1
|
Lin YN, Tong SY, Cao JW, Zong N, Chen JY, Yang FW, Wang CX, Liu LY, Xu WD, Yu YC. Distinct mitotic dynamics and neuronal migration patterns between gyri and sulci in the ferret neocortex during cortical folding. Neuroscience 2025; 576:69-79. [PMID: 40246222 DOI: 10.1016/j.neuroscience.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Neocortical folding (i.e., gyrification) is a key evolutionary and developmental feature of the brain, facilitating cortical surface expansion and enhanced cognitive function. However, the precise strategies and mechanisms underlying cortical folding remain incompletely understood. In this study, we systematically investigated the dynamic formation of neocortical folding in the ferret. Our findings reveal significant differences in neurogenesis and neuronal migration between the developing lateral gyrus (LG) and adjacent lateral sulcus (LS) of the ferret neocortex. Specifically, progenitors in the LG exhibited higher mitosis activity and a shorter S-phase duration compared to those in the LS. Additionally, immature neurons in the LG followed a fan-like migration pattern, whereas those in the LS exhibited a flower bud-like pattern. Organotypic slice cultures and time-lapse imaging further demonstrated that the migration trajectory of immature neurons to the neocortex is more straightforward in the LG than in the LS. Together, these results highlight distinct cellular behaviors between the developing gyrus and sulcus, providing novel insights into cellular mechanisms underlying cortex folding.
Collapse
Affiliation(s)
- You-Ning Lin
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Yuan Tong
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun-Wei Cao
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ni Zong
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun-Yang Chen
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Fu-Wei Yang
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Chen-Xi Wang
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lin-Yun Liu
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wen-Dong Xu
- The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Yong-Chun Yu
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Yang J, Mirhosseiniardakani S, Qiu L, Bicja K, Del Greco A, Lin KJ, Lyon M, Chen X. Cilia directionality reveals a slow reverse movement of principal neurons for positioning and lamina refinement in the cerebral cortex. Development 2025; 152:DEV204300. [PMID: 40066717 DOI: 10.1242/dev.204300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/17/2025] [Indexed: 05/06/2025]
Abstract
Currently, not much is known about neuronal positioning and the roles of primary cilia in postnatal neurodevelopment. We show that primary cilia of principal neurons undergo marked changes in positioning and orientation, concurrent with postnatal neuron positioning in the mouse cerebral cortex. Primary cilia of early- and late-born principal neurons in compact layers display opposite orientations, while neuronal primary cilia in loose laminae are predominantly oriented toward the pia. In contrast, astrocytes and interneurons, and neurons in nucleated brain regions do not display specific cilia directionality. We further discovered that the cell bodies of principal neurons in inside-out laminated regions spanning from the hippocampal CA1 region to neocortex undergo a slow 'reverse movement' for postnatal positioning and lamina refinement. Furthermore, selective disruption of cilia function in the forebrain leads to altered lamination and gyrification in the retrosplenial cortex that is formed by reverse movement. Collectively, this study identifies reverse movement as a fundamental process for principal cell positioning that refines lamination in the cerebral cortex and casts light on the evolutionary transition from three-layered allocortices to six-layered neocortices.
Collapse
Affiliation(s)
- Juan Yang
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
- Graduate Program in Biochemistry, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Soheila Mirhosseiniardakani
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
- Graduate Programs in Genetics, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Liyan Qiu
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Kostandina Bicja
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Abigail Del Greco
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Kevin JungKai Lin
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| | - Mark Lyon
- Department of Mathematics and Statistics, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Xuanmao Chen
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
3
|
Wang W, Yin C, Wen S, Liu Z, Wang B, Zeng B, Sun L, Zhou X, Zhong S, Zhang J, Ma W, Wu Q, Wang X. DCX knockout ferret reveals a neurogenic mechanism in cortical development. Cell Rep 2024; 43:114508. [PMID: 39018244 DOI: 10.1016/j.celrep.2024.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Lissencephaly is a rare brain malformation for which our understanding remains limited due to the absence of suitable animal models that accurately represent human phenotypes. Here, we establish doublecortin (DCX) knockout ferrets as a model that faithfully replicates key features of the disorder. We reveal the critical roles of DCX in neural progenitor cell proliferation and radial glial fiber extension, processes essential for normal cortical development. Utilizing single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics, we provide a detailed atlas of the lissencephalic cortex, illustrating disrupted neuronal lamination and the specific interactions between inhibitory and excitatory neurons. These findings enhance our understanding of the cellular and molecular mechanisms underlying lissencephaly and highlight the potential of DCX knockout ferrets as a valuable tool for neurodevelopmental research, offering insights into both the pathology of lissencephaly and the general principles of brain development.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shaonan Wen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China
| | - Bo Zeng
- Changping Laboratory, Beijing 102206, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, New Cornerstone Science Laboratory, Beijing 100875, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Ross G, Radtke-Schuller S, Frohlich F. Ferret as a model system for studying the anatomy and function of the prefrontal cortex: A systematic review. Neurosci Biobehav Rev 2024; 162:105701. [PMID: 38718987 PMCID: PMC11162921 DOI: 10.1016/j.neubiorev.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
There is a lack of consensus on anatomical nomenclature, standards of documentation, and functional equivalence of the frontal cortex between species. There remains a major gap between human prefrontal function and interpretation of findings in the mouse brain that appears to lack several key prefrontal areas involved in cognition and psychiatric illnesses. The ferret is an emerging model organism that has gained traction as an intermediate model species for the study of top-down cognitive control and other higher-order brain functions. However, this research has yet to benefit from synthesis. Here, we provide a summary of all published research pertaining to the frontal and/or prefrontal cortex of the ferret across research scales. The targeted location within the ferret brain is summarized visually for each experiment, and the anatomical terminology used at time of publishing is compared to what would be the appropriate term to use presently. By doing so, we hope to improve clarity in the interpretation of both previous and future publications on the comparative study of frontal cortex.
Collapse
Affiliation(s)
- Grace Ross
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Garcia KE, Wang X, Santiago SE, Bakshi S, Barnes AP, Kroenke CD. Longitudinal MRI of the developing ferret brain reveals regional variations in timing and rate of growth. Cereb Cortex 2024; 34:bhae172. [PMID: 38679479 PMCID: PMC11056283 DOI: 10.1093/cercor/bhae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Evansville, IN 47715, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Sarah E Santiago
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Stuti Bakshi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Anthony P Barnes
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
- Oregon Health and Science Advanced Imaging Research Center, Portland, OR 97239, United States
| |
Collapse
|
6
|
Sawada K, Kamiya S, Kobayashi T. Neonatal Exposure to Lipopolysaccharide Promotes Neurogenesis of Subventricular Zone Progenitors in the Developing Neocortex of Ferrets. Int J Mol Sci 2023; 24:14962. [PMID: 37834410 PMCID: PMC10573966 DOI: 10.3390/ijms241914962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Lipopolysaccharide (LPS) is a natural agonist of toll-like receptor 4 that serves a role in innate immunity. The current study evaluated the LPS-mediated regulation of neurogenesis in the subventricular zone (SVZ) progenitors, that is, the basal radial glia and intermediate progenitors (IPs), in ferrets. Ferret pups were subcutaneously injected with LPS (500 μg/g of body weight) on postnatal days (PDs) 6 and 7. Furthermore, 5-ethynyl-2'-deoxyuridine (EdU) and 5-bromo-2'-deoxyuridine (BrdU) were administered on PDs 5 and 7, respectively, to label the post-proliferative and proliferating cells in the inner SVZ (iSVZ) and outer SVZ (oSVZ). A significantly higher density of BrdU single-labeled proliferating cells was observed in the iSVZ of LPS-exposed ferrets than in controls but not in post-proliferative EdU single-labeled and EdU/BrdU double-labeled self-renewing cells. BrdU single-labeled cells exhibited a lower proportion of Tbr2 immunostaining in LPS-exposed ferrets (22.2%) than in controls (42.6%) and a higher proportion of Ctip2 immunostaining in LPS-exposed ferrets (22.2%) than in controls (8.6%). The present findings revealed that LPS modified the neurogenesis of SVZ progenitors. Neonatal LPS exposure facilitates the proliferation of SVZ progenitors, followed by the differentiation of Tbr2-expressing IPs into Ctip2-expressing immature neurons.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura 300-0051, Japan
| | - Shiori Kamiya
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan; (S.K.); (T.K.)
| | - Tetsuya Kobayashi
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama 338-8570, Japan; (S.K.); (T.K.)
| |
Collapse
|
7
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
8
|
Roboon J, Hattori T, Nguyen DT, Ishii H, Takarada-Iemata M, Kannon T, Hosomichi K, Maejima T, Saito K, Shinmyo Y, Mieda M, Tajima A, Kawasaki H, Hori O. Isolation of ferret astrocytes reveals their morphological, transcriptional, and functional differences from mouse astrocytes. Front Cell Neurosci 2022; 16:877131. [PMID: 36274991 PMCID: PMC9584309 DOI: 10.3389/fncel.2022.877131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play key roles in supporting the central nervous system structure, regulating synaptic functions, and maintaining brain homeostasis. The number of astrocytes in the cerebrum has markedly increased through evolution. However, the manner by which astrocytes change their features during evolution remains unknown. Compared with the rodent brain, the brain of the ferret, a carnivorous animal, has a folded cerebral cortex and higher white to gray matter ratio, which are common features of the human brain. To further clarify the features of ferret astrocytes, we isolated astrocytes from ferret neonatal brains, cultured these cells, and compared their morphology, gene expression, calcium response, and proliferating ability with those of mouse astrocytes. The morphology of cultured ferret astrocytes differed from that of mouse astrocytes. Ferret astrocytes had longer and more branched processes, smaller cell bodies, and different calcium responses to glutamate, as well as had a greater ability to proliferate, compared to mouse astrocytes. RNA sequencing analysis revealed novel ferret astrocyte-specific genes, including several genes that were the same as those in humans. Astrocytes in the ferret brains had larger cell size, longer primary processes in larger numbers, and a higher proliferation rate compared to mouse astrocytes. Our study shows that cultured ferret astrocytes have different features from rodent astrocytes and similar features to human astrocytes, suggesting that they are useful in studying the roles of astrocytes in brain evolution and cognitive functions in higher animals.
Collapse
Affiliation(s)
- Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- *Correspondence: Tsuyoshi Hattori,
| | - Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
10
|
Lossi L. Anatomical features for an adequate choice of the experimental animal model in biomedicine: III. Ferret, goat, sheep, and horse. Ann Anat 2022; 244:151978. [PMID: 35787443 DOI: 10.1016/j.aanat.2022.151978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The anatomical characteristics of each of the many species today employed in biomedical research are very important when selecting the correct animal model(s), especially for conducting translational research. In previous papers, these features have been considered for fish (D'Angelo et al. Ann. Anat, 2016, 205:75), the most common laboratory rodents, rabbits, and pigs (Lossi et al. 2016). I here follow this line of discussion by dealing with the importance of proper knowledge of ferrets, goats, sheep, and horses' main anatomical features in translational research.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Turin, Italy; INN, Istituto Nazionale di Neuroscienze, Turin, Italy.
| |
Collapse
|
11
|
Wang S, Saito K, Kawasaki H, Holland MA. Orchestrated neuronal migration and cortical folding: A computational and experimental study. PLoS Comput Biol 2022; 18:e1010190. [PMID: 35709293 PMCID: PMC9258886 DOI: 10.1371/journal.pcbi.1010190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Brain development involves precisely orchestrated genetic, biochemical, and mechanical events. At the cellular level, neuronal proliferation in the innermost zone of the brain followed by migration towards the outermost layer results in a rapid increase in brain surface area, outpacing the volumetric growth of the brain, and forming the highly folded cortex. This work aims to provide mechanistic insights into the process of brain development and cortical folding using a biomechanical model that couples cell division and migration with volumetric growth. Unlike phenomenological growth models, our model tracks the spatio-temporal development of cohorts of neurons born at different times, with each cohort modeled separately as an advection-diffusion process and the total cell density determining the extent of volume growth. We numerically implement our model in Abaqus/Standard (2020) by writing user-defined element (UEL) subroutines. For model calibration, we apply in utero electroporation (IUE) to ferret brains to visualize and track cohorts of neurons born at different stages of embryonic development. Our calibrated simulations of cortical folding align qualitatively with the ferret experiments. We have made our experimental data and finite-element implementation available online to offer other researchers a modeling platform for future study of neurological disorders associated with atypical neurodevelopment and cortical malformations. Brain development and cortical folding is a highly dynamic process that results from the interaction between gene expression, cellular mechanisms, and mechanical forces. Here, we expand on existing mathematical models of brain development and cortical folding to capture the behavior of multiple different subpopulations of neurons. By calibrating our biomechanical model to our novel experiments on ferrets, we can track the distribution of neurons over time and observe how the brain grows and develops its characteristic folds. Our calibrated model captures interactions between cell behavior and tissue deformation and offers more detailed information about the orchestrated migration of neuronal subpopulations. This work offers new mechanistic insights into brain development and opens the door to future investigations of atypical brain development caused by disrupted neuronal activities, particularly those alterations associated with injury, exposure, or treatment at a specific location or time during development. Finally, our experimental data and numerical implementations are provided as a resource online for the use of other researchers.
Collapse
Affiliation(s)
- Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Maria A. Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Goodfellow M, Medina JA, Proctor J, Xu S, Gullapalli RP, Rangghran P, Miller C, Vesselinov A, Fiskum G. Combined traumatic brain injury and hemorrhagic shock in ferrets leads to structural, neurochemical, and functional impairments. J Neurotrauma 2022; 39:1442-1452. [PMID: 35481784 DOI: 10.1089/neu.2022.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aeromedical evacuation-relevant hypobaria after traumatic brain injury (TBI) leads to increased neurologic injury and mortality in rats relative to those maintained under normobaria. However, applicability of rodent brain injury research to humans may be limited by differences in neuroanatomy. Therefore, we developed a model in which ferrets are exposed to polytrauma consisting of controlled cortical impact TBI and hemorrhagic shock subjected 24 h later to 6 h of hypobaria or normobaria. Our objective was to determine if the deleterious effects of hypobaria observed in rats, with lissencephalic brains, are also present in a species with a human-like gyrencephalic brain. While no mortality was observed, magnetic resonance spectroscopy (MRS) results obtained 2 days post-injury indicated reduced cortical creatine, N-acetylaspartate, GABA, myo-inositol, and glutamate which was not affected by hypobaria. T2-weighted magnetic resonance imaging (MRI) quantification revealed increased hyperintensity volume representing cortical edema at the site of impact following polytrauma. Hypobaria did not exacerbate this focal edema but did lead to overall reductions in total cortical volume. Both normobaric and hypobaric ferrets exhibited impaired spatial memory 6 days post-injury on the Object Location Test, but no differences were noted between groups. Finally, cortical lesion volume was not exacerbated by hypobaria exposure on day 7 post-injury. Results suggest that air travel 24 h after polytrauma is associated with structural changes in the ferret brain. Future studies should investigate secondary injury from hypobaria following polytrauma in greater detail including alternative outcome measures, timepoints, and exposure to multiple flights.
Collapse
Affiliation(s)
- Molly Goodfellow
- University of Maryland School of Medicine, 12264, Anesthesiology, Baltimore, Maryland, United States;
| | - Juliana A Medina
- University of Maryland School of Medicine, Anesthesiology, Baltimore, Maryland, United States;
| | - Julie Proctor
- University of Maryland School of Medicine, Anesthesiology, 685 W Baltimore St, 534 MSTF, Baltimore, Maryland, United States, 21201;
| | - Su Xu
- University of Maryland School of Medicine, Diagnostic Radiology & Nuclear Medicine, Baltimore, Maryland, United States;
| | - Rao P Gullapalli
- University of Maryland School of Medicine, 12264, Diagnostic Radiology & Nuclear Medicine, 670 W Batimore St, Baltimore, Maryland, United States, 21201;
| | - Parisa Rangghran
- University of Maryland School of Medicine, Anesthesiology, Baltimore, Maryland, United States;
| | - Catriona Miller
- University of Maryland School of Medicine, Anesthesiology, Baltimore, Maryland, United States;
| | - Alexandra Vesselinov
- University of Maryland School of Medicine, Anesthesiology, Baltimore, Maryland, United States;
| | - Gary Fiskum
- University of Maryland School of Medicine, 12264, Anesthesiology, Baltimore, Maryland, United States;
| |
Collapse
|
13
|
Darayi M, Hoffman ME, Sayut J, Wang S, Demirci N, Consolini J, Holland MA. Computational models of cortical folding: A review of common approaches. J Biomech 2021; 139:110851. [PMID: 34802706 DOI: 10.1016/j.jbiomech.2021.110851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The process of gyrification, by which the brain develops the intricate pattern of gyral hills and sulcal valleys, is the result of interactions between biological and mechanical processes during brain development. Researchers have developed a vast array of computational models in order to investigate cortical folding. This review aims to summarize these studies, focusing on five essential elements of the brain that affect development and gyrification and how they are represented in computational models: (i) the constraints of skull, meninges, and cerebrospinal fluid; (ii) heterogeneity of cortical layers and regions; (iii) anisotropic behavior of subcortical fiber tracts; (iv) material properties of brain tissue; and (v) the complex geometry of the brain. Finally, we highlight areas of need for future simulations of brain development.
Collapse
Affiliation(s)
- Mohsen Darayi
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
14
|
Evaluating Neuroprotective Effects of Uridine, Erythropoietin, and Therapeutic Hypothermia in a Ferret Model of Inflammation-Sensitized Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2021; 22:ijms22189841. [PMID: 34576001 PMCID: PMC8469346 DOI: 10.3390/ijms22189841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Perinatal hypoxic-ischemic (HI) brain injury, often in conjunction with an inflammatory insult, is the most common cause of death or disability in neonates. Therapeutic hypothermia (TH) is the standard of care for HI encephalopathy in term and near-term infants. However, TH may not always be available or efficacious, creating a need for novel or adjunctive neurotherapeutics. Using a near-term model of inflammation-sensitized HI brain injury in postnatal day (P) 17 ferrets, animals were randomized to either the control group (n = 43) or the HI-exposed groups: saline vehicle (Veh; n = 42), Ur (uridine monophosphate, n = 23), Epo (erythropoietin, n = 26), or TH (n = 24) to test their respective therapeutic effects. Motor development was assessed from P21 to P42 followed by analysis of cortical anatomy, ex vivo MRI, and neuropathology. HI animals took longer to complete the motor assessments compared to controls, which was exacerbated in the Ur group. Injury resulted in thinned white matter tracts and narrowed cortical sulci and gyri, which was mitigated in Epo-treated animals in addition to normalization of cortical neuropathology scores to control levels. TH and Epo treatment also resulted in region-specific improvements in diffusion parameters on ex vivo MRI; however, TH was not robustly neuroprotective in any behavioral or neuropathological outcome measures. Overall, Ur and TH did not provide meaningful neuroprotection after inflammation-sensitized HI brain injury in the ferret, and Ur appeared to worsen outcomes. By comparison, Epo appears to provide significant, though not complete, neuroprotection in this model.
Collapse
|
15
|
McKenna M, Shackelford D, Pontes C, Ball B, Nance E. Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age. ACS NANO 2021; 15:8559-8573. [PMID: 33969999 PMCID: PMC8281364 DOI: 10.1021/acsnano.1c00394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David Shackelford
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ceza Pontes
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brendan Ball
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Radiology, University of Washington, Seattle, Washington 98195, United States
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195, United States
- eScience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
17
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
18
|
Wood T, Nance E. Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng 2019; 3:040901. [PMID: 31673672 PMCID: PMC6811362 DOI: 10.1063/1.5117299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Neurological disease is killing us. While there have long been attempts to develop therapies for both acute and chronic neurological diseases, no current treatments are curative. Additionally, therapeutic development for neurological disease takes 15 years and often costs several billion dollars. More than 96% of these therapies will fail in late stage clinical trials. Engineering novel treatment interventions for neurological disease can improve outcomes and quality of life for millions; however, therapeutics should be designed with the underlying physiology and pathology in mind. In this perspective, we aim to unpack the importance of, and need to understand, the physiology of neurological disease. We first dive into the normal physiological considerations that should guide experimental design, and then assess the pathophysiological factors of acute and chronic neurological disease that should direct treatment design. We provide an analysis of a nanobased therapeutic intervention that proved successful in translation due to incorporation of physiology at all stages of the research process. We also provide an opinion on the importance of keeping a high-level view to designing and administering treatment interventions. Finally, we close with an implementation strategy for applying a disease-directed engineering approach. Our assessment encourages embracing the complexity of neurological disease, as well as increasing efforts to provide system-level thinking in our development of therapeutics for neurological disease.
Collapse
|
19
|
Technique and preliminary findings for in vivo quantification of brain motion during injurious head impacts. J Biomech 2019; 95:109279. [DOI: 10.1016/j.jbiomech.2019.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/25/2019] [Accepted: 07/18/2019] [Indexed: 11/18/2022]
|
20
|
Delettre C, Messé A, Dell LA, Foubet O, Heuer K, Larrat B, Meriaux S, Mangin JF, Reillo I, de Juan Romero C, Borrell V, Toro R, Hilgetag CC. Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain. Netw Neurosci 2019; 3:1038-1050. [PMID: 31637337 PMCID: PMC6777980 DOI: 10.1162/netn_a_00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
The anatomical wiring of the brain is a central focus in network neuroscience. Diffusion MRI tractography offers the unique opportunity to investigate the brain fiber architecture in vivo and noninvasively. However, its reliability is still highly debated. Here, we explored the ability of diffusion MRI tractography to match invasive anatomical tract-tracing connectivity data of the ferret brain. We also investigated the influence of several state-of-the-art tractography algorithms on this match to ground truth connectivity data. Tract-tracing connectivity data were obtained from retrograde tracer injections into the occipital, parietal, and temporal cortices of adult ferrets. We found that the relative densities of projections identified from the anatomical experiments were highly correlated with the estimates from all the studied diffusion tractography algorithms (Spearman's rho ranging from 0.67 to 0.91), while only small, nonsignificant variations appeared across the tractography algorithms. These results are comparable to findings reported in mouse and monkey, increasing the confidence in diffusion MRI tractography results. Moreover, our results provide insights into the variations of sensitivity and specificity of the tractography algorithms, and hence into the influence of choosing one algorithm over another.
Collapse
Affiliation(s)
- Céline Delettre
- Unité de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR 3571, CNRS, Paris, France
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arnaud Messé
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Leigh-Anne Dell
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Ophélie Foubet
- Unité de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR 3571, CNRS, Paris, France
| | - Katja Heuer
- Unité de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR 3571, CNRS, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Larrat
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | | - Isabel Reillo
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Camino de Juan Romero
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Victor Borrell
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Roberto Toro
- Unité de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR 3571, CNRS, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
21
|
Sienkiewicz T, Sergiel A, Huber D, Maślak R, Wrzosek M, Podgórski P, Reljić S, Paśko Ł. The Brain Anatomy of the Brown Bear (Carnivora, Ursus arctos L., 1758) Compared to That of Other Carnivorans: A Cross-Sectional Study Using MRI. Front Neuroanat 2019; 13:79. [PMID: 31555102 PMCID: PMC6727829 DOI: 10.3389/fnana.2019.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to provide a neuroanatomy atlas derived from cross-sectional and magnetic resonance imaging (MRI) of the encephalon of the brown bear (Ursus arctos). A postmortem brain analysis using magnetic resonance imaging (MRI - 1,5T; a high-resolution submillimeter three-dimensional T1-3D FFE) and cross-sectional macroscopic anatomy methods revealed major embryological and anatomical subdivisions of the encephalon, including the ventricular system. Most of the internal structures were comparably identifiable in both methods. The tractus olfactorius medialis, corpus subthalamicum, brachium colliculi rostralis, fasciculus longitudinalis medialis, nuclei vestibulares, velum medullare rostrale, nucleus fastigii, fasciculi cuneatus et gracilis were identified entirely by cross-sectional macroscopic analysis. However, the glandula pinealis, lemniscus lateralis and nuclei rhaphe were visualized only with MRI. Gross neuroanatomic analysis provided information about sulci and gyri of the cerebral hemispheres, components of the vermis and cerebellar hemispheres, and relative size and morphology of constituents of the rhinencephalon and cerebellum constituents. Similarities and discrepancies in identification of structures provided by both methods, as well as hallmarks of the structures facilitating identification using these methods are discussed. Finally, we compare the brown bear encephalon with other carnivores and discuss most of the identified structures compared to those of the domestic dog, the domestic cat, Ursidae and Mustelidae families and Pinnipedia clade.
Collapse
Affiliation(s)
- Tomasz Sienkiewicz
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Agnieszka Sergiel
- Department of Wildlife Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Djuro Huber
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Robert Maślak
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Marcin Wrzosek
- Department of Internal Medicine and Clinic of Diseases for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Przemysław Podgórski
- Department of General Radiology, Interventional Radiology and Neuroradiology, Faculty of Postgraduate Medical Training, Wrocław Medical University, Wrocław, Poland
| | - Slaven Reljić
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Łukasz Paśko
- Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
22
|
Das A, Takahashi E. Characterization of White Matter Tracts by Diffusion MR Tractography in Cat and Ferret that Have Similar Gyral Patterns. Cereb Cortex 2019; 28:1338-1347. [PMID: 28334159 DOI: 10.1093/cercor/bhx048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
The developmental relationships between gyral structures and white matter tracts have long been debated, but it is still difficult to discern whether they influence each other's development or are causally related. To explore this topic, this study used cats and ferrets as models for species that share similar gyral folding patterns and imaged with diffusion magnetic resonance imaging to compare white matter innervations in homologous gyri and other brain regions. Adult cat and ferret brains were analyzed via diffusion spectrum imaging tractography and homologous regions of interest were compared. Although similar genetic lineage and gyral structures would suggest analogous white matter tracts, tractography reveals significantly differing white matter connectivity in both the visual and auditory cortices. Similarities in connectivity were concentrated primarily in the highly conserved cerebellar region. These results correlate well with existing histological and functional studies of both species. Our results indicate that, while the 2 species may share similar gyral structures, they utilize different white matter connectivity; suggesting that while species may share similar gyral structures, they can develop different underlying white matter connectivity.
Collapse
Affiliation(s)
- Avilash Das
- Medical Sciences in the College of Arts and Sciences, Boston University, Boston, MA, USA.,Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
23
|
Ellis JK, Sorrells SF, Mikhailova S, Chavali M, Chang S, Sabeur K, Mcquillen P, Rowitch DH. Ferret brain possesses young interneuron collections equivalent to human postnatal migratory streams. J Comp Neurol 2019; 527:2843-2859. [PMID: 31050805 PMCID: PMC6773523 DOI: 10.1002/cne.24711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/27/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
The human early postnatal brain contains late migratory streams of immature interneurons that are directed to cortex and other focal brain regions. However, such migration is not observed in rodent brain, and whether other small animal models capture this aspect of human brain development is unclear. Here, we investigated whether the gyrencephalic ferret cortex possesses human‐equivalent postnatal streams of doublecortin positive (DCX+) young neurons. We mapped DCX+ cells in the brains of ferrets at P20 (analogous to human term gestation), P40, P65, and P90. In addition to the rostral migratory stream, we identified three populations of young neurons with migratory morphology at P20 oriented toward: (a) prefrontal cortex, (b) dorsal posterior sigmoid gyrus, and (c) occipital lobe. These three neuronal collections were all present at P20 and became extinguished by P90 (equivalent to human postnatal age 2 years). DCX+ cells in such collections all expressed GAD67, identifying them as interneurons, and they variously expressed the subtype markers SP8 and secretagogin (SCGN). SCGN+ interneurons appeared in thick sections to be oriented from white matter toward multiple cortical regions, and persistent SCGN‐expressing cells were observed in cortex. These findings indicate that ferret is a suitable animal model to study the human‐relevant process of late postnatal cortical interneuron integration into multiple regions of cortex.
Collapse
Affiliation(s)
- Justin K Ellis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sasha Mikhailova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Manideep Chavali
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sandra Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Patrick Mcquillen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California.,Department of Pediatrics and Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Paediatrics and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Wood T, Moralejo D, Corry K, Snyder JM, Traudt C, Curtis C, Nance E, Parikh P, Juul SE. A Ferret Model of Encephalopathy of Prematurity. Dev Neurosci 2019; 40:475-489. [PMID: 31079096 PMCID: PMC6658350 DOI: 10.1159/000498968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
There is an ongoing need for relevant animal models in which to test therapeutic interventions for infants with neurological sequelae of prematurity. The ferret is an attractive model species as it has a gyrified brain with a white-to-gray matter ratio similar to that in the human brain. A model of encephalopathy of prematurity was developed in postnatal day 10 (P10) ferret kits, considered to be developmentally equivalent to infants of 24-26 weeks' gestation. Cross-fostered P10 ferret kits received 5 mg/kg of lipopolysaccharide (LPS) before undergoing consecutive hypoxia-hyperoxia-hypoxia (60 min at 9%, 120 min at 60%, and 30 min at 9%). Control animals received saline vehicle followed by normoxia. The development of basic reflexes (negative geotaxis, cliff aversion, and righting) as well as gait coordination on an automated catwalk were assessed between P28 and P70, followed by ex vivo magnetic resonance imaging (MRI) and immunohistochemical analysis. Compared to controls, injured animals had slower overall reflex development between P28 and P40, as well as smaller hind-paw areas consistent with "toe walking" at P42. Injured animals also displayed significantly greater lateral movement during CatWalk assessment as a result of reduced gait coordination. Ex vivo MRI showed widespread white-matter hyperintensity on T2-weighted imaging as well as altered connectivity patterns. This coincided with white-matter dysmaturation characterized by increased intensity of myelin basic protein staining, white-matter thinning, and loss of oligodendrocyte transcription factor 2 (OLIG2)-positive cells. These results suggest both pathological and motor deficits consistent with premature white-matter injury. This newborn ferret model can therefore provide an additional platform to assess potential therapies before translation to human clinical trials.
Collapse
Affiliation(s)
- Thomas Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA,
| | - Daniel Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kylie Corry
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Christopher Traudt
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Chad Curtis
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Pratik Parikh
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Gangolli M, Benetatos J, Esparza TJ, Fountain EM, Seneviratne S, Brody DL. Repetitive Concussive and Subconcussive Injury in a Human Tau Mouse Model Results in Chronic Cognitive Dysfunction and Disruption of White Matter Tracts, But Not Tau Pathology. J Neurotrauma 2019; 36:735-755. [PMID: 30136628 PMCID: PMC6387572 DOI: 10.1089/neu.2018.5700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Due to the unmet need for a means to study chronic traumatic encephalopathy (CTE) in vivo, there have been numerous efforts to develop an animal model of this progressive tauopathy. However, there is currently no consensus in the field on an injury model that consistently reproduces the neuropathological and behavioral features of CTE. We have implemented a repetitive Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) injury paradigm in human transgenic (hTau) mice. Animals were subjected to daily subconcussive or concussive injuries for 20 days and tested acutely, 3 months, and 12 months post-injury for deficits in social behavior, anxiety, spatial learning and memory, and depressive behavior. Animals also were assessed for chronic tau pathology, astrogliosis, and white matter degeneration. Repetitive concussive injury caused acute deficits in Morris water maze performance, including reduced swimming speed and increased distance to the platform during visible and hidden platform phases that persisted during the subacute and chronic time-points following injury. We found evidence of white matter disruption in animals injured with subconcussive and concussive injuries, with the most severe disruption occurring in the repetitive concussive injury group. Severity of white matter disruption in the corpus callosum was moderately correlated with swimming speed, while white matter disruption in the fimbria showed weak but significant correlation with worse performance during probe trial. There was no evidence of tau pathology or astrogliosis in sham or injured animals. In summary, we show that repetitive brain injury produces persistent behavioral abnormalities as late as 1 year post-injury that may be related to chronic white matter disruption, although the relationship with CTE remains to be determined.
Collapse
Affiliation(s)
- Mihika Gangolli
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Benetatos
- Queensland Brain Institute, University of Queensland, St. Lucia, Australia
| | - Thomas J. Esparza
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Emeka M. Fountain
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Shamilka Seneviratne
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - David L. Brody
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
26
|
Kalebic N, Gilardi C, Albert M, Namba T, Long KR, Kostic M, Langen B, Huttner WB. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 2018; 7:e41241. [PMID: 30484771 PMCID: PMC6303107 DOI: 10.7554/elife.41241] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
The evolutionary increase in size and complexity of the primate neocortex is thought to underlie the higher cognitive abilities of humans. ARHGAP11B is a human-specific gene that, based on its expression pattern in fetal human neocortex and progenitor effects in embryonic mouse neocortex, has been proposed to have a key function in the evolutionary expansion of the neocortex. Here, we study the effects of ARHGAP11B expression in the developing neocortex of the gyrencephalic ferret. In contrast to its effects in mouse, ARHGAP11B markedly increases proliferative basal radial glia, a progenitor cell type thought to be instrumental for neocortical expansion, and results in extension of the neurogenic period and an increase in upper-layer neurons. Consequently, the postnatal ferret neocortex exhibits increased neuron density in the upper cortical layers and expands in both the radial and tangential dimensions. Thus, human-specific ARHGAP11B can elicit hallmarks of neocortical expansion in the developing ferret neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Carlotta Gilardi
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Mareike Albert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Milos Kostic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Barbara Langen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
27
|
Garcia KE, Kroenke CD, Bayly PV. Mechanics of cortical folding: stress, growth and stability. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0321. [PMID: 30249772 DOI: 10.1098/rstb.2017.0321] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Cortical folding, or gyrification, coincides with several important developmental processes. The folded shape of the human brain allows the cerebral cortex, the thin outer layer of neurons and their associated projections, to attain a large surface area relative to brain volume. Abnormal cortical folding has been associated with severe neurological, cognitive and behavioural disorders, such as epilepsy, autism and schizophrenia. However, despite decades of study, the mechanical forces that lead to cortical folding remain incompletely understood. Leading hypotheses have focused on the roles of (i) tangential growth of the outer cortex, (ii) spatio-temporal patterns in the birth and migration of neurons, and (iii) internal tension in axons. Recent experimental studies have illuminated not only the fundamental cellular and molecular processes underlying cortical development, but also the stress state, mechanical properties and spatio-temporal patterns of growth in the developing brain. The combination of mathematical modelling and physical measurements has allowed researchers to evaluate hypothesized mechanisms of folding, to determine whether each is consistent with physical laws. This review summarizes what physical scientists have learned from models and recent experimental observations, in the context of recent neurobiological discoveries regarding cortical development. Here, we highlight evidence of a combined mechanism, in which spatio-temporal patterns bias the locations of primary folds (i), but tangential growth of the cortical plate induces mechanical instability (ii) to propagate primary and higher-order folds.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- K E Garcia
- Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA.,Engineering, University of Southern Indiana, Evansville, IN, USA
| | - C D Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - P V Bayly
- Mechanical Engineering and Materials Science, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
28
|
Kroenke CD. Using diffusion anisotropy to study cerebral cortical gray matter development. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:106-116. [PMID: 29705039 PMCID: PMC6420781 DOI: 10.1016/j.jmr.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/07/2018] [Accepted: 04/20/2018] [Indexed: 06/03/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (diffusion MRI) is being used to characterize morphological development of cells within developing cerebral cortical gray matter. Abnormal morphology is a shared characteristic of cerebral cortical neurons for many neurodevelopmental disorders, and therefore diffusion MRI is potentially of high value for monitoring growth-related anatomical changes of relevance to brain function. Here, the theoretical framework for analyzing diffusion MRI data is summarized. An overview of quantitative methods for validating the interpretations of diffusion MRI data using light microscopy is then presented. These theoretical modeling and validation methods have been used to precisely characterize changes in water diffusion anisotropy with development in the context of several animal model systems. Further, in diffusion MRI studies of several preclinical models of neurodevelopmental disorders, the ability is demonstrated of diffusion MRI to detect abnormal morphological neural development. These animal model studies are reviewed along with recent initial efforts to translate the findings into an approach for studies of human subjects. This body of data indicates that diffusion MRI has the requisite sensitivity to detect abnormal cellular development in the context of several models of neurodevelopmental disorders, and therefore may provide a new strategy for detecting abnormalities in early stages of brain development in humans.
Collapse
Affiliation(s)
- Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Department of Behavioral Neuroscience, and Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
29
|
Snyder JM, Wood TR, Corry K, Moralejo DH, Parikh P, Juul SE. Ontogeny of white matter, toll-like receptor expression, and motor skills in the neonatal ferret. Int J Dev Neurosci 2018; 70:25-33. [PMID: 29791868 DOI: 10.1016/j.ijdevneu.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022] Open
Abstract
Inflammation caused by perinatal infection, superimposed with hypoxia and/or hyperoxia, appears to be important in the pathogenesis of preterm neonatal encephalopathy, with white matter particularly vulnerable during the third trimester. The associated inflammatory response is at least partly mediated through Toll-like receptor (TLR)-dependent mechanisms. Immunohistochemistry, gene expression, and behavioral studies were used to characterize white matter development and determine TLR3 and TLR4 expression and accumulation in the neonatal ferret brain. Expression of markers of white matter development increased significantly between postnatal day (P)1 and P10 (NG2, PDGFRα) or P15 (Olig2), and either remained elevated (NG2), or decreased again at P40 (PDGFRα, Olig2). Olig2 immunostaining within the internal capsule was also greatest at P15. Myelin basic protein (MBP) immunostaining and mRNA expression increased markedly from P15 to P40 and into adulthood, which correlated with increasing performance on behavioral tests (negative geotaxis, cliff aversion, righting reflex, and catwalk gait analysis). TLR4 and TLR3 positive staining was low at all ages, but TLR3 and TLR4 mRNA expression both increased significantly from P1 to P40. Following lipopolysaccharide (LPS) and hypoxia/hyperoxia exposure at P10, meningeal and parenchymal inflammation was seen, including an increase in TLR4 positive cells. These data suggest that the neuroinflammation associated with prematurity could be modeled in the newborn ferret.
Collapse
Affiliation(s)
- Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kylie Corry
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Daniel H Moralejo
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Pratik Parikh
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Sandra E Juul
- Department of Pediatrics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
30
|
Toro R, Bakker R, Delzescaux T, Evans A, Tiesinga P. FIIND: Ferret Interactive Integrated Neurodevelopment Atlas. RESEARCH IDEAS AND OUTCOMES 2018. [DOI: 10.3897/rio.4.e25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first days after birth in ferrets provide a privileged view of the development of a complex mammalian brain. Unlike mice, ferrets develop a rich pattern of deep neocortical folds and cortico- cortical connections. Unlike humans and other primates, whose brains are well differentiated and folded at birth, ferrets are born with a very immature and completely smooth neocortex: folds, neocortical regionalisation and cortico-cortical connectivity develop in ferrets during the first postnatal days. After a period of fast neocortical expansion, during which brain volume increases by up to a factor of 4 in 2 weeks, the ferret brain reaches its adult volume at about 6 weeks of age. Ferrets could thus become a major animal model to investigate the neurobiological correlates of the phenomena observed in human neuroimaging. Many of these phenomena, such as the relationship between brain folding, cortico-cortical connectivity and neocortical regionalisation cannot be investigated in mice, but could be investigated in ferrets.
Our aim is to provide the research community with a detailed description of the development of a complex brain, necessary to better understand the nature of human neuroimaging data, create models of brain development, or analyse the relationship between multiple spatial scales. We have already started a project to constitute an open, collaborative atlas of ferret brain development, integrating multi-modal and multi-scale data. We have acquired data for 28 ferrets (4 animals per time point from P0 to adults), using high-resolution MRI and diffusion tensor imaging (DTI). We have developed an open-source pipeline to segment and produce – online – 3D reconstructions of brain MRI data.
We propose to process the brains of 16 of our specimens (from P0 to P16) using high-throughput 3D histology, staining for cytoarchitectonic landmarks, neuronal progenitors and neurogenesis. This would allow us to relate the MRI data that we have already acquired with multi-dimensional cell-scale information. Brains will be sectioned at 25 μm, stained, scanned at 0.25 μm of resolution, and processed for real-time multi-scale visualisation. We will extend our current web-platform to integrate an interactive multi-scale visualisation of the data. Using our combined expertise in computational neuroanatomy, multi-modal neuroimaging, neuroinformatics, and the development of inter-species atlases, we propose to build an open-source web platform to allow the collaborative, online, creation of atlases of the development of the ferret brain. The web platform will allow researchers to access and visualise interactively the MRI and histology data. It will also allow researchers to create collaborative, human curated, 3D segmentations of brain structures, as well as vectorial atlases. Our work will provide a first integrated atlas of ferret brain development, and the basis for an open platform for the creation of collaborative multi-modal, multi-scale, multi-species atlases.
Collapse
|
31
|
Foubet O, Trejo M, Toro R. Mechanical morphogenesis and the development of neocortical organisation. Cortex 2018; 118:315-326. [PMID: 30503630 DOI: 10.1016/j.cortex.2018.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
The development of complex neocortical organisations is thought to result from the interaction of genetic and activity-dependent processes. We propose that a third type of process - mechanical morphogenesis - may also play an important role. We review theoretical and experimental results in physics showing how even homogeneous growth can produce a variety of forms, in particular neocortical folding. The mechanical instabilities that produce these forms induce heterogeneous patterns of stress at the scale of the organ. We review the evidence showing how these stresses can influence cell proliferation, migration and apoptosis, cell differentiation and shape, migration and axonal guidance, and could thus be able to influence regional neocortical identity and connectivity.
Collapse
Affiliation(s)
- Ophélie Foubet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France; CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Miguel Trejo
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR 7636, ESPCI-ParisTech, Paris Cedex 05, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France; CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France.
| |
Collapse
|
32
|
Khalil R, Contreras-Ramirez V, Levitt JB. Postnatal refinement of interareal feedforward projections in ferret visual cortex. Brain Struct Funct 2018; 223:2303-2322. [PMID: 29476239 DOI: 10.1007/s00429-018-1632-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
We studied the postnatal refinement of feedforward (FF) projections from ferret V1 to multiple cortical targets during the period around eye opening. Our goal was to establish (a) whether the developmental refinement of FF projections parallels that of feedback (FB) cortical circuits, and (b) whether FF pathways from V1 to different target areas refine with a similar rate. We injected the tracer CTb into V1 of juvenile ferrets, and visualized the pattern of labeled axon terminals in extrastriate cortex. Bouton density of FF projections to target areas 18, 19, and 21 declined steadily from 4 to 8 weeks postnatal. However, in area Ssy this decline was delayed somewhat, not occurring until after 6 weeks. During this postnatal period, mean interbouton intervals along individual FF axons to all visual areas increased, and we observed a concomitant moderate decrease in axon density in areas 18, 21, and Ssy. These data suggest that FF circuits linking V1 to its main extrastriate targets remodel largely synchronously in the weeks following eye opening, that FF and FB cortical circuits share a broadly similar developmental timecourse, and that postnatal visual experience is critical for the refinement of both FF and FB cortical circuits.
Collapse
Affiliation(s)
- Reem Khalil
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, UAE.,Department of Biology MR526, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.,Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | | | - Jonathan B Levitt
- Department of Biology MR526, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA. .,Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
33
|
Sawada K, Aoki I. Biphasic aspect of sexually dimorphic ontogenetic trajectory of gyrification in the ferret cerebral cortex. Neuroscience 2017; 364:71-81. [PMID: 28935238 DOI: 10.1016/j.neuroscience.2017.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 02/03/2023]
Abstract
The present study characterized quantitatively sexual dimorphic development of gyrification by MRI-based morphometry. High spatial-resolution 3D MR images (using RARE sequence with short TR and minimum TE setting) were acquired from fixed brain of male and female ferrets at postnatal days (PDs) 4-90 using 7-tesla preclinical MRI system. The gyrification index was evaluated either throughout the cerebral cortex (global GI) or in representative primary sulci (sulcal GI). The global GI increased linearly from PD 4, and reached a peak at PD 42, marking 1.486±0.018 in males and 1.460±0.010 in females, respectively. Sexual difference was obtained by greater global GI in males than in females on PD 21 and thereafter. Rostrocaudal GI distribution revealed an overall male-over-female sulcal infolding throughout the cortex on PD 21. Then, an adult pattern of sexually dimorphic cortical convolution was achieved so that gyrification in the temporo-parieto-occipital region was more progressive in males than in females on PD 42, and slightly extended posteriorly in males until PD 90. In the sulcal GI, sulcus-specific male-over-female GI was revealed in the rhinal fissure, and presylvian sulcus on PD 42, and additionally in the coronal, splenial, lateral, and caudal suprasylvian sulci on PD 90. The current results suggest that age-related sexual dimorphism of the gyrification was biphasic in the ferret cortex. A male-over-female gyrification was allometric by PD 21, and was thereafter specific to primary sulci located on phylogenetically newer multimodal cortical regions.
Collapse
Affiliation(s)
- K Sawada
- Department of Nutrition, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki 300-0051, Japan.
| | - I Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, Chiba 263-8555, Japan
| |
Collapse
|
34
|
Hutchinson EB, Schwerin SC, Radomski KL, Sadeghi N, Jenkins J, Komlosh ME, Irfanoglu MO, Juliano SL, Pierpaoli C. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis. Neuroimage 2017; 152:575-589. [PMID: 28315740 PMCID: PMC6409125 DOI: 10.1016/j.neuroimage.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/26/2023] Open
Abstract
Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study – in-vivo MRI and DTI and ex-vivo MRI and DTI – using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders.
Collapse
Affiliation(s)
- E B Hutchinson
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - S C Schwerin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - K L Radomski
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - N Sadeghi
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - J Jenkins
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Dept. of Electrical Engineering and Computer Science, The Catholic University of America, Washington D.C., USA
| | - M E Komlosh
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - M O Irfanoglu
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - S L Juliano
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - C Pierpaoli
- Section on Quantitative Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Zhou ZC, Salzwedel AP, Radtke-Schuller S, Li Y, Sellers KK, Gilmore JH, Shih YYI, Fröhlich F, Gao W. Resting state network topology of the ferret brain. Neuroimage 2016; 143:70-81. [PMID: 27596024 DOI: 10.1016/j.neuroimage.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Andrew P Salzwedel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yen-Yu Ian Shih
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Small Animal Imaging Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States.
| |
Collapse
|
36
|
Wang X, Pettersson DR, Studholme C, Kroenke CD. Characterization of Laminar Zones in the Mid-Gestation Primate Brain with Magnetic Resonance Imaging and Histological Methods. Front Neuroanat 2015; 9:147. [PMID: 26635541 PMCID: PMC4656822 DOI: 10.3389/fnana.2015.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/05/2015] [Indexed: 11/13/2022] Open
Abstract
Distinct populations of progenitor and postmitotic neural and glial cells are stratified in the fetal primate brain across developmentally transient tissue zones between the ventricular and pial surfaces. These zones were originally identified by light microscopy. However, it has subsequently been shown that various forms of magnetic resonance image (MRI) contrast can be used to distinguish layers of developing neural tissue in ex vivo, as well as in vivo (including in utero) conditions. Here we compare mid-gestation rhesus macaque tissue zones identified using histological techniques to ex vivo as well as in utero MRI performed on the same brains. These data are compared to mid-gestation fetal human brain MRI results, obtained in utero. We observe strong similarity between MRI contrast in vivo and post mortem, which facilitates interpretation of in utero images based on the histological characterization performed here. Additionally, we observe differential correspondence between the various forms of ex vivo MRI contrast and microscopy data, with maps of the water apparent diffusion coefficient providing the closest match to histologically-identified lamina of the nonhuman primate brain. Examination of histology and post mortem MRI helps to provide a better understanding of cytoarchitectrual characteristics that give rise to in utero MRI contrast.
Collapse
Affiliation(s)
- Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University Beaverton, OR, USA
| | - David R Pettersson
- Department of Radiology, Oregon Health & Science University Portland, OR, USA
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington Seattle, WA, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University Beaverton, OR, USA ; Advanced Imaging Research Center and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
37
|
Empie K, Rangarajan V, Juul SE. Is the ferret a suitable species for studying perinatal brain injury? Int J Dev Neurosci 2015; 45:2-10. [PMID: 26102988 PMCID: PMC4793918 DOI: 10.1016/j.ijdevneu.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/09/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Ferret brain architecture, composition, and development are similar to humans. Postnatal ferret brain development is comparable to that of premature infants. Ferrets have potential to model preterm and term neonatal brain injury. Ferrets may fulfill the need for an intermediate model species of neurodevelopment. Many opportunities exist to expand the use of ferrets as research subjects.
Complications of prematurity often disrupt normal brain development and/or cause direct damage to the developing brain, resulting in poor neurodevelopmental outcomes. Physiologically relevant animal models of perinatal brain injury can advance our understanding of these influences and thereby provide opportunities to develop therapies and improve long-term outcomes. While there are advantages to currently available small animal models, there are also significant drawbacks that have limited translation of research findings to humans. Large animal models such as newborn pig, sheep and nonhuman primates have complex brain development more similar to humans, but these animals are expensive, and developmental testing of sheep and piglets is limited. Ferrets (Mustela putorius furo) are born lissencephalic and undergo postnatal cortical folding to form complex gyrencephalic brains. This review examines whether ferrets might provide a novel intermediate animal model of neonatal brain disease that has the benefit of a gyrified, altricial brain in a small animal. It summarizes attributes of ferret brain growth and development that make it an appealing animal in which to model perinatal brain injury. We postulate that because of their innate characteristics, ferrets have great potential in neonatal neurodevelopmental studies.
Collapse
Affiliation(s)
- Kristen Empie
- Department of Neonatology, University of Washington, Seattle, USA
| | | | - Sandra E Juul
- Department of Neonatology, University of Washington, Seattle, USA.
| |
Collapse
|
38
|
MRI-based morphometric characterizations of sexual dimorphism of the cerebrum of ferrets (Mustela putorius). Neuroimage 2013; 83:294-306. [DOI: 10.1016/j.neuroimage.2013.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022] Open
|
39
|
Lewitus E, Kelava I, Huttner WB. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front Hum Neurosci 2013; 7:424. [PMID: 23914167 PMCID: PMC3729979 DOI: 10.3389/fnhum.2013.00424] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/14/2013] [Indexed: 12/01/2022] Open
Abstract
THERE IS A BASIC RULE TO MAMMALIAN NEOCORTICAL EXPANSION as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly) and presence (gyrencephaly) of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- vs. connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons toward the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.
Collapse
Affiliation(s)
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresden, Germany
| |
Collapse
|
40
|
Di Curzio DL, Buist RJ, Del Bigio MR. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 2013; 248:112-28. [PMID: 23769908 DOI: 10.1016/j.expneurol.2013.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/27/2023]
Abstract
Hydrocephalus is a neurological condition characterized by altered cerebrospinal fluid (CSF) flow with enlargement of ventricular cavities in the brain. A reliable model of hydrocephalus in gyrencephalic mammals is necessary to test preclinical hypotheses. Our objective was to characterize the behavioral, structural, and histological changes in juvenile ferrets following induction of hydrocephalus. Fourteen-day old ferrets were given an injection of kaolin (aluminum silicate) into the cisterna magna. Two days later and repeated weekly until 56 days of age, magnetic resonance (MR) imaging was used to assess ventricle size. Behavior was examined thrice weekly. Compared to age-matched saline-injected controls, severely hydrocephalic ferrets weighed significantly less, their postures were impaired, and they were hyperactive prior to extreme debilitation. They developed significant ventriculomegaly and displayed white matter destruction. Reactive astroglia and microglia detected by glial fibrillary acidic protein (GFAP) and Iba-1 immunostaining were apparent in white matter, cortex, and hippocampus. There was a hydrocephalus-related increase in activated caspase 3 labeling of apoptotic cells (7.0 vs. 15.5%) and a reduction in Ki67 labeling of proliferating cells (23.3 vs. 5.9%) in the subventricular zone (SVZ). Reduced Olig2 immunolabeling suggests a depletion of glial precursors. GFAP content was elevated. Myelin basic protein (MBP) quantitation and myelin biochemical enzyme activity showed early maturational increases. Where white matter was not destroyed, the remaining axons developed myelin similar to the controls. In conclusion, the hydrocephalus-induced periventricular disturbances may involve developmental impairments in cell proliferation and glial precursor cell populations. The ferret should prove useful for testing hypotheses about white matter damage and protection in the immature hydrocephalic brain.
Collapse
Affiliation(s)
- Domenico L Di Curzio
- Department of Human Anatomy & Cell Science, University of Manitoba, Canada; Manitoba Institute of Child Health, Canada
| | | | | |
Collapse
|
41
|
Bayly PV, Taber LA, Kroenke CD. Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 2013; 29:568-81. [PMID: 23566768 DOI: 10.1016/j.jmbbm.2013.02.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022]
Abstract
Folding of the cerebral cortical surface is a critical process in human brain development, yet despite decades of indirect study and speculation the mechanics of the process remain incompletely understood. Leading hypotheses have focused on the roles of circumferential expansion of the cortex, radial growth, and internal tension in neuronal fibers (axons). In this article, we review advances in the mathematical modeling of growth and morphogenesis and new experimental data, which together promise to clarify the mechanical basis of cortical folding. Recent experimental studies have illuminated not only the fundamental cellular and molecular processes underlying cortical development, but also the stress state and mechanical behavior of the developing brain. The combination of mathematical modeling and biomechanical data provides a means to evaluate hypothesized mechanisms objectively and quantitatively, and to ensure that they are consistent with physical law, given plausible assumptions and reasonable parameter values.
Collapse
Affiliation(s)
- P V Bayly
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Saint Louis, MO 63130, United States.
| | | | | |
Collapse
|
42
|
Bayly PV, Okamoto RJ, Xu G, Shi Y, Taber LA. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys Biol 2013; 10:016005. [PMID: 23357794 DOI: 10.1088/1478-3975/10/1/016005] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans and many other mammals, the cortex (the outer layer of the brain) folds during development. The mechanics of folding are not well understood; leading explanations are either incomplete or at odds with physical measurements. We propose a mathematical model in which (i) folding is driven by tangential expansion of the cortex and (ii) deeper layers grow in response to the resulting stress. In this model the wavelength of cortical folds depends predictably on the rate of cortical growth relative to the rate of stress-induced growth. We show analytically and in simulations that faster cortical expansion leads to shorter gyral wavelengths; slower cortical expansion leads to long wavelengths or even smooth (lissencephalic) surfaces. No inner or outer (skull) constraint is needed to produce folding, but initial shape and mechanical heterogeneity influence the final shape. The proposed model predicts patterns of stress in the tissue that are consistent with experimental observations.
Collapse
Affiliation(s)
- P V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63105, USA.
| | | | | | | | | |
Collapse
|
43
|
Feng Y, Clayton EH, Chang Y, Okamoto RJ, Bayly PV. Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J Biomech 2013; 46:863-70. [PMID: 23352648 DOI: 10.1016/j.jbiomech.2012.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 11/16/2022]
Abstract
Characterization of the dynamic mechanical behavior of brain tissue is essential for understanding and simulating the mechanisms of traumatic brain injury (TBI). Changes in mechanical properties may also reflect changes in the brain due to aging or disease. In this study, we used magnetic resonance elastography (MRE) to measure the viscoelastic properties of ferret brain tissue in vivo. Three-dimensional (3D) displacement fields were acquired during wave propagation in the brain induced by harmonic excitation of the skull at 400 Hz, 600 Hz and 800 Hz. Shear waves with wavelengths in the order of millimeters were clearly visible in the displacement field, in strain fields, and in the curl of displacement field (which contains no contributions from longitudinal waves). Viscoelastic parameters (storage and loss moduli) governing dynamic shear deformation were estimated in gray and white matter for these excitation frequencies. To characterize the reproducibility of measurements, two ferrets were studied on three different dates each. Estimated viscoelastic properties of white matter in the ferret brain were generally similar to those of gray matter and consistent between animals and scan dates. In both tissue types G' increased from approximately 3 kPa at 400 Hz to 7 kPa at 800 Hz and G″ increased from approximately 1 kPa at 400 Hz to 2 kPa at 800 Hz. These measurements of shear wave propagation in the ferret brain can be used to both parameterize and validate finite element models of brain biomechanics.
Collapse
Affiliation(s)
- Y Feng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
44
|
Deafferentation-induced plasticity of visual callosal connections: predicting critical periods and analyzing cortical abnormalities using diffusion tensor imaging. Neural Plast 2012; 2012:250196. [PMID: 23213572 PMCID: PMC3504471 DOI: 10.1155/2012/250196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022] Open
Abstract
Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI) measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.
Collapse
|
45
|
Zinc histochemistry reveals circuit refinement and distinguishes visual areas in the developing ferret cerebral cortex. Brain Struct Funct 2012; 218:1293-306. [PMID: 23052548 DOI: 10.1007/s00429-012-0458-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Abstract
A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.
Collapse
|
46
|
Abstract
The present study aimed to clarify sulcation and gyration patterns in the developing cerebrum of ferrets. While the brain weight and fronto-occipital length of the cerebral hemisphere reached a plateau by postnatal day (PD) 42, the cerebral width reached a plateau at the rostral region by PD 21, and subsequently at the caudal region by PD 42. The ferret cerebrum already showed a convoluted surface with indentations of coronal and rostral suprasylvian sulci on PD 4. The presylvian and cruciate sulci emerged by PD 10, resulting in convolutions of gyri in the rostral half of the cerebrum. The caudal half of the cerebrum was infolded by the emergence of the pseudosylvian sulcus and the rhinal fissure by PD 10, and the caudal suprasylvian and lateral sulci by PD 21. The emergence of those sulci allowed a gyration in the caudal half of the cerebrum. Sexual differences in sulcation were detected by a more distinct convolution of the visual cortex in males than in females on PD 90. Those results, therefore, suggest that the ferret cerebrum experiences cortical maturation with sulcation and gyration in a rostrocaudal gradient manner. The present paper provides neuroanatomic references for normal development of cerebral sulci and gyri in both sexes of ferrets.
Collapse
Affiliation(s)
- Kazuhiko Sawada
- Departments of Physical Therapy Nursing, Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan.
| | | |
Collapse
|
47
|
Knutsen AK, Kroenke CD, Chang YV, Taber LA, Bayly PV. Spatial and temporal variations of cortical growth during gyrogenesis in the developing ferret brain. ACTA ACUST UNITED AC 2012; 23:488-98. [PMID: 22368085 DOI: 10.1093/cercor/bhs042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spatial and temporal variations in cortical growth were studied in the neonatal ferret to illuminate the mechanisms of folding of the cerebral cortex. Cortical surface representations were created from magnetic resonance images acquired between postnatal day 4 and 35. Global measures of shape (e.g., surface area, normalized curvature, and sulcal depth) were calculated. In 2 ferrets, relative cortical growth was calculated between surfaces created from in vivo images acquired at P14, P21, and P28. The isocortical surface area transitions from a slower (12.7 mm(2)/day per hemisphere) to a higher rate of growth (36.7 mm(2)/day per hemisphere) approximately 13 days after birth, which coincides with the time of transition from neuronal proliferation to cellular morphological differentiation. Relative cortical growth increases as a function of relative geodesic distance from the origin of the transverse neurogenetic gradient and is related to the change in fractional diffusion anisotropy over the same time period. The methods presented here can be applied to study cortical growth during development in other animal models or human infants. Our results provide a quantitative spatial and temporal description of folding in cerebral cortex of the developing ferret brain, which will be important to understand the underlying mechanisms that drive folding.
Collapse
Affiliation(s)
- Andrew K Knutsen
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
48
|
Tao JD, Barnette AR, Griffith JL, Neil JJ, Inder TE. Histopathologic correlation with diffusion tensor imaging after chronic hypoxia in the immature ferret. Pediatr Res 2012; 71:192-8. [PMID: 22258131 DOI: 10.1038/pr.2011.32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Chronic hypoxia in rodents induces white matter (WM) injury similar to that in human preterm infants. We used diffusion tensor imaging (DTI) and immunohistochemistry to study the impact of hypoxia in the immature ferret at two developmental time points relevant to the preterm and term brain. RESULTS On ex vivo imaging, the apparent diffusion coefficient (ADC) was decreased throughout the WM after 10 days of hypoxia (hypoxia from postnatal day 10 (P10) to P20 and killed at P20 (early hypoxia P20)), corresponding to increased astrocytosis and decreased myelination. Diffusion values normalized after 10 days of normoxia (hypoxia from P10 to P20 and killed at P30 (early hypoxia P30)), but immunohistochemistry revealed significant astrocytosis and hypomyelination. In contrast, ADC and anisotropy were increased after 10 days of hypoxia at a later developmental time point (hypoxia from P20 to P30 and killed at P30 (late hypoxia P30)), with less astrocytosis and more prominent myelination. DISCUSSION The patterns of alteration in imaging and histology varied in relation to the developmental time at which hypoxia occurred. Normalization of diffusion measures did not correspond to the normalization of underlying histopathology. METHODS Ferrets were subjected to 10% hypoxia and divided into three groups: early hypoxia P20, early hypoxia P30, and late hypoxia P30.
Collapse
Affiliation(s)
- Joshua D Tao
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
49
|
Jespersen SN, Leigland LA, Cornea A, Kroenke CD. Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diffusion tensor imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:16-32. [PMID: 21768045 PMCID: PMC3271123 DOI: 10.1109/tmi.2011.2162099] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As neurons of the developing brain form functional circuits, they undergo morphological differentiation. In immature cerebral cortex, radially-oriented cellular processes of undifferentiated neurons impede water diffusion parallel, but not perpendicular, to the pial surface, as measured via diffusion-weighted magnetic resonance imaging, and give rise to water diffusion anisotropy. As the cerebral cortex matures, the loss of water diffusion anisotropy accompanies cellular morphological differentiation. A quantitative relationship is proposed here to relate water diffusion anisotropy measurements directly to characteristics of neuronal morphology. This expression incorporates the effects of local diffusion anisotropy within cellular processes, as well as the effects of anisotropy in the orientations of cellular processes. To obtain experimental support for the proposed relationship, tissue from 13 and 31 day-old ferrets was stained using the rapid Golgi technique, and the 3-D orientation distribution of neuronal processes was characterized using confocal microscopic examination of reflected visible light images. Coregistration of the MRI and Golgi data enables a quantitative evaluation of the proposed theory, and excellent agreement with the theoretical results, as well as agreement with previously published values for locally-induced water diffusion anisotropy and volume fraction of the neuropil, is observed.
Collapse
Affiliation(s)
- Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, 8000 Aarhus, Denmark ()
| | - Lindsey A. Leigland
- Department of Behavioral Neuroscience and Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239 USA ()
| | - Anda Cornea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA ()
| | - Christopher D. Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, and the Department of Behavioral Neuroscience and Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239 USA ()
| |
Collapse
|
50
|
Lodygensky GA, Vasung L, Sizonenko SV, Hüppi PS. Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat 2011; 217:418-28. [PMID: 20979587 DOI: 10.1111/j.1469-7580.2010.01280.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been shown to affect brain growth including specific structures such as the hippocampus, with subsequent potentially permanent functional consequences. The use of 3D magnetic resonance imaging (MRI) and dedicated postprocessing tools to measure brain tissue volumes (cerebral cortical gray matter, white matter), surface and sulcation index can elucidate phenotypes associated with early behavior development. The use of diffusion tensor imaging can further help in assessing microstructural changes within the cerebral white matter and the establishment of brain connectivity. Finally, the use of functional MRI and resting-state functional MRI connectivity allows exploration of the impact of adverse conditions on functional brain connectivity in vivo. Results from studies using these methods have for the first time illustrated the structural impact of antenatal conditions and neonatal intensive care on the functional brain deficits observed after premature birth. In order to study the pathophysiology of these adverse conditions, MRI has also been used in conjunction with histology in animal models of injury in the immature brain. Understanding the histological substrate of brain injury seen on MRI provides new insights into the immature brain, mechanisms of injury and their imaging phenotype.
Collapse
|