1
|
Peng T, Lin Y, Xu X, Li J, Liu M, Zhang C, Liao X, Ji X, Xiong Z, Gu Z, Cai X, Tao T, Zhang Y, Zhu L, Zhuang D, Huang X, Xiong M, Zhang P, Liu J, Cheng G. Assessing neonatal brain glymphatic system development using diffusion tensor imaging along the perivascular space and choroid plexus volume. BMC Med Imaging 2025; 25:126. [PMID: 40247273 PMCID: PMC12007372 DOI: 10.1186/s12880-025-01673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
PURPOSE Neonatal brain development constitutes a critical period of structural and functional maturation underpinning sensory, motor, and cognitive capacities. The glymphatic system-a cerebral waste clearance network-remains poorly understood in neonates. We investigated non-invasive magnetic resonance imaging (MRI) biomarkers of glymphatic system and their developmental correlates in neonates. METHODS In 117 neonates undergoing high-resolution T1-weighted and diffusion MRI, we quantified two glymphatic metrics: (1) diffusion tensor imaging along the perivascular space (DTI-ALPS) index, reflecting perivascular fluid dynamics; (2) choroid plexus (CP) volume, a cerebrospinal fluid (CSF) production marker. Associations with postmenstrual age (PMA) at MRI scan, gestational age (GA), birth weight (BW), and sex were analyzed using covariate-adjusted models. RESULTS Preterm neonates displayed significantly reduced DTI-ALPS indices versus term neonates (total index: 1.01 vs. 1.05, P = 0.002), with reductions persisting after adjustment (P < 0.05). CP volumes showed right-dominant pre-adjustment differences (preterm: 0.33 vs. term: 0.39, P = 0.039) that attenuated post-adjustment (P = 0.348). DTI-ALPS indices demonstrated transient correlations with PMA/GA/BW in unadjusted analyses (P < 0.05), whereas CP volumes maintained robust PMA associations post-adjustment in all neonates (P = 0.037) and term subgroup (P = 0.013). No significant effects of sex on both metrics were observed. CONCLUSION Our findings reveal prematurity-associated delays in glymphatic maturation, rather than biological sex. The persistent PMA-CP volume relationship suggests developmental regulation of CSF production, while attenuated DTI-ALPS correlations highlight covariate-mediated effects. These glymphatic metrics show potential for monitoring neurodevelopmental trajectories, though longitudinal validation is required to establish their clinical utility in neonatal care. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ting Peng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Ying Lin
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Xin Xu
- Department of Neonatology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Jiaqi Li
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Miaoshuang Liu
- Department of Neonatology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Chaowei Zhang
- Department of Neonatology, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Xiaohui Liao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaoshan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Zhongmeng Xiong
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Zhuoyang Gu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Xinyi Cai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Tianli Tao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Yajuan Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Lixuan Zhu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Deyi Zhuang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Zhang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Jungang Liu
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China.
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China.
| |
Collapse
|
2
|
Lin S, Lin X, Liang Q, Chen S, Zhang Y, Li Y, Dong T, Qiu Y. Glymphatic System in Preterm Neonates: Developmental Insights Following Birth Asphyxia. J Magn Reson Imaging 2025; 61:1761-1769. [PMID: 39304516 DOI: 10.1002/jmri.29615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Birth asphyxia (BA) and germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) are common clinical events in preterm neonates. However, their effects on the glymphatic system (GS) development in preterm neonates remain arcane. PURPOSE To evaluate the developmental trajectory of the GS, and to investigate the effects of BA and GMH-IVH on GS function in preterm neonates. STUDY TYPE Prospective. POPULATION Two independent datasets, prospectively acquired internal dataset (including 99 preterm neonates, 40 female, mean [standard deviation] gestational age (GA) at birth, 29.95 [2.63] weeks) and the developing Human Connectome Project (dHCP) dataset (including 81 preterm neonates, 29 female, median [interquartile range] GA at birth, 32.71 [4.28] weeks). FIELD STRENGTH/SEQUENCE 3.0 T MRI and diffusion-weighted spin-echo planar imaging sequence. ASSESSMENT The diffusion-weighted images were preprocessed in volumetric space using the FMRIB Software Library and diffusion along the perivascular space (DTI-ALPS) index was accessed to evaluate GS function. STATISTICAL TESTS Two sample t tests, one-way analysis of variance followed by least-significant difference (LSD) post hoc analysis, chi-squared tests, and Pearson's correlation analysis. Significance level: P < 0.05. RESULTS In prospectively acquired internal dataset, preterm neonates with BA exhibited a significant lower DTI-ALPS index than those without BA (0.98 ± 0.08 vs. 1.08 ± 0.07, T = -5.89); however, GMH-IVH did not exert significant influences on the DTI-ALPS index (P = 0.83 and 0.27). The DTI-ALPS index increased significantly at postmenstrual age ranging from 25 to 34 weeks (r = 0.38) and then plateaued after 34 weeks (P = 0.35), which we also observed in the dHCP dataset. DATA CONCLUSION BA rather than GMH-IVH serves as the major influencing factor in the development of GS in preterm neonates. Moreover, as GS development follows a nonlinear trajectory, we recommend close monitoring of GS development in preterm neonates with a GA less than 34 weeks. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanyu Zhang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ying Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Tianfa Dong
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Lin S, Guo M, Liang Q, Lin X, Chen S, Li Y, Chen P, Qiu Y. Evaluation of Glymphatic System Development in Neonatal Brain via Diffusion Analysis along the Perivascular Space Index. Ann Neurol 2024; 96:970-980. [PMID: 39096048 DOI: 10.1002/ana.27047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Glymphatic system is a recently discovered macroscopic waste clearance system associated with numerous neurological diseases. However, little is known about glymphatic system development in neonates. We sought to evaluate diffusion along the perivascular space (ALPS) index, a proxy for glymphatic system function, in neonates and investigate its potential associations with maturation, sex, and preterm birth. METHODS Diffusion magnetic resonance imaging (MRI) data in 418 neonates, including 92 preterm neonates (57 males) and 326 term neonates (175 males), from the Developing Human Connectome Project were used for evaluating ALPS index. Linear regression modeling was performed to assess group differences in the ALPS index according to preterm birth and sex. Pearson's and partial correlation analysis were performed to assess the association between the ALPS index and gestational age (GA) as well as postmenstrual age (PMA) at MRI. Moderation analysis was performed to assess the moderation effect of preterm birth on the relationship between the ALPS index and PMA. RESULTS Compared to term neonates, preterm neonates exhibited lower ALPS indices (p < 0.001). The ALPS index positively correlated with PMA (p = 0.004) and GA (p < 0.001). Preterm birth (p = 0.013) had a significant moderation effect on the relationship between the ALPS index and PMA. Sex had no significant direct effect (p = 0.639) or moderation effect (p = 0.333) on ALPS index. INTERPRETATION Glymphatic system development is a dynamic process in neonates, which can be moderated by preterm birth, the ALPS index could serve as a sensitive biomarker for monitoring this process. ANN NEUROL 2024;96:970-980.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meifen Guo
- Department of Radiology, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ying Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Peiqi Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Lorin C, Guiet R, Chiaruttini N, Ambrosini G, Boci E, Abdellah M, Markram H, Keller D. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex. Glia 2024; 72:2001-2021. [PMID: 39007459 DOI: 10.1002/glia.24594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
Collapse
Affiliation(s)
- Charlotte Lorin
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Elvis Boci
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
5
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
6
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
7
|
Wu BA, Chand KK, Bell A, Miller SL, Colditz PB, Malhotra A, Wixey JA. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res 2024; 95:59-69. [PMID: 37674023 PMCID: PMC10798895 DOI: 10.1038/s41390-023-02805-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.
Collapse
Affiliation(s)
- Bing Anthony Wu
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Bell
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Eidahl JML, Rognum TO, Stray-Pedersen A, Opdal SH. Brain water content in sudden unexpected infant death. Forensic Sci Med Pathol 2023; 19:507-516. [PMID: 36735187 PMCID: PMC10752850 DOI: 10.1007/s12024-023-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
The extensive and rapid development of the human brain during the first years of life complicates the postmortem diagnosis of brain edema in infancy. The aim of this study was to describe brain water content, the brain weight/body weight ratio, and the brain weight/head circumference ratio throughout the first years of life. Furthermore, we examined the relationship between these parameters and rs2075575 in the AQP4 gene. Our hypothesis was that dysregulated water homeostasis might be a risk factor for sudden infant death syndrome (SIDS), which may be reflected by increased water content in the brain. The study included 90 subjects with sudden unexpected death < 4 years of age: 22 cases of sudden infant death syndrome, 11 cases of sudden unexplained death in childhood, 47 cases of death due to disease, and 10 cases of accident/violent death. Brain water content, brain weight/body weight ratio, and brain weight/head circumference ratio were investigated according to corrected age, diagnosis group, attempt to resuscitate, and presence of brain edema. We found that brain water content and brain weight/body weight ratio were significantly reduced with increasing age, while brain weight/head circumference were increased. Brain weight/head circumference was correlated with brain water content. Cases with brain edema had a significantly higher brain weight/head circumference than the non-edematous cases. No differences were found between the diagnosis groups for any of the investigated parameters. In summary, the findings contribute to the current body of knowledge regarding brain growth during the first months of life.
Collapse
Affiliation(s)
- Johanna Marie Lundesgaard Eidahl
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Arne Stray-Pedersen
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Siri Hauge Opdal
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Wevers NR, De Vries HE. Microfluidic models of the neurovascular unit: a translational view. Fluids Barriers CNS 2023; 20:86. [PMID: 38008744 PMCID: PMC10680291 DOI: 10.1186/s12987-023-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
The vasculature of the brain consists of specialized endothelial cells that form a blood-brain barrier (BBB). This barrier, in conjunction with supporting cell types, forms the neurovascular unit (NVU). The NVU restricts the passage of certain substances from the bloodstream while selectively permitting essential nutrients and molecules to enter the brain. This protective role is crucial for optimal brain function, but presents a significant obstacle in treating neurological conditions, necessitating chemical modifications or advanced drug delivery methods for most drugs to cross the NVU. A deeper understanding of NVU in health and disease will aid in the identification of new therapeutic targets and drug delivery strategies for improved treatment of neurological disorders.To achieve this goal, we need models that reflect the human BBB and NVU in health and disease. Although animal models of the brain's vasculature have proven valuable, they are often of limited translational relevance due to interspecies differences or inability to faithfully mimic human disease conditions. For this reason, human in vitro models are essential to improve our understanding of the brain's vasculature under healthy and diseased conditions. This review delves into the advancements in in vitro modeling of the BBB and NVU, with a particular focus on microfluidic models. After providing a historical overview of the field, we shift our focus to recent developments, offering insights into the latest achievements and their associated constraints. We briefly examine the importance of chip materials and methods to facilitate fluid flow, emphasizing their critical roles in achieving the necessary throughput for the integration of microfluidic models into routine experimentation. Subsequently, we highlight the recent strides made in enhancing the biological complexity of microfluidic NVU models and propose recommendations for elevating the biological relevance of future iterations.Importantly, the NVU is an intricate structure and it is improbable that any model will fully encompass all its aspects. Fit-for-purpose models offer a valuable compromise between physiological relevance and ease-of-use and hold the future of NVU modeling: as simple as possible, as complex as needed.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, De Limes 7, Oegstgeest, 2342 DH, The Netherlands.
| | - Helga E De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Alnaqbi N, Mohammad MG, Hamoudi R, Mabondzo A, Harati R. Molecular Heterogeneity of the Brain Endothelium. Curr Issues Mol Biol 2023; 45:3462-3478. [PMID: 37185751 PMCID: PMC10136751 DOI: 10.3390/cimb45040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The blood-brain barrier (BBB) is part of a neurovascular structure located in the brain's micro vessels, that is essential to maintain brain homeostasis, but prevents the brain uptake of most drugs. Because of its importance in neuro-pharmacotherapy, the BBB has been the subject of extensive research since its discovery over 100 years ago. Major advances in understanding the structure and function of the barrier have been made. Drugs are re-designed to cross the BBB. However, despite these efforts, overcoming the BBB efficiently to treat brain diseases safely remains challenging. The majority of BBB research studies focus on the BBB as a homogenous structure throughout the different brain regions. However, this simplification may lead to an inadequate understanding of the BBB function with significant therapeutic consequences. From this perspective, we analyzed the gene and protein expression profiles of the BBB in the micro vessels from the brains of mice that were isolated from two different brain regions, namely the cortex and the hippocampus. The expression profile of the inter-endothelial junctional protein (claudin-5), three ABC transporters (P-glycoprotein, Bcrp and Mrp-1), and three BBB receptors (lrp-1, TRF and GLUT-1) were analyzed. Our gene and protein analysis showed that the brain endothelium in the hippocampus exhibits different expression profiles compared to the brain cortex. Specifically, brain endothelial cells (BECs) of the hippocampus express higher gene levels of abcb1, abcg2, lrp1, and slc2a1 compared to the BECs of the cortex regions with a trend of increase for claudin-5, while BECs of the cortex express higher gene levels of abcc1 and trf compared to the hippocampus. At the protein levels, the P-gp expression was found to be significantly higher in the hippocampus compared to the cortex, while TRF was found to be up-regulated in the cortex. These data suggest that the structure and function of the BBB are not homogeneous, and imply that drugs are not delivered similarly among the different brain regions. Appreciation of the BBB heterogeneity by future research programs is thus critical for efficient drug delivery and the treatment of brain diseases.
Collapse
Affiliation(s)
- Nada Alnaqbi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Medical Laboratories, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Aloïse Mabondzo
- Department of Medicines and Healthcare Technologies, Paris-Saclay University, The French Alternative Energies and Atomic Energy Commission, 91191 Gif-sur-Yvette, France
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
11
|
Bell A, Watt AP, Dudink I, Pham Y, Sutherland AE, Allison BJ, McDonald CA, Castillo-Melendez M, Jenkin G, Malhotra A, Miller SL, Yawno T. Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs. Stem Cell Res Ther 2023; 14:29. [PMID: 36788590 PMCID: PMC9930266 DOI: 10.1186/s13287-023-03249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
Collapse
Affiliation(s)
- Alexander Bell
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Ashalyn P. Watt
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ingrid Dudink
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Yen Pham
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Amy E. Sutherland
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Beth J. Allison
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Courtney A. McDonald
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | | | - Graham Jenkin
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia. .,Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Suzanne L. Miller
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC 3168 Australia
| |
Collapse
|
12
|
Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron Brain Menace: The Involvement of Ferroptosis in Parkinson Disease. Cells 2022; 11:3829. [PMID: 36497089 PMCID: PMC9735800 DOI: 10.3390/cells11233829] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Pao Chien Hospital, Pingtung 90064, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson’s Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| |
Collapse
|
13
|
Dimitroglou M, Iliodromiti Z, Christou E, Volaki P, Petropoulou C, Sokou R, Boutsikou T, Iacovidou N. Human Breast Milk: The Key Role in the Maturation of Immune, Gastrointestinal and Central Nervous Systems: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12092208. [PMID: 36140609 PMCID: PMC9498242 DOI: 10.3390/diagnostics12092208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/22/2022] Open
Abstract
Premature birth is a major cause of mortality and morbidity in the pediatric population. Because their immune, gastrointestinal and nervous systems are not fully developed, preterm infants (<37 weeks of gestation) and especially very preterm infants (VPIs, <32 weeks of gestation) are more prone to infectious diseases, tissue damage and future neurodevelopmental impairment. The aim of this narrative review is to report the immaturity of VPI systems and examine the role of Human Breast Milk (HBM) in their development and protection against infectious diseases, inflammation and tissue damage. For this purpose, we searched and synthesized the data from the existing literature published in the English language. Studies revealed the significance of HBM and indicate HBM as the best dietary choice for VPIs.
Collapse
|
14
|
Abstract
Despite improvements in the mortality rates of preterm infants, rates of germinal matrix intraventricular hemorrhage (IVH) have remained static with an overall incidence of 25% in infants less than 32 weeks. The importance of the lesion relates primarily to the underlying injury to the developing brain and the associated long-term neurodevelopmental consequences. This clinical-orientated review focuses on the pathogenesis of IVH and discusses the evidence behind proposed prevention strategies.
Collapse
Affiliation(s)
- Aisling A Garvey
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian H Walsh
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Nadeem T, Bommareddy A, Bolarinwa L, Cuervo H. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J 2022; 36:e22339. [PMID: 35506590 DOI: 10.1096/fj.202200120r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most devastating neurological complication in premature infants. GM-IVH usually begins in the GM, a highly vascularized region of the developing brain where glial and neuronal precursors reside underneath the lateral ventricular ependyma. Previous studies using human fetal tissue have suggested increased angiogenesis and paucity of pericytes as key factors contributing to GM-IVH pathogenesis. Yet, despite its relevance, the mechanisms underlying the GM vasculature's susceptibility to hemorrhage remain poorly understood. To gain better understanding on the vascular dynamics of the GM, we performed a comprehensive analysis of the mouse GM vascular endothelium and pericytes during development. We hypothesize that vascular development of the mouse GM will provide a good model for studies of human GM vascularization and provide insights into the role of pericytes in GM-IVH pathogenesis. Our findings show that the mouse GM presents significantly greater vascular area and vascular branching compared to the developing cortex (CTX). Analysis of pericyte coverage showed abundance in PDGFRβ-positive and NG2-positive pericyte coverage in the GM similar to the developing CTX. However, we found a paucity in Desmin-positive pericyte coverage of the GM vasculature. Our results underscore the highly angiogenic nature of the GM and reveal that pericytes in the developing mouse GM exhibit distinct phenotypical and likely functional characteristics compared to other brain regions which might contribute to the high susceptibility of the GM vasculature to hemorrhage.
Collapse
Affiliation(s)
- Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Apoorva Bommareddy
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lolade Bolarinwa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Time Course of Changes in the Neurovascular Unit after Hypoxic-Ischemic Injury in Neonatal Rats. Int J Mol Sci 2022; 23:ijms23084180. [PMID: 35456999 PMCID: PMC9027443 DOI: 10.3390/ijms23084180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRβ), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.
Collapse
|
17
|
Hösli L, Zuend M, Bredell G, Zanker HS, Porto de Oliveira CE, Saab AS, Weber B. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep 2022; 39:110599. [PMID: 35385728 DOI: 10.1016/j.celrep.2022.110599] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes establish extensive networks via gap junctions that allow each astrocyte to connect indirectly to the vasculature. However, the proportion of astrocytes directly associated with blood vessels is unknown. Here, we quantify structural contacts of cortical astrocytes with the vasculature in vivo. We show that all cortical astrocytes are connected to at least one blood vessel. Moreover, astrocytes contact more vessels in deeper cortical layers where vessel density is known to be higher. Further examination of different brain regions reveals that only the hippocampus, which has the lowest vessel density of all investigated brain regions, harbors single astrocytes with no apparent vascular connection. In summary, we show that almost all gray matter astrocytes have direct contact to the vasculature. In addition to the glial network, a direct vascular access may represent a complementary pathway for metabolite uptake and distribution.
Collapse
Affiliation(s)
- Ladina Hösli
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Gustav Bredell
- ETH Zurich, Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland
| | - Henri S Zanker
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Carlos Eduardo Porto de Oliveira
- ETH Zurich, Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland
| | - Aiman S Saab
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Pharmacological neuroprotection and clinical trials of novel therapies for neonatal peri-intraventricular hemorrhage: a comprehensive review. Acta Neurol Belg 2022; 122:305-314. [PMID: 35182373 DOI: 10.1007/s13760-022-01889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Peri-intraventricular hemorrhage (PIVH) is a serious condition for preterm infants, caused by traumatic or spontaneous rupture of the germinal matrix (GM) capillary network in the cerebral ventricles. It is a common source of morbidity and mortality in neonates, and risk correlates with earlier delivery, low birth weight, maternal-fetal infection, and vital sign derangements, among others. PIVH typically occurs in the first 72 h of life, and symptoms, when present, manifest most commonly within the first week of life. Prevention remains the primary goal in management, predominantly via prolonging of gestation. Current therapy protocols are center-dependent without consistent consensus guidelines, but infant positioning, homeostatic stabilization, and neuroprotection offer potential options. In this update of pharmacologic neuroprotective therapies for PIVH, we highlight commonly utilized therapies and review the investigative literature. Further multi-institutional clinical trials and basic research studies are required.
Collapse
|
19
|
Gilbert A, Elorza-Vidal X, Rancillac A, Chagnot A, Yetim M, Hingot V, Deffieux T, Boulay AC, Alvear-Perez R, Cisternino S, Martin S, Taïb S, Gelot A, Mignon V, Favier M, Brunet I, Declèves X, Tanter M, Estevez R, Vivien D, Saubaméa B, Cohen-Salmon M. Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. eLife 2021; 10:71379. [PMID: 34723793 PMCID: PMC8598235 DOI: 10.7554/elife.71379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Absence of the astrocyte-specific membrane protein MLC1 is responsible for megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare type of leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation that lead to ataxia, spasticity, and cognitive decline. During postnatal development (from P5 to P15 in the mouse), MLC1 forms a membrane complex with GlialCAM (another astrocytic transmembrane protein) at the junctions between perivascular astrocytic processes. Perivascular astrocytic processes along with blood vessels form the gliovascular unit. It was not previously known how MLC1 influences the physiology of the gliovascular unit. Here, using the Mlc1 knock-out mouse model of MLC, we demonstrated that MLC1 controls the postnatal development and organization of perivascular astrocytic processes, vascular smooth muscle cell contractility, neurovascular coupling, and intraparenchymal interstitial fluid clearance. Our data suggest that MLC is a developmental disorder of the gliovascular unit, and perivascular astrocytic processes and vascular smooth muscle cell maturation defects are primary events in the pathogenesis of MLC and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France.,École doctorale Cerveau Cognition Comportement "ED3C" N°158, Pierre and Marie Curie University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | - Armelle Rancillac
- Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Mervé Yetim
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Vincent Hingot
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | | | - Sabrina Martin
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Sonia Taïb
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Aontoinette Gelot
- Service d'anatomie et cytologie pathologie de l'hôpital Armand Trousseau, Paris, France
| | - Virginie Mignon
- Cellular and Molecular Imaging Facility, US25 INSERM, UMS3612 CNRS, Faculty of Pharmacy, University of Paris, Paris, France
| | | | - Isabelle Brunet
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Xavier Declèves
- Université de Paris, Faculté de Santé, Paris, France.,Biologie du médicament et toxicologie, Assistance Publique - hôpitaux de Paris, APHP, Hôpital Cochin, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Bruno Saubaméa
- Université de Paris, Faculté de Santé, Paris, France.,Cellular and Molecular Imaging Facility, US25 INSERM, UMS3612 CNRS, Faculty of Pharmacy, University of Paris, Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| |
Collapse
|
20
|
Function and Biomarkers of the Blood-Brain Barrier in a Neonatal Germinal Matrix Haemorrhage Model. Cells 2021; 10:cells10071677. [PMID: 34359845 PMCID: PMC8303246 DOI: 10.3390/cells10071677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Germinal matrix haemorrhage (GMH), caused by rupturing blood vessels in the germinal matrix, is a prevalent driver of preterm brain injuries and death. Our group recently developed a model simulating GMH using intrastriatal injections of collagenase in 5-day-old rats, which corresponds to the brain development of human preterm infants. This study aimed to define changes to the blood-brain barrier (BBB) and to evaluate BBB proteins as biomarkers in this GMH model. Regional BBB functions were investigated using blood to brain 14C-sucrose uptake as well as using biotinylated BBB tracers. Blood plasma and cerebrospinal fluids were collected at various times after GMH and analysed with ELISA for OCLN and CLDN5. The immunoreactivity of BBB proteins was assessed in brain sections. Tracer experiments showed that GMH produced a defined region surrounding the hematoma where many vessels lost their integrity. This region expanded for at least 6 h following GMH, thereafter resolution of both hematoma and re-establishment of BBB function occurred. The sucrose experiment indicated that regions somewhat more distant to the hematoma also exhibited BBB dysfunction; however, BBB function was normalised within 5 days of GMH. This shows that GMH leads to a temporal dysfunction in the BBB that may be important in pathological processes as well as in connection to therapeutic interventions. We detected an increase of tight-junction proteins in both CSF and plasma after GMH making them potential biomarkers for GMH.
Collapse
|
21
|
Eidahl JML, Stray-Pedersen A, Rognum TO, Opdal SH. Aquaporin 4 expression in the hippocampus in sudden infant death syndrome and sudden unexplained death in childhood. J Chem Neuroanat 2021; 115:101962. [PMID: 33945852 DOI: 10.1016/j.jchemneu.2021.101962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Aquaporin 4 (AQP4) is the main membrane water channel in the brain involved in regulating water homeostasis. The water distribution in neural tissue is often dysregulated after hypoxic neural injury. Previous research has indicated that victims of sudden infant death syndrome (SIDS) and sudden unexplained death in childhood (SUDC) have an underlying brain dysfunction that impairs their critical arousal response to hypoxic stress during sleep. The aim of this study was to determine the expression levels of AQP4 in the hippocampus in SIDS/SUDC cases and controls, and compare the findings with AQP4 genotypes that previously have been shown to be associated with SIDS. Immunochemical staining and morphometry were used to evaluate the density of AQP4-positive astrocytes in 30 SIDS/SUDC cases and 26 controls. AQP4-positive cells were counted in grids covering three layers in the hippocampus, which revealed that their count in any of the layers did not differ significantly between cases and controls. A decline in AQP4 expression was observed for infants older than 12 weeks. The AQP4 expression was lower in infants and children with the rs2075575 CT/TT genotype than in those with the CC genotype. This study indicates that AQP4 expression may be influenced by both age and genotype in infants. The role of AQP4 in the pathogenesis of SIDS remains to be elucidated.
Collapse
Affiliation(s)
- Johanna Marie Lundesgaard Eidahl
- Oslo University Hospital, Division of Laboratory Medicine, Department of Forensic Sciences, Oslo, Norway; University of Oslo, Institute of Clinical Medicine, Oslo, Norway.
| | - Arne Stray-Pedersen
- Oslo University Hospital, Division of Laboratory Medicine, Department of Forensic Sciences, Oslo, Norway; University of Oslo, Institute of Clinical Medicine, Oslo, Norway.
| | | | - Siri Hauge Opdal
- Oslo University Hospital, Division of Laboratory Medicine, Department of Forensic Sciences, Oslo, Norway.
| |
Collapse
|
22
|
Malova M, Morelli E, Cardiello V, Tortora D, Severino M, Calevo MG, Parodi A, De Angelis LC, Minghetti D, Rossi A, Ramenghi LA. Nosological Differences in the Nature of Punctate White Matter Lesions in Preterm Infants. Front Neurol 2021; 12:657461. [PMID: 33995255 PMCID: PMC8117674 DOI: 10.3389/fneur.2021.657461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The pathogenesis of punctuate white matter lesions (PWMLs), a mild form of white matter damage observed in preterm infants, is still a matter of debate. Susceptibility-weighted imaging (SWI) allows to differentiate PWMLs based on the presence (SWI+) or absence (SWI-) of hemosiderin, but little is known about the significance of this distinction. This retrospective study aimed to compare neuroradiological and clinical characteristics of SWI+ and SWI- PWMLs. Materials and Methods: MR images of all VLBW infants scanned consecutively at term-equivalent age between April 2012 and May 2018 were retrospectively reviewed, and infants with PWMLs defined as small areas of high T1 and/or low T2 signal in the periventricular white matter were selected and included in the study. Each lesion was analyzed separately and characterized by localization, organization pattern, and distance from the lateral ventricle. Clinical data were retrieved from the department database. Results: A total of 517 PWMLs were registered in 81 patients, with 93 lesions (18%) visible on SWI (SWI+), revealing the presence of hemosiderin deposits. On univariate analysis, compared to SWI- PWML, SWI+ lesions were closer to the ventricle wall, more frequently organized in linear pattern and associated with lower birth weight, lower gestational age, lower admission temperature, need for intubation, bronchopulmonary dysplasia, retinopathy of prematurity, and presence of GMH-IVH. On multivariate analysis, closer distance to the ventricle wall on axial scan and lower birth weight were associated with visibility of PMWLs on SWI (p = 0.003 and p = 0.0001, respectively). Conclusions: Our results suggest a nosological difference between SWI+ and SWI- PWMLs. Other prospective studies are warranted to corroborate these observations.
Collapse
Affiliation(s)
- Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elena Morelli
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Diego Minghetti
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
23
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
24
|
Carrier M, Guilbert J, Lévesque JP, Tremblay MÈ, Desjardins M. Structural and Functional Features of Developing Brain Capillaries, and Their Alteration in Schizophrenia. Front Cell Neurosci 2021; 14:595002. [PMID: 33519380 PMCID: PMC7843388 DOI: 10.3389/fncel.2020.595002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia affects more than 1% of the world's population and shows very high heterogeneity in the positive, negative, and cognitive symptoms experienced by patients. The pathogenic mechanisms underlying this neurodevelopmental disorder are largely unknown, although it is proposed to emerge from multiple genetic and environmental risk factors. In this work, we explore the potential alterations in the developing blood vessel network which could contribute to the development of schizophrenia. Specifically, we discuss how the vascular network evolves during early postnatal life and how genetic and environmental risk factors can lead to detrimental changes. Blood vessels, capillaries in particular, constitute a dynamic and complex infrastructure distributing oxygen and nutrients to the brain. During postnatal development, capillaries undergo many structural and anatomical changes in order to form a fully functional, mature vascular network. Advanced technologies like magnetic resonance imaging and near infrared spectroscopy are now enabling to study how the brain vasculature and its supporting features are established in humans from birth until adulthood. Furthermore, the contribution of the different neurovascular unit elements, including pericytes, endothelial cells, astrocytes and microglia, to proper brain function and behavior, can be dissected. This investigation conducted among different brain regions altered in schizophrenia, such as the prefrontal cortex, may provide further evidence that schizophrenia can be considered a neurovascular disorder.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada
| | - Jérémie Guilbert
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lévesque
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| |
Collapse
|
25
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
26
|
Revuelta M, Zamarrón A, Fortes J, Rodríguez-Boto G, Gutiérrez-González R. Neuroprotective effect of indomethacin in normal perfusion pressure breakthrough phenomenon. Sci Rep 2020; 10:15466. [PMID: 32963342 PMCID: PMC7508825 DOI: 10.1038/s41598-020-72461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022] Open
Abstract
Loss of cerebral autoregulation in normal perfusion pressure breakthrough (NPPB) phenomenon has been reported in other Central Nervous System diseases such as neonatal intraventricular haemorrhage. Several studies have demonstrated that low-dose indomethacin prevents this latter condition. A previous rat model was used to resemble NPPB phenomenon. Study animals were distributed in 4 groups that received 3 doses of indomethacin at different concentrations prior to fistula occlusion 60 days after its creation. Control animals received saline solution. Intracranial pressure (ICP) increased in all groups following fistula creation, whereas mean arterial pressure (MAP) and cerebral perfusion pressure (CPP) decreased as a manifestation of cerebral hypoperfusion and intracranial hypertension. The administration of indomethacin was associated with raised MAP and CPP, as well as decreased ICP. Sodium fluorescein extravasation was slight in study animals when comparing with control ones. Histological analysis evidenced diffuse ischaemic changes with signs of neuronal apoptosis in all brain layers in control animals. These findings were only focal and slight in study animals. The results suggest the usefulness of indomethacin to revert, at least partially, the haemodynamic effects of NPPB phenomenon in this experimental model, as well as to reduce BBB disruption and histological ischemia observed in absence of indomethacin.
Collapse
Affiliation(s)
- Manuel Revuelta
- Department of Neurosurgery, Puerta de Hierro University Hospital, Manuel de Falla 1, Majadahonda, 28222, Madrid, Spain
| | - Alvaro Zamarrón
- Department of Neurosurgery, La Paz University Hospital, Pº Castellana 261, 28046, Madrid, Spain
| | - Jose Fortes
- Health Research Institute-Fundación Jiménez Díaz (IIS-FJD), Avda Reyes Católicos S/N, 28040, Madrid, Spain
| | - Gregorio Rodríguez-Boto
- Department of Neurosurgery, Puerta de Hierro University Hospital, Manuel de Falla 1, Majadahonda, 28222, Madrid, Spain.,Department of Surgery, Faculty of Medicine, Autonomous University of Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Raquel Gutiérrez-González
- Department of Neurosurgery, Puerta de Hierro University Hospital, Manuel de Falla 1, Majadahonda, 28222, Madrid, Spain. .,Health Research Institute-Fundación Jiménez Díaz (IIS-FJD), Avda Reyes Católicos S/N, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Ophelders DR, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJ, Hütten MC, Vermeulen J, Wassink G, Gunn AJ, Wolfs TG. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9:E1871. [PMID: 32785181 PMCID: PMC7464163 DOI: 10.3390/cells9081871] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.
Collapse
Affiliation(s)
- Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Rob J.J. Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jeroen Vermeulen
- Department of Pediatric Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
28
|
Szpecht D, Al-Saad SR, Karbowski LM, Kosik K, Kurzawińska G, Szymankiewicz M, Drews K, Seremak-Mrozikiewicz A. Role of Fibronectin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Childs Nerv Syst 2020; 36:1729-1736. [PMID: 32285152 PMCID: PMC7355268 DOI: 10.1007/s00381-020-04598-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND/INTRODUCTION Intraventricular hemorrhage (IVH) is a dangerous complication facing a significant proportion of preterm infants. It is multifactorial in nature, and an observed fibronectin deficiency in the germinal matrix basal lamina is among the most prominent factors that influence such rupture. Better understanding of the FN1 gene polymorphisms and their role in IVH may further clarify the presence of a genetic susceptibility of certain babies to this complication. The aim of this study was to assess if 5 single nucleotide polymorphisms of the fibronectin gene may be linked to an increased incidence of IVH. MATERIAL AND METHODS The study included 108 infants born between 24 and 32 weeks of gestation. IVH was diagnosed using cranial ultrasound performed on the 1st,3rd, and 7th day after birth and classified according to Papile et al. IVH classification. The 5 FN1 gene polymorphisms assessed in the study were the following: rs3796123; rs1968510; rs10202709; rs6725958; and rs35343655. RESULTS IVH developed in 51 (47.2%) out of the 108 preterm infants. This includes, 18 (35.3%) with stage I IVH, 19 (37.3%) with stage II, 11 (21.6%) with stage III, and 3 (5.9%) with stage IV IVH. Incidence of IVH was higher in infants with lower APGAR scores, low gestational age, and low birthweight. Analysis showed that IVH stage II to IV was approximately seven times more likely to occur in infants with the genotype TT FN1 rs10202709 (OR 7237 (1046-79.59; p = 0,044)). No other significant association was found with the rest of the polymorphisms. CONCLUSION The results of our study indicate a sevenfold increased genetic susceptibility to IVH in preterm infants with the TT FN1 rs10202709 gene polymorphism. The fibronectin gene polymorphism may therefore be of crucial importance as a genetic risk factor for IVH in preterm infants. Further studies are warranted.
Collapse
Affiliation(s)
- Dawid Szpecht
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | - Katarzyna Kosik
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Grażyna Kurzawińska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Szymankiewicz
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Drews
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
29
|
Gilard V, Tebani A, Bekri S, Marret S. Intraventricular Hemorrhage in Very Preterm Infants: A Comprehensive Review. J Clin Med 2020; 9:E2447. [PMID: 32751801 PMCID: PMC7465819 DOI: 10.3390/jcm9082447] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022] Open
Abstract
Germinal matrix-intraventricular-intraparenchymal hemorrhage (GMH-IVH-IPH) is a major complication of very preterm births before 32 weeks of gestation (WG). Despite progress in clinical management, its incidence remains high before 27 WG. In addition, severe complications may occur such as post-hemorrhagic hydrocephalus and/or periventricular intraparenchymal hemorrhage. IVH is strongly associated with subsequent neurodevelopmental disabilities. For this review, an automated literature search and a clustering approach were applied to allow efficient filtering as well as topic clusters identification. We used a programmatic literature search for research articles related to intraventricular hemorrhage in preterms that were published between January 1990 and February 2020. Two queries ((Intraventricular hemorrhage) AND (preterm)) were used in PubMed. This search resulted in 1093 articles. The data manual curation left 368 documents that formed 12 clusters. The presentation and discussion of the clusters provide a comprehensive overview of existing data on the pathogenesis, complications, neuroprotection and biomarkers of GMH-IVH-IPH in very preterm infants. Clinicians should consider that the GMH-IVH-IPH pathogenesis is mainly due to developmental immaturity of the germinal matrix and cerebral autoregulation impairment. New multiomics investigations of intraventricular hemorrhage could foster the development of predictive biomarkers for the benefit of very preterm newborns.
Collapse
Affiliation(s)
- Vianney Gilard
- Department of Pediatric Neurosurgery, Rouen University Hospital, 76000 Rouen, France;
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
- Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France;
| | - Stéphane Marret
- Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France;
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France
| |
Collapse
|
30
|
Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, Barthakur S, Kasendra M, Lucchesi C, Kerns J, Wen N, Spivia WR, Chen Z, Van Eyk J, Svendsen CN. Human iPSC-Derived Blood-Brain Barrier Chips Enable Disease Modeling and Personalized Medicine Applications. Cell Stem Cell 2020; 24:995-1005.e6. [PMID: 31173718 DOI: 10.1016/j.stem.2019.05.011] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 02/24/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier (BBB) tightly regulates the entry of solutes from blood into the brain and is disrupted in several neurological diseases. Using Organ-Chip technology, we created an entirely human BBB-Chip with induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (iBMECs), astrocytes, and neurons. The iBMECs formed a tight monolayer that expressed markers specific to brain vasculature. The BBB-Chip exhibited physiologically relevant transendothelial electrical resistance and accurately predicted blood-to-brain permeability of pharmacologics. Upon perfusing the vascular lumen with whole blood, the microengineered capillary wall protected neural cells from plasma-induced toxicity. Patient-derived iPSCs from individuals with neurological diseases predicted disease-specific lack of transporters and disruption of barrier integrity. By combining Organ-Chip technology and human iPSC-derived tissue, we have created a neurovascular unit that recapitulates complex BBB functions, provides a platform for modeling inheritable neurological disorders, and advances drug screening, as well as personalized medicine.
Collapse
Affiliation(s)
- Gad D Vatine
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The Department of Physiology and Cell Biology and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | - Riccardo Barrile
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Michael J Workman
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bianca K Barriga
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Rahnama
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | - Jordan Kerns
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Norman Wen
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Weston R Spivia
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
31
|
Disdier C, Awa F, Chen X, Dhillon SK, Galinsky R, Davidson JO, Lear CA, Bennet L, Gunn AJ, Stonestreet BS. Lipopolysaccharide-induced changes in the neurovascular unit in the preterm fetal sheep brain. J Neuroinflammation 2020; 17:167. [PMID: 32466771 PMCID: PMC7257152 DOI: 10.1186/s12974-020-01852-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Exposure to inflammation during pregnancy can predispose to brain injury in premature infants. In the present study, we investigated the effects of prolonged exposure to inflammation on the cerebrovasculature of preterm fetal sheep. Methods Chronically instrumented fetal sheep at 103–104 days of gestation (full term is ~ 147 days) received continuous low-dose lipopolysaccharide (LPS) infusions (100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h plus boluses of 1 μg LPS at 48, 72, and 96 h) or the same volume of normal saline (0.9%, w/v). Ten days after the start of LPS exposure at 113–114 days of gestation, the sheep were killed, and the fetal brain perfused with formalin in situ. Vessel density, pericyte and astrocyte coverage of the blood vessels, and astrogliosis in the cerebral cortex and white matter were determined using immunohistochemistry. Results LPS exposure reduced (P < 0.05) microvascular vessel density and pericyte vascular coverage in the cerebral cortex and white matter of preterm fetal sheep, and increased the activation of perivascular astrocytes, but decreased astrocytic vessel coverage in the white matter. Conclusions Prolonged exposure to LPS in preterm fetal sheep resulted in decreased vessel density and neurovascular remodeling, suggesting that chronic inflammation adversely affects the neurovascular unit and, therefore, could contribute to long-term impairment of brain development.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Fares Awa
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | | | - Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA.
| |
Collapse
|
32
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
33
|
Jellyman JK, Fletcher AJW, Fowden AL, Giussani DA. Glucocorticoid Maturation of Fetal Cardiovascular Function. Trends Mol Med 2020; 26:170-184. [PMID: 31718939 DOI: 10.1016/j.molmed.2019.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
The last decade has seen rapid advances in the understanding of the central role of glucocorticoids in preparing the fetus for life after birth. However, relative to other organ systems, maturation by glucocorticoids of the fetal cardiovascular system has been ignored. Here, we review the effects of glucocorticoids on fetal basal cardiovascular function and on the fetal cardiovascular defense responses to acute stress. This is important because glucocorticoid-driven maturational changes in fetal cardiovascular function under basal and stressful conditions are central to the successful transition from intra- to extrauterine life. The cost-benefit balance for the cardiovascular health of the preterm baby of antenatal glucocorticoid therapy administered to pregnant women threatened with preterm birth is also discussed.
Collapse
Affiliation(s)
- Juanita K Jellyman
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA.
| | | | - Abigail L Fowden
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK.
| |
Collapse
|
34
|
Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front Neurosci 2020; 13:1452. [PMID: 32038147 PMCID: PMC6987380 DOI: 10.3389/fnins.2019.01452] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept in neuroscience that broadly describes the relationship between brain cells and their blood vessels. The NVU incorporates cellular and extracellular components involved in regulating cerebral blood flow and blood-brain barrier function. The NVU within the adult brain has attracted strong research interest and its structure and function is well described, however, the NVU in the developing brain over the fetal and neonatal period remains much less well known. One area of particular interest in perinatal brain development is the impact of known neuropathological insults on the NVU. The aim of this review is to synthesize existing literature to describe structure and function of the NVU in the developing brain, with a particular emphasis on exploring the effects of perinatal insults. Accordingly, a brief overview of NVU components and function is provided, before discussion of NVU development and how this may be affected by perinatal pathologies. We have focused this discussion around three common perinatal insults: prematurity, acute hypoxia, and chronic hypoxia. A greater understanding of processes affecting the NVU in the perinatal period may enable application of targeted therapies, as well as providing a useful basis for research as it expands further into this area.
Collapse
Affiliation(s)
- Alexander H. Bell
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Govaert P, Triulzi F, Dudink J. The developing brain by trimester. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:245-289. [PMID: 32736754 DOI: 10.1016/b978-0-444-64239-4.00014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transient anatomical entities play a role in the maturation of brain regions and early functional fetal networks. At the postmenstrual age of 7 weeks, major subdivisions of the brain are visible. At the end of the embryonic period, the cortical plate covers the neopallium. The choroid plexus develops in concert with it, and the dorsal thalamus covers about half the diencephalic third ventricle surface. In addition to the fourth ventricle neuroepithelium the rhombic lips are an active neuroepithelial production site. Early reciprocal connections between the thalamus and cortex are present. The corticospinal tract has reached the pyramidal decussation, and the arteries forming the mature circle of Willis are seen. Moreover, the superior sagittal sinus has formed, and at the rostral neuropore the massa commissuralis is growing. At the viable preterm age of around 24 weeks PMA, white matter tracts are in full development. Asymmetric progenitor division permits production of neurons, subventricular zone precursors, and glial cells. Myelin is present in the ventral spinal quadrant, cuneate fascicle, and spinal motor fibers. The neopallial mantle has been separated into transient layers (stratified transitional fields) between the neuroepithelium and the cortical plate. The subplate plays an important role in organizing the structuring of the cortical plate. Commissural tracts have shaped the corpus callosum, early primary gyri are present, and opercularization has started caudally, forming the lateral fissure. Thalamic and striatal nuclei have formed, although GABAergic neurons continue to migrate into the thalamus from the corpus gangliothalamicum. Near-term PMA cerebral sublobulation is active. Between 24 and 32 weeks, primary sulci develop. Myelin is present in the superior cerebellar peduncle, rubrospinal tract, and inferior olive. Germinal matrix disappears from the telencephalon, except for the GABAergic frontal cortical subventricular neuroepithelium.
Collapse
Affiliation(s)
- Paul Govaert
- Department of Neonatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neonatology, ZNA Middelheim, Antwerp, Belgium; Department of Rehabilitation and Physical Therapy, Gent University Hospital, Gent, Belgium.
| | - Fabio Triulzi
- Department of Pediatric Neuroradiology, Università Degli Studi di Milano, Milan, Italy
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
36
|
Kim S, Kim YE, Hong S, Kim KT, Sung DK, Lee Y, Park WS, Chang YS, Song MR. Reactive microglia and astrocytes in neonatal intraventricular hemorrhage model are blocked by mesenchymal stem cells. Glia 2019; 68:178-192. [PMID: 31441125 DOI: 10.1002/glia.23712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Severe intraventricular hemorrhage (IVH) in premature infants triggers reactive gliosis, causing acute neuronal death and glial scar formation. Transplantation of mesenchymal stem cells (MSCs) has often showed improved CNS recovery in an IVH model, but whether this response is related to reactive glial cells is still unclear. Herein, we suggest that MSCs impede the response of reactive microglia rather than astrocytes, thereby blocking neuronal damage. Astrocytes alone showed mild reactiveness under hemorrhagic conditions mimicked by thrombin treatment, and this was not blocked by MSC-conditioned medium (MSC-CM) in vitro. In contrast, thrombin-induced microglial activation and release of proinflammatory cytokines were inhibited by MSC-CM. Interestingly, astrocytes showed greater reactive response when co-cultured with microglia, and this was abolished in the presence of MSC-CM. Gene expression profiles in microglia revealed that transcript levels of genes for immune response and proinflammatory cytokines were altered by thrombin treatment. This result coincided with the robust phosphorylation of STAT1 and p38 MAPK, which might be responsible for the production and release of proinflammatory cytokines. Furthermore, application of MSC-CM diminished thrombin-mediated phosphorylation of STAT1 and p38 MAPK, supporting the acute anti-inflammatory role of MSCs under hemorrhagic conditions. In line with this, activation of microglia and consequent cytokine release were impaired in Stat1-null mice. However, reactive response in Stat1-deficient astrocytes was maintained. Taken together, our results demonstrate that MSCs mainly block the activation of microglia involving STAT1-mediated cytokine release and subsequent reduction of reactive astrocytes.
Collapse
Affiliation(s)
- Seojeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Young Eun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sujeong Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kyung-Tai Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
37
|
Valdez Sandoval P, Hernández Rosales P, Quiñones Hernández DG, Chavana Naranjo EA, García Navarro V. Intraventricular hemorrhage and posthemorrhagic hydrocephalus in preterm infants: diagnosis, classification, and treatment options. Childs Nerv Syst 2019; 35:917-927. [PMID: 30953157 DOI: 10.1007/s00381-019-04127-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Intraventricular hemorrhage is the most important adverse neurologic event for preterm and very low weight birth infants in the neonatal period. This pathology can lead to various delays in motor, language, and cognition development. The aim of this article is to give an overview of the knowledge in diagnosis, classification, and treatment options of this pathology. METHOD A systematic review has been made. RESULTS The cranial ultrasound can be used to identify the hemorrhage and grade it according to the modified Papile grading system. There is no standardized protocol of intervention as there are controversial results on which of the temporizing neurosurgical procedures is best and about the appropriate parameters to consider a conversion to ventriculoperitoneal shunt. However, it has been established that the most important prognosis factor is the involvement and damage of the white matter. CONCLUSION More evidence is required to create a standardized protocol that can ensure the best possible outcome for these patients.
Collapse
Affiliation(s)
- Paola Valdez Sandoval
- Department of Clinical Sciences, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Avenida General Ramón Corona 2514, Guadalajara, 45138, Mexico
| | - Paola Hernández Rosales
- Department of Clinical Sciences, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Avenida General Ramón Corona 2514, Guadalajara, 45138, Mexico
| | - Deyanira Gabriela Quiñones Hernández
- Department of Clinical Sciences, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Avenida General Ramón Corona 2514, Guadalajara, 45138, Mexico
| | | | - Victor García Navarro
- Department of Clinical Sciences, Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Avenida General Ramón Corona 2514, Guadalajara, 45138, Mexico. .,Neurosurgery Department, Nuevo Hospital Civil de Guadalajara, Juan I. Menchaca, Guadalajara, 44340, Mexico.
| |
Collapse
|
38
|
Holst CB, Brøchner CB, Vitting-Seerup K, Møllgård K. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat 2019; 235:590-615. [PMID: 30901080 DOI: 10.1111/joa.12948] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The astroglial lineage consists of heterogeneous cells instrumental for normal brain development, function and repair. Unfortunately, this heterogeneity complicates research in the field, which suffers from lack of truly specific and sensitive astroglial markers. Nevertheless, single astroglial markers are often used to describe astrocytes in different settings. We therefore investigated and compared spatiotemporal patterns of immunoreactivity in developing human brain from 12 to 21 weeks post conception and publicly available RNA expression data for four established and potential astroglial markers - GFAP, S100, AQP4 and YKL-40. In the hippocampal region, we also screened for C3, a complement component highly expressed in A1-reactive astrocytes. We found diverging partly overlapping patterns of the established astroglial markers GFAP, S100 and AQP4, confirming that none of these markers can fully describe and discriminate different developmental forms and subpopulations of astrocytes in human developing brain, although AQP4 seems to be the most sensitive and specific marker for the astroglial lineage at midgestation. AQP4 characterizes a brain-wide water transport system in cerebral cortex with regional differences in immunoreactivity at midgestation. AQP4 distinguishes a vast proportion of astrocytes and subpopulations of radial glial cells destined for the astroglial lineage, including astrocytes determined for the future glia limitans and apical truncated radial glial cells in ganglionic eminences, devoid of GFAP and S100. YKL-40 and C3d, previously found in reactive astrocytes, stain different subpopulations of astrocytes/astroglial progenitors in developing hippocampus at midgestation and may characterize specific subpopulations of 'developmental astrocytes'. Our results clearly reflect that lack of pan-astrocytic markers necessitates the consideration of time, region, context and aim when choosing appropriate astroglial markers.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Beltoft Brøchner
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark
| | - Kjeld Møllgård
- Faculty of Health and Medical Sciences, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Munk AS, Wang W, Bèchet NB, Eltanahy AM, Cheng AX, Sigurdsson B, Benraiss A, Mäe MA, Kress BT, Kelley DH, Betsholtz C, Møllgård K, Meissner A, Nedergaard M, Lundgaard I. PDGF-B Is Required for Development of the Glymphatic System. Cell Rep 2019; 26:2955-2969.e3. [PMID: 30865886 PMCID: PMC6447074 DOI: 10.1016/j.celrep.2019.02.050] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/07/2019] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
The glymphatic system is a highly polarized cerebrospinal fluid (CSF) transport system that facilitates the clearance of neurotoxic molecules through a brain-wide network of perivascular pathways. Herein we have mapped the development of the glymphatic system in mice. Perivascular CSF transport first emerges in hippocampus in newborn mice, and a mature glymphatic system is established in the cortex at 2 weeks of age. Formation of astrocytic endfeet and polarized expression of aquaporin 4 (AQP4) consistently coincided with the appearance of perivascular CSF transport. Deficiency of platelet-derived growth factor B (PDGF-B) function in the PDGF retention motif knockout mouse line Pdgfbret/ret suppressed the development of the glymphatic system, whose functions remained suppressed in adulthood compared with wild-type mice. These experiments map the natural development of the glymphatic system in mice and define a critical role of PDGF-B in the development of perivascular CSF transport.
Collapse
Affiliation(s)
- Anne Sofie Munk
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Wei Wang
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA
| | - Nicholas Burdon Bèchet
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Ahmed M Eltanahy
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden; Mansoura University Hospital, Faculty of Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Anne Xiaoan Cheng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA
| | - Björn Sigurdsson
- Center for Basic and Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA
| | - Maarja A Mäe
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Benjamin Travis Kress
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iben Lundgaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
40
|
Vesoulis ZA, Bank RL, Lake D, Wallman-Stokes A, Sahni R, Moorman JR, Isler JR, Fairchild KD, Mathur AM. Early hypoxemia burden is strongly associated with severe intracranial hemorrhage in preterm infants. J Perinatol 2019; 39:48-53. [PMID: 30267001 PMCID: PMC6298838 DOI: 10.1038/s41372-018-0236-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The objective of this study was to define the association between the burden of severe hypoxemia (SpO2 ≤70%) in the first week of life and development of severe ICH (grade III/IV) in preterm infants. STUDY DESIGN Infants born at <32 weeks or weighing <1500 g underwent prospective SpO2 recording from birth through 7 days. Severe hypoxemia burden was calculated as the percentage of the error-corrected recording where SpO2 ≤70%. Binary logistic regression was used to model the relationship between hypoxemia burden and severe ICH. RESULTS A total of 163.3 million valid SpO2 data points were collected from 645 infants with mean EGA = 27.7 ± 2.6 weeks, BW = 1005 ± 291 g; 38/645 (6%) developed severe ICH. There was a greater mean hypoxemia burden for infants with severe ICH (3%) compared to those without (0.1%) and remained significant when controlling for multiple confounding factors. CONCLUSION The severe hypoxemia burden in the first week of life is strongly associated with severe ICH.
Collapse
Affiliation(s)
- Zachary A. Vesoulis
- Department of Pediatrics, Washington University School of Medicine, Division of Newborn Medicine, St. Louis, MO
| | - Rachel L. Bank
- Department of Pediatrics, Washington University School of Medicine, Division of Newborn Medicine, St. Louis, MO
| | - Doug Lake
- Department of Medicine, University of Virginia, Charlottesville, VA
| | | | - Rakesh Sahni
- Department of Pediatrics, Columbia University, New York, NY
| | | | | | | | - Amit M. Mathur
- Department of Pediatrics, Washington University School of Medicine, Division of Newborn Medicine, St. Louis, MO
| |
Collapse
|
41
|
Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, Ginhoux F, Knudsen TB. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 2018; 109:1680-1710. [PMID: 29251840 DOI: 10.1002/bdr2.1180] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.
Collapse
Affiliation(s)
- Katerine S Saili
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Todd J Zurlinden
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Andrew J Schwab
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nancy C Baker
- Leidos, contractor to NCCT, Research Triangle Park, North Carolina 27711
| | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Thomas B Knudsen
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| |
Collapse
|
42
|
Brunse A, Abbaspour A, Sangild P. Brain Barrier Disruption and Region-Specific Neuronal Degeneration during Necrotizing Enterocolitis in Preterm Pigs. Dev Neurosci 2018; 40:198-208. [DOI: 10.1159/000488979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022] Open
Abstract
Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (n = 43–44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (n = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal microglial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and– 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants.
Collapse
|
43
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Opdal SH, Vege Å, Stray-Pedersen A, Rognum TO. The gene encoding the inwardly rectifying potassium channel Kir4.1 may be involved in sudden infant death syndrome. Acta Paediatr 2017; 106:1474-1480. [PMID: 28520217 DOI: 10.1111/apa.13928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 11/30/2022]
Abstract
AIM Disturbances in brain function and development may play a role in sudden infant death syndrome (SIDS). This Norwegian study aimed to test the hypothesis that specific variants of genes involved in water transport and potassium homeostasis would be predisposing factors for SIDS. METHODS Genetic variation in the genes encoding aquaporin-4 (AQP4), Kir4.1 (KCNJ10) and α-syntrophin was analysed in 171 SIDS cases (62.6% male) with a median age of 15.5 (2-52) weeks and 398 adult controls (70.6% male) with a median age of 44 (11-91) years. All the subjects were Caucasians who were autopsied from 1988 to 2013. RESULTS The CC genotype of rs72878794 in the AQP4 gene and a combination of the CC genotype in rs17375748, rs1130183, rs12133079 and rs1186688 in KCNJ10 (4xCC) were found to be associated with SIDS. The SIDS cases with the 4xCC SNP combination were younger than the SIDS cases with other genotype combinations (p = 0.006). CONCLUSION This study indicates that genetic variations in KCNJ10 and AQP4 may be predisposing factors for SIDS. Alterations in the expression of the AQP4/Kir4.1 complex can disrupt water and ion homeostasis, which may influence brain development and facilitate brain oedema formation This may be especially unfavourable during the first weeks of life.
Collapse
Affiliation(s)
- Siri H. Opdal
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
| | - Åshild Vege
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
- Department of Forensic Medicine; University of Oslo; Oslo Norway
| | - Arne Stray-Pedersen
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
- Department of Forensic Medicine; University of Oslo; Oslo Norway
| | - Torleiv O. Rognum
- Department of Forensic Sciences; Group of Paediatric Forensic Medicine; Oslo University Hospital; Oslo Norway
- Department of Forensic Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
45
|
Guerra M, Blázquez JL, Rodríguez EM. Blood-brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids Barriers CNS 2017; 14:19. [PMID: 28701191 PMCID: PMC5508761 DOI: 10.1186/s12987-017-0067-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/24/2017] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain damage. There are no reports trying to prevent or diminish abnormalities in brain development which are inseparably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood–brain barrier that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper microenvironment for the embryonic neurogenic niche and, consequent normal brain development.
Collapse
Affiliation(s)
- M Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.
| | - J L Blázquez
- Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - E M Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
46
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
47
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
48
|
Hase Y, Craggs L, Hase M, Stevenson W, Slade J, Lopez D, Mehta R, Chen A, Liang D, Oakley A, Ihara M, Horsburgh K, Kalaria RN. Effects of environmental enrichment on white matter glial responses in a mouse model of chronic cerebral hypoperfusion. J Neuroinflammation 2017; 14:81. [PMID: 28399892 PMCID: PMC5387261 DOI: 10.1186/s12974-017-0850-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Background This study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Methods A total of 74 wild-type male C57BL/6J mice underwent BCAS or sham surgery. One week after surgery, the mice were randomly assigned into three different groups having varied amounts of EE—standard housing with no EE conditions (std), limited exposure with 3 h EE a day (3 h) and full-time exposure to EE (full) for 12 weeks. At 16 weeks after BCAS surgery, behavioural and cognitive function were assessed prior to euthanasia. Brain tissues were analysed for the degree of gliosis including morphological changes in astrocytes and microglia. Results Chronic cerebral hypoperfusion (or BCAS) increased clasmatodendrocytes (damaged astrocytes) with disruption of aquaporin-4 immunoreactivity and an increased degree of microglial activation/proliferation. BCAS also impaired behavioural and cognitive function. These changes were significantly attenuated, by limited exposure compared to full-time exposure to EE. Conclusions Our results suggest that moderate or limited exposure to EE substantially reduced glial damage/activation. Our findings also suggest moderate rather than continuous exposure to EE is beneficial for patients with subcortical ischaemic vascular dementia characterised by white matter disease-related inflammation.
Collapse
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Lucinda Craggs
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Mai Hase
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - William Stevenson
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Janet Slade
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Dianne Lopez
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rubin Mehta
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Aiqing Chen
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Di Liang
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Arthur Oakley
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
49
|
Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawińska G, Szymankiewicz M. Role of endothelial nitric oxide synthase and endothelin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Sci Rep 2017; 7:42541. [PMID: 28211916 PMCID: PMC5304177 DOI: 10.1038/srep42541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
In the pathogenesis of neonatal intraventricular hemorrhage (IVH) in preterm infants, an important role is played by changes in venous and arterial cerebral flows. It has been shown that the ability of autoregulation of cerebral flows in response to variations in arterial blood pressure in preterm infants is impaired. This impaired autoregulation causes an increased risk of germinal matrix rupture and IVH occurrence. We examined three polymorphisms of genes, related to regulation of blood flow, for an association with IVH in 100 preterm infants born from singleton pregnancy, before 32 + 0 weeks of gestation, exposed to antenatal steroids therapy, and without congenital abnormalities. These polymorphisms include: eNOS (894G > T and -786T > C) and EDN1 (5665G > T ) gene. We found that infants with genotype GT eNOS 894G > T have 3.4-fold higher risk developing of IVH born before 28 + 6 weeks of gestation. Our investigation did not confirm any significant prevalence for IVH development according to eNOS -786T > C genes polymorphism. Our novel investigations in EDN1 5665G > T polymorphism did not show any link between alleles or genotypes and IVH. Future investigations of polymorphisms in blood-flow associated genes may provide valuable insight into the pathogenetic mechanisms underlying the development of IVH.
Collapse
Affiliation(s)
- Dawid Szpecht
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Poland
| | - Janusz Gadzinowski
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Poland
| | | | - Grażyna Kurzawińska
- Department of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Szymankiewicz
- Chair and Department of Neonatology, Poznan University of Medical Sciences, Poland
| |
Collapse
|
50
|
Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM. Vascular Cells in Blood Vessel Wall Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:323-350. [PMID: 28212800 DOI: 10.1016/bs.apha.2016.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature.
Collapse
Affiliation(s)
- R Mazurek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - J M Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - R R Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - A Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - A Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - D M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|