborn screening and other mass screening programs because they improve the detection of many diseases in the current screening panel while enabling expansion to disorders that are now recognized as important and need to be identified in pediatric medicine.
Collapse
Affiliation(s)
- Donald H Chace
- Pediatrix Screening, PO Box 219, 90 Emerson Lane, Bridgeville, PA 15017, USA.
| | | | | |
Collapse
|
47
|
Chace DH, Pons R, Chiriboga CA, McMahon DJ, Tein I, Naylor EW, De Vivo DC. Neonatal blood carnitine concentrations: normative data by electrospray tandem mass spectometry. Pediatr Res 2003; 53:823-9. [PMID: 12612202 DOI: 10.1203/01.pdr.0000059220.39578.3d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite a number of published reports, there is limited information about carnitine metabolism in the newborn. To establish normative data, we analyzed whole-blood carnitine concentrations in 24,644 newborns at age 1.85 +/- 0.95 d and umbilical cord whole blood and plasma carnitine concentrations in 50 full-term newborns. Total carnitine (TC), free carnitine (FC), and acylcarnitine (AC) were measured by electrospray tandem mass spectrometry. AC/FC ratios were derived from these measurements. The entire cohort was stratified according to TC values into a middle TC group representing 90% of the population and lower and upper TC groups representing 5% of the population, respectively. Normative data were derived from the middle TC group of full-term infants (N = 19,595). TC was 72.42 +/- 20.75 microM, FC was 44.94 +/- 14.99 microM, AC was 27.48 +/- 8.05 microM, and AC/FC ratio was 0.64 +/- 0.19 (+/-SD). These values differed significantly from umbilical cord whole blood TC values of 31.27 +/- 10.54 microM determined in 50 samples. No meaningful correlation was found between TC and gestational age or birth weight in any group. In controlled analyses, prematurity was not associated with TC levels, whereas low birth weight (<2500 g) and male sex were significantly associated with higher TC levels. The association of low birth weight with higher TC values may be related to decreased tissue carnitine uptake. The sex effect may be related to hormonal influences on carnitine metabolism. Our study provides normative data of carnitine values measured by the highly precise method of electrospray tandem mass spectrometry in a large cohort of newborns and provides the basis for future studies of carnitine metabolism in health and disease states during the neonatal period.
Collapse
Affiliation(s)
- Donald H Chace
- Neo Gen Screening, Division of BioAnalytical Chemistry and Mass Spectrometry, Bridgeville, PA 15017, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chace DH, Kalas TA, Naylor EW. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet 2002; 3:17-45. [PMID: 12142359 DOI: 10.1146/annurev.genom.3.022502.103213] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review is intended to serve as a practical guide for geneticists to current applications of tandem mass spectrometry to newborn screening. By making dried-blood spot analysis more sensitive, specific, reliable, and inclusive, tandem mass spectrometry has improved the newborn detection of inborn errors of metabolism. Its innate ability to detect and quantify multiple analytes from one prepared blood specimen in a single analysis permits broad recognition of amino acid, fatty acid, and organic acid disorders. An increasing number of newborn screening programs are either utilizing or conducting pilot studies with tandem mass spectrometry. It is therefore imperative that the genetics community be familiar with tandem mass spectrometric newborn screening.
Collapse
Affiliation(s)
- Donald H Chace
- Division of BioAnalytical Chemistry and Mass Spectrometry, Neo Gen Screening, Bridgeville, Pennsylvania 15017, USA.
| | | | | |
Collapse
|
49
|
Meyburg J, Schulze A, Kohlmueller D, Pöschl J, Linderkamp O, Hoffmann GF, Mayatepek E. Acylcarnitine profiles of preterm infants over the first four weeks of life. Pediatr Res 2002; 52:720-3. [PMID: 12409519 DOI: 10.1203/00006450-200211000-00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Measurement of free carnitine and acylcarnitines allows the detection of several inborn errors of metabolism in neonatal screening. Because available data for premature infants is limited, we studied longitudinal changes in acylcarnitine profiles of full-term and preterm neonates over the first 4 weeks of life. One hundred twenty infants were divided into four groups of 30: A, gestational age 22 to 27 wk; B, 28 to 31 wk; C, 32 to 36 wk; and D, 37 to 41 wk. Blood samples spotted on a Guthrie card were taken on days 5 and 28. Additional specimens (groups A and B only) were collected on days 1, 3, 7, and 14. Carnitine and its acyl esters were detected by looking for the precursor ions of m/z = 85 using a PE Sciex API 365 electrospray ionization tandem mass spectrometer. Concentrations of free carnitine and most acylcarnitines were significantly higher in group A compared with group D postnatally. Groups B and C displayed intermediate values. Carnitine levels in infants from group A and B decreased steadily from day 1 to day 7, and recovered up to day 14 in group B only. On day 28 carnitine concentrations had further decreased in group A, while reaching postnatal levels again in group B. Postnatal carnitine levels are higher in very immature preterm infants compared with full-term infants, but become lower on day 28. However, the commonly used metabolite ratios should still allow the detection of inborn errors of metabolism.
Collapse
Affiliation(s)
- Jochen Meyburg
- Department of Neonatology, Division of Metabolic and Endocrine Diseases, University Children's Hospital, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Optimal development of the newborn depends on rapid accretion of substrate in the neonatal period, particularly in the premature infant. Steroids and infection not only induce catabolism, but associated endogenous responses reprioritize crucial substrate to restore homeostasis. The result is a protein/energy deficit and concomitant delay in growth and development. Innovative feeding strategies and novel therapies are needed to reduce the impact of catabolism in this population.
Collapse
|