1
|
Wiśniewski K, Popęda M, Price B, Bieńkowski M, Fahlström A, Drummond K, Adamides AA. Glucose-6-phosphate dehydrogenase and 8-iso-prostaglandin F2α as potential predictors of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg 2023; 139:698-707. [PMID: 36640097 DOI: 10.3171/2022.12.jns222332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Delayed cerebral ischemia (DCI) is a serious complication of aneurysmal subarachnoid hemorrhage (aSAH), which is responsible for significant death and disability. The dynamic balance between the production and elimination of reactive oxygen species (ROS) in patients with DCI is suspected be shifted to favor ROS formation. The authors assessed the relationship between F2-isoprostanes (F2-IsoPs), oxidative stress biomarkers, and glucose-6-phosphate dehydrogenase (G6PD), which are responsible for nicotinamide adenine dinucleotide phosphate (NADPH) production for glutathione system function, with post-aSAH DCI. METHODS The authors assessed 45 aSAH patients for F2-IsoP and G6PD concentration using commercial ELISA on days 2, 4, and 6 after aSAH. The authors examined the correlation between plasma F2-IsoP and G6PD concentrations and clinical factors with DCI occurrence and aSAH outcome. RESULTS Expectedly, the most important clinical predictors of DCI were Hunt and Hess grade and modified Fisher (mFisher) grade. Plasma F2-IsoP and G6PD concentrations were greater in aSAH patients than the control group (p < 0.01). F2-IsoP concentrations were greater and G6PD concentrations were lower in patients with DCI than those without (p < 0.01). Plasma F2-IsoP and G6PD concentrations on day 2 were correlated with DCI occurrence (p < 0.01). Plasma F2-IsoP concentrations on days 2 and 6 were correlated with outcome at 1 and 12 months (p < 0.01). CONCLUSIONS Decreased G6PD indirectly informs the reduced antioxidant response, especially for the glutathione system. G6PD concentration was lower in patients with DCI than those without, which may explain the increased F2-IsoP concentrations. mFisher grade, plasma F2-IsoP concentration, and G6PD concentration on day 2 after aSAH, in combination, may serve as predictors of DCI. Further research is necessary to investigate the therapeutic utility of F2-IsoPs and antioxidants in clinical practice.
Collapse
Affiliation(s)
- Karol Wiśniewski
- 1Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- 2Department of Neurosurgery and Neurooncology, Medical University of Łódź, Łódzkie, Poland
| | - Marta Popęda
- 3Department of Pathomorphology, Medical University of Gdańsk, Pomorskie, Poland
| | - Benjamin Price
- 1Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Michał Bieńkowski
- 3Department of Pathomorphology, Medical University of Gdańsk, Pomorskie, Poland
| | - Andreas Fahlström
- 1Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- 4Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden; and
| | - Katharine Drummond
- 1Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- 5Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Alexios A Adamides
- 1Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- 5Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Oxidative Stress Biomarkers and Early Brain Activity in Extremely Preterm Infants: A Prospective Cohort Study. CHILDREN 2022; 9:children9091376. [PMID: 36138685 PMCID: PMC9497792 DOI: 10.3390/children9091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Early brain activity, measured using amplitude-integrated EEG (aEEG), is correlated with neurodevelopmental outcome in preterm newborns. F2-isoprostanes (IPs) are early biomarkers predictive for brain damage. We aimed to investigate the relationship between perinatal IPs concentrations and quantitative aEEG measures in preterm newborns. Thirty-nine infants (gestational age (GA) 24–27 ± 6 weeks) who underwent neuromonitoring using aEEG during the first two days after birth were enrolled. The rate of spontaneous activity transients per minute (SAT rate) and inter-SAT interval (ISI) in seconds were computed. Two postnatal time-points were examined: within 12 h (day 1) and between 24 and 48 h (day 2). IPs were measured in plasma from cord blood (cb-IPs) and between 24 and 48 h (pl-IPs). Multivariable regression analyses were performed to assess the correlation between IPs and brain activity. Cb-IPs were not associated with SAT rate and ISI at day 1. Higher pl-IPs were followed by longer ISI (R = 0.68; p = 0.034) and decreased SAT rate (R = 0.58; p = 0.007) at day 2 after adjusting for GA, FiO2 and IVH. Higher pl-IPs levels are associated with decreased functional brain activity. Thus, pl-IPs may represent a useful biomarker of brain vulnerability in high-risk infants.
Collapse
|
3
|
Kalteren WS, Bos AF, Bergman KA, van Oeveren W, Hulscher JBF, Kooi EMW. The short-term effects of RBC transfusions on intestinal injury in preterm infants. Pediatr Res 2022; 93:1307-1313. [PMID: 35115712 PMCID: PMC8813571 DOI: 10.1038/s41390-022-01961-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Anemic preterm infants may require red blood cell (RBC) transfusions to maintain sufficient oxygen supply to vital organs. Transfusion treatment, however, may have adverse intestinal effects. We aimed to investigate the short-term effects of RBC transfusions, hypothesizing to find signs of oxidative stress and intestinal injury, possibly related to levels of splanchnic (re-)oxygenation. METHODS We prospectively included preterm infants (gestational age < 32 weeks). We measured urinary biomarkers for oxidative stress (8-isoprostane) and intestinal cell injury (intestinal fatty acid-binding protein, I-FABP) shortly before and after RBC transfusion. Splanchnic oxygen saturation (rsSO2) and rsSO2 variability were assessed simultaneously. RESULTS Twenty-nine preterm infants received 58 RBC transfusions at various postnatal ages. Six of them developed necrotizing enterocolitis (NEC) after transfusion. Urinary 8-isoprostane and I-FABP increased following RBC transfusion (median 282-606 pg/ml and 4732-6968 pg/ml, p < 0.01), more pronounced in infants who developed NEC. Change in I-FABP correlated with change in 8-isoprostane (rho = 0.623, p < 0.01). Lower rsSO2 variability, but not higher mean rsSO2 was associated with higher 8-isoprostane and I-FABP levels after transfusion. CONCLUSIONS Preterm RBC transfusions are associated with concomitant signs of oxidative stress and intestinal injury, parallel with lower variability in splanchnic oxygenation. This may represent the early pathogenetic process of transfusion-associated NEC. IMPACT Red blood cell (RBC) transfusions in preterm infants are associated with a near 2-fold increase in urinary biomarkers for oxidative stress (8-isoprostane) and intestinal cell injury (intestinal fatty acid-binding protein, I-FABP). Magnitude of change in I-FABP strongly correlated with the magnitude of 8-isoprostane change, suggesting a role for oxidative stress in the pathogenesis of intestinal injury. Lower splanchnic oxygen saturation variability following RBC transfusion was associated with higher 8-isoprostane and I-FABP levels. Loss of splanchnic variability after RBC transfusion may result from increased oxidative stress and its concomitant intestinal injury, possibly representing the early pathogenetic process of transfusion-associated necrotizing enterocolitis.
Collapse
Affiliation(s)
- Willemien S. Kalteren
- grid.4830.f0000 0004 0407 1981Division of Neonatology, Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arend F. Bos
- grid.4830.f0000 0004 0407 1981Division of Neonatology, Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klasien A. Bergman
- grid.4830.f0000 0004 0407 1981Division of Neonatology, Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Jan B. F. Hulscher
- grid.4494.d0000 0000 9558 4598Division of Pediatric Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth M. W. Kooi
- grid.4830.f0000 0004 0407 1981Division of Neonatology, Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Yuliana ME, Huang ZH, Chou HC, Chen CM. Effects of uteroplacental insufficiency on growth-restricted rats with altered lung development: A metabolomic analysis. Front Pediatr 2022; 10:952313. [PMID: 36160795 PMCID: PMC9492919 DOI: 10.3389/fped.2022.952313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is among the most challenging problems in antenatal care. Several factors implicated in the pathophysiology of IUGR have been identified. We aimed to investigate the effect of UPI on lung development by identifying metabolic changes during the first seven days of postnatal life. MATERIALS AND METHODS On gestation day 17, four time-dated pregnant Sprague Dawley rats were randomized to a IUGR group or a control group, which underwent an IUGR protocol comprising bilateral uterine vessel ligation and sham surgery, respectively. On gestation day 22, 39 control and 26 IUGR pups were naturally delivered. The rat pups were randomly selected from the control and IUGR group on postnatal day 7. The pups' lungs were excised for histological, Western blot, and metabolomic analyses. Liquid chromatography mass spectrometry was performed for metabolomic analyses. RESULTS UPI induced IUGR, as evidenced by the IUGR rat pups having a significantly lower average body weight than the control rat pups on postnatal day 7. The control rats exhibited healthy endothelial cell healthy and vascular development, and the IUGR rats had a significantly lower average radial alveolar count than the control rats. The mean birth weight of the 26 IUGR rats (5.89 ± 0.74 g) was significantly lower than that of the 39 control rats (6.36 ± 0.55 g; p < 0.01). UPI decreased the levels of platelet-derived growth factor-A (PDGF-A) and PDGF-B in the IUGR newborn rats. One-way analysis of variance revealed 345 features in the pathway, 14 of which were significant. Regarding major differential metabolites, 10 of the 65 metabolites examined differed significantly between the groups (p < 0.05). Metabolite pathway enrichment analysis revealed significant between-group differences in the metabolism of glutathione, arginine-proline, thiamine, taurine-hypotaurine, pantothenate, alanine-aspartate-glutamate, cysteine-methionine, glycine-serine-threonine, glycerophospholipid, and purine as well as in the biosynthesis of aminoacyl-tRNA, pantothenate, and CoA. CONCLUSIONS UPI alters lung development and metabolomics in growth-restricted newborn rats. Our findings may elucidate new metabolic mechanisms underlying IUGR-induced altered lung development and serve as a reference for the development of prevention and treatment strategies for IUGR-induced altered lung development.
Collapse
Affiliation(s)
- Merryl Esther Yuliana
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia
| | - Zheng-Hao Huang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
6
|
Antioxidant Effect of Melatonin in Preterm Newborns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6308255. [PMID: 34840669 PMCID: PMC8626170 DOI: 10.1155/2021/6308255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/08/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023]
Abstract
Introduction Preterm infants are at risk of free radical-mediated diseases from oxidative stress (OS) injury. Increased free radical generation has been demonstrated in preterm infants during the first seven days of life. Melatonin (MEL) is a powerful antioxidant and scavenger of free radicals. In preterm neonates, melatonin deficiency has been reported. Exogenous melatonin administration appears a promising strategy in the treatment of neonatal morbidities in which OS has a leading role. Objective The aim was to evaluate plasma MEL concentrations and OS biomarkers in preterm newborns after early administration of melatonin. Methods A prospective, randomized double-blind placebo-controlled pilot study was conducted from January 2019 to September 2020. Thirty-six preterm newborns were enrolled. Starting from the first day of life, 21 received a single dose of oral melatonin 0.5 mg/kg once a day, in the morning (MEL group); 15 newborns received an equivalent dose of placebo (placebo group). Samples of 0.2 mL of plasma were collected at 24 and 48 hours after MEL administration. Plasma concentrations of melatonin, non-protein-bound iron (NPBI), advanced oxidation protein products (AOPP), and F2-isoprostanes (F2-Isopr) were measured. Babies were clinically followed until discharge. Results At 24 and 48 hours after MEL administration, the MEL concentrations were significantly higher in the MEL group than in the placebo group (52759.30 ± 63529.09 vs. 28.57 ± 46.24 pg/mL and 279397.6 ± 516344.2 vs. 38.50 ± 44.01 pg/mL, respectively). NPBI and AOPP did not show any statistically significant differences between the groups both at 24 and 48 hours. At 48 hours, the mean blood concentrations of F2-Isopr were significantly lower in the MEL group than in the placebo group (36.48 ± 33.85 pg/mL vs.89.97 ± 52.01 pg/mL). Conclusions Early melatonin administration in preterm newborns reduces lipid peroxidation in the first days of life showing a potential role to protect high-risk newborns. Trial Registration. This trial is registered with NCT04785183, Early Supplementation of Melatonin in Preterm Newborns: the Effects on Oxidative Stress.
Collapse
|
7
|
Juncker HG, Ruhé EJM, Burchell GL, van den Akker CHP, Korosi A, van Goudoever JB, van Keulen BJ. The Effect of Pasteurization on the Antioxidant Properties of Human Milk: A Literature Review. Antioxidants (Basel) 2021; 10:antiox10111737. [PMID: 34829608 PMCID: PMC8614754 DOI: 10.3390/antiox10111737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
High rates of oxidative stress are common in preterm born infants and have short- and long-term consequences. The antioxidant properties of human milk limits the consequences of excessive oxidative damage. However, as the mother's own milk it is not always available, donor milk may be provided as the best alternative. Donor milk needs to be pasteurized before use to ensure safety. Although pasteurization is necessary for safety reasons, it may affect the activity and concentration of several biological factors, including antioxidants. This literature review describes the effect of different pasteurization methods on antioxidant properties of human milk and aims to provide evidence to guide donor milk banks in choosing the best pasteurization method from an antioxidant perspective. The current literature suggests that Holder pasteurization reduces the antioxidant properties of human milk. Alternative pasteurization methods seem promising as less reduction is observed in several studies.
Collapse
Affiliation(s)
- Hannah G. Juncker
- Amsterdam UMC, Emma Children’s Hospital, Department of Pediatrics, Amsterdam Reproduction & Development Research Institute, 1105 AZ Amsterdam, The Netherlands; (H.G.J.); (E.J.M.R.); (B.J.v.K.)
- Swammerdam Institute for Life Sciences—Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eliza J. M. Ruhé
- Amsterdam UMC, Emma Children’s Hospital, Department of Pediatrics, Amsterdam Reproduction & Development Research Institute, 1105 AZ Amsterdam, The Netherlands; (H.G.J.); (E.J.M.R.); (B.J.v.K.)
| | - George L. Burchell
- Medical Library, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Chris H. P. van den Akker
- Amsterdam UMC, Emma Children’s Hospital, Department of Pediatrics–Neonatology, 1105 AZ Amsterdam, The Netherlands;
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences—Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Johannes B. van Goudoever
- Amsterdam UMC, Emma Children’s Hospital, Department of Pediatrics, Amsterdam Reproduction & Development Research Institute, 1105 AZ Amsterdam, The Netherlands; (H.G.J.); (E.J.M.R.); (B.J.v.K.)
- Correspondence:
| | - Britt J. van Keulen
- Amsterdam UMC, Emma Children’s Hospital, Department of Pediatrics, Amsterdam Reproduction & Development Research Institute, 1105 AZ Amsterdam, The Netherlands; (H.G.J.); (E.J.M.R.); (B.J.v.K.)
| |
Collapse
|
8
|
Coviello C, Perrone S, Buonocore G, Negro S, Longini M, Dani C, de Vries LS, Groenendaal F, Vijlbrief DC, Benders MJNL, Tataranno ML. Isoprostanes as Biomarker for White Matter Injury in Extremely Preterm Infants. Front Pediatr 2021; 8:618622. [PMID: 33585368 PMCID: PMC7874160 DOI: 10.3389/fped.2020.618622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background and Aim: Preterm white matter is vulnerable to lipid peroxidation-mediated injury. F2-isoprostanes (IPs), are a useful biomarker for lipid peroxidation. Aim was to assess the association between early peri-postnatal IPs, white matter injury (WMI) at term equivalent age (TEA), and neurodevelopmental outcome in preterm infants. Methods: Infants with a gestational age (GA) below 28 weeks who had an MRI at TEA were included. IPs were measured in cord blood (cb) at birth and on plasma (pl) between 24 and 48 h after birth. WMI was assessed using Woodward MRI scoring system. Multiple regression analyses were performed to assess the association between IPs with WMI and then with BSITD-III scores at 24 months corrected age (CA). Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of pl-IPs for the development of WMI. Results: Forty-four patients were included. cb-IPs were not correlated with WMI score at TEA, whereas higher pl-IPs and lower GA predicted higher WMI score (p = 0.037 and 0.006, respectively) after controlling for GA, FiO2 at sampling and severity of IVH. The area under the curve was 0.72 (CI 95% = 0.51-0.92). The pl-IPs levels plotted curve indicated that 31.8 pg/ml had the best predictive threshold with a sensitivity of 86% and a specificity of 60%, to discriminate newborns with any WMI from newborns without WMI. IPs were not associated with outcome at 24 months. Conclusion: Early measurement of pl-IPs may help discriminate patients showing abnormal WMI score at TEA, thus representing an early biomarker to identify newborns at risk for brain injury.
Collapse
Affiliation(s)
- Caterina Coviello
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Serafina Perrone
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simona Negro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Daniel C. Vijlbrief
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
10
|
Ostera JM, Malanga G, Puntarulo S. Assessment of oxidative balance in hydrophilic cellular environment in Chlorella vulgaris exposed to glyphosate. CHEMOSPHERE 2020; 248:125955. [PMID: 32028155 DOI: 10.1016/j.chemosphere.2020.125955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The studied hypothesis is that glyphosate (GLY) can affect the oxidative balance in the hydrophilic intracellular medium in non-target Chlorella vulgaris cells. Analytical GLY (5 μM) and a commercial product (RUP) (5 μM) supplementation, did not affect the growth profile. Neither in latent (Lag) nor in exponential (Exp) phase of development, there were significant differences in the cellular abundance, evaluated as cell number, after the supplementation with GLY or RUP. The ascorbyl (A•) content was significantly increased in the presence of GLY or RUP, in Lag and Exp phase of growth. No changes were observed in stationary (St) phase after supplementation with either GLY or RUP. Ascorbate (AH-) content was decreased by 30% in Exp phase of development the presence of RUP. In St phase of the development both, the administration of either GLY or RUP decreased the antioxidant content by 34 and 37%, respectively. The supplementation with GLY and RUP lead to a significant 5- and 10-fold increase in Exp phase, respectively in the A•/AH-content ratio, assessed as a damage/protection ratio in the hydrophilic fraction of the cells, as compared to controls. Neither GLY nor RUP affected the ratio in cells in St phase of development. The data presented here showed experimental evidence that suggested that oxidative balance in the hydrophilic environment is affected by GLY, even at the low to medium concentrations currently used. The effect seems as reversible either because of the magnitude of the herbicide-dependent damage or the antioxidant activity activated.
Collapse
Affiliation(s)
- Juan M Ostera
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Gabriela Malanga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Susana Puntarulo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Voynow JA, Fisher K, Sunday ME, Cotten CM, Hamvas A, Hendricks-Muñoz KD, Poindexter BB, Pryhuber GS, Ren CL, Ryan RM, Sharp JK, Young SP, Zhang H, Greenberg RG, Herring AH, Davis SD. Urine gastrin-releasing peptide in the first week correlates with bronchopulmonary dysplasia and post-prematurity respiratory disease. Pediatr Pulmonol 2020; 55:899-908. [PMID: 31995668 PMCID: PMC7071969 DOI: 10.1002/ppul.24665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/04/2020] [Indexed: 11/07/2022]
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is associated with post-prematurity respiratory disease (PRD) in survivors of extreme preterm birth. Identifying early biomarkers that correlate with later development of BPD and PRD may provide insights for intervention. In a preterm baboon model, elevated gastrin-releasing peptide (GRP) is associated with BPD, and GRP inhibition mitigates BPD occurrence. OBJECTIVE We performed a prospective cohort study to investigate whether urine GRP levels obtained in the first postnatal week were associated with BPD, PRD, and other urinary biomarkers of oxidative stress. METHODS Extremely low gestational age infants (23-28 completed weeks) were enrolled in a US multicenter observational study, The Prematurity and Respiratory Outcomes Program (http://clinicaltrials.gov/ct2/show/NCT01435187). We used multivariable logistic regression to examine the association between urine GRP in the first postnatal week and multiple respiratory outcomes: BPD, defined as supplemental oxygen use at 36 + 0 weeks postmenstrual age, and post-PRD, defined by positive quarterly surveys for increased medical utilization over the first year (PRD score). RESULTS A total of 109 of 257 (42%) infants had BPD, and 120 of 217 (55%) had PRD. On adjusted analysis, GRP level more than 80 was associated with BPD (adjusted odds ratio [aOR], 1.83; 95% confidence interval [CI], 1.03-3.25) and positive PRD score (aOR, 2.46; 95% CI, 1.35-4.48). Urine GRP levels correlated with duration of NICU ventilatory and oxygen support and with biomarkers of oxidative stress: allantoin and 8-hydroxydeoxyguanosine. CONCLUSIONS Urine GRP in the first postnatal week was associated with concurrent urine biomarkers of oxidative stress and with later diagnoses of BPD and PRD.
Collapse
Affiliation(s)
- Judith A Voynow
- Division of Pediatric Pulmonology, Duke University, Durham, North Carolina.,Division of Pediatric Pulmonology, Children's Hospital of Richmond, Richmond, Virginia
| | - Kimberley Fisher
- Division of Neonatology, Duke University, Durham, North Carolina
| | - Mary E Sunday
- Department of Pathology, Duke University, Durham, North Carolina
| | - Charles M Cotten
- Division of Neonatology, Duke University, Durham, North Carolina
| | - Aaron Hamvas
- Division of Neonatology, Washington University, St Louis, Missouri.,Division of Neonatology, Northwestern University, Chicago, Illinois
| | | | - Brenda B Poindexter
- Division of Neonatology, Indiana University, Indianapolis, Indiana.,Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Clement L Ren
- Division of Pediatric Pulmonology, University of Rochester, Rochester, New York.,Division of Pediatric Pulmonology, Indiana University, Indianapolis, Indiana
| | - Rita M Ryan
- Division of Neonatology, State University of New York at Buffalo, Buffalo, New York.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Jack K Sharp
- Division of Pediatric Pulmonology, Duke University, Durham, North Carolina.,Division of Pediatric Pulmonology, State University of New York at Buffalo, Buffalo, New York.,Division of Pediatric Pulmonology, Baylor College of Medicine, Houston, Texas
| | - Sarah P Young
- Division of Medical Genetics, Duke University, Durham, North Carolina
| | - Haoyue Zhang
- Division of Medical Genetics, Duke University, Durham, North Carolina
| | - Rachel G Greenberg
- Division of Neonatology and The Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Amy H Herring
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Stephanie D Davis
- Division of Pediatric Pulmonology, Indiana University, Indianapolis, Indiana.,Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Winiarska-Mieczan A, Baranowska-Wójcik E, Kwiecień M, Grela ER, Szwajgier D, Kwiatkowska K, Kiczorowska B. The Role of Dietary Antioxidants in the Pathogenesis of Neurodegenerative Diseases and Their Impact on Cerebral Oxidoreductive Balance. Nutrients 2020; 12:nu12020435. [PMID: 32046360 PMCID: PMC7071337 DOI: 10.3390/nu12020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are progressive diseases of the nervous system that lead to neuron loss or functional disorders. Neurodegenerative diseases require long-term, sometimes life-long pharmacological treatment, which increases the risk of adverse effects and a negative impact of pharmaceuticals on the patients’ general condition. One of the main problems related to the treatment of this type of condition is the limited ability to deliver drugs to the brain due to their poor solubility, low bioavailability, and the effects of the blood-brain barrier. Given the above, one of the main objectives of contemporary scientific research focuses on the prevention of neurodegenerative diseases. As disorders related to the competence of the antioxidative system are a marker in all diseases of this type, the primary prophylactics should entail the use of exogenous antioxidants, particularly ones that can be used over extended periods, regardless of the patient’s age, and that are easily available, e.g., as part of a diet or as diet supplements. The paper analyzes the significance of the oxidoreductive balance in the pathogenesis of neurodegenerative diseases. Based on information published globally in the last 10 years, an analysis is also provided with regard to the impact of exogenous antioxidants on brain functions with respect to the prevention of this type of diseases.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
- Correspondence: ; Tel.: +48-81-445-67-44; Fax: +48-81-53-335-49
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.B.-W.); (D.S.)
| | - Małgorzata Kwiecień
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Eugeniusz R. Grela
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.B.-W.); (D.S.)
| | - Katarzyna Kwiatkowska
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Bożena Kiczorowska
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| |
Collapse
|
13
|
Zhang H, Jin Y, Wang M, Loor JJ, Wang H. N-Carbamylglutamate and l-arginine supplementation improve hepatic antioxidant status in intrauterine growth-retarded suckling lambs. RSC Adv 2020; 10:11173-11181. [PMID: 35495302 PMCID: PMC9050450 DOI: 10.1039/c9ra09316h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The influence of dietary supplementation of l-arginine (Arg) or N-carbamylglutamate (NCG) on the hepatic antioxidant status in intrauterine-growth-retarded (IUGR) suckling lambs remains unclear. The current work aimed to investigate the regulatory mechanisms whereby dietary Arg or NCG alter hepatic antioxidant status in suckling lambs suffering from IUGR. Forty-eight newborn Hu lambs of normal birth weight (CON) and IUGR were allocated randomly into four groups of 12 animals each: CON (4.25 ± 0.14 kg), IUGR (3.01 ± 0.12 kg), IUGR + 1% Arg (2.99 ± 0.13 kg), or IUGR + 0.1% NCG (3.03 ± 0.11 kg). All lambs were raised for a period of 21 days from 7 to 28 days after birth. Compared with the IUGR suckling animals, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and reduced glutathione (GSH) content were greater (P < 0.05), and protein carbonyl and malondialdehyde (MDA) levels were reduced (P < 0.05) in the livers of both IUGR + 1% Arg and 0.1% NCG suckling animals. Relative to IUGR suckling lambs, supplementing with Arg or NCG markedly reduced (P < 0.05) reactive oxygen species (ROS) levels, apoptosis, and necrosis in liver. Relative to IUGR suckling lambs, protein and mRNA expression of GSH-Px1, SOD2, catalase (CAT), heme oxygenase-1 (HO-1), inducible nitric oxide (NO) synthase (iNOS), and epithelial NO synthase (eNOS) increased in IUGR animals receiving Arg or NCG (P < 0.05). Both Arg and NCG can protect neonates from IUGR-induced hepatic oxidative damage through promoting the expression of antioxidative enzymes (including SOD, CAT, and GSH-Px), phase II metabolizing enzymes, and activation of the NO pathway. The influence of dietary supplementation of l-arginine (Arg) or N-carbamylglutamate (NCG) on the hepatic antioxidant status in intrauterine-growth-retarded (IUGR) suckling lambs remains unclear.![]()
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| | - Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences
- University of Illinois
- Urbana
- USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition
- College of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- P. R. China
| |
Collapse
|
14
|
Wiśniewski K, Jóźwik-Pruska J, Bieńkowski M, Bobeff EJ, Bryl M, Kałużna-Czaplińska J, Jaskólski DJ. Isoprostanes as potential cerebral vasospasm biomarkers. Neurol Neurochir Pol 2018; 52:643-651. [PMID: 30314904 DOI: 10.1016/j.pjnns.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/01/2018] [Accepted: 09/25/2018] [Indexed: 11/29/2022]
Abstract
Despite enormous progress in medicine, symptomatic cerebral vasospasm (CVS), remains an unexplained clinical problem, which leaves both physicians and patients helpless and relying on chance, due to the lack of specific marker indicative of imminent danger as well as the lack of specific treatment. In our opinion CVS occurrence depends on dynamic disbalance between free radicals' formation (oxidative stress) and antioxidant activity. Isoprostanes are products of free-radical peroxidation of polyunsaturated fatty acids, and seem to mark a promising path for the research aiming to unravel its possible mechanism. Not only are they the biomarkers of oxidative stress in vivo and in vitro, but also have manifold biological effects (including vasoactive, inflammatory and mitogenic) via activation of the thromboxane A2 receptor (TBXA2R), both in physiological and pathophysiological processes. This review addresses the importance of isoprostanes in CVS in quest of appropriate biomarkers.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcińskiego 22, 90-153 Lodz, Poland.
| | - Jagoda Jóźwik-Pruska
- Institute of General and Ecological Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Michał Bieńkowski
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Ernest J Bobeff
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcińskiego 22, 90-153 Lodz, Poland
| | - Maciej Bryl
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcińskiego 22, 90-153 Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Dariusz J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcińskiego 22, 90-153 Lodz, Poland
| |
Collapse
|
15
|
Zhang H, Jiang X, Cao G, Zhang X, Croley TR, Wu X, Yin JJ. Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:84-97. [PMID: 29667503 DOI: 10.1080/10590501.2018.1450194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Noble metal nanoparticles (NPs) have been widely used in many consumer products. Their effects on the antioxidant activity of commercial dietary supplements have not been well evaluated. In this study, we examined the effects of gold (Au NPs), silver (Ag NPs), platinum (Pt NPs), and palladium (Pd NPs) on the hydroxyl radical (·OH) scavenging ability of three dietary supplements vitamin C (L-ascorbic acid, AA), (-)-epigallocatechin gallate (EGCG), and gallic acid (GA). By electron spin resonance (ESR) spin-trapping measurement, the results show that these noble metal NPs can inhibit the hydroxyl radical scavenging ability of these dietary supplements.
Collapse
Affiliation(s)
- Hui Zhang
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
- b Division of Analytical Chemistry, Office of Regulatory Science , Center for Food Safety and Applied Nutrition, US Food and Drug Administration , College Park , MD , USA
- c University of the Chinese Academy of Sciences , Beijing , P. R. China
| | - Xiumei Jiang
- b Division of Analytical Chemistry, Office of Regulatory Science , Center for Food Safety and Applied Nutrition, US Food and Drug Administration , College Park , MD , USA
| | - Gaojuan Cao
- b Division of Analytical Chemistry, Office of Regulatory Science , Center for Food Safety and Applied Nutrition, US Food and Drug Administration , College Park , MD , USA
| | - Xiaowei Zhang
- b Division of Analytical Chemistry, Office of Regulatory Science , Center for Food Safety and Applied Nutrition, US Food and Drug Administration , College Park , MD , USA
| | - Timothy R Croley
- b Division of Analytical Chemistry, Office of Regulatory Science , Center for Food Safety and Applied Nutrition, US Food and Drug Administration , College Park , MD , USA
| | - Xiaochun Wu
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| | - Jun-Jie Yin
- b Division of Analytical Chemistry, Office of Regulatory Science , Center for Food Safety and Applied Nutrition, US Food and Drug Administration , College Park , MD , USA
| |
Collapse
|
16
|
Lavoie JC, Tremblay A. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy. Antioxidants (Basel) 2018; 7:49. [PMID: 29584624 PMCID: PMC5946115 DOI: 10.3390/antiox7040049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. CONCLUSION our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.
Collapse
Affiliation(s)
- Jean-Claude Lavoie
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Sainte-Justine Hospital, Montréal, QC H3T 1C5, Canada.
| | - André Tremblay
- Department Obstetrics & Gynecology, and department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Sainte-Justine Hospital, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
17
|
Huun MU, Garberg HT, Escobar J, Chafer C, Vento M, Holme IM, Saugstad OD, Solberg R. DHA reduces oxidative stress following hypoxia-ischemia in newborn piglets: a study of lipid peroxidation products in urine and plasma. J Perinat Med 2018. [PMID: 28632497 DOI: 10.1515/jpm-2016-0334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lipid peroxidation mediated by reactive oxygen species is a major contributor to oxidative stress. Docosahexaenoic acid (DHA) has anti-oxidant and neuroprotective properties. Our objective was to assess how oxidative stress measured by lipid peroxidation was modified by DHA in a newborn piglet model of hypoxia-ischemia (HI). METHODS Fifty-five piglets were randomized to (i) hypoxia, (ii) DHA, (iii) hypothermia, (iv) hypothermia+DHA or (v) sham. All groups but sham were subjected to hypoxia by breathing 8% O2. DHA was administered 210 min after end of hypoxia and the piglets were euthanized 9.5 h after end of hypoxia. Urine and blood were harvested at these two time points and analyzed for F4-neuroprostanes, F2-isoprostanes, neurofuranes and isofuranes using UPLC-MS/MS. RESULTS F4-neuroprostanes in urine were significantly reduced (P=0.006) in groups receiving DHA. Hypoxia (median, IQR 1652 nM, 610-4557) vs. DHA (440 nM, 367-738, P=0.016) and hypothermia (median, IQR 1338 nM, 744-3085) vs. hypothermia+DHA (356 nM, 264-1180, P=0.006). The isoprostane compound 8-iso-PGF2α was significantly lower (P=0.011) in the DHA group compared to the hypoxia group. No significant differences were found between the groups in blood. CONCLUSION DHA significantly reduces oxidative stress by measures of lipid peroxidation following HI in both normothermic and hypothermic piglets.
Collapse
Affiliation(s)
- Marianne Ullestad Huun
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway, Tel.: +47-23-07-27-90
| | - Håvard T Garberg
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Javier Escobar
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Consuelo Chafer
- Neonatal Research Unit, Health Research Institute Hospital La Fé, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fé, Valencia, Spain
| | - Ingar M Holme
- Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
18
|
Urinary F2-Isoprostane Concentration as a Poor Prognostic Factor After Subarachnoid Hemorrhage. World Neurosurg 2017; 107:185-193. [DOI: 10.1016/j.wneu.2017.07.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
|
19
|
Norishadkam M, Andishmand S, Zavar Reza J, Zare Sakhvidi MJ, Hachesoo VR. Oxidative stress and DNA damage in the cord blood of preterm infants. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:20-24. [PMID: 29150046 DOI: 10.1016/j.mrgentox.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Preterm birth infants are more susceptible to oxidative stress and aftermaths unwanted outcomes such as DNA damage due to hyperoxic stress. In this study, we compared the DNA strand breaks as one of the results of DNA oxidation in white blood cells, malondialdehyde (oxidative stress marker), catalase and superoxide dismutase activity, and total antioxidant capacity (markers of antioxidant defense) in a cord blood plasma of a group of preterm (n=25) and full term births (n=25). The primary DNA damage and plasma oxidative stress markers were significantly higher in a preterm group (p<0.05). Cord plasma activity of superoxide dismutase was significantly lower in preterm infants (p≤0.001). However, there were no significant differences in the cord blood total antioxidant capacity, catalase activity and malondialdehyde in preterm and term infants. Among the oxidative stress markers, the malondialdehyde concentration showed the strongest effect size (1.54; 95%CI: 0.9-2.17). For comet parameters, the most powerful effect size was observed for tail length (5.24; 95% CI: 4.05-6.42). However, tail DNA percent and tail moment were also significantly higher in cases compared to controls. Significant negative correlation was observed between comet assay parameters and birth weight and gestational age when all cases and controls entered into the analysis. There was no significant association between the levels of oxidative stress markers and early DNA damage in cord blood plasma with future nutritional tolerance in preterm infants. In the present study, the primary DNA damage and plasma oxidative stress markers significantly were increased in a preterm group. Preterm babies are more prone to the outcomes related to the early DNA damage. Tail DNA percent does not depend on experimental conditions as other parameters (tail length and thus also tail moment) and can be used for comparison with other studies.
Collapse
Affiliation(s)
- Mahmood Norishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Soudeh Andishmand
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zavar Reza
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Vida Rezae Hachesoo
- Department of Occupational Health, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
20
|
Pulmonary hypertension associated with bronchopulmonary dysplasia in preterm infants. J Reprod Immunol 2017; 124:21-29. [PMID: 29035757 DOI: 10.1016/j.jri.2017.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension (BPD-PH) are chronic inflammatory cardiopulmonary diseases with devastating short- and long-term consequences for infants born prematurely. The immature lungs of preterm infants are ill-prepared to achieve sufficient gas exchange, thus usually necessitating immediate commencement of respiratory support and oxygen supplementation. These therapies are life-saving, but they exacerbate the tissue damage that is inevitably inflicted on a preterm lung forced to perform gas exchange. Together, air-breathing and necessary therapeutic interventions disrupt normal lung development by aggravating pulmonary inflammation and vascular remodelling, thus frequently precipitating BPD and PH via an incompletely understood pathogenic cascade. BPD and BPD-PH share common risk factors, such as low gestational age at birth, fetal growth restriction and perinatal maternal inflammation; however, these risk factors are not unique to BPD or BPD-PH. Occurring in 17-24% of BPD patients, BPD-PH substantially worsens the morbidity and mortality attributable to BPD alone, thus darkening their outlook; for example, BPD-PH entails a mortality of up to 50%. The absence of a safe and effective therapy for BPD and BPD-PH renders neonatal cardiopulmonary disease an area of urgent unmet medical need. Besides the need to develop new therapeutic strategies, a major challenge for clinicians is the lack of a reliable method for identifying babies at risk of developing BPD and BPD-PH. In addition to discussing current knowledge on pathophysiology, diagnosis and treatment of BPD-PH, we highlight emerging biomarkers that could enable clinicians to predict disease-risk and also optimise treatment of BPD-PH in our tiniest patients.
Collapse
|
21
|
Ling R, Greenough A. Advances in emerging treatment options to prevent bronchopulmonary dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1281736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
N-acetylcysteine attenuates intrauterine growth retardation-induced hepatic damage in suckling piglets by improving glutathione synthesis and cellular homeostasis. Eur J Nutr 2016; 57:327-338. [DOI: 10.1007/s00394-016-1322-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
|
23
|
Early Cumulative Supplemental Oxygen Predicts Bronchopulmonary Dysplasia in High Risk Extremely Low Gestational Age Newborns. J Pediatr 2016; 177:97-102.e2. [PMID: 27470692 PMCID: PMC5037007 DOI: 10.1016/j.jpeds.2016.06.079] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To assess the prognostic accuracy of early cumulative supplemental oxygen (CSO) exposure for prediction of bronchopulmonary dysplasia (BPD) or death, and to evaluate the independent association of CSO with BPD or death. STUDY DESIGN We performed a secondary analysis of the Trial of Late Surfactant, which enrolled 511 infants born at ≤28 weeks gestational age who were mechanically ventilated at 7-14 days of life. Our primary outcome was BPD or death at 36 weeks postmenstrual age, as determined by a physiological oxygen/flow challenge. Average daily supplemental oxygen (fraction of inspired oxygen - 0.21) was calculated. CSO was calculated as the sum of the average daily supplemental oxygen over time periods of interest up to 28 days of age. Area under the receiver operating curve (AUROC) values were generated to evaluate the accuracy of CSO for prediction of BPD or death. The independent relationship between CSO and BPD or death was assessed in multivariate modeling, while adjusting for mean airway pressure. RESULTS In the study infants, mean gestational age at birth was 25.2 ± 1.2 weeks and mean birth weight was 700 ± 165 g. The AUROC value for CSO at 14 days was significantly better than that at earlier time points for outcome prediction (OR, 0.70; 95% CI, 0.65-0.74); it did not increase with the addition of later data. In multivariate modeling, a CSO increase of 1 at 14 days increased the odds of BPD or death (OR, 1.7; 95% CI, 1.3-2.2; P < .0001), which corresponds to a 7% higher daily supplemental oxygen value. CONCLUSION In high-risk extremely low gestational age newborns, the predictive accuracy of CSO plateaus at 14 days. CSO is independently associated with BPD or death. This index may identify infants who could benefit from early intervention to prevent BPD.
Collapse
|
24
|
Mohamed I, Elremaly W, Rouleau T, Lavoie JC. Oxygen and parenteral nutrition two main oxidants for extremely preterm infants: 'It all adds up'. J Neonatal Perinatal Med 2016; 8:189-97. [PMID: 26485550 DOI: 10.3233/npm-15814091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To assess the effect of early exposure to O2 and parenteral nutrition (PN) on oxidative stress at 36 weeks post-menstrual age (PMA) and on bronchopulmonary dysplasia (BPD) in extremely preterm infants. STUDY DESIGN A prospective observational study including 116 infants <29 weeks of gestation. Baseline clinical characteristics, FiO2 on day 7, duration of PN and clinical outcomes data were collected. In 39 infants, whole blood glutathione (GSH) and oxidized glutathione (GSSG) at 36 weeks PMA were measured and the redox potential was calculated using Nernst equation. Student's t-test, Chi-square, Spearman correlation, ANOVA, and logistic regression analyses were used as appropriate. P < 0.05 was considered significant. RESULTS FiO2 ≥25% was associated with higher level of GSSG (0.29 ± 0.04 versus 0.18 ± 0.02 nmol/mg of protein), a more oxidized redox potential (-191 ± 2 versus -198 ± 2 mV) and more BPD (90% versus 45%). PN duration >14 days was also associated with higher level of GSSG (0.26 ± 0.03 versus 0.13 ± 0.02 nmol/mg of protein), a more oxidized redox potential (-193 ± 5 versus -203 ± 2 mV) and more BPD (89% versus 24%). In logistic regression model, each 1% increase in FiO2 and each day increase in PN duration resulted in an increase in the OR for BPD by 1.57 (1.09 -2.28) and 1.17 (1.03 -1.33) respectively. CONCLUSION Early O2 supplement and PN have additive effects that were associated with prolonged oxidative stress and increased risk of BPD. Strategies targeting judicious use of O2 and decreasing the duration or developing a safer formulation of PN can be targeted to decrease BPD.
Collapse
Affiliation(s)
- I Mohamed
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - W Elremaly
- Department of Nutrition, University of Montreal, Montreal, Canada
| | - T Rouleau
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, University of Montreal, Montreal, Canada.,Department of Nutrition, University of Montreal, Montreal, Canada
| | - J-C Lavoie
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, University of Montreal, Montreal, Canada.,Department of Nutrition, University of Montreal, Montreal, Canada
| |
Collapse
|
25
|
Fabiano A, Gavilanes AWD, Zimmermann LJI, Kramer BW, Paolillo P, Livolti G, Picone S, Bressan K, Gazzolo D. The development of lung biochemical monitoring can play a key role in the early prediction of bronchopulmonary dysplasia. Acta Paediatr 2016; 105:535-541. [PMID: 26439807 DOI: 10.1111/apa.13233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/18/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
Abstract
AIM Despite advances in perinatal management, there is a flat trend in incidences of respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in preterm infants. The main feature of BPD development in preterm infants is an imbalance between increased exposure to free radicals and inadequate antioxidant defences. We investigated the associations between BPD and lipid hydro-peroxide (LOOH) and glutathione (GSH) concentrations in bronchoalveolar lavage fluid (BALF). METHODS In this prospective study, BALF samples were collected from 44 preterm infants with RDS and oxidative stress markers were measured in 11 with BPD and 33 controls without BPD. RESULTS LOOH levels were significantly higher (p < 0.01) in the BPD group (median 16.35; 25th-75th centile 13.75-17.05 nmol/mL) than in the no BPD group (median 13.18; 25th-75th centile 12.92-13.63 nmol/mL). Conversely, GSH levels were significantly lower in the BPD group (p < 0.01) (median 11.52; 25th-75th centile 6.95-13.85 μmol/mg) than the no BPD group (median: 18.69; 25th-75th centile: 13.89-23.64 μmol/mg). Multiple regression analysis showed significant correlations between BPD and mechanical ventilation time (p < 0.01) and LOOH levels (p < 0.05). CONCLUSION Early LOOH level increases in preterm infants developing BPD suggest that lung biochemical monitoring of sick infants might be possible and BPD could be predicted early by evaluating biomarkers.
Collapse
Affiliation(s)
- Adele Fabiano
- Department of Maternal, Fetal and Neonatal Medicine, NICU, Casilino Hospital, Rome, Italy
| | - Antonio W D Gavilanes
- Department of Pediatrics and Neonatology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Luc J I Zimmermann
- Department of Pediatrics and Neonatology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics and Neonatology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Piermichele Paolillo
- Department of Maternal, Fetal and Neonatal Medicine, NICU, Casilino Hospital, Rome, Italy
| | - Giovanni Livolti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simonetta Picone
- Department of Maternal, Fetal and Neonatal Medicine, NICU, Casilino Hospital, Rome, Italy
| | - Katia Bressan
- Department of Maternal, Fetal and Neonatal Medicine, NICU, Casilino Hospital, Rome, Italy
| | - Diego Gazzolo
- Department of Maternal, Fetal and Neonatal Medicine, C. Arrigo Children's Hospital, Alessandria, Italy
| |
Collapse
|
26
|
Johnson K, McEvoy CE, Naqvi S, Wendt C, Reilkoff RA, Kunisaki KM, Wetherbee EE, Nelson D, Tirouvanziam R, Niewoehner DE. High-dose oral N-acetylcysteine fails to improve respiratory health status in patients with chronic obstructive pulmonary disease and chronic bronchitis: a randomized, placebo-controlled trial. Int J Chron Obstruct Pulmon Dis 2016; 11:799-807. [PMID: 27143871 PMCID: PMC4846045 DOI: 10.2147/copd.s102375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Clinical outcomes are worse in patients with COPD and chronic bronchitis. N-acetylcysteine (NAC) is commonly prescribed for such patients but with uncertain clinical benefits. We postulated that oral NAC, at much larger doses than those ordinarily prescribed, would improve clinical outcomes in a subset of patients with COPD and chronic bronchitis. Objective The aim of this study was to determine whether very high-dose NAC would improve respiratory health status in patients with COPD and chronic bronchitis. Methods Patients with COPD and chronic bronchitis were enrolled in a randomized, controlled, double-blinded trial. Patients received oral NAC (1,800 mg) or matching placebo twice daily for 8 weeks in addition to their usual respiratory medications. The primary outcome, respiratory health status, was assessed by changes in the St George’s Respiratory Questionnaire. The effects of NAC on lung function and circulating markers of oxidative stress and inflammation were also evaluated. Results We terminated the study prematurely because new external information suggested the possibility of a safety issue. Of the planned 130 patients, 51 were randomized and 45 (22 in the placebo arm and 23 in the NAC arm) completed the study. There was no statistically significant difference between changes in the St George’s Respiratory Questionnaire total score, comparing NAC to placebo (adjusted mean difference, 0.1 U; 95% CI, −7.8 to 8.18 U; P=0.97). There were also no significant NAC-related improvements in any of the secondary outcomes. Conclusion In this 8-week trial, we were unable to show any clinical benefit from a very high dose of NAC in patients with COPD and chronic bronchitis.
Collapse
Affiliation(s)
- Kara Johnson
- Pulmonary Section, Minneapolis VA Health Care System, Minneapolis, MN, USA; Sanford Health, Fargo, ND, USA
| | - Charlene E McEvoy
- Pulmonary Section, HealthPartners Research Foundation, St Paul, Minneapolis, MN, USA
| | - Sakina Naqvi
- Pulmonary Section, Minneapolis VA Health Care System, Minneapolis, MN, USA; HealthEast Maplewood Clinic, Maplewood, Minneapolis, MN, USA
| | - Chris Wendt
- Pulmonary Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Ronald A Reilkoff
- HealthEast Maplewood Clinic, Maplewood, Minneapolis, MN, USA; Pulmonary Section, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Ken M Kunisaki
- Pulmonary Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Erin E Wetherbee
- Pulmonary Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - David Nelson
- Center for Chronic Disease Outcomes Research, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Rabindra Tirouvanziam
- Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
27
|
Abuhandan M, Demir N, Guzel B, Almaz V, Koca B, Tuncer O, Cakmak A. An Evaluation of Oxidative Status in Serum and Breast Milk of Mothers Giving Birth Prematurely and at Full-Term. IRANIAN JOURNAL OF PEDIATRICS 2015; 25:e2363. [PMID: 26396700 PMCID: PMC4575798 DOI: 10.5812/ijp.2363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 05/08/2015] [Indexed: 01/13/2023]
Abstract
Background: Burning fat and carbohydrates to provide energy in biological systems causes the formation of free oxygen species. Objectives: This study aimed to evaluate the oxidative status of serum and breast milk of mothers giving birth prematurely and at full-term. Materials and Methods: The study comprised 50 mothers who gave birth at full-term at more than 38 weeks and 43 mothers who gave birth pre-term at below 32 weeks. On the postnatal 5th day, samples of the mother’s milk and serum were taken and stored at -80°C until the study day. On the study day, the total oxidant and total antioxidant levels were measured using the Erel method and the oxidative stress index (OSI) was calculated. Results: While the total oxidant level and total antioxidant level values of the milk of the premature birth mothers were found to be significantly high compared to those of the full-term birth mothers (P = 0.001), no statistically significant difference was found in the oxidative stress index values (P > 0.05). No statistically significant difference was found in the total oxidant level and oxidative stress index values of the serum of the premature birth mothers compared to those of the full-term birth mothers, while the total antioxidant level was found to be significantly low (P = 0.04). Conclusions: The oxidants and antioxidants in the milk of mothers giving birth prematurely were found to be significantly higher than those of full-term birth mothers. This can be evaluated as the milk of the premature birth mothers providing increased antioxidant defense to protect the infant.
Collapse
Affiliation(s)
- Mahmut Abuhandan
- Department of Pediatrics, Medical Faculty, Harran University, Urfa, Turkey
- Corresponding author: Mahmut Abuhandan, Department of Pediatrics, Medical Faculty, Harran University, Urfa, Turkey. E-mail:
| | - Nihat Demir
- Department of Neonatal Care Unit, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Bulent Guzel
- Department of Pediatrics, Medical Faculty, Harran University, Urfa, Turkey
| | - Veysi Almaz
- Department of Pediatrics, Medical Faculty, Harran University, Urfa, Turkey
| | - Bulent Koca
- Department of Pediatrics, Medical Faculty, Harran University, Urfa, Turkey
| | - Oguz Tuncer
- Department of Neonatal Care Unit, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Alpay Cakmak
- Department of Pediatrics, Medical Faculty, Harran University, Urfa, Turkey
| |
Collapse
|
28
|
Sunday ME. Oxygen, gastrin-releasing Peptide, and pediatric lung disease: life in the balance. Front Pediatr 2014; 2:72. [PMID: 25101250 PMCID: PMC4103080 DOI: 10.3389/fped.2014.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022] Open
Abstract
Excessive oxygen (O2) can cause tissue injury, scarring, aging, and even death. Our laboratory is studying O2-sensing pulmonary neuroendocrine cells (PNECs) and the PNEC-derived product gastrin-releasing peptide (GRP). Reactive oxygen species (ROS) generated from exposure to hyperoxia, ozone, or ionizing radiation (RT) can induce PNEC degranulation and GRP secretion. PNEC degranulation is also induced by hypoxia, and effects of hypoxia are mediated by free radicals. We have determined that excessive GRP leads to lung injury with acute and chronic inflammation, leading to pulmonary fibrosis (PF), triggered via ROS exposure or by directly treating mice with exogenous GRP. In animal models, GRP-blockade abrogates lung injury, inflammation, and fibrosis. The optimal time frame for GRP-blockade and the key target cell types remain to be determined. The concept of GRP as a mediator of ROS-induced tissue damage represents a paradigm shift about how O2 can cause injury, inflammation, and fibrosis. The host PNEC response in vivo may depend on individual ROS sensing mechanisms and subsequent GRP secretion. Ongoing scientific and clinical investigations promise to further clarify the molecular pathways and clinical relevance of GRP in the pathogenesis of diverse pediatric lung diseases.
Collapse
Affiliation(s)
- Mary E Sunday
- Department of Pathology, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
29
|
González PM, Aguiar MB, Malanga G, Puntarulo S. Electronic paramagnetic resonance (EPR) for the study of ascorbyl radical and lipid radicals in marine organisms. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:439-47. [PMID: 23485428 DOI: 10.1016/j.cbpa.2013.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/17/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy detects the presence of radicals of biological interest, such as ascorbyl radical (A(•)) and lipid radicals. A(•) is easily detectable by EPR even in aqueous solution at room-temperature. Under oxidative conditions leading to changes in total ascorbate (AH(-)) content, the A(•)/AH(-) ratio could be used to estimate early oxidative stress in the hydrophilic milieu. This methodology was applied to a wide range of aquatic systems including algae, sea urchin, limpets, bivalves and fish, under physiological and oxidative stress conditions as well. The A(•)/AH(-) ratio reflected the state of one part of the oxidative defense system and provided an early and simple diagnosis of environmental stressing conditions. Oxidative damage to lipids was assessed by the EPR-sensitive adduct formation that correlates well with cell membrane damage with no interference from other biological compounds. Probe instability, tissue metabolism, and lack of spin specificity are drawback factors for employing EPR for in vivo determination of free radicals. However, the dependability of this technique, mostly by combining it with other biochemical strategies, enhances the value of these procedures as contributors to the knowledge of oxidative condition in aquatic organisms.
Collapse
Affiliation(s)
- Paula Mariela González
- Physical Chemistry-IBIMOL, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
30
|
Abstract
The morbidity and mortality of preterm infants are impacted by their ability to maintain physiologic homeostasis using metabolic, endocrine, and immunologic mechanisms independent of the mother's placenta. Exploring McEwen's allostatic load model in preterm infants provides a new way to understand the altered physiologic processes associated with frequently occurring complications of prematurity such as bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity. The purpose of this article is to present a new model to enhance understanding of the altered physiologic processes associated with complications of prematurity. The model of allostatic load and complications of prematurity was derived to explore the relationship between general stress of prematurity and complications of prematurity. The proposed model uses the concepts of general stress of prematurity, allostasis, physiologic response patterns (adaptive-maladaptive), allostatic load, and complications of prematurity. These concepts are defined and theoretical relationships in the proposed model are interpreted using the four maladaptive response patterns of repeated hits, lack of adaptation, prolonged response, and inadequate response. Empirical evidence for cortisol, inflammation, and oxidative stress responses are used to support the theoretical relationships. The proposed model provides a new way of thinking about physiologic dysregulation in preterm infants. The ability to describe and understand complex physiologic mechanisms involved in complications of prematurity is essential for research. Advancing the knowledge of complications of prematurity will advance clinical practice and research and lead to testing of interventions to reduce negative outcomes in preterm infants.
Collapse
|
31
|
Chen JX, O’Mara PW, Poole SD, Brown N, Ehinger NJ, Slaughter JC, Paria BC, Aschner JL, Reese J. Isoprostanes as physiological mediators of transition to newborn life: novel mechanisms regulating patency of the term and preterm ductus arteriosus. Pediatr Res 2012; 72:122-8. [PMID: 22565502 PMCID: PMC3586272 DOI: 10.1038/pr.2012.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased oxygen tension at birth regulates physiologic events that are essential to postnatal survival, but the accompanying oxidative stress may also generate isoprostanes. We hypothesized that isoprostanes regulate ductus arteriosus (DA) function during postnatal vascular transition. METHODS Isoprostanes were measured by gas chromatography-mass spectrometry. DA tone was assessed by pressure myography. Gene expression was measured by quantitative PCR. RESULTS Oxygen exposure was associated with increased 8-iso-prostaglandin (PG)F2α in newborn mouse lungs. Both 8-iso-PGE2 and 8-iso-PGF2α induced concentration-dependent constriction of the isolated term DA, which was reversed by the thromboxane A2 (TxA2) receptor antagonist SQ29548. SQ29548 pretreatment unmasked an isoprostane-induced DA dilation mediated by the EP4 PG receptor. Exposure of the preterm DA to 8-iso-PGE2 caused unexpected DA relaxation that was reversed by EP4 antagonism. In contrast, exposure to 8-iso-PGF2α caused preterm DA constriction via TxA2 receptor activation. Further investigation revealed the predominance of the TxA2 receptor at term, whereas the EP4 receptor was expressed and functionally active from mid-gestation onward. CONCLUSION This study identifies a novel physiological role for isoprostanes during postnatal vascular transition and provide evidence that oxidative stress may act on membrane lipids to produce vasoactive mediators that stimulate physiological DA closure at birth or induce pathological patency of the preterm DA.
Collapse
Affiliation(s)
- Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Patrick W. O’Mara
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Stanley D. Poole
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Naoko Brown
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Noah J. Ehinger
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Bibhash C. Paria
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Judy L. Aschner
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee;,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
32
|
Rogers LK, Young CM, Pennell ML, Tipple TE, Leonhart KL, Welty SE. Plasma lipid metabolites are associated with gestational age but not bronchopulmonary dysplasia. Acta Paediatr 2012; 101:e321-6. [PMID: 22497282 DOI: 10.1111/j.1651-2227.2012.02694.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To test the hypothesis that plasma lipid metabolite levels in premature infants are associated with the development of bronchopulmonary dysplasia (BPD). The studies also tested a secondary hypothesis that plasma lipid metabolite levels were correlated with gestational age. METHODS Infants born <32 weeks' gestation were enrolled during the first 72 h of life. Plasma samples were obtained and lipid levels were measured by LC-MS/MS. Clinical data were collected to determine infant outcomes and BPD diagnosis. RESULTS Following adjustment for confounders, lipid levels were not associated with BPD; however, levels of specific lipid metabolites were correlated with gestational age. CONCLUSION Immature lipid metabolism pathways in premature infants may contribute to the pathogenesis of BPD and other diseases.
Collapse
Affiliation(s)
- Lynette K Rogers
- Department of Pediatrics, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Significant Differences in Markers of Oxidant Injury between Idiopathic and Bronchopulmonary-Dysplasia-Associated Pulmonary Hypertension in Children. Pulm Med 2012; 2012:301475. [PMID: 22848815 PMCID: PMC3399475 DOI: 10.1155/2012/301475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/29/2012] [Indexed: 11/17/2022] Open
Abstract
While oxidant stress is elevated in adult forms of pulmonary hypertension (PH), levels of oxidant stress in pediatric PH are unknown. The objective of this study is to measure F(2)-isoprostanes, a marker of oxidant stress, in children with idiopathic pulmonary hypertension (IPH) and PH due to bronchopulmonary dysplasia (BPD). We hypothesized that F(2)-isoprostanes in pediatric IPH and PH associated with BPD will be higher than in controls. Plasma F(2)-isoprostanes were measured in pediatric PH patients during clinically indicated cardiac catheterization and compared with controls. F(2)-Isoprostane levels were compared between IPH, PH due to BD, and controls. Five patients with IPH, 12 with PH due to BPD, and 20 control subjects were studied. Patients with IPH had statistically higher isoprostanes than controls 62 pg/mL (37-210) versus 20 pg/mL (16-27), P < 0.01). The patients with PH and BPD had significantly lower isoprostanes than controls 15 pg/mL (8-17) versus 20 pg/ml (16-27), P < 0.02. F(2)-isoprostanes are elevated in children with IPH compared to both controls and patients with PH secondary to BPD. Furthermore, F(2)-isoprostanes in PH secondary to BPD are lower than control levels. These findings suggest that IPH and PH secondary to BPD have distinct mechanisms of disease pathogenesis.
Collapse
|
34
|
Vento M, Escobar J, Cernada M, Escrig R, Aguar M. The use and misuse of oxygen during the neonatal period. Clin Perinatol 2012; 39:165-76. [PMID: 22341544 DOI: 10.1016/j.clp.2011.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This article describes aerobic metabolism, oxygen free radicals, antioxidant defenses, oxidative stress, inflammatory response and redox signaling, the fetal to neonatal transition, arterial oxygen saturation, oxygen administration in the delivery room, oxygen during neonatal care in the NICU, evolving oxygen needs in the first few weeks of life, and complications that can occur when infants go home from the hospital on oxygen.
Collapse
Affiliation(s)
- Máximo Vento
- Division of Neonatology, University & Polytechnic Hospital La Fe, Bulevar Sur s/n, Valencia, Spain.
| | | | | | | | | |
Collapse
|
35
|
Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion. PLoS One 2011; 6:e27626. [PMID: 22110699 PMCID: PMC3217996 DOI: 10.1371/journal.pone.0027626] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 10/20/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Depletion of blood glutathione (GSH), a key antioxidant, is known to occur in preterm infants. OBJECTIVE Our aim was to determine: 1) whether GSH depletion is present at the time of birth; and 2) whether it is associated with insufficient availability of cysteine (cys), the limiting GSH precursor, or a decreased capacity to synthesize GSH. METHODOLOGY Sixteen mothers delivering very low birth weight infants (VLBW), and 16 mothers delivering healthy, full term neonates were enrolled. Immediately after birth, erythrocytes from umbilical vein, umbilical artery, and maternal blood were obtained to assess GSH [GSH] and cysteine [cys] concentrations, and the GSH synthesis rate was determined from the incorporation of labeled cysteine into GSH in isolated erythrocytes ex vivo, measured using gas chromatography mass spectrometry. PRINCIPAL FINDINGS Compared with mothers delivering at full term, mothers delivering prematurely had markedly lower erythrocyte [GSH] and [cys] and these were significantly depressed in VLBW infants, compared with term neonates. A strong correlation was found between maternal and fetal GSH and cysteine levels. The capacity to synthesize GSH was as high in VLBW as in term infants. CONCLUSION The current data demonstrate that: 1) GSH depletion is present at the time of birth in VLBW infants; 2) As VLBW neonates possess a fully active capacity to synthesize glutathione, the depletion may arise from inadequate cysteine availability, potentially due to maternal depletion. Further studies would be needed to determine whether maternal-fetal cysteine transfer is decreased in preterm infants, and, if so, whether cysteine supplementation of mothers at risk of delivering prematurely would strengthen antioxidant defense in preterm neonates.
Collapse
|
36
|
Spasojević I. Free radicals and antioxidants at a glance using EPR spectroscopy. Crit Rev Clin Lab Sci 2011; 48:114-42. [DOI: 10.3109/10408363.2011.591772] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Yi M, Masood A, Ziino A, Johnson BH, Belcastro R, Li J, Shek S, Kantores C, Jankov RP, Keith Tanswell A. Inhibition of apoptosis by 60% oxygen: a novel pathway contributing to lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2011; 300:L319-29. [DOI: 10.1152/ajplung.00126.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early postnatal alveolar formation, the lung tissue of rat pups undergoes a physiological remodeling involving apoptosis of distal lung cells. Exposure of neonatal rats to severe hyperoxia (≥95% O2) both arrests lung growth and results in increased lung cell apoptosis. In contrast, exposure to moderate hyperoxia (60% O2) for 14 days does not completely arrest lung cell proliferation and is associated with parenchymal thickening. On the basis of similarities in lung architecture observed following either exposure to 60% O2, or pharmacological inhibition of physiological apoptosis, we hypothesized that exposure to 60% O2 would result in an inhibition of physiological lung cell apoptosis. Consistent with this hypothesis, we observed that the parenchymal thickening induced by exposure to 60% O2 was associated with decreased numbers of apoptotic cells, increased expressions of the antiapoptotic regulator Bcl-xL, and the putative antiapoptotic protein survivin, and decreased expressions of the proapoptotic cleaved caspases-3 and -7. In summary, exposure of the neonatal rat lung to moderate hyperoxia results in an inhibition of physiological apoptosis, which contributes to the parenchymal thickening observed in the resultant lung injury.
Collapse
Affiliation(s)
- Man Yi
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Azhar Masood
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
| | - Adrian Ziino
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
- Clinical Integrative Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ben-Hur Johnson
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
| | - Rosetta Belcastro
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Jun Li
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Samuel Shek
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Crystal Kantores
- Clinical Integrative Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Robert P. Jankov
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
- Clinical Integrative Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - A. Keith Tanswell
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
| |
Collapse
|
38
|
Oxidative stress in twin neonates is influenced by birth weight and weight discordance. Clin Biochem 2011; 44:654-8. [PMID: 21349257 DOI: 10.1016/j.clinbiochem.2011.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To evaluate the extent of oxidative stress in neonates born from multiple gestation pregnancies who are at high risk of prematurity and growth abnormalities. DESIGN AND METHODS Blood samples were collected from umbilical cord of 72 twins, born at gestational age of 28-38 weeks, and 20 consecutive control singletons. Oxidative stress parameters (15-F(2t)-isoprostane, a marker of lipid peroxidation, and total antioxidant capacity, tAOC), were measured in cord plasma. RESULTS Levels of 15-F(2t)-isoprostane showed a moderate negative correlation with birth weight and were higher in small co-twins of discordant pairs; tAOC was positively correlated with birth weight but no significant difference was found between co-twins. CONCLUSIONS Oxidative stress levels in twins are mainly influenced by birth weight and weight discordance. We suggest that evaluation of cord blood 15-F(2t)-isoprostane might be of clinical value as maker of pre- and perinatal distress in twinning.
Collapse
|
39
|
Friel JK, Diehl-Jones B, Cockell KA, Chiu A, Rabanni R, Davies SS, Roberts LJ. Evidence of oxidative stress in relation to feeding type during early life in premature infants. Pediatr Res 2011; 69:160-4. [PMID: 21045751 DOI: 10.1203/pdr.0b013e3182042a07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Morbidity in the premature (PT) infant may reflect difficult adaptation to oxygen. We hypothesized that feeding including formula feeding (F) and feeding mother's milk (HM) with added fortifier would affect redox status. Therefore, 65 PT infants (birth weight: 1146 ± 261 g; GA: 29 ± 2.5 wk; mean ± SD) were followed biweekly, once oral feeds were introduced. Feeding groups: F (>75% total feeds) and HM (>75% total feeds) were further subdivided according to human milk fortifier (HMF) content of 0-19, 20-49, and ≥ 50%. Oxidative stress was quantified by F2-isoprostanes (F2-IsoPs) in urine, protein carbonyls, and oxygen radical absorbance capacity (ORAC) in plasma. F2-IsoPs (ng/mg creatinine): 0-2 wk, 125 ± 63; 3-4 wk, 191 ± 171; 5-6 wk, 172 ± 83; 7-8 wk, 211 ± 149; 9-10 wk, 222 ± 121; and >10 wk, 183 ± 67. Protein carbonyls from highest [2.41 ± 0.75 (n = 9)] and lowest [2.25 ± 0.89 (n = 12) pmol/μg protein] isoprostane groups did not differ. ORAC: baseline, 6778 ± 1093; discharge, 6639 ± 735 [full term 4 and 12 M, 9010 ± 600 mg (n = 12) TE]. Highest isoprostane values occurred in infants with >50% of their mother's milk fortified. Further research on HMF is warranted.
Collapse
Affiliation(s)
- James K Friel
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fraser M, Bennet L, Van Zijl PL, Mocatta TJ, Williams CE, Gluckman PD, Winterbourn CC, Gunn AJ. Extracellular amino acids and lipid peroxidation products in periventricular white matter during and after cerebral ischemia in preterm fetal sheep. J Neurochem 2010; 105:2214-23. [PMID: 18315562 DOI: 10.1111/j.1471-4159.2008.05313.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely hypothesized that accumulation of excitatory amino acids, and oxygen free radicals during or after exposure to hypoxia-ischemia play a pivotal role in preterm periventricular white matter injury; however, there is limited evidence in the intact brain. In preterm fetal sheep (0.65 gestation; term 147 days) we found no significant increase in extracellular levels of excitatory amino acids measured by microdialysis in the periventricular white matter during cerebral ischemia induced by bilateral carotid occlusion. There was no significant change in 8-isoprostane or malondialdehyde levels in the early phase of recovery after occlusion. In contrast, there was a significant delayed increase in most amino acids and in malondialdehyde (but not 8-isoprostane) that was maximal approximately 2-3 days after occlusion. The increase in glutamate was significantly correlated with a secondary increase in cortical impedance, an index of cytotoxic edema, and with white matter damage 3 days post-insult. In conclusion, no significant accumulation of cytotoxins was found within immature white matter during cerebral ischemia. Although a minority of fetuses showed a delayed increase in some cytotoxins, this occurred many days after ischemia, in association with secondary cytotoxic edema, strongly suggesting that these changes are mainly a consequence of evolving cell death.
Collapse
Affiliation(s)
- Mhoyra Fraser
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
te Braake FWJ, Schierbeek H, Vermes A, Huijmans JGM, van Goudoever JB. High-dose cysteine administration does not increase synthesis of the antioxidant glutathione preterm infants. Pediatrics 2009; 124:e978-84. [PMID: 19822595 DOI: 10.1542/peds.2008-2477] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Our aim was to evaluate whether administration of additional cysteine is safe and stimulates glutathione synthesis in preterm infants in early life. METHODS We conducted a prospective, randomized, clinical trial with infants with birth weights of <1500 g (N = 20). The infants were assigned randomly to receive either a standard dose (45 mg/kg per day) or a high dose (81 mg/kg per day) of cysteine. Intakes of other amino acids were similar, providing a total protein intake of 2.4 g/kg per day in both groups. We recorded base requirements in the first 6 days of life. On postnatal day 2, we conducted a stable isotope study to determine glutathione concentrations and synthesis rates in erythrocytes. RESULTS Base requirements were higher in the high-dose cysteine group on days 3, 4, and 5. Despite an 80% increase in cysteine intake, plasma cystine concentrations did not increase. Glutathione concentrations and synthesis rates did not increase with additional cysteine administration. CONCLUSIONS Administration of a high dose of cysteine (81 mg/kg per day) to preterm infants seems clinically safe but does not stimulate glutathione synthesis, compared with a lower dose (45 mg/kg per day). Further research is required to determine whether there is significant benefit associated with cysteine supplementation.
Collapse
Affiliation(s)
- Frans W J te Braake
- Department of Pediatrics, Division of Neonatology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | | | | | | |
Collapse
|
42
|
High postnatal oxidative stress in neonatal cystic periventricular leukomalacia. Brain Dev 2009; 31:641-8. [PMID: 19091500 DOI: 10.1016/j.braindev.2008.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/23/2008] [Accepted: 10/27/2008] [Indexed: 11/20/2022]
Abstract
Oxidative stress plays an important role in cystic periventricular leukomalacia (PVL). We performed a case-control study of preterm infants delivered at <35 weeks of gestation between January 2003 and December 2006. Patients were stratified into three groups, according to age at which cysts were initially identified: 10 days old (early cystic PVL; n=10), >10 days old (late cystic PVL; n=12); and no cystic PVL (controls; n=22). Serum total hydroperoxide, biological antioxidant potential and oxidative stress index (calculated as total hydroperoxide/biological antioxidant potential) were measured within 3h after birth. Frequencies of preterm rupture of membrane and chorioamnionitis were significant higher in early cystic PVL than in late cystic PVL or controls. Duration of oxygen treatment and mechanical ventilation and frequency of apnea were significantly higher in late cystic PVL than in controls or early cystic PVL. Serum total hydroperoxide levels and oxidative stress index were significantly higher in early cystic PVL than in late cystic PVL or controls (p<0.05, respectively). Postnatal duration until cyst identification displayed a significant negative correlation with oxidative stress index and total hydroperoxide level (r=-0.497, p<0.05; r=-0.50, p<0.05, respectively). These findings suggest that early onset of cystic PVL might be due to either antenatal or intrapartum factors, but late onset might be due to postnatal factors. In the pathophysiology and therapy of cystic PVL, oxidative stress and onset timing appear crucial. This is the first study to reveal that neonates experiencing much more oxidative stress at birth show earlier onset of cystic PVL.
Collapse
|
43
|
Vento M, Moro M, Escrig R, Arruza L, Villar G, Izquierdo I, Roberts LJ, Arduini A, Escobar JJ, Sastre J, Asensi MA. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 2009; 124:e439-49. [PMID: 19661049 DOI: 10.1542/peds.2009-0434] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The goal was to reduce adverse pulmonary adverse outcomes, oxidative stress, and inflammation in neonates of 24 to 28 weeks of gestation initially resuscitated with fractions of inspired oxygen of 30% or 90%. METHODS Randomized assignment to receive 30% (N = 37) or 90% (N = 41) oxygen was performed. Targeted oxygen saturation values were 75% at 5 minutes and 85% at 10 minutes. Blood oxidized glutathione (GSSG)/reduced glutathione ratio and urinary o-tyrosine, 8-oxo-dihydroxyguanosine, and isoprostane levels, isofuran elimination, and plasma interleukin 8 and tumor necrosis factor alpha levels were determined. RESULTS The low-oxygen group needed fewer days of oxygen supplementation (6 vs 22 days; P < .01) and fewer days of mechanical ventilation (13 vs 27 days; P < .01) and had a lower incidence of bronchopulmonary dysplasia at discharge (15.4% vs 31.7%; P < .05). GSSG/reduced glutathione x 100 ratios at day 1 and 3 were significantly higher in the high-oxygen group (day 1: high-oxygen group: 13.36 +/- 5.25; low-oxygen group: 8.46 +/- 3.87; P < .01; day 3: high-oxygen group: 8.87 +/- 4.40; low-oxygen group: 6.97 +/- 3.11; P < .05). Urinary markers of oxidative stress were increased significantly in the high-oxygen group, compared with the low-oxygen group, in the first week after birth. GSSG levels on day 3 and urinary isofuran, o-tyrosine, and 8-hydroxy-2'-deoxyguanosine levels on day 7 were correlated significantly with development of chronic lung disease. CONCLUSIONS Resuscitation of preterm neonates with 30% oxygen causes less oxidative stress, inflammation, need for oxygen, and risk of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Maximo Vento
- Department of Pediatrics, Neonatal Research Unit, Division of Neonatology, University Hospital La Fe, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Bronchopulmonary dysplasia is a chronic lung disease associated with premature birth and characterized by early lung injury. In this review we discuss some pitfalls, problems, and progress in this condition over the last decade, focusing mainly on the last 5 years, limited to studies in human neonates. Changes in the definition, pathogenesis, genetic susceptibility, and recent biomarkers associated with bronchopulmonary dysplasia will be discussed. Progress in current management strategies, along with novel approaches/therapies, will be critically appraised. Finally, recent data on long-term pulmonary and neurodevelopmental outcomes of infants with bronchopulmonary dysplasia will be summarized.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | | |
Collapse
|
45
|
Takatsuki S, Ito Y, Takeuchi D, Hoshida H, Nakayama T, Matsuura H, Saji T. IVIG Reduced Vascular Oxidative Stress in Patients With Kawasaki Disease. Circ J 2009; 73:1315-8. [DOI: 10.1253/circj.cj-07-0635] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Yuka Ito
- Pediatrics, Toho University Omori Medical Center
| | | | | | | | | | - Tsutomu Saji
- Pediatrics, Toho University Omori Medical Center
| |
Collapse
|
46
|
Te Braake FWJ, Schierbeek H, de Groof K, Vermes A, Longini M, Buonocore G, van Goudoever JB. Glutathione synthesis rates after amino acid administration directly after birth in preterm infants. Am J Clin Nutr 2008; 88:333-9. [PMID: 18689368 DOI: 10.1093/ajcn/88.2.333] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The availability of glutathione, the main intracellular antioxidant, is compromised in preterm neonates. A possible explanation is the low availability of substrate for synthesis, because many neonatologists are reluctant to administer amino acids in the direct postnatal period for fear of intolerance. OBJECTIVE The objective of the study was to determine the effects of amino acid administration directly after birth on glutathione synthesis rates and markers of oxidative stress. DESIGN Premature infants (<1500 g) received from birth onward either dextrose (control group; n = 10) or dextrose plus 2.4 g amino acids . kg (- 1) . d(-1) (intervention group; n = 10). On postnatal day 2, [1-(13)C]glycine was administered to determine glutathione fractional synthesis rates (FSR(GSH)) and absolute synthesis rates (ASR(GSH)) in erythrocytes. In plasma, advanced oxidized protein products and dityrosine, both markers of oxidative stress, were measured. The results are expressed as means +/- SDs. RESULTS The FSR(GSH) was not different between groups: 44 +/- 6 and 48 +/- 9%/d in the control and intervention groups, respectively (P = 0.28). The concentration of erythrocyte glutathione was higher (P < 0.001) in the intervention group (2.28 +/- 0.35 mmol/L) than in the control group (1.73 +/- 0.37 mmol/L). ASR(GSH) values were 6.5 +/- 1.5 and 11.3 +/- 1.9 mg . kg(-1) . d(-1) in the control and intervention groups, respectively (P < 0.001). Advanced oxidized protein products and dityrosine concentrations were not significantly different between groups. CONCLUSIONS Amino acid administration directly after birth increases ASR(GSH) in preterm infants. Our data are consistent, however, with higher glutathione concentrations rather than a higher FSR(GSH). Greater availability of glutathione, nevertheless, did not decrease markers of oxidative stress.
Collapse
Affiliation(s)
- Frans W J Te Braake
- Department of Pediatrics, Division of Neonatology Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, Sandberg M, Karlsson JO, Romero R, Hagberg H, Mallard C. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 2007; 61:263-71. [PMID: 17253623 DOI: 10.1002/ana.21066] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Maternal inflammation/infection alone or in combination with birth asphyxia increases the risk for perinatal brain injury. Free radicals are implicated as major mediators of inflammation and hypoxia-ischemia (HI)-induced perinatal brain injury. This study evaluated the neuroprotective efficacy of a scavenging agent, N-acetylcysteine (NAC), in a clinically relevant model. METHODS Lipopolysaccharide (LPS)-sensitized HI brain injury was induced in 8-day-old neonatal rats. NAC was administered in multiple doses, and brain injury was evaluated at 7 days after HI. RESULTS NAC (200mg/kg) provided marked neuroprotection with up to 78% reduction of brain injury in the pre+post-HI treatment group and 41% in the early (0 hour) post-HI treatment group, which was much more pronounced protection than another free radical scavenger, melatonin. Protection by NAC was associated with the following factors: (1) reduced isoprostane activation and nitrotyrosine formation; (2) increased levels of the antioxidants glutathione, thioredoxin-2, and (3) inhibition of caspase-3, calpain, and caspase-1 activation. INTERPRETATION NAC provides substantial neuroprotection against brain injury in a model that combines infection/inflammation and HI. Protection by NAC was associated with improvement of the redox state and inhibition of apoptosis, suggesting that these events play critical roles in the development of lipopolysaccharide-sensitized HI brain injury.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Perinatal Center, Department of Physiology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lavoie JC, Chessex P, Rouleau T, Tsopmo A, Friel J. Shielding parenteral multivitamins from light increases vitamin A and E concentration in lung of newborn guinea pigs. Clin Nutr 2007; 26:341-7. [PMID: 17306907 DOI: 10.1016/j.clnu.2006.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/10/2006] [Accepted: 12/22/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND & AIMS Exposure of parenteral multivitamin preparation (MVP) to light generates peroxides. Light-exposed MVP induces an oxidant stress in lung but not in liver. This discrepancy suggests differences in handling of infused antioxidant vitamins between the two organs. HYPOTHESIS antioxidant capacity of lung depends on the MVP concentration and light protection of infused solutions. METHODS Protocol 1: four groups of three-day old guinea pigs received the base solution (5% dextrose + 0.45% NaCl) enriched with 0%, 1%, 2% and 3% MVP. Protocol 2: three further groups received the base solution + 2% MVP either light-exposed or light-protected or light-protected + 300 microM H2O2. After 4 days, lung and liver were sampled for vitamin determinations. Data were analyzed by ANOVA. RESULTS In lung, vitamins A-C-E reached a plateau with 1% MVP. In liver, vitamin A and E increased according to their concentration in solutions. Light exposure and added-H2O2 were associated with lower vitamin E in lung and liver. Retinol was higher in lung and lower in liver of animals receiving light-protected compared to light-exposed solutions. CONCLUSIONS Light protection of 1% MVP is a better way to improve the pulmonary oxidant-antioxidant balance than to increase MVP (>1%) in parenteral nutrition.
Collapse
Affiliation(s)
- Jean-Claude Lavoie
- Department of Paediatrics, CHU Sainte-Justine, University of Montréal, Montréal, Que., Canada H3T 1C5.
| | | | | | | | | |
Collapse
|
49
|
Reuter SD, O'Donovan DJ, Hegemier SE, Smith EO, Heird WC, Fernandes CJ. Urinary F2-isoprostanes are poor prognostic indicators for the development of bronchopulmonary dysplasia. J Perinatol 2007; 27:303-6. [PMID: 17363910 DOI: 10.1038/sj.jp.7211684] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Oxygen toxicity is thought to contribute to the development of bronchopulmonary dysplasia (BPD). Oxidant injury leads to formation of F(2)-isoprostanes (F(2)-IsoP). We hypothesized that urinary excretion of the stable metabolite of F(2)-IsoP, 8-iso-PGF(2alpha), would be higher in infants who develop BPD than those who did not. METHODS Forty infants <30-weeks gestational age (GA) were enrolled, 24 infants with BPD and 16 without BPD. Urine specimens were collected weekly and stored at -80 degrees C until analyzed. Urinary 8-iso-PGF(2alpha) was measured by gas chromatography/mass spectrometry (GC-MS) and normalized to creatinine excretion. RESULTS GA and birth weight (BW) were lower in infants who developed BPD than those who did not. Urinary 8-iso-PGF(2alpha) levels in the first or third weeks of age were not significantly different between the two groups. CONCLUSION Urinary excretion of 8-iso-PGF(2alpha) in early postnatal life in preterm infants is not correlated with the development of BPD.
Collapse
Affiliation(s)
- S D Reuter
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, Kjellmer I, Mallard C. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007; 61:153-8. [PMID: 17237714 DOI: 10.1203/01.pdr.0000252546.20451.1a] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The premature infant is at increased risk of cerebral white matter injury. Melatonin is neuroprotective in adult models of focal cerebral ischemia and attenuates ibotenate-induced white matter cysts in neonatal mice. Clinically, melatonin has been used to treat sleep disorders in children without major side effects. The aim of this study was to investigate the protective and anti-inflammatory effects of melatonin in the immature brain following intrauterine asphyxia. Fetal sheep at 90 d of gestation were subjected to umbilical cord occlusion. Melatonin (20 mg/kg, n = 9) or vehicle (n = 10) was administered IV to the fetus, starting 10 min after the start of reperfusion and continued for 6 h. Melatonin treatment resulted in a slower recovery of fetal blood pressure following umbilical cord occlusion, but without changes in fetal heart rate, acid base status or mortality. The production of 8-isoprostanes following umbilical cord occlusion was attenuated and there was a reduction in the number of activated microglia cells and TUNEL-positive cells in melatonin treated fetuses, suggesting a protective effect of melatonin. In conclusion, this study shows that melatonin attenuates cell death in the fetal brain in association with a reduced inflammatory response in the blood and the brain following intrauterine asphyxia in mid-gestation fetal sheep.
Collapse
Affiliation(s)
- Anne-Karin Welin
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Göteborg University, 405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|