1
|
Good WV, Wong RJ, Norcia AM, Hou C, Cellucci J, McGovern MQ, Wong-Kee-You A, Acevedo Munares G, Richburg D, Loveridge-Easther C, Lee JS, DeJesus L, Slagle T, Stevenson DK, Bhutani VK. Effect of bilirubin on visuocortical development in preterm infants. J Perinatol 2025:10.1038/s41372-025-02213-4. [PMID: 39910190 DOI: 10.1038/s41372-025-02213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE To determine if visuocortical development in premature infants with high bilirubin levels is more adversely affected than that in full-term infants. STUDY DESIGN 57 preterm infants were managed using institutional guidelines for hyperbilirubinemia. At 12-months corrected age, Vernier acuity, contrast sensitivity, and grating acuity measured using the sweep visual evoked potential (sVEP) were correlated to total serum/plasma bilirubin (TSB) levels in the first week of life. RESULT As TSB levels increased, Vernier acuity worsened in infants <34 weeks' gestation compared with those >34 to <37 weeks' gestation (p < 0.001). Contrast sensitivity varied as a function of TSB levels (Spearman correlation 0.63, p < 0.001). Grating acuity was unaffected. CONCLUSION Vernier acuity in preterm infants <34 weeks' gestation is more vulnerable to the effects of bilirubin, suggesting that the extrastriate visual cortex is primarily affected by bilirubin. Therefore, guidelines for management of hyperbilirubinemia in preterm infants (<34 weeks' gestation) should be revised.
Collapse
Affiliation(s)
- William V Good
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
- California Pacific Medical Center, Department of Pediatrics, San Francisco, CA, USA.
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Anthony M Norcia
- Department of Psychology, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Chuan Hou
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Jillian Cellucci
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | | | | | | | - Delene Richburg
- California Pacific Medical Center, Department of Pediatrics, San Francisco, CA, USA
| | | | - Jane S Lee
- California Pacific Medical Center, Department of Pediatrics, San Francisco, CA, USA
| | - Lilia DeJesus
- California Pacific Medical Center, Department of Pediatrics, San Francisco, CA, USA
| | - Terri Slagle
- California Pacific Medical Center, Department of Pediatrics, San Francisco, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vinod K Bhutani
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Guzelkaya M, Onal E, Gelinci E, Kumral A, Cakan-Akdogan G. A zebrafish model for studying the mechanisms of newborn hyperbilirubinemia and bilirubin-induced neurological damage. Front Cell Dev Biol 2023; 11:1275414. [PMID: 38033855 PMCID: PMC10682072 DOI: 10.3389/fcell.2023.1275414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Unresolved neonatal hyperbilirubinemia may lead to the accumulation of excess bilirubin in the body, and bilirubin in neural tissues may induce toxicity. Bilirubin-induced neurological damage (BIND) can result in acute or chronic bilirubin encephalopathy, causing temporary or lasting neurological dysfunction or severe damage resulting in infant death. Although serum bilirubin levels are used as an indication of severity, known and unknown individual differences affect the severity of the symptoms. The mechanisms of BIND are not yet fully understood. Here, a zebrafish newborn hyperbilirubinemia model is developed and characterized. Direct exposure to excess bilirubin induced dose- and time-dependent toxicity linked to the accumulation of bilirubin in the body and brain. Introduced bilirubin was processed by the liver, which increased the tolerance of larvae. BIND in larvae was demonstrated by morphometric measurements, histopathological analyses and functional tests. The larvae that survived hyperbilirubinemia displayed mild or severe morphologies associated with defects in eye movements, body posture and swimming problems. Interestingly, a plethora of mild to severe clinical symptoms were reproduced in the zebrafish model.
Collapse
Affiliation(s)
| | - Ebru Onal
- Izmir Biomedicine and Genome Center, Izmir, Turkiye
- Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkiye
| | | | - Abdullah Kumral
- Izmir Biomedicine and Genome Center, Izmir, Turkiye
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkiye
| |
Collapse
|
3
|
Huang H, Li S, Zhang Y, He C, Hua Z. Microglial Priming in Bilirubin-Induced Neurotoxicity. Neurotox Res 2023; 41:338-348. [PMID: 37058197 DOI: 10.1007/s12640-023-00643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Neuroinflammation is a major contributor to bilirubin-induced neurotoxicity, which results in severe neurological deficits. Microglia are the primary immune cells in the brain, with M1 microglia promoting inflammatory injury and M2 microglia inhibiting neuroinflammation. Controlling microglial inflammation could be a promising therapeutic strategy for reducing bilirubin-induced neurotoxicity. Primary microglial cultures were prepared from 1-3-day-old rats. In the early stages of bilirubin treatment, pro-/anti-inflammatory (M1/M2) microglia mixed polarization was observed. In the late stages, bilirubin persistence induced dominant proinflammatory microglia, forming an inflammatory microenvironment and inducing iNOS expression as well as the release of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Simultaneously, nuclear factor-kappa B (NF-κB) was activated and translocated into the nucleus, upregulating inflammatory target genes. As well known, neuroinflammation can have an effect on N-methyl-D-aspartate receptor (NMDAR) expression or function, which is linked to cognition. Treatment with bilirubin-treated microglia-conditioned medium did affect the expression of IL-1β, NMDA receptor subunit 2A (NR2A), and NMDA receptor subunit 2B (NR2B) in neurons. However, VX-765 effectively reduces the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1β, as well as the expressions of CD86, and increases the expressions of anti-inflammatory related Arg-1. A timely reduction in proinflammatory microglia could protect against bilirubin-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Huang
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yan Zhang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Chunmei He
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
4
|
Ercan I, Micili SC, Soy S, Engur D, Tufekci KU, Kumral A, Genc S. Bilirubin induces microglial NLRP3 inflammasome activation in vitro and in vivo. Mol Cell Neurosci 2023; 125:103850. [PMID: 36965549 DOI: 10.1016/j.mcn.2023.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
Despite current advancements in neonatal care, hyperbilirubinemia resulting in bilirubin-induced neurological dysfunction (BIND) continues to be one of the major reasons of mortality or lifelong disability. Although the exact mechanisms underlying brain injury upon bilirubin exposure remains unelucidated, inflammation is considered to be one of the major contributors to BIND. This study investigates the role of the NLRP3 inflammasome in bilirubin-induced injury using in vitro and in vivo models. We successfully demonstrated that the upregulation of NLRP3 expression is significantly associated with the release of active caspase-1 and IL-1β in N9 microglial cells exposed to bilirubin. Functional in vitro experiments with NLRP3 siRNA confirms that bilirubin-induced inflammasome activation and cell death are mediated by the NLRP3 inflammasome. Following injection of bilirubin into the cisterna magna of a neonatal mouse, activation of the NLRP3 inflammasome and microglia were determined by double staining with Iba1-NLRP3 and Iba1-Caspase-1. Upon injection of bilirubin into the cisterna magna, neuronal loss was significantly higher in the wild-type mouse compared to Nlrp3-/- and Caspase-1-/- strains. Collectively, these data indicate that NLRP3 inflammasome has a crucial role in microglial activation and bilirubin-induced neuronal damage.
Collapse
Affiliation(s)
- Ilkcan Ercan
- Izmir International Biomedicine and Genome Institute, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sila Soy
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Defne Engur
- Izmir International Biomedicine and Genome Institute, Izmir, Turkey; Department of Neonatology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey,; Center for Brain and Neuroscience Research, Izmir Democracy University, Izmir, Turkey
| | | | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
5
|
Adhikari A, Bhutani VK, Mondal S, Das M, Darbar S, Ghosh R, Polley N, Das AK, Bhattacharya SS, Pal D, Mallick AK, Pal SK. Chemoprevention of bilirubin encephalopathy with a nanoceutical agent. Pediatr Res 2023; 93:827-837. [PMID: 35794251 DOI: 10.1038/s41390-022-02179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. We investigated a novel spinel-structured citrate-functionalized trimanganese tetroxide nanoparticle (C-Mn3O4 NP, the nanodrug) to degrade both systemic and neural bilirubin loads. METHOD Severe neonatal unconjugated hyperbilirubinemia (SNH) was induced in neonatal C57BL/6j mice model with phenylhydrazine (PHz) intoxication. Efficiency of the nanodrug on both in vivo bilirubin degradation and amelioration of bilirubin encephalopathy and associated neurobehavioral sequelae were evaluated. RESULTS Single oral dose (0.25 mg kg-1 bodyweight) of the nanodrug reduced both total serum bilirubin (TSB) and unconjugated bilirubin (UCB) in SNH rodents. Significant (p < 0.0001) UCB and TSB-degradation rates were reported within 4-8 h at 1.84 ± 0.26 and 2.19 ± 0.31 mg dL-1 h-1, respectively. Neural bilirubin load was decreased by 5.6 nmol g-1 (p = 0.0002) along with improved measures of neurobehavior, neuromotor movements, learning, and memory. Histopathological studies confirm that the nanodrug prevented neural cell reduction in Purkinje and substantia nigra regions, eosinophilic neurons, spongiosis, and cell shrinkage in SNH brain parenchyma. Brain oxidative status was maintained in nanodrug-treated SNH cohort. Pharmacokinetic data corroborated the bilirubin degradation rate with plasma nanodrug concentrations. CONCLUSION This study demonstrates the in vivo capacity of this novel nanodrug to reduce systemic and neural bilirubin load and reverse bilirubin-induced neurotoxicity. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemopreventive approach to clinical settings. IMPACT None of the current pharmacotherapeutics treat severe neonatal hyperbilirubinemia (SNH) to prevent risks of neurotoxicity. In this preclinical study, a newly investigated nano-formulation, citrate-functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs), exhibits bilirubin reduction properties in rodents. Chemopreventive properties of this nano-formulation demonstrate an efficacious, efficient agent that appears to be safe in these early studies. Translation of C-Mn3O4 NPs to prospective preclinical and clinical trials in appropriate in vivo models should be explored as a potential novel pharmacotherapy for SNH.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Vinod K Bhutani
- Department of Neonatal and Developmental Medicine, Lucile Packard Children's Hospital, Stanford University, 750 Welch Road, Palo Alto, CA, 94304, USA
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Monojit Das
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, 721102, India
| | - Soumendra Darbar
- Research and Development Division, Dey's Medical Stores (Mfg.) Pvt. Ltd., 62 Bondel Road, Ballygunge, Kolkata, 700019, India
| | - Ria Ghosh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Nabarun Polley
- Physical Chemistry - innoFSPEC, University of Potsdam, Am Mühlenberg 3, Golm, 14476, Potsdam, Germany
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Govt. Medical College and Hospital, Silver Jubilee Road, Coochbehar, 736101, India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine, Nil Ratan Sirkar Medical College and Hospital, 138 AJC Bose Road, Sealdah, Rajabazar, Kolkata, 700014, India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India.
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.
| |
Collapse
|
6
|
Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 2022:10.1038/s41390-022-02351-x. [PMID: 36302856 DOI: 10.1038/s41390-022-02351-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity. METHODS This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research. IMPACT We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity. We point out the pitfalls and translational gaps, and suggest new clinical research challenges. We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.
Collapse
|
7
|
Amini N, Bakhshayesh Eghbali B, Ramezani S, Hosseinpour Sarmadi V, Brouki Milan P, Ashraf SS, Larijani G, Naderi Gharahgheshlagh S, Derakhshanmehr B, Mohebbi SL, Joghataei MT. Animal Kernicterus Models: Progress and Challenges. Brain Res 2021; 1770:147624. [PMID: 34419443 DOI: 10.1016/j.brainres.2021.147624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Kernicterus is a leading cause of neonatal death throughout the world, especially in low-middle-income countries. It is developed by an unconjugated hyperbilirubinemia in the blood and brain tissue, triggering pathological processes that spawn neurotoxicity and neurodegeneration. However, the biological mechanism (s) of bilirubin-induced neurotoxicity and Kernicterus development remain to be well elucidated. Likewise, a practical therapeutic approach for human Kernicterus has yet to be found. Undoubtedly, animal models of Kernicterus can be helpful in the identification of underlying biological processes of hyperbilirubinemia evolution to Kernicterus, as well as the evaluation of various treatments efficacy in preclinical studies. More importantly, establishing an animal model that can mimic the Kernicterus and its behavioral, neuro-histological, and hematological manifestations is a severe priority in preclinical studies. So far, several Kernicterus animal models have been established that could partially mimic one or more clinical and paraclinical signs of human Kernicterus. The present study aimed to review all methods modeling Kernicterus with a focus on their potentials and shortcomings and subsequently provide the optimal methods for an ideal Kernicterus animal model.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sara Ramezani
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Lena Mohebbi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Han J, Li C, Dai Z, Duan J, Cai W, Wang Y, Zhang Y. Yinzhihuang Oral Liquid Ameliorates Hyperbilirubinemia Induced by δ-Aminolevulinic Acid and Novobiocin in Neonatal Rats. Chem Biodivers 2021; 18:e2100222. [PMID: 34085382 DOI: 10.1002/cbdv.202100222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Yinzhihuang oral liquid (YZH) is a traditional Chinese medicine that has been widely used in Asia to prevent and treat neonatal hyperbilirubinemia, but the published preclinical studies on its anti-hyperbilirubinemia effect are conducted in adult animals, partly due to the lack of preclinical neonatal hyperbilirubinemia animal models. In the present study, we tested six reagents to induce hyperbilirubinemia in neonatal rats, and established two appropriate neonatal hyperbilirubinemia rat models by subcutaneous injection of δ-Aminolevulinic acid (ALA, 200 mg/kg) or novobiocin (NOVO, 200 mg/kg). Oral treatment of YZH (80, 160 and 320 mg/kg) significantly decreased serum conjugated bilirubin levels in ALA-treated neonatal rats and serum unconjugated bilirubin levels in NOVO-treated neonatal rats, respectively. Additionally, pre-treatment of YZH also prevented the increase of serum bilirubin levels in both ALA- and NOVO-treated rats. Mechanistically, YZH significantly up-regulated the mRNA expression of genes involved in hepatic bilirubin disposition (organic anion-transporting polypeptide 1b2, Oatp1b2; multidrug resistance-associated protein 2, Mrp2) and bilirubin conjugation (UDP-glucuronosyltransferase 1a1, Ugt1a1). Additionally, YZH up-regulated the mRNA expression of cytochrome P450 1A1 (Cyp1a1), the target gene of aryl hydrocarbon receptor (AhR), and increased the nuclear protein levels of AhR in livers of neonatal rats. YZH and its two active ingredients, namely baicalin (BCL) and 4'-hydroxyacetophenone (4-HT), up-regulated the mRNA expression of AhR target genes (CYP1A1 and UGT1A1) and increased nuclear protein levels of AhR in HepG2 cells. In conclusion, the present study provides two neonatal hyperbilirubinemia animal models and evaluates the anti-hyperbilirubinemia effect and mechanisms of YZH in neonatal animals.
Collapse
MESH Headings
- Administration, Oral
- Aminolevulinic Acid/toxicity
- Animals
- Animals, Newborn
- Bilirubin/blood
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Hep G2 Cells
- Humans
- Hyperbilirubinemia/chemically induced
- Hyperbilirubinemia/drug therapy
- Hyperbilirubinemia/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Medicine, Chinese Traditional
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Novobiocin/toxicity
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jing Han
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Zhi Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Guanlan High-tech Industrial Park, Longhua District, Shenzhen, 518110, P. R. China
| | - Juanhui Duan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Guanlan High-tech Industrial Park, Longhua District, Shenzhen, 518110, P. R. China
| | - Wen Cai
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yong Wang
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Guanlan High-tech Industrial Park, Longhua District, Shenzhen, 518110, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
Hansen TWR, Wong RJ, Stevenson DK. Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn. Physiol Rev 2020; 100:1291-1346. [PMID: 32401177 DOI: 10.1152/physrev.00004.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Thor W R Hansen
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ronald J Wong
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
10
|
Ma X, Shang X, Qin X, Lu J, Liu M, Wang X. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. Acta Pharm Sin B 2020; 10:850-860. [PMID: 32528832 PMCID: PMC7276679 DOI: 10.1016/j.apsb.2019.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.
Collapse
Key Words
- A/G, albumin/globulin ratio
- ADRs, adverse drug reactions
- ALB, albumin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, the area under the time–plasma concentration curve
- BUN, blood urea nitrogen
- CL/F, clearance/bioavailability
- CR, reatinine
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9
- Chr, chromosome
- Cmax, peak concentration
- DAB, 3,3′-diaminobenzidine
- DBL, direct bilirubin
- DDI, drug–drug interaction
- DMSO, dimethyl sulfoxide
- FDA, the U.S. Food and Drug Administration
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GLB, globulin
- GLU, glucose
- HCG, human chorionic gonadotropin
- HDL-C, high density lipoprotein cholesterol
- HE, haemotoxylin and eosin
- HMG, hydroxymethylglutaryl
- HRP, horseradish peroxidase
- HZ, heterozygous
- IBIL, indirect bilirubin
- IS, internal standard solution
- KO, knockout
- LDL-C, low density lipoprotein cholesterol
- MC, methylcellulose
- MRT, mean residence time
- NC, nitrocellulose
- OATP1B1/3
- OATP1B1/3, organic anion transporting polypeptide 1B1 and 1B3
- OATP1B2
- OATPs, organic anion transporting polypeptides
- PAM, protospacer adjacent motif
- PMSG, pregnant mare serum gonadotropin
- R-GT, γ-glutamyltranspeptidase
- Rat model
- SD, Sprague–Dawley
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SLC, solute carrier
- SNPs, single nucleotide polymorphisms
- T-CH, total cholesterol
- T7E I, T7 endonuclease I
- TALEN, transcription activator-like effector nuclease
- TBA, total bile acid
- TBL, total bilirubin
- TBST, Tris-buffered saline Tween 20
- TG, triglyceride
- TP, total protein
- Tmax, peak time
- Transporter
- UA, uric acid
- Ugt1a1, UDP glucuronosyltransferase family 1 member A1
- Vd/F, the apparent volume of distribution/bioavailability
- WT, wild type
- ZFN, zinc-finger nucleases
- crRNA, mature CRISPR RNA
- p.o., peroral
- sgRNA, single guide RNA
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Wang
- Corresponding author. Tel.: +86 21 24206564; fax: +86 21 5434 4922.
| |
Collapse
|
11
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
12
|
Abstract
Schizophrenia is a complex syndrome of unknown etiology and difficult to manage. Unconjugated bilirubin has been researched as a potential biological marker of this syndrome. The objective of this review article was to gather the studies published to date on the relationship between this molecule and schizophrenia. Broad inclusion criteria have been used (PRISMA) to include as many relevant studies as possible. Fourteen studies were selected: 3 analyzed the effects of unconjugated hyperbilirubinemia in animal models; 6 demonstrated an increased incidence of schizophrenia in patients with increased unconjugated bilirubin; 2 reported an increased incidence of the disease in patients with decreased unconjugated bilirubin; and 3 linked an increased incidence of schizophrenia with an increased excretion of the oxidative product of bilirubin, the so-called biopyrrins. Because of apparently contradictory reported results, the hypothesis that the relationship between schizophrenia and unconjugated bilirubin was not linear and that there was an inflammatory dysfunction explaining this was considered. The 2 most accepted models for the pathophysiology of schizophrenia are described, and the possible role of the molecule in each is clarified. The bilirubin buffer system and its role in antioxidant defense was explored. The average levels of unconjugated bilirubin in patients with schizophrenia, schizoaffective disorder, and bipolar disorder were also compared, having been hypothesized that these diseases could be different points of a same pathological spectrum. Finally, it was concluded that unconjugated bilirubin is a promising molecule that could be used as a possible biological marker for schizophrenia, and the necessity of subsequent efforts for its research was considered.
Collapse
|
13
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [PMID: 30921643 DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
Abstract
Auditory neuropathy (AN) is a form of sensorineural deafness specifically affecting the conduction of the nerve impulse from the cochlear hair cells to the auditory centres of the brain. As such, the condition is a potential clinical target for 'cell replacement therapy', in which a functioning auditory nerve is regenerated by transplanting an appropriated neural progenitor. In this review, we survey the current literature and examine possible experimental models for this condition, with particular reference to their compatibility as suitable hosts for transplantation. The use of exogenous neurotoxic agents such as ouabain or β-bungarotoxin is discussed, as are ageing and noise-induced synaptopathy models. Lesioning of the nerve by mechanical damage during surgery and the neuropathy resulting from infectious diseases may be very relevant clinically, and we discuss whether there are good models for these situations. We also address genetic models for AN, examining whether the phenotypes truly model the clinical situation in their human counterpart syndromes - we use the example of the hyperbilirubinaemic Gunn rat as a particular instance in this regard.
Collapse
MESH Headings
- Animals
- Auditory Cortex/pathology
- Auditory Cortex/physiopathology
- Auditory Cortex/surgery
- Brain Stem/pathology
- Brain Stem/physiopathology
- Brain Stem/transplantation
- Disease Models, Animal
- Hair Cells, Auditory/pathology
- Hearing
- Hearing Loss, Central/etiology
- Hearing Loss, Central/pathology
- Hearing Loss, Central/physiopathology
- Hearing Loss, Central/surgery
- Hearing Loss, Sensorineural/etiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/surgery
- Humans
- Nerve Regeneration
- Neural Conduction
- Neural Stem Cells/transplantation
- Recovery of Function
- Species Specificity
Collapse
Affiliation(s)
- Leila Abbas
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
14
|
Viktorinova A. Iron-mediated oxidative cell death is a potential contributor to neuronal dysfunction induced by neonatal hemolytic hyperbilirubinemia. Arch Biochem Biophys 2018; 654:185-193. [PMID: 30059654 DOI: 10.1016/j.abb.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
The review article discusses current knowledge of iron-mediated oxidative cell death (ferroptosis) and its potential role in the pathogenesis of neuronal dysfunction induced by neonatal hemolytic hyperbilirubinemia. The connection between metabolic conditions related to hemolysis (iron and bilirubin overload) and iron-induced lipid peroxidation is highlighted. Neurotoxicity of iron and bilirubin is associated with their release from destructed erythrocytes in response to hemolytic disease. Iron overload initiates lipid peroxidation through the reactive oxygen species production resulting to oxidative damage to cells. Excessive loading of immature brain cells by iron-induced formation of reactive oxygen species contributes to the development of various neurodevelopmental disorders. The causal relationship between iron overload and susceptibility of brain cells to oxidative damage by ferroptosis appears to be associated not only with the amount of redox-active iron involved in oxidative cell damage but also with the degree of maturity of the neonatal brain. Neuronal dysfunction induced by neonatal hemolytic disease can represent a specific model of ferroptosis. The mechanism by which iron overload triggers ferroptosis is not completely explained. However, hemolysis of neonatal red blood cells appears to be a determining factor. Potential therapeutic strategy with iron-chelating agents to inhibit ferroptosis has a promising future in postnatal care.
Collapse
Affiliation(s)
- Alena Viktorinova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| |
Collapse
|
15
|
Isa HM, Mohamed MS, Mohamed AM, Abdulla A, Abdulla F. Neonatal indirect hyperbilirubinemia and glucose-6-phosphate dehydrogenase deficiency. KOREAN JOURNAL OF PEDIATRICS 2017; 60:106-111. [PMID: 28461823 PMCID: PMC5410616 DOI: 10.3345/kjp.2017.60.4.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 12/08/2016] [Indexed: 01/25/2023]
Abstract
Purpose This study aimed to determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among infants with neonatal indirect hyperbilirubinemia (NIH); compare G6PD-deficient and G6PD-normal patients regarding hyperbilirubinemia and need for exchange transfusions (ET); and assess risk factors for ET and kernicterus. Methods This is a case-control retrospective study. Medical records of NIH patients admitted to the Pediatric Department, Salmaniya Medical Complex, Bahrain, between January 2007 and June 2010 were reviewed. Data on sex, age at presentation, hospitalization duration, need for ET, hemoglobin (Hb) level, reticulocyte count, direct Coombs test, serum total and indirect bilirubin levels, thyroid function, blood and urine cultures, G6PD status, and blood groups were collected and compared between the G6PD-deficent and G6PD-normal patients. Results Of 1,159 NIH patients admitted, 1,129 were included, of whom 646 (57%) were male. Among 1,046 patients tested, 442 (42%) were G6PD deficient, 49 (4%) needed ET, and 11 (1%) had suspected Kernicterus. The G6PD-deficient patients were mainly male (P<0.0001), and had lower Hb levels (P<0.0001) and higher maximum bilirubin levels (P=0.001). More G6PD-deficient patients needed ET (P<0.0001). G6PD deficiency (P=0.006), lower Hb level (P=0.002), lower hematocrit count (P=0.02), higher bilirubin level (P<0.0001), higher maximal bilirubin level (P<0.0001), and positive blood culture result (P<0.0001) were significant risk factors for ET. Maximal bilirubin level was a significant risk factor for kernicterus (P=0.021) and independently related to ET (P=0.03). Conclusion G6PD deficiency is an important risk factor for severe NIH. In G6PD-deficent neonates, management of NIH should be hastened to avoid irreversible neurological complications.
Collapse
Affiliation(s)
- Hasan M Isa
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | | | | | - Adel Abdulla
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Fuad Abdulla
- Pediatric Department, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
16
|
Yueh MF, Chen S, Nguyen N, Tukey RH. Developmental, Genetic, Dietary, and Xenobiotic Influences on Neonatal Hyperbilirubinemia. Mol Pharmacol 2017; 91:545-553. [PMID: 28283555 PMCID: PMC5416747 DOI: 10.1124/mol.116.107524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Hyperbilirubinemia, caused by the accumulation of unconjugated bilirubin, is one of the most common clinical diagnoses in both premature and term newborns. Owing to the fact that bilirubin is metabolized solely through glucuronidation by UDP-glucuronosyltransferase (UGT) 1A1, it is now known that immaturity of UGT1A1, in combination with the overproduction of bilirubin during the developmental stage, acts as a bottleneck to bilirubin elimination and predisposes the infant to high total serum bilirubin levels. Although neonatal jaundice is mostly benign, excessively high levels of serum bilirubin in a small percentage of newborns can cause bilirubin-induced neurologic dysfunction, potentially leading to permanent brain damage, a condition known as kernicterus Although a large portion of hyperbilirubinemia cases in newborns are associated with hemolytic diseases, we emphasize here the impaired ability of UGT1A1 to eliminate bilirubin that contributes to hyperbilirubinemia-induced neurotoxicity in the developmental stage. As a series of hereditary UGT1A1 mutations have been identified that are associated with UGT1A1 deficiency, new evidence has verified that delayed expression of UGT1A1 during the early stages of neonatal development is a tightly controlled event involving coordinated intrahepatic and extrahepatic regulation. This review recapitulates the progress that has been made in recent years in understanding the causes and physiopathology of severe hyperbilirubinemia, investigating molecular mechanisms underlying bilirubin-induced encephalopathy, and searching for potential therapies for treating pathologic hyperbilirubinemia. Several animal models have been developed to make it possible to examine bilirubin-induced neurotoxicity from multiple directions. Moreover, environmental factors that may alleviate or worsen the condition of hyperbilirubinemia are discussed.
Collapse
Affiliation(s)
- Mei-Fei Yueh
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Nghia Nguyen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
17
|
Amini N, Vousooghi N, Soleimani M, Samadikuchaksaraei A, Akbari M, Safakheil H, Atafimanesh P, Shahbazi A, Brouki Milan P, Ramezani S, Mozafari M, Joghataei MT. A new rat model of neonatal bilirubin encephalopathy (kernicterus). J Pharmacol Toxicol Methods 2017; 84:44-50. [PMID: 27746217 DOI: 10.1016/j.vascn.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Hemolytic kernicterus, an indirect bilirubin-induced brain dysfunction, is associated with hyper-bilirubinemia in mammalian neonates. In this study, a new model of kernicterus has been developed using intra-peritoneal injections of phenyl hydrazine and subcutaneous injections of sulfisoxazole. These drugs can potentially induce kernicterus in neonatal through changes in hemolysis and hypo-albumin. METHODS For this purpose, 7-day-old male Wistar rats (n=72; mean weight 11±1g) were used. The animals have been divided into six different groups which received the drugs alone and their combination, and the drugs' solvents and their combination. Biochemical parameters, brain iron and bilirubin, behavioural performance, auditory function and apoptosis were measured using auto-analyser instruments; atomic absorption spectroscopy, Sawasaki, footprint, auditory brainstem response (ABR) and TUNEL test, respectively. RESULT The drug-injected groups showed a significant reduction in serum haematocrit and an increase in the concentration of brain bilirubin, total and indirect bilirubin as well as TUNEL positive cells in basal ganglia. In addition, the obtained results showed that there was a significant increase in behavioural disturbance and auditory dysfunction in the group injected with the combination of two drugs. CONCLUSION This kernicterus-induced rat model could perfectly mimic the common conditions of the hyperbilirubinemia in human neonates. This study offers an easy technique to develop more stable models for follow-up studies.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Science, Tehran, Iran.
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akbari
- Audiology Department, Rehabilitation Faculty, Iran university of Medical Sciences, Tehran, Iran
| | - Hosein Safakheil
- Neuroscience Department, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pezhman Atafimanesh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Neuroscience Department, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ramezani
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Department, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Manni I, Di Rocco G, Fusco S, Leone L, Barbati SA, Carapella CM, Grassi C, Piaggio G, Toietta G. Monitoring the Response of Hyperbilirubinemia in the Mouse Brain by In Vivo Bioluminescence Imaging. Int J Mol Sci 2016; 18:50. [PMID: 28036021 PMCID: PMC5297685 DOI: 10.3390/ijms18010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/18/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023] Open
Abstract
Increased levels of unconjugated bilirubin are neurotoxic, but the mechanism leading to neurological damage has not been completely elucidated. Innovative strategies of investigation are needed to more precisely define this pathological process. By longitudinal in vivo bioluminescence imaging, we noninvasively visualized the brain response to hyperbilirubinemia in the MITO-Luc mouse, in which light emission is restricted to the regions of active cell proliferation. We assessed that acute hyperbilirubinemia promotes bioluminescence in the brain region, indicating an increment in the cell proliferation rate. Immunohistochemical detection in brain sections of cells positive for both luciferase and the microglial marker allograft inflammatory factor 1 suggests proliferation of microglial cells. In addition, we demonstrated that brain induction of bioluminescence was altered by pharmacological displacement of bilirubin from its albumin binding sites and by modulation of the blood-brain barrier permeability, all pivotal factors in the development of bilirubin-induced neurologic dysfunction. We also determined that treatment with minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, or administration of bevacizumab, an anti-vascular endothelial growth factor antibody, blunts bilirubin-induced bioluminescence. Overall the study supports the use of the MITO-Luc mouse as a valuable tool for the rapid response monitoring of drugs aiming at preventing acute bilirubin-induced neurological dysfunction.
Collapse
Affiliation(s)
- Isabella Manni
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Salvatore Fusco
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Lucia Leone
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Saviana Antonella Barbati
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | | | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
19
|
Memisoglu A, Kolgazi M, Yaman A, Bahadir E, Sirvanci S, Yeğen BÇ, Ozek E. Neuroprotective Effect of Erythropoietin on Phenylhydrazine-Induced Hemolytic Hyperbilirubinemia in Neonatal Rats. Neurochem Res 2016; 42:1026-1037. [PMID: 27995496 DOI: 10.1007/s11064-016-2135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/04/2023]
Abstract
Neonatal unconjugated hyperbilirubinemia might cause severe bilirubin neurotoxicity in especially hemolytic conditions. The study aimed to elucidate the potential neuroprotective effects of erythropoietin (EPO) in hemolysis-induced hyperbilirubinemia. In newborn rats, hyperbilirubinemia secondary to hemolysis was induced by injecting with phenylhydrazine hydrochloride (PHZ) and rats were injected with either vehicle or EPO. At 54th hour of the PHZ injection, rats were decapitated. Serum levels of TNF-α, IL-1β, IL-10, brain-derived neurotrophic factor (BDNF) and S100-B and brain malondialdehyde, glutathione levels and myeloperoxidase activities were measured. TUNEL staining and NF-κB expression were evaluated. As compared to control pups, in vehicle-treated PHZ group, TNF-α and IL-1β levels, malondialdehyde level and myeloperoxidase activity were increased with concomitant decreases in IL-10 and glutathione. All EPO regimens reversed PHZ-induced alterations in IL-10, TNF-α, malondialdehyde and glutathione levels. Three-day-treatment abolished increases in myeloperoxidase activity and IL-1β levels, while BDNF and S100-B were elevated. Increased TUNEL (+) cells and NF-κB expressions in the brain of PHZ group were reduced in the 3-day-treated group. EPO exerted anti-inflammatory effects on PHZ-induced neural damage in newborn rats, while the neuroprotection was more obvious when the treatments were repeated successively. The results suggest that EPO treatment may have a therapeutic potential in supporting neuroplasticity in the hyperbilirubinemic neonates.
Collapse
Affiliation(s)
- Asli Memisoglu
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Akan Yaman
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Elif Bahadir
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.
| | - Eren Ozek
- Department of Paediatrics, Division of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
20
|
Hirashima R, Michimae H, Takemoto H, Sasaki A, Kobayashi Y, Itoh T, Tukey RH, Fujiwara R. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity. Mol Pharmacol 2016; 90:265-74. [PMID: 27413119 PMCID: PMC4998668 DOI: 10.1124/mol.116.104174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels.
Collapse
Affiliation(s)
- Rika Hirashima
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hirofumi Michimae
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hiroaki Takemoto
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Aya Sasaki
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Yoshinori Kobayashi
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Tomoo Itoh
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Robert H Tukey
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Ryoichi Fujiwara
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| |
Collapse
|
21
|
Nawaz H, Shad MA, Iqbal MS. Optimization of phenylhydrazine induced hyperbilirubinemia in experimental rabbit. Exp Anim 2016; 65:363-372. [PMID: 27210076 PMCID: PMC5111839 DOI: 10.1538/expanim.16-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Induction of hyperbilirubinemia in experimental rabbits by phenylhydrazine was optimized
in terms of dose, dose interval and number of doses using response surface methodology.
Central Composite Design was employed using five levels for each of the three input
variables. Degree of hyperbilirubinemia was measured in terms of bilirubin level in serum
of animals. A dose dependent significant elevation (P<0.05) of total
serum bilirubin level was observed which was optimized by using eight factorial, six axial
and six central points as suggested by experimental design. Optimum levels of
phenylhydrazine dose, total number of doses and a dose interval to achieve maximum
elevation (4.06 mg/dl−1) of total serum bilirubin were found to be 11.56
mg/kg−1 body weight, 8 and 24.65 h, respectively. The induction procedure was
validated by performing five replicate experiments on a group of five animals which showed
3.56 ± 0.47 mg/kg−1 body weight elevation in total serum bilirubin level.
Collapse
Affiliation(s)
- Haq Nawaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | | | | |
Collapse
|
22
|
Patil RA, Makwana AB. Anti-hyperbilirubinemic and wound healing activity of aqueous extract of Calotropis procera leaves in Wistar rats. Indian J Pharmacol 2016; 47:398-402. [PMID: 26288472 PMCID: PMC4527061 DOI: 10.4103/0253-7613.161262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/18/2015] [Accepted: 06/05/2015] [Indexed: 11/26/2022] Open
Abstract
Aims: The aim of this study was to evaluate the bilirubin lowering and wound healing property of aqueous extract of Calotropis procera (AECP) leaves in Wistar rats. Materials and Methods: Albino Wistar rats of either sex were used for the study. Bilirubin lowering property of C. procera leaves was evaluated using phenylhydrazine and paracetamol as inducing agents followed by measuring the concentration of serum total bilirubin in hyperbilirubinemic rats. Wound healing property was evaluated using incision and excision models by measuring tensile breaking strength, percentage wound contractions, and epithelization days, respectively. Statistical Analysis: Statistical comparison between groups in each experiment was done with one-way analysis of variance followed by Dunnett's test. Results: AECP showed a significant (P < 0.05) decrease in concentrations of serum total bilirubin in hyperbilirubinemic rats as well as significant (P < 0.05) increase in breaking strength and percentage wound contractions with decreased epithelization period when compared to control groups. Conclusions: AECP showed significant bilirubin lowering and wound healing property in Wistar rats.
Collapse
Affiliation(s)
- Rupali Arun Patil
- Department of Pharmacology, MGV's Pharmacy College, Nashik, Maharashtra, India
| | - Aakash B Makwana
- Department of Pharmacology, MGV's Pharmacy College, Nashik, Maharashtra, India
| |
Collapse
|
23
|
Pazar A, Kolgazi M, Memisoglu A, Bahadir E, Sirvanci S, Yaman A, Yeğen BÇ, Ozek E. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. J Pineal Res 2016; 60:74-83. [PMID: 26511903 DOI: 10.1111/jpi.12292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Melatonin exerts protection in several inflammatory and neurodegenerative disorders. To investigate the neuroprotective effects of melatonin in an experimental hemolysis-induced hyperbilirubinemia, newborn Sprague-Dawley rats (25-40 g, n = 72) were injected with phenylhydrazine hydrochloride (PHZ; 75 mg/kg) and the injections were repeated at the 24th hour. Rats were treated with saline or melatonin (10 mg/kg) 30 min before the first and second PHZ injections and 24 h after the 2nd PHZ injections. Control rats (n = 24) were injected with saline, but not PHZ. At sixth hours after the last injections of saline or melatonin, all rats were decapitated. Tumor necrosis factor (TNF)-α, IL-1β, IL-10 and brain-derived neurotrophic factor (BDNF) and S100B levels in the plasma were measured. Brain tissue malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase (MPO) activities were measured, and brain tissues were evaluated for apoptosis by TUNEL method. In the saline-treated PHZ group, hemoglobin, hematocrit levels were reduced, and total/direct bilirubin levels were elevated when compared to control group. Increased plasma TNF-α, IL-1β levels, along with decreased BDNF, S100B and IL-10 values were observed in the saline-treated PHZ group, while these changes were all reversed in the melatonin-treated group. Increased MDA levels and MPO activities in the brain tissues of saline-treated hyperbilirubinemic rats, concomitant with depleted brain GSH stores, were also reversed in the melatonin-treated hyperbilirubinemic rats. Increased TUNEL(+) cells in the hippocampus of saline-treated PHZ group were reduced by melatonin treatment. Melatonin exerts neuroprotective and anti-apoptotic effects on the oxidative neuronal damage of the newborn rats with hemolysis and hyperbilirubinemia.
Collapse
Affiliation(s)
- Asilay Pazar
- Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Aslı Memisoglu
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Elif Bahadir
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Akan Yaman
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Eren Ozek
- Division of Neonatology, Department of Paediatrics, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
24
|
Albumin administration prevents neurological damage and death in a mouse model of severe neonatal hyperbilirubinemia. Sci Rep 2015; 5:16203. [PMID: 26541892 PMCID: PMC4635426 DOI: 10.1038/srep16203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
Abstract
Therapies to prevent severe neonatal unconjugated hyperbilirubinemia and kernicterus are phototherapy and, in unresponsive cases, exchange transfusion, which has significant morbidity and mortality risks. Neurotoxicity is caused by the fraction of unconjugated bilirubin not bound to albumin (free bilirubin, Bf). Human serum albumin (HSA) administration was suggested to increase plasma bilirubin-binding capacity. However, its clinical use is infrequent due to difficulties to address its potential preventive and curative benefits, and to the absence of reliable markers to monitor bilirubin neurotoxicity risk. We used a genetic mouse model of unconjugated hyperbilirubinemia showing severe neurological impairment and neonatal lethality. We treated mutant pups with repeated HSA administration since birth, without phototherapy application. Daily intraperitoneal HSA administration completely rescued neurological damage and lethality, depending on dosage and administration frequency. Albumin infusion increased plasma bilirubin-binding capacity, mobilizing bilirubin from tissues to plasma. This resulted in reduced plasma Bf, forebrain and cerebellum bilirubin levels. We showed that, in our experimental model, Bf is the best marker to determine the risk of developing neurological damage. These results support the potential use of albumin administration in severe acute hyperbilirubinemia conditions to prevent or treat bilirubin neurotoxicity in situations in which exchange transfusion may be required.
Collapse
|
25
|
Watchko JF, Painter MJ, Panigrahy A. Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections? Semin Fetal Neonatal Med 2015; 20:47-51. [PMID: 25547431 DOI: 10.1016/j.siny.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Investigators have hypothesized a range of subcortical neuropathology in the genesis of bilirubin-induced neurologic dysfunction (BIND). The current review builds on this speculation with a specific focus on the cerebellum and its connections in the development of the subtle neuromotor disabilities of BIND. The focus on the cerebellum derives from the following observations: (i) the cerebellum is vulnerable to bilirubin-induced injury; perhaps the most vulnerable region within the central nervous system; (ii) infants with cerebellar injury exhibit a neuromotor phenotype similar to BIND; and (iii) the cerebellum has extensive bidirectional circuitry projections to motor and non-motor regions of the brainstem and cerebral cortex that impact a variety of neurobehaviors. Future study using advanced magnetic resonance neuroimaging techniques have the potential to shed new insights into bilirubin's effect on neural network topology via both structural and functional brain connectivity measurements.
Collapse
Affiliation(s)
- Jon F Watchko
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Michael J Painter
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Song S, Hu Y, Gu X, Si F, Hua Z. A novel newborn rat kernicterus model created by injecting a bilirubin solution into the cisterna magna. PLoS One 2014; 9:e96171. [PMID: 24796550 PMCID: PMC4010446 DOI: 10.1371/journal.pone.0096171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/03/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Kernicterus still occurs around the world; however, the mechanism of bilirubin neurotoxicity remains unclear, and effective treatment strategies are lacking. To solve these problems, several kernicterus (or acute bilirubin encephalopathy) animal models have been established, but these models are difficult and expensive. Therefore, the present study was performed to establish a novel kernicterus model that is simple and affordable by injecting unconjugated bilirubin solution into the cisterna magna (CM) of ordinary newborn Sprague-Dawley (SD) rats. METHODS On postnatal day 5, SD rat pups were randomly divided into bilirubin and control groups. Then, either bilirubin solution or ddH2O (pH = 8.5) was injected into the CM at 10 µg/g (bodyweight). For model characterization, neurobehavioral outcomes were observed, mortality was calculated, and bodyweight was recorded after bilirubin injection and weaning. Apoptosis in the hippocampus was detected by H&E staining, TUNEL, flow cytometry and Western blotting. When the rats were 28 days old, learning and memory ability were evaluated using the Morris water maze test. RESULTS The bilirubin-treated rats showed apparently abnormal neurological manifestations, such as clenched fists, opisthotonos and torsion spasms. Bodyweight gain in the bilirubin-treated rats was significantly lower than that in the controls (P<0.001). The early and late mortality of the bilirubin-treated rats were both dramatically higher than those of the controls (P = 0.004 and 0.017, respectively). Apoptosis and necrosis in the hippocampal nerve cells in the bilirubin-treated rats were observed. The bilirubin-treated rats performed worse than the controls on the Morris water maze test. CONCLUSION By injecting bilirubin into the CM, we successfully created a new kernicterus model using ordinary SD rats; the model mimics both the acute clinical manifestations and the chronic sequelae. In particular, CM injection is easy to perform; thus, more stable models for follow-up study are available.
Collapse
Affiliation(s)
- Sijie Song
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Hu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xianfang Gu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neonatology, Children's Hospital of Kaifeng, Henan, China
| | - Feifei Si
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
27
|
Schreuder AB, Rice AC, Vanikova J, Vitek L, Shapiro SM, Verkade HJ. Albumin administration protects against bilirubin-induced auditory brainstem dysfunction in Gunn rat pups. Liver Int 2013; 33:1557-65. [PMID: 23742048 DOI: 10.1111/liv.12219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/11/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND Free bilirubin (Bf), the unbound fraction of unconjugated bilirubin (UCB), can induce neurotoxicity, including impairment of the auditory system, which can be assessed by brainstem auditory evoked potentials (BAEPs). We hypothesized that albumin might reduce the risk of neurotoxicity by decreasing Bf and its translocation into the brain. AIM To determine the effects of albumin on BAEPs and brain bilirubin content in two Gunn rat pup models of acute hyperbilirubinemia. METHODS We used Gunn rat pups, which have a deficiency of the bilirubin-conjugating enzyme UGT1A1. We induced haemolysis by injection of phenylhydrazine (phz) into 14-days old pups. Subsequently, pups were treated with either i.p. human serum albumin (HSA; 2.5 g/kg; n = 8) or saline (control, n = 8). We induced acute neurotoxicity by injecting 16-days old pups with sulphadimethoxine (sulpha) and treated them with either HSA (n = 9) or saline (control, n = 10). To assess bilirubin neurotoxicity, we used the validated BAEP method and compared relevant parameters; i.e. peak latency values and interwave interval (IWI) between peak I and peak II, a marker of acute neurotoxicity. RESULTS Phz and sulpha significantly increased IWI I-II by 26% and 29% (P < 0.05) in the haemolysis and the displacement model, respectively. Albumin completely prevented the increase of IWI I-II in either model. The beneficial effect of albumin in the displacement-model by means of normal BAEPs was in line with less bilirubin in the brain (NS). Interestingly, in the haemolysis model the accumulation of total bilirubin in the brain was unaltered, and BAEPs still appeared normal. This might advocate for a role of brain Bf which was calculated and showed that albumin treatment non-significantly reduces Bf concentrations in brain, compared with saline treatment. CONCLUSIONS Albumin treatment is neuroprotective in acute hyperbilirubinemia in Gunn rat pups. Our present results underline the importance of functional diagnostic test of neurotoxicity above biochemical concentrations.
Collapse
Affiliation(s)
- Andrea B Schreuder
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, Beatrix Children's Hospital - University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Cuperus FJC, Schreuder AB, van Imhoff DE, Vitek L, Vanikova J, Konickova R, Ahlfors CE, Hulzebos CV, Verkade HJ. Beyond plasma bilirubin: the effects of phototherapy and albumin on brain bilirubin levels in Gunn rats. J Hepatol 2013; 58:134-40. [PMID: 22922094 DOI: 10.1016/j.jhep.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Severe unconjugated hyperbilirubinemia, as occurs in Crigler-Najjar disease and neonatal jaundice, carries the risk of neurotoxicity. This neurotoxicity is related to the increased passage of free bilirubin (UCB(free)), the fraction of bilirubin that is not bound to plasma proteins, into the brain. We hypothesized that albumin treatment would lower the UCB(free) fraction, and thus decrease bilirubin accumulation in the brain. METHODS We treated chronic (e.g., as a model for Crigler-Najjar disease) and acute hemolytic (e.g., as a model for neonatal jaundice) moderate hyperbilirubinemic Gunn rats with phototherapy, human serum albumin (HSA) or phototherapy+HSA. RESULTS In the chronic model, adjunct HSA increased the efficacy of phototherapy; it decreased plasma UCB(free) and brain bilirubin by 88% and 67%, respectively (p<0.001). In the acute model, adjunct HSA also increased the efficacy of phototherapy; it decreased plasma UCB(free) by 76% (p<0.001) and completely prevented the hemolysis-induced deposition of bilirubin in the brain. Phototherapy alone failed to prevent the deposition of bilirubin in the brain during acute hemolytic jaundice. CONCLUSIONS We showed that adjunct HSA treatment decreases brain bilirubin levels in phototherapy-treated Gunn rats. We hypothesize that HSA decreases these levels by lowering UCB(free) in the plasma. Our results support the feasibility of adjunct albumin treatment in patients with Crigler-Najjar disease or neonatal jaundice.
Collapse
Affiliation(s)
- Frans J C Cuperus
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, Beatrix Children's Hospital - University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|
30
|
Rice AC, Chiou VL, Zuckoff SB, Shapiro SM. Profile of minocycline neuroprotection in bilirubin-induced auditory system dysfunction. Brain Res 2010; 1368:290-8. [PMID: 20971088 DOI: 10.1016/j.brainres.2010.10.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 12/17/2022]
Abstract
Excessive hyperbilirubinemia in human neonates can cause permanent dysfunction of the auditory system, as assessed with brainstem auditory evoked potentials (BAEPs). Jaundiced Gunn rat pups (jjs) exhibit similar BAEP abnormalities as hyperbilirubinemic neonates. Sulfadimethoxine (sulfa) administration to jjs, which displaces bilirubin from serum albumin into tissues including brain, exacerbates acute toxicity. Minocycline administered prior to sulfa in jjs protects against BAEP abnormalities. This study evaluates the neuroprotective capabilities of minocycline HCl (50 mg/kg) administered 30 or 120 min after sulfa (200 mg/kg) in 16 days old jjs. BAEPs are recorded at 6 or 24 h post-sulfa. Abnormal BAEP waves exhibit increased latency and decreased amplitude. The sulfa/saline treated jjs exhibited a significantly increased interwave interval between waves I and II (I-II IWI) and significantly decreased amplitudes of waves II and III compared to the saline/saline jjs. The minocycline 30 min post-sulfa (sulfa/mino+30) group was not significantly different from the saline/saline control group, indicating neuroprotection. The minocycline 120 min post-sulfa (sulfa/mino+120) group had a significantly decreased amplitude of wave III at both 6 and 24h. These studies indicate that minocycline has a graded neuroprotective effect when administered after acute bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Ann C Rice
- Department of Neurology, Box 980599, Virginia Commonwealth University, Richmond, VA 23298-0599, USA.
| | | | | | | |
Collapse
|
31
|
Bock KW, Köhle C. Contributions of the Ah receptor to bilirubin homeostasis and its antioxidative and atheroprotective functions. Biol Chem 2010; 391:645-53. [DOI: 10.1515/bc.2010.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractThe homeostasis and atheroprotective function of bilirubin could be an appealing model to investigate one of the many physiologic functions of the human aryl hydrocarbon receptor (AhR). Several clinical and epidemiological studies have been carried out on key enzymes generating and eliminating bilirubin (heme oxygenase-1 and UDP-glucuronosyltransferase UGT1A1, respectively) and their regulation by the AhR. Studies with AhR-deficient mice strongly suggest a role of the AhR in vascular biology. Atherosclerosis, a major cause of premature death, is initiated by pro-oxidative insults of the vascular endothelium. The strong antioxidant and activator of AhR bilirubin is generated in vascular endothelial cells, smooth muscles and macrophages. It acts mostly in the lipid environment, thereby complementing other antioxidants such as glutathione which act mostly on water-soluble proteins. In conclusion, the atheroprotective functions of bilirubin might not only provide models to study physiologic functions of the human AhR but also provide opportunities to improve prevention and treatment of a major life-threatening disease.
Collapse
|
32
|
Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc Natl Acad Sci U S A 2010; 107:5024-9. [PMID: 20194756 DOI: 10.1073/pnas.0913290107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High levels of unconjugated bilirubin (UCB) in newborn children is associated with a reduction in hepatic UDP glucuronosyltransferase (UGT) 1A1 activity that can lead to CNS toxicity, brain damage, and even death. Little is known regarding those events that lead to UCB accumulation in brain tissue, and therefore, we sought to duplicate this condition in mice. The human UGT1 locus, encoding all 9-UGT1A genes including UGT1A1, was expressed in Ugt1(-/-) mice. Because the most common clinical condition associated with jaundice in adults is Gilbert's syndrome, which is characterized by an allelic polymorphism in the UGT1A1 promoter, hyperbilirubinemia was monitored in humanized UGT1 mice that expressed either the Gilbert's UGT1A1*28 allele [Tg(UGT1(A1*28))Ugt1(-/-) mice] or the normal UGT1A1*1 allele [Tg(UGT1(A1*1))Ugt1(-/-) mice]. Adult Tg(UGT1(A1*28))Ugt1(-/-) mice expressed elevated levels of total bilirubin (TB) compared with Tg(UGT1(A1*1))Ugt1(-/-) mice, confirming that the promoter polymorphism associated with the UGT1A1*28 allele contributes to hyperbilirubinemia in mice. However, TB accumulated to near toxic levels during neonatal development, a finding that is independent of the Gilbert's UGT1A1*28 promoter polymorphism. Whereas serum TB levels eventually returned to adult levels, TB clearance in neonatal mice was not associated with hepatic UGT1A1 expression. In approximately 10% of the humanized UGT1 mice, peak TB levels culminated in seizures followed by death. UCB deposition in brain tissue and the ensuing seizures were associated with developmental milestones and can be prevented by enhancing regulation of the UGT1A1 gene in neonatal mice.
Collapse
|