1
|
Tury S, Chauveau L, Lecante A, Courgnaud V, Battini JL. A co-opted endogenous retroviral envelope promotes cell survival by controlling CTR1-mediated copper transport and homeostasis. Cell Rep 2023; 42:113065. [PMID: 37682705 DOI: 10.1016/j.celrep.2023.113065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Copper is a critical element for eukaryotic life involved in numerous cellular functions, including redox balance, but is toxic in excess. Therefore, tight regulation of copper acquisition and homeostasis is essential for cell physiology and survival. Here, we identify a different regulatory mechanism for cellular copper homeostasis that requires the presence of an endogenous retroviral envelope glycoprotein called Refrex1. We show that cells respond to elevated extracellular copper by increasing the expression of Refrex1, which regulates copper acquisition through interaction with the main copper transporter CTR1. Downmodulation of Refrex1 results in intracellular copper accumulation leading to reactive oxygen species (ROS) production and subsequent apoptosis, which is prevented by copper chelator treatment. Our results show that Refrex1 has been co-opted for its ability to regulate copper entry through CTR1 in order to limit copper excess, redox imbalance, and ensuing cell death, strongly suggesting that other endogenous retroviruses may have similar metabolic functions among vertebrates.
Collapse
Affiliation(s)
- Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier IRIM - CNRS UMR 9004, Université Montpellier, 34293 Montpellier Cedex 5, France
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier IRIM - CNRS UMR 9004, Université Montpellier, 34293 Montpellier Cedex 5, France
| | - Arnaud Lecante
- Institut de Recherche en Infectiologie de Montpellier IRIM - CNRS UMR 9004, Université Montpellier, 34293 Montpellier Cedex 5, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier IGMM - CNRS UMR 5535, Université Montpellier, 34293 Montpellier Cedex 5, France.
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier IRIM - CNRS UMR 9004, Université Montpellier, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Castillo-Velazquez U, de Jesus Loera-Arias M, Saucedo-Cardenas O, de Oca-Luna RM, Garcia-Garcia A, Rodriguez-Rocha H. Combined chronic copper exposure and aging lead to neurotoxicity in vivo. Neurotoxicology 2023; 95:181-192. [PMID: 36775208 DOI: 10.1016/j.neuro.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The environment, containing pollutants, toxins, and transition metals (copper, iron, manganese, and zinc), plays a critical role in neurodegenerative disease development. Copper occupational exposure increases Parkinson's disease (PD) risk. Previously, we determined the mechanisms by which copper induces dopaminergic cell death in vitro. The copper transporter protein 1 (Ctr1) overexpression led to intracellular glutathione depletion potentiating caspase-3 mediated cell death; oxidative stress was primarily cytosolic, and Nrf2 was upregulated mediating an antioxidant response; and protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent autophagy were increased as a protective mechanism. However, the effect of chronic copper exposure on the neurodegenerative process has not been explored in vivo. We aimed to elucidate whether prolonged copper treatment reproduces PD features and mechanisms during aging. Throughout 40 weeks, C57BL/6J male mice were treated with copper at 0, 100, 250, and 500 ppm in the drinking water. Chronic copper exposure altered motor function and induced dopaminergic neuronal loss, astrocytosis, and microgliosis in a dose-dependent manner. α-Synuclein accumulation and aggregation were increased in response to copper, and the proteasome and autophagy alterations, previously observed in vitro, were confirmed in vivo, where protein ubiquitination, AMPK phosphorylation, and the autophagy marker LC3-II were also increased by copper exposure. Finally, nitrosative stress was induced by copper in a concentration-dependent fashion, as evidenced by increased protein nitration. To our knowledge, this is the first study combining chronic copper exposure and aging, which may represent an in vivo model of non-genetic PD and help to assess potential prophylactic and therapeutic approaches. DATA AVAILABILITY: The data underlying this article are available in the article.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Adolfo Soto-Dominguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Uziel Castillo-Velazquez
- Departamento de Inmunología Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo, Nuevo León 66050, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico.
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico.
| |
Collapse
|
3
|
Pang J, Chen S, Gan W, Tang G, Jie Y, Li Z, Chong Y, Chen Y, Gong J, Li X, Mei Y. A novel nomogram based on routine clinical indicators for screening for Wilson's disease. LIVER RESEARCH (BEIJING, CHINA) 2023; 7:82-89. [PMID: 39959699 PMCID: PMC11791895 DOI: 10.1016/j.livres.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 02/16/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND AND AIMS There is currently no single model for predicting Wilson's disease (WD). We aimed to create a nomogram using daily clinical parameters to improve the accuracy of WD diagnosis in patients with abnormal liver function. METHODS Between July 2016 and December 2020, we identified 90 WD patients with abnormal liver function who had homozygous or compound heterozygous mutations in the ATP7B gene. The control group included 128 patients with similar liver function but no WD during the same time period. To create a nomogram, we screened potential predictive variables using the least absolute shrinkage and selection operator model and multivariate logistic regression. RESULTS We developed a nomogram for screening for WD based on six predictive factors: serum copper, direct bilirubin, uric acid, cholinesterase, prealbumin, and reticulocyte percentage. In the training cohort, the area under curve (AUC) of the nomogram reached 0.967 (95% confidence interval (CI) 0.946-0.988), while the area under the precision-recall curve was 0.961. Based on the optimal cutpoint of 213.55, our nomogram performed well, with a sensitivity of 96% and a specificity of 87%. In the validation cohort, the AUC of the nomogram was as high as 0.991 (95% CI 0.970-1.000). CONCLUSIONS We developed a nomogram that can predict the risk of WD prior to the detection of serum ceruloplasmin or urinary copper, greatly increasing screening efficiency for patients with abnormal liver function.
Collapse
Affiliation(s)
- Jiahui Pang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuru Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Gan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guofang Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanyi Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youming Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinhua Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, National Regional Medical Center for Infectious Diseases, Kashgar Hospital Affiliated to Sun Yat-sen University, Kashgar, Xinjiang, China
| | - Yongyu Mei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
de Paula AA, Risso WE, Martinez CBDR. What happens to Hoplias malabaricus fed on live prey (Astyanax altiparanae) previously exposed to copper? A multiple biomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106315. [PMID: 36195002 DOI: 10.1016/j.aquatox.2022.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Copper waterborne toxicity is well understood in aquatic organisms. However, the dietary copper effects are much less known, especially in tropical fish. The toxicity of copper via the trophic route could be influenced by the composition of the food, and diets naturally impregnated with copper seem to have greater toxicity at lower concentrations than artificially impregnated ones. Thus, our objective was to investigate the effects of copper on juveniles of the Neotropical fish Hoplias malabaricus fed on live prey (Astyanax altiparanae) previously exposed to the metal (20 µg L - 1) for 96 h. The prey fish were given to H. malabaricus every 96 h, totaling 10 doses at the end of the experiment. Thus, after 40 days fish were killed and tissues were sampled. Blood showed to be the only tissue in which copper accumulated. Anemia was found and there was damage to the DNA of erythrocytes. Furthermore, ionic imbalances were observed in plasma. There was an increase in the concentration of Na+ and Cl- and a decrease in Ca2+, which were associated with increased copper uptake in the gastrointestinal tract of fish fed on copper exposed prey. All the antioxidant enzymes evaluated in the gills showed decreased activity compared to the control group. Copper seems to have interfered in the energy metabolism of H. malabaricus, since a lower condition factor and feed conversion efficiency rate were observed in fish fed with copper diet. The present study confirms the trophic route as an important copper toxicity pathway for H. malabaricus and reinforces the idea that metal toxicity can be increased when it is naturally impregnated in the prey tissues, even if the prey has been exposed to the metal only for a short period of time.
Collapse
Affiliation(s)
- Angélica Alves de Paula
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970, Londrina, Paraná, Brazil
| | - Wagner Ezequiel Risso
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970, Londrina, Paraná, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal - Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380. C.P. 10011, CEP: 86051-970, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Husain N, Ali SN, Arif H, Khan AA, Mahmood R. Oral Administration of Copper Chloride Damages DNA, Lowers Antioxidant Defense, Alters Metabolic Status, and Inhibits Membrane Bound Enzymes in Rat Kidney. Biol Trace Elem Res 2022; 201:3367-3380. [PMID: 36068418 DOI: 10.1007/s12011-022-03406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is a heavy metal that is widely used in industries and is also an essential micronutrient for living beings. However, excess Cu is toxic and human exposure to high levels of this metal results in numerous adverse health effects. We have investigated the effect of oral administration of copper chloride (CuCl2), a Cu(II) compound, on various parameters of oxidative stress, cellular metabolism, and DNA integrity in the rat kidney. This was done to delineate the molecular mechanism of Cu(II) toxicity. Adult male rats were randomly divided into five groups. Animals in four CuCl2-treated groups were separately administered single acute oral dose of CuCl2 at 5, 15, 30, and 40 mg/kg body weight. Animals in the fifth group were not given CuCl2 and served as the control. All rats were sacrificed 24 h after the dose of CuCl2 and their kidneys removed. CuCl2 administration led to significant alterations in enzymatic and non-enzymatic parameters of oxidative stress. It changed the activities of metabolic and membrane bound enzymes and also decreased the activities of brush border membrane enzymes. CuCl2 treatment dose-dependently enhanced DNA damage and DNA-protein crosslinking in renal cells, when compared to the control group. The administration of CuCl2 also resulted in marked morphological changes in the kidney, with more prominent alterations at higher doses of CuCl2. These results clearly show that CuCl2 impairs the antioxidant defense system resulting in oxidative damage to the kidney.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Shaikh Nisar Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, J.N. Medical College, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India.
| |
Collapse
|
6
|
Areecheewakul S, Adamcakova-Dodd A, Haque E, Jing X, Meyerholz DK, O'Shaughnessy PT, Thorne PS, Salem AK. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model. Part Fibre Toxicol 2022; 19:40. [PMID: 35698146 PMCID: PMC9195454 DOI: 10.1186/s12989-022-00480-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background It has been shown that copper oxide nanoparticles (CuO NPs) induce pulmonary toxicity after acute or sub-acute inhalation exposures. However, little is known about the biodistribution and elimination kinetics of inhaled CuO NPs from the respiratory tract. The purposes of this study were to observe the kinetics of pulmonary inflammation during and after CuO NP sub-acute inhalation exposure and to investigate copper (Cu) biodistribution and clearance rate from the exposure site and homeostasis of selected trace elements in secondary organs of BALB/c mice. Results Sub-acute inhalation exposure to CuO NPs led to pulmonary inflammation represented by increases in lactate dehydrogenase, total cell counts, neutrophils, macrophages, inflammatory cytokines, iron levels in bronchoalveolar lavage (BAL) fluid, and lung weight changes. Dosimetry analysis in lung tissues and BAL fluid showed Cu concentration increased steadily during exposure and gradually declined after exposure. Cu elimination from the lung showed first-order kinetics with a half-life of 6.5 days. Total Cu levels were significantly increased in whole blood and heart indicating that inhaled Cu could be translocated into the bloodstream and heart tissue, and potentially have adverse effects on the kidneys and spleen as there were significant changes in the weights of these organs; increase in the kidneys and decrease in the spleen. Furthermore, concentrations of selenium in kidneys and iron in spleen were decreased, pointing to disruption of trace element homeostasis. Conclusions Sub-acute inhalation exposure of CuO NPs induced pulmonary inflammation, which was correlated to Cu concentrations in the lungs and started to resolve once exposure ended. Dosimetry analysis showed that Cu in the lungs was translocated into the bloodstream and heart tissue. Secondary organs affected by CuO NPs exposure were kidneys and spleen as they showed the disruption of trace element homeostasis and organ weight changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00480-z.
Collapse
Affiliation(s)
- Sudartip Areecheewakul
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, College of Pharmacy, Iowa City, IA, 52242, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA.
| | - Ezazul Haque
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52246, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Patrick T O'Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52246, USA.
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, College of Pharmacy, Iowa City, IA, 52242, USA.
| |
Collapse
|
7
|
Shribman S, Marjot T, Sharif A, Vimalesvaran S, Ala A, Alexander G, Dhawan A, Dooley J, Gillett GT, Kelly D, McNeill A, Warner TT, Wheater V, Griffiths W, Bandmann O. Investigation and management of Wilson's disease: a practical guide from the British Association for the Study of the Liver. Lancet Gastroenterol Hepatol 2022; 7:560-575. [PMID: 35429442 DOI: 10.1016/s2468-1253(22)00004-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Wilson's disease is an autosomal-recessive disorder of copper metabolism with hepatic, neurological, psychiatric, ophthalmological, haematological, renal, and rheumatological manifestations. Making a diagnosis can be challenging given that no single test can confirm or exclude the disease, and diagnostic delays are common. Treatment protocols vary and adverse effects, including paradoxical neurological worsening, can occur. In this Review, we provide a practical guide to the diagnosis of Wilson's disease. We include recommendations on indications for testing, how to interpret results, and when additional investigations are required. We also cover treatment initiation, ideally under the guidance of a specialist centre for Wilson's disease, and the principles behind long-term management. This guidance was developed by a multidisciplinary group of Wilson's disease experts formed through the British Association for the Study of the Liver. The guidance has been endorsed by the British Society of Gastroenterology and approved by the Association of British Neurologists.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas Marjot
- Oxford Liver Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Abubakar Sharif
- Liver Unit, Birmingham Women and Children's Hospital, Birmingham, UK
| | - Sunitha Vimalesvaran
- Paediatric Liver, GI and Nutrition Centre and Mowat Labs, King's College Hospital, Denmark Hill, London, UK
| | - Aftab Ala
- Department of Gastroenterology and Hepatology, Royal Surrey NHS Foundation Trust, Guildford; Institute of Liver Studies, King's College Hospital, London, UK
| | - Graeme Alexander
- University College London Institute of Liver and Digestive Health, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowat Labs, King's College Hospital, Denmark Hill, London, UK
| | - James Dooley
- University College London Institute of Liver and Digestive Health, London, UK
| | - Godfrey T Gillett
- Laboratory Medicine, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women and Children's Hospital, Birmingham, UK
| | | | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | | | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, UK.
| |
Collapse
|
8
|
Manrai M, Dawra S, Kapoor R, Srivastava S, Singh A. Anemia in cirrhosis: An underestimated entity. World J Clin Cases 2022; 10:777-789. [PMID: 35127894 PMCID: PMC8790443 DOI: 10.12998/wjcc.v10.i3.777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/18/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
Anemia in a patient with cirrhosis is a clinically pertinent but often overlooked clinical entity. Relevant guidelines highlight the algorithmic approach of managing a patient of cirrhosis presenting with acute variceal hemorrhage but day-to-day management in hospital and out-patient raises multiple dilemmas: Whether anemia is a disease complication or a part of the disease spectrum? Should iron, folic acid, and vitamin B complex supplementation and nutritional advice, suffice in those who can perform tasks of daily living but have persistently low hemoglobin. How does one investigate and manage anemia due to multifactorial etiologies in the same patient: Acute or chronic blood loss because of portal hypertension and bone marrow aplasia secondary to hepatitis B or C viremia? To add to the clinician's woes the prevalence of anemia increases with increasing disease severity. We thus aim to critically analyze the various pathophysiological mechanisms complicating anemia in a patient with cirrhosis with an emphasis on the diagnostic flowchart in such patients and proposed management protocols thereafter.
Collapse
Affiliation(s)
- Manish Manrai
- Department of Internal Medicine, Armed Forces Medical College, Pune 411040, India
| | - Saurabh Dawra
- Department of Medicine and Gastroenterology, Command Hospital, Pune 411040, India
| | - Rajan Kapoor
- Department of Medicine, Command Hospital, Kolkata 70027, India
| | - Sharad Srivastava
- Department of Medicine and Gastroenterology, Command Hospital, Pune 411040, India
| | - Anupam Singh
- Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
9
|
Husain N, Hasan S, Khan AA, Mahmood R. Copper chloride inhibits brush border membrane enzymes, alters antioxidant and metabolic status and damages DNA in rat intestine: a dose-dependent study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43711-43724. [PMID: 33837945 DOI: 10.1007/s11356-021-13804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an extensively used heavy metal and an indispensible micronutrient for living beings. However, Cu is also toxic and exerts multiple adverse health effects when humans are exposed to high levels of this metal. We have examined the effect of single acute oral dose of copper chloride (CuCl2) on parameters of oxidative stress, cellular metabolism, membrane and DNA damage in rat intestine. Adult male Wistar rats were divided into four groups and separately administered a single oral dose of 5, 15, 30 and 40 mg CuCl2/kg body weight. Rats not administered CuCl2 served as the control. Oral administration of CuCl2 led to significant alterations in the activities of metabolic and membrane-bound enzymes; brush border enzymes were inhibited by 45-75% relative to the control set. Inhibition of antioxidant enzymes diminished the metal-reducing and free radical quenching ability of the cells. Oxidative damage caused cellular oxidation of thiols, proteins and lipids. Diphenylamine and comet assays showed that CuCl2 treatment enhanced DNA damage while DNA-protein crosslinking was also increased in the intestinal cells. Examination of stained sections showed that CuCl2 treatment led to marked histological changes in the intestine. All the changes seen were in a CuCl2 dose-dependent manner with more prominent alterations at higher doses of CuCl2. These results clearly show that oral administration of CuCl2 results in oxidative damage to the intestine which can impair its digestive and absorptive functions.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Samra Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Aijaz Ahmed Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
10
|
Kiran I, Ekin S, Vural Ö. Low vitamin B 12 level in relation to trace element, total sialic acid and antioxidant enzymes in children with vitamin B 12 deficiency anemia. INT J VITAM NUTR RES 2021; 93:132-141. [PMID: 34100302 DOI: 10.1024/0300-9831/a000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, children with vitamin B12 deficiency anemia (V-B12DA) and control subjects were evaluated for erythrocyte glutathione peroxidase, catalase and superoxide dismutase enzyme activities, glutathione, malondialdehyde, serum total sialic acid, total antioxidant status, cobalt, chromium, copper, selenium, vanadium, zinc, iron, lead, magnesium, calcium, sodium, potassium, chloride, phosphorus levels, and the associations of these variables were assessed. The study included 50 children with V-B12DA and 50 control subjects. It was found that the V-B12DA group was significantly lower than the control group, with regard to the mean±the standard error of the mean levels of cobalt (0.089±0.009; 0.058±0.0063 μmol/L, p<0.01), selenium (2.19±0.087; 1.88±0.057 μmol/L, p<0.01), vanadium (1.31±0.053; 1.18±0.035 μmol/L, p<0.05), magnesium (3.02±0.15; 2.73±0.068 μmol/L, p<0.05), zinc (50.76±1.96; 42.23± 1.53 μmol/L, p<0.001), and vitamin B12 (427.20±21.45; 157.08±3.96 pg/mL, p<0.001). Moreover, a significant elevation in total sialic acid (1.44±0.050; 1.61±0.043 mmol/L, p<0.01), and mean corpuscular volume (MCV) (75.37±0.95; 79.91±1.14 fL, p<0.01). It was observed that in the V-B12DA, significantly linear correlations were observed between cobalt - vitamin B12 (r=0.334; p=0.025), vanadium - MCV (r=0.315; p=0.017), vitamin B12 - MCV (r=-0.297; p=0.026). The findings of the study indicated that the levels of cobalt, vanadium significantly associated with traditional vitamin B12-deficiency parameters. Vitamin B12 and MCV should be measured together with cobalt, vanadium for monitoring the vitamin B12 deficiency anemia.
Collapse
Affiliation(s)
- Isa Kiran
- Division of Blood and Transfusion, University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | - Suat Ekin
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Vural
- Division of Pediatric Hematology and Oncology, Faculty of Medicine, Gazi University Ankara, Turkey
| |
Collapse
|
11
|
Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res 2021; 55:562-580. [PMID: 33427524 DOI: 10.1080/10715762.2021.1873318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Red blood cells (RBC) are specifically differentiated to transport oxygen and carbon dioxide in the blood and they lack most organelles, including mitochondria. The autoxidation of hemoglobin constitutes a major source of reactive oxygen species (ROS). Nitric oxide, which is produced by endothelial nitric oxide synthase (NOS3) or via the hemoglobin-mediated conversion of nitrite, interacts with ROS and results in the production of reactive nitrogen oxide species. Herein we present an overview of anemic diseases that are closely related to oxidative damage. Because the compensation of proteins by means of gene expression does not proceed in enucleated cells, antioxidative and redox systems play more important roles in maintaining the homeostasis of RBC against oxidative insult compared to ordinary cells. Defects in hemoglobin and enzymes that are involved in energy production and redox reactions largely trigger oxidative damage to RBC. The results of studies using genetically modified mice suggest that antioxidative enzymes, notably superoxide dismutase 1 and peroxiredoxin 2, play essential roles in coping with oxidative damage in erythroid cells, and their absence limits erythropoiesis, the life-span of RBC and consequently results in the development of anemia. The degeneration of the machinery involved in the proteolytic removal of damaged proteins appears to be associated with hemolytic events. The ubiquitin-proteasome system is the dominant machinery, not only for the proteolytic removal of damaged proteins in erythroid cells but also for the development of erythropoiesis. Hence, despite the fact that it is less abundant in RBC compared to ordinary cells, the aberrant ubiquitin-proteasome system may be associated with the development of anemic diseases via the accumulation of damaged proteins, as typified in sickle cell disease, and impaired erythropoiesis.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Prashant Warang
- ICMR - National Institute of Immunohaematology, Mumbai, India
| | | | | |
Collapse
|
12
|
Husain N, Mahmood R. Mitigation of Cu(II)-induced damage in human blood cells by carnosine: An in vitro study. Toxicol In Vitro 2020; 68:104956. [PMID: 32745495 DOI: 10.1016/j.tiv.2020.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Copper (Cu) is an essential micronutrient but human exposure to high level of this metal results in adverse health effects. Oxidative stress is assumed to play a major role in the mechanism of Cu-induced toxicity. The protective role of carnosine, an antioxidant and antiglycating agent, was examined against Cu-induced toxicity in isolated human blood cells. Red blood cells (RBC) were treated with 0.5 mM copper chloride (CuCl2), a Cu(II) compound, either alone or after treatment with carnosine. Incubation of RBC with CuCl2 increased protein oxidation, lipid peroxidation, methemoglobin formation and lowered glutathione content. The antioxidant defense system was impaired and production of reactive oxygen (ROS) and reactive nitrogen species (RNS) was enhanced. Pre-incubation of RBC with carnosine protected the cells against CuCl2-induced oxidative damage. It restored the activities of several antioxidant, membrane-bound and metabolic enzymes, decreased the generation of ROS and RNS, enhanced the antioxidant power of cells and prevented inactivation of plasma membrane redox system. Carnosine also protected human lymphocytes from CuCl2-induced DNA damage. The protective effects of carnosine were concentration-dependent while carnosine itself did not exhibit any adverse effect. Carnosine can, therefore, be used as a possible chemoprotectant against the harmful effects of this extremely redox active metal.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
13
|
Kumar M, Gaharwar U, Paul S, Poojary M, Pandhare K, Scaria V, Bk B. WilsonGen a comprehensive clinically annotated genomic variant resource for Wilson's Disease. Sci Rep 2020; 10:9037. [PMID: 32493955 PMCID: PMC7270127 DOI: 10.1038/s41598-020-66099-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Wilson disease (WD) is one of the most prevalent genetic diseases with an estimated global carrier frequency of 1 in 90 and a prevalence of 1 in 30,000. The disease owes its genesis to Kinnier Wilson who described the disease, and is caused by accumulation of Copper (Cu) in various organs including the liver, central nervous system, cornea, kidney, joints and cardiac muscle which contribute to the characteristic clinical features of WD. A number of studies have reported genetic variants in the ATP7B gene from diverse ethnic and geographical origins. The recent advent of next-generation sequencing approaches has also enabled the discovery of a large number of novel variants in the gene associated with the disease. Previous attempts have been made to compile the knowledgebase and spectrum of genetic variants from across the multitude of publications, but have been limited by the utility due to the significant differences in approaches used to qualify pathogenicity of variants in each of the publications. The recent formulation of guidelines and algorithms for assessment of the pathogenicity of variants jointly put forward by the American College of Medical Genetics and the Association of Molecular Pathologists (ACMG &) has provided a framework for evidence based and systematic assessment of pathogenicity of variants. In this paper, we describe a comprehensive resource of genetic variants in ATP7B gene manually curated from literature and data resources and systematically annotated using the ACMG & AMP guidelines for assessing pathogenicity. The resource therefore serves as a central point for clinicians and geneticists working on WD and to the best of our knowledge is the most comprehensive and only clinically annotated resource for WD. The resource is available at URL http://clingen.igib.res.in/WilsonGen/. We compiled a total of 3662 genetic variants from publications and databases associated with WD. Of these variants compiled, a total of 1458 were found to be unique entries. This is the largest WD database comprising 656 pathogenic/likely pathogenic variants reported classified according to ACMG & AMP guidelines. We also mapped all the pathogenic variants corresponding to ATP7B protein from literature and other databases. In addition, geographical origin and distribution of ATP7B pathogenic variants reported are also mapped in the database.
Collapse
Affiliation(s)
- Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India.,Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Utkarsh Gaharwar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India.,Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Mukta Poojary
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India.,Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India. .,Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India.
| | - Binukumar Bk
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110 025, India. .,Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India.
| |
Collapse
|
14
|
Jończy A, Lipiński P, Ogórek M, Starzyński RR, Krzysztofik D, Bednarz A, Krzeptowski W, Szudzik M, Haberkiewicz O, Miłoń A, Grzmil P, Lenartowicz M. Functional iron deficiency in toxic milk mutant mice (tx-J) despite high hepatic ferroportin: a critical role of decreased GPI-ceruloplasmin expression in liver macrophages. Metallomics 2020; 11:1079-1092. [PMID: 31011744 DOI: 10.1039/c9mt00035f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jackson toxic milk mutant mice (tx-J) carrying a missense mutation in the Atp7b gene are animal models of the Wilson disease. In both the Wilson patients and the tx-J mice, mutations in the ATP7B/Atp7b gene lead to disturbances in copper metabolism. The dysfunction of ATP7B/Atp7b leads to a reduction in the incorporation of copper into apoceruloplasmin; this decreases the ferroxidase activity of ceruloplasmin necessary for the efflux of iron from cells and reduces the release of copper from hepatocytes to the bile; this results in a massive hepatic copper accumulation. A decrease in the ferroxidase activity of ceruloplasmin in the tx-J mice emphasises the practicality of this animal model for the exploration of disturbances in iron balance triggered by dysregulation of copper metabolism. We found that 6-month-old tx-J mutants developed mild anaemia caused by functional iron deficiency. The tx-J mutants showed decreased plasma iron levels with concomitant iron accumulation in hepatocytes and liver macrophages. Hepatic iron retention was accompanied by decreased expression of the membrane form of ceruloplasmin in both liver cell types. Interestingly, in the liver of mutants, we found high levels of ferroportin (an iron exporter) on the surface of liver macrophages despite increased hepatic expression of hepcidin, a peptide inducing internalization and degradation of ferroportin. We conclude that even when the ferroportin expression is high, ceruloplasmin remains a limiting factor in the release of iron to the extracellular environment.
Collapse
Affiliation(s)
- Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Postepu 36A, 05-552 Magdalenka, Jastrzebiec, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nandi SK, Chakraborty A, Panda AK, Biswas A. M. leprae HSP18 suppresses copper (II) mediated ROS generation: Effect of redox stress on its structure and function. Int J Biol Macromol 2020; 146:648-660. [DOI: 10.1016/j.ijbiomac.2019.12.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
|
16
|
Husain N, Mahmood R. Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20654-20668. [PMID: 31104239 DOI: 10.1007/s11356-019-05345-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Copper (Cu) is widely used in various industries, and human exposure to this metal results in severe multi-organ toxicity, which is thought to be due to the generation of free radicals by Fenton-like reaction. The generation of reactive oxygen as well as nitrogen species and free radicals results in induction of oxidative stress in the cell. We have studied the effect of different concentrations of Cu(II) on human erythrocytes and lymphocytes. Incubation of erythrocytes with copper chloride, a Cu(II) compound, enhanced the production of reactive oxygen and nitrogen species, decreased glutathione and total sulphydryl content and increased protein oxidation and lipid peroxidation. All changes were in a Cu(II) concentration-dependent manner. This strongly suggests that Cu(II) causes oxidative damage in erythrocytes. The activities of major antioxidant enzymes were altered, and antioxidant power was lowered. Cu(II) treatment also resulted in membrane damage in erythrocytes as seen by electron microscopy and lowered activities of plasma membrane-bound enzymes. Incubation of human lymphocytes with Cu(II) resulted in DNA damage when studied by the sensitive comet assay. These results show that Cu(II) exerts cytotoxic and genotoxic effects on human blood cells probably by enhancing the generation of reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
17
|
Hermann W. Classification and differential diagnosis of Wilson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S63. [PMID: 31179300 PMCID: PMC6531651 DOI: 10.21037/atm.2019.02.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Wilson's disease is characterized by hepatic and extrapyramidal movement disorders (EPS) with variable manifestation primarily between age 5 and 45. This variability often makes an early diagnosis difficult. A classification defines different clinical variants of Wilson's disease, which enables classifying the current clinical findings and making an early tentative diagnosis. Until the unequivocal proof or an autosomal recessive disorder of the hepatic copper transporter ATP7B has been ruled out, differential diagnoses have to be examined. Laboratory-chemical parameters of copper metabolism can both be deviations from the norm not related to the disease as well as other copper metabolism disorders besides Wilson's disease. In addition to known diseases such as Menkes disease, occipital horn syndrome (OHS), Indian childhood cirrhosis (ICC) and ceruloplasmin deficiency, recently discovered disorders are taken into account. These include MEDNIK syndrome, Huppke-Brendel syndrome and CCS chaperone deficiency. Another main focus is on differential diagnoses of childhood icterus correlated with age and anaemia as well as disorders of the extrapyramidal motor system. The Kayser-Fleischer ring (KFR) is qualified as classical ophthalmologic manifestation. The recently described manganese storage disease presents another rare metabolic disorder with symptoms similar to Wilson's disease. As this overview shows, Wilson's disease fits into a broad spectrum of internal and neurological disease patterns with icterus, anaemia and EPS.
Collapse
Affiliation(s)
- Wieland Hermann
- Department of Neurology, SRO AG Spital Langenthal, Langenthal, Switzerland
| |
Collapse
|
18
|
Sarode GV, Kim K, Kieffer DA, Shibata NM, Litwin T, Czlonkowska A, Medici V. Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019; 15:43. [PMID: 30868361 PMCID: PMC6568258 DOI: 10.1007/s11306-019-1505-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Wilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult. OBJECTIVE The aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition. METHODS Hydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis. RESULTS After adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress. CONCLUSIONS Patients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Gaurav V Sarode
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Tomas Litwin
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Czlonkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
19
|
Chacko C, Rajamohan T. Repeatedly heated cooking oils induced alterations in erythrocyte membrane integrity and antioxidant status in cholesterol fed Sprague Dawley rats. J Food Biochem 2018. [DOI: 10.1111/jfbc.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chinu Chacko
- Department of Biochemistry; University of Kerala; Thiruvananthapuram Kerala India
| | - T. Rajamohan
- Department of Biochemistry; University of Kerala; Thiruvananthapuram Kerala India
| |
Collapse
|
20
|
Palomino-Schätzlein M, García H, Gutiérrez-Carcedo P, Pineda-Lucena A, Herance JR. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS One 2017; 12:e0182985. [PMID: 28793337 PMCID: PMC5549967 DOI: 10.1371/journal.pone.0182985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/03/2023] Open
Abstract
Human peripheral blood cells are relevant ex vivo models for characterizing diseases and evaluating the pharmacological effects of therapeutic interventions, as they provide a close reflection of an individual pathophysiological state. In this work, a new approach to evaluate the impact of nanoparticles on the three main fractions of human peripheral blood cells by nuclear magnetic resonance spectroscopy is shown. Thus, a comprehensive protocol has been set-up including the separation of blood cells, their in vitro treatment with nanoparticles and the extraction and characterization of metabolites by nuclear magnetic resonance. This method was applied to assess the effect of gold nanoparticles, either coated with chitosan or supported on ceria, on peripheral blood cells from healthy individuals. A clear antioxidant effect was observed for chitosan-coated gold nanoparticles by a significant increase in reduced glutathione, that was much less pronounced for gold-cerium nanoparticles. In addition, the analysis revealed significant alterations of several other pathways, which were stronger for gold-cerium nanoparticles. These results are in accordance with the toxicological data previously reported for these materials, confirming the value of the current methodology.
Collapse
Affiliation(s)
| | | | - Patricia Gutiérrez-Carcedo
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pineda-Lucena
- Laboratorio de Bioquímica Estructural, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad de Descubrimiento de Fármacos, Instituto de Investigación Sanitaria La Fe, Hospital Universitario i Politécnico La Fe, Valencia, Spain
| | - José Raul Herance
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Abstract
Many processes lead to anemia. This review covers anemias that are less commonly encountered in the United States. These anemias include hemoglobin defects like thalassemia, bone marrow failure syndromes like aplastic anemia and pure red cell aplasia, and hemolytic processes such as paroxysmal nocturnal hemoglobinuria. The pathogenesis, diagnostic workup, and treatment of these rare anemias are reviewed.
Collapse
Affiliation(s)
- Molly Maddock Daughety
- Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | - Thomas G DeLoughery
- Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201-3098, USA; Division of Hematology/Medical Oncology, Department of Medicine, Knight Cancer Institute, Oregon Health and Science University, MC L586, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
22
|
Katerji M, Barada K, Jomaa M, Kobeissy F, Makkawi AK, Abou-Kheir W, Usta J. Chemosensitivity of U251 Cells to the Co-treatment of D-Penicillamine and Copper: Possible Implications on Wilson Disease Patients. Front Mol Neurosci 2017; 10:10. [PMID: 28197071 PMCID: PMC5281637 DOI: 10.3389/fnmol.2017.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/09/2017] [Indexed: 11/24/2022] Open
Abstract
D-Penicillamine (PA), a copper chelator, and one of the recommended drugs for treatment of Wilson disease (WD) has been reported to worsen the symptoms of patients with neurologic presentations. However, the cause of this paradoxical response has not been fully elucidated and requires further investigations. Accordingly, we have studied the in vitro effect of Copper (Cu) and/or PA treatment on human glioblastoma U251 cells as an in vitro model of Cu cytotoxicity. Treatment of U251 cells with either Cu or PA exerted no significant effect on their morphology, viability or ROS level. In contrast, co-treatment with Cu-PA caused a decrease in viability, altered glutathione and ceruloplasmin expression coupled with marked increase in ROS; depolarization of mitochondrial membrane potential; and an increase in Sub G0 phase; along with alpha-Fodrin proteolysis. These findings along with the absence of LDH release in these assays, suggest that combined Cu-PA exposure induced apoptosis in U251 cells. In addition, pre-/or co-treatment with antioxidants showed a protective effect, with catalase being more effective than N-acetyl cysteine or trolox in restoring viability and reducing generated ROS levels. By comparison, a similar analysis using other cell lines showed that rat PC12 cells were resistant to Cu and/or PA treatment, while the neuroblastoma cell line SH-SY5Y was sensitive to either compound alone, resulting in decreased viability and increased ROS level. Taken together, this study shows that glioblastoma U251 cells provide a model for Cu-PA cytotoxicity mediated by H2O2. We postulate that PA oxidation in presence of Cu yields H2O2 which in turn permeates the plasma membrane and induced apoptosis. However, other cell lines exhibited different responses to these treatments, potentially providing a model for cell type- specific cytotoxic responses in the nervous system. The sensitivity of different neural and glial cell types to Cu-PA treatment may therefore underlie the neurologic worsening occurring in some PA-treated WD patients. Our results also raise the possibility that the side effects of PA treatment might be reduced or prevented by administering antioxidants.
Collapse
Affiliation(s)
- Meghri Katerji
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Kassem Barada
- Department of Internal Medicine, American University of Beirut Medical CenterBeirut, Lebanon
| | - Mustapha Jomaa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Ahmad-Kareem Makkawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
23
|
Dzieżyc K, Litwin T, Członkowska A. Other organ involvement and clinical aspects of Wilson disease. HANDBOOK OF CLINICAL NEUROLOGY 2017; 142:157-169. [PMID: 28433099 DOI: 10.1016/b978-0-444-63625-6.00013-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wilson disease (WD) is a rare disorder of copper metabolism that presents mainly with hepatic and neuropsychiatric features. Copper accumulates not only in the liver and brain, but also in other organs. Liver injury can also be the cause of secondary impairment of other tissues. Therefore, the clinical manifestation of WD may be renal, cardiac, skin, osteoarticular, or endocrinologic and include other organ disturbances. Renal abnormalities include tubular dysfunction (e.g., renal tubular acidosis, aminoaciduria) and nephrolithiasis. Bone demineralization is a common manifestation in patients with WD. Cardiac injury may include arrhythmia, cardiomyopathy, and autonomic dysfunction. Different endocrine system manifestations, such as infertility or repeated miscarriages, growth and puberty disturbances, and hypoparathyroidism, are observed. Other important clinical aspects of WD include pancreas involvement, immunologic abnormalities, the presence of lipomas, and skin changes. Although other organ involvement is not common in WD and usually not severe, delayed diagnosis may lead to irreversible changes in organs and tissues. Therefore, awareness of other possible WD presentations is important in the differential diagnosis of WD.
Collapse
Affiliation(s)
- Karolina Dzieżyc
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland.
| |
Collapse
|
24
|
Behera S, Bulliyya G. Magnitude of Anemia and Hematological Predictors among Children under 12 Years in Odisha, India. Anemia 2016; 2016:1729147. [PMID: 27127647 PMCID: PMC4834407 DOI: 10.1155/2016/1729147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/29/2022] Open
Abstract
Background. Anemia is a wide spread public health problem in India which affects children. The present study evaluates the prevalence of anemia and status of various hematological parameters among children of Khurda district, Odisha. Method. A total of 313 children aged 0-12 years were enrolled for the study which included preschool (0-5 years) and school aged (6-12 years) groups. Hematological indicators were measured by standard procedures, which include red blood cell (RBC) indicators, white blood cell (WBC) indicators, and plasma ferritin. Results. Mean hemoglobin (Hb) of the study population was 10.43 ± 3.33 g/dL and prevalence of anemia was 62%. In this population, boys had a lower mean Hb value than that of the girls. All grades of anemia were higher among school age children than preschool children. Mean plasma ferritin was found to be higher in school age boys than their counterpart girls. The mean level of WBC count was found to be higher among preschool age boys than among the school age boys (p = 0.025). Conclusion. The prevalence of anemia was higher with concomitant acute infection among study population, which is a matter of concern. Since the hematological parameters are interrelated with each other as well as with the age and gender, relevant intervention strategy and constant monitoring are needed while providing public health nutrition programs to eradicate anemia.
Collapse
Affiliation(s)
- Shuchismita Behera
- Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar 751023, India
| | - Gandham Bulliyya
- Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar 751023, India
| |
Collapse
|
25
|
Xiao Y, Zhai Q, Wang G, Liu X, Zhao J, Tian F, Zhang H, Chen W. Metabolomics analysis reveals heavy metal copper-induced cytotoxicity in HT-29 human colon cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra09320e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
LC-MS based metabolomics analysis reveals heavy metal copper-induced cytotoxicity in a human intestinal cell line, HT-29.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
26
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
27
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
28
|
Kalita J, Kumar V, Misra UK, Ranjan A, Khan H, Konwar R. A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings. J Neuroimmunol 2014; 274:141-8. [DOI: 10.1016/j.jneuroim.2014.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 01/07/2023]
|
29
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
30
|
Gaier ED, Eipper BA, Mains RE. Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 2012; 91:2-19. [PMID: 23115049 DOI: 10.1002/jnr.23143] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/05/2012] [Accepted: 08/17/2012] [Indexed: 12/14/2022]
Abstract
Copper is an essential metal present at high levels in the CNS. Its role as a cofactor in mitochondrial ATP production and in essential cuproenzymes is well defined. Menkes and Wilson's diseases are severe neurodegenerative conditions that demonstrate the importance of Cu transport into the secretory pathway. In the brain, intracellular levels of Cu, which is almost entirely protein bound, exceed extracellular levels by more than 100-fold. Cu stored in the secretory pathway is released in a Ca(2+)-dependent manner and can transiently reach concentrations over 100 μM at synapses. The ability of low micromolar levels of Cu to bind to and modulate the function of γ-aminobutyric acid type A (GABA(A)) receptors, N-methyl-D-aspartate (NMDA) receptors, and voltage-gated Ca(2+) channels contributes to its effects on synaptic transmission. Cu also binds to amyloid precursor protein and prion protein; both proteins are found at synapses and brain Cu homeostasis is disrupted in mice lacking either protein. Especially intriguing is the ability of Cu to affect AMP-activated protein kinase (AMPK), a monitor of cellular energy status. Despite this, few investigators have examined the direct effects of Cu on synaptic transmission and plasticity. Although the variability of results demonstrates complex influences of Cu that are highly method sensitive, these studies nevertheless strongly support important roles for endogenous Cu and new roles for Cu-binding proteins in synaptic function/plasticity and behavior. Further study of the many roles of Cu in nervous system function will reveal targets for intervention in other diseases in which Cu homeostasis is disrupted.
Collapse
Affiliation(s)
- E D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
31
|
Abstract
Wilson disease is an autosomal recessive inherited disorder of human copper metabolism clinically associated with hepatic damage and/or neurological symptoms of varying degree. Copper accumulation and toxicity result in direct injury to hepatocytes followed by inflammation and irreversible impairment of neurons, mainly in the extrapyramidal system. A not insignificant number of cases begin with fulminant liver failure or acute appearance of neurological symptoms. If left untreated or in the case of delayed diagnosis and treatment, both acute manifestations may result in irreversible symptoms or even death. Rapid and exact diagnosis by means of clinical, biochemical and genetic analysis and the immediate initiation of drug therapy with copper chelators or, in the case of fulminant liver failure, orthotopic liver transplantation are essential for a favourable outcome in patients with acute Wilson disease.
Collapse
Affiliation(s)
- D Huster
- Klinik für Gastroenterologie und Onkologie, Zentrum für Innere Medizin, Ev. Diakonissenkrankenhaus Leipzig, Georg-Schwarz-Straße 49, 04107, Leipzig.
| | | | | |
Collapse
|
32
|
Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 2009; 46:241-81. [DOI: 10.3109/10408360903142326] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Barton H. Predicted intake of trace elements and minerals via household drinking water by 6-year-old children from Krakow (Poland). Part 4: Copper. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2009; 26:988-1001. [DOI: 10.1080/02652030902839723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Clinical features of hemolysis, elevated liver enzymes, and low platelet count syndrome in undiagnosed Wilson disease: report of two cases. Arch Gynecol Obstet 2009; 281:129-34. [PMID: 19381668 DOI: 10.1007/s00404-009-1080-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/26/2009] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wilson's disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper mainly in the liver and brain. The hepatic manifestation of WD is diverse and may include asymptomatic elevation of aminotransferase, chronic hepatitis, cirrhosis, or acute/fulminant hepatic failure. Characteristic of acute hepatic failure in WD is concomitance of acute intravascular hemolytic anemia that in some patients may represent a first clinical symptom of WD. The diagnosis of acute Wilsonian liver failure is difficult, as similar signs may be observed in other clinical conditions. In pregnant patients with unrecognized WD, liver failure with hemolysis may be interpreted as the low platelet count (HELLP) syndrome. PATIENTS We describe two women, who developed the clinical features of hemolysis, elevated liver enzymes, and HELLP syndrome. In both, further diagnostics confirmed WD. CONCLUSION WD should be remembered in the differential diagnostics of HELLP syndrome.
Collapse
|
35
|
Alexandrova A, Petrov L, Georgieva A, Kessiova M, Tzvetanova E, Kirkova M, Kukan M. Effect of copper intoxication on rat liver proteasome activity: relationship with oxidative stress. J Biochem Mol Toxicol 2009; 22:354-62. [PMID: 18972400 DOI: 10.1002/jbt.20248] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Copper toxicity is associated with formation of reactive oxygen species, which are capable to oxidize proteins. The selective removal of the latter by the 20S proteasome is considered an essential part of the cell antioxidant defense system. The aim of the present study was to investigate whether peptidase activities of rat liver proteasomes were affected by chronic (40 mg CuSO(4)/rat/daily with the drinking water for 2 weeks) and acute (20 mg/kg CuSO(4), s.c.) copper treatment. To evaluate the role of proteasome, its inhibitor MG132 was also used. The degree of copper-induced oxidative stress (OS), established by measuring lipid peroxidation, protein oxidation, and cellular glutathione level, as well as activities of antioxidant enzymes--catalase, superoxide dismutase, and gultathionine peroxidase, depended on the mode of copper administration. Chronic copper administration (mild oxidative stress) did not affect proteasome activities, whereas acute copper treatment (severe oxidative stress) caused a decline in chymotryptic- and tryptic-like activities. The treatment of copper-loaded animals with MG132 did not change copper-induced alterations in the tested indices, except an additional increase in protein oxidation and inhibition of glutathionine peroxidase activity. The results suggested that the in vivo copper-induced oxidative stress was associated with changes in the catalytic activity of proteasome.
Collapse
Affiliation(s)
- Albena Alexandrova
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev St., 1113 Sofia, Bulgaria. a_alexandrova
| | | | | | | | | | | | | |
Collapse
|
36
|
Aggarwal M, Naraharisetti SB, Sarkar SN, Rao GS, Degen GH, Malik JK. Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:139-148. [PMID: 18443843 DOI: 10.1007/s00244-008-9171-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Arsenic is a known global groundwater contaminant. The organochlorine insecticide endosulfan has gained significance as an environmental pollutant due to its widespread use in the control of many food- and non-food-crop-damaging insects. The adverse effects produced by arsenic or endosulfan alone in humans and animals are well documented, but very little is known about the consequences of their coexposure. We evaluated whether their simultaneous exposure can induce oxidative stress and affect antioxidative systems and certain membrane-bound enzymes in erythrocytes of broiler chickens. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water or 30 ppm of endosulfan-mixed feed or similarly coexposed to these in the same dose levels for 60 days. At term, the impact of their coexposure was assessed by evaluating lipid peroxidation (LPO), activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST), different ATPases and acetylcholinesterase (AChE) in erythrocytes, serum glucose, and levels of glutathione (GSH) and glycosylated hemoglobin (GHb) in blood. LPO was increased with all of the treatments. Catalase was decreased with endosulfan and the coexposure, but not with arsenic, whereas GSH was decreased with arsenic and endosulfan, but not with the coexposure. All of the treatments increased SOD and GPx activities. GST activity was increased only in the coexposed birds. None of the treatments affected the activities of total ATPase and Mg2+-ATPase. Na+-K+-ATPase activity was decreased in the endosulfan-treated and the coexposed birds. All three exposures increased erythrocyte AChE activity. Endosulfan increased the serum glucose level and arsenic and endosulfan increased GHb levels, but these were not altered in the coexposed birds. Erythrocyte protein content was insignificantly decreased with these treatments. Overall, the effects of coexposure were not appreciably different from either of the agents, except on AChE, GSH, and glucose. The results do not reflect any specific type of interaction between these agents in chicken erythrocytes, but they do indicate that the coexposure induces a low level of oxidative stress, which is comparable to that induced by arsenic or endosulfan.
Collapse
Affiliation(s)
- Manoj Aggarwal
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, UP 243122, India.
| | | | | | | | | | | |
Collapse
|
37
|
Manley SA, Byrns S, Lyon AW, Brown P, Gailer J. Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography–inductively coupled plasma atomic emission spectroscopy. J Biol Inorg Chem 2008; 14:61-74. [DOI: 10.1007/s00775-008-0424-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
|
38
|
Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol Cell Biochem 2008; 317:51-9. [DOI: 10.1007/s11010-008-9807-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
|
39
|
Kenney SM, Cox DW. Sequence variation database for the Wilson disease copper transporter, ATP7B. Hum Mutat 2008; 28:1171-7. [PMID: 17680703 DOI: 10.1002/humu.20586] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wilson disease (WND) is a disorder of copper transport resulting in copper accumulation in liver, kidney, and brain. This recessive disorder expresses variable clinical symptoms affecting liver, brain, and/or kidney. The age of onset of symptoms varies from 3 to almost 70 years, so the diagnosis for this treatable disorder is easily missed. The defective gene is a membrane P-type ATPase, with similar structure to the other metal transporting ATPases. Most patients with Wilson disease are compound heterozygotes. This report describes the database we have developed for reporting of mutations in ATP7B, the gene defective in WND. The database includes more than 518 variants (379 probable disease-causing and the remainder possible normal variants) from populations worldwide (Available at: www.medicalgenetics.med.ualberta.ca/wilson/index.php; Last accessed: 20 June 2007). The tables in this database are a valuable resource for the study of population variation and the function of the transporter, and will assist in the identification of disease and non-disease-causing sequence variants.
Collapse
Affiliation(s)
- Susan M Kenney
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
40
|
Bartee MY, Lutsenko S. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 2007; 20:627-37. [PMID: 17268820 DOI: 10.1007/s10534-006-9074-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 11/28/2006] [Indexed: 12/18/2022]
Abstract
Copper-transporting ATPase ATP7B (Wilson disease protein) is a member of the P-type ATPase family with characteristic domain structure and distinct ATP-binding site. ATP7B plays a central role in the regulation of copper homeostasis in the liver by delivering copper to the secretory pathway and mediating export of excess copper into the bile. The dual function of ATP7B in hepatocytes is coupled with copper-dependent intracellular relocalization of the transporter. The final destination of ATP7B in hepatocytes during the copper-induced trafficking process is still under debate. We show the results of immunocytochemistry experiments in polarized HepG2 cells that support the model in which elevated copper induces trafficking of ATP7B to sub-apical vesicles, and transiently to the canalicular membrane. In Atp7b-/- mice, an animal model of Wilson disease, both copper delivery to the trans-Golgi network and copper export into the bile are disrupted despite large accumulation of copper in the cytosol. We review the biochemical and physiological changes associated with Atp7b inactivation in mouse liver and discuss the pleiotropic consequences of the common Wilson disease mutation, His1069Gln.
Collapse
Affiliation(s)
- Mee Y Bartee
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|