1
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Zhang T, Yang S, Li R, Dong R, Zou H. Dried blood spots-based metabolomic analysis in preterm infants with necrotizing enterocolitis. J Matern Fetal Neonatal Med 2024; 37:2416610. [PMID: 39428341 DOI: 10.1080/14767058.2024.2416610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is the leading cause of death among premature infants, and there is a lack of specific early diagnostic markers. Blood sampling is expected to better reflect pathophysiological and metabolic changes in systematic illness, but there is a risk of iatrogenic anemia, especially in premature infants. Dried blood spots technique seems to have important advantages compared to whole blood sampling as it requires only 12-15 μL as sample volume. This study aimed to investigate the special metabolomics of preterm neonates at high risk of NEC using dried blood spots. METHODS Cases and controls were strictly matched 1:1. Dried blood spots (n = 32, 16 cases-16 controls) from newborn screening were subjected to LC-MS/MS. Metabolomic data were analyzed by orthogonal partial least squares-discriminant analysis (OPLS-DA) and univariate/multivariate statistical analysis. RESULTS Compared to the control group, the NEC group had a significant reduction in seven amino acids (glycine, alanine, threonine, proline, ornithine, lysine, and asparagine). CONCLUSIONS The metabolic profile of neonates with NEC differs significantly from that of controls, making possible their separation with the use of targeted (LC-MS/MS) dried blood spots-based metabolomic analysis. Seven specific markers were identified for early detection and intervention.
Collapse
Affiliation(s)
- Tiantian Zhang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Shimin Yang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Ruotong Li
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Ruiqian Dong
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| |
Collapse
|
3
|
Harris AJT, Santos GM, Malone KO, Van Der Meer MTJ, Riekenberg P, Fernandes R. A long-term study of stable isotope ratios of fingernail keratin and amino acids in a mother-infant dyad. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25021. [PMID: 39192684 DOI: 10.1002/ajpa.25021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To evaluate the potential of compound-specific isotope analysis of amino acids (CSIA-AA) for investigating infant feeding practices, we conducted a long-term study that compared infant and maternal amino acid (AA) nitrogen isotope ratios. MATERIALS AND METHODS Fingernail samples were collected from a single mother-infant dyad over 19 months postpartum. Carbon and nitrogen stable isotope ratios were measured in the bulk keratin of the fingernail samples. Selected samples were then hydrolyzed and derivatized for compound-specific nitrogen isotope analysis of keratin AAs. RESULTS As in previous studies, infant bulk keratin nitrogen isotope values increased during exclusive breastfeeding and fell with the introduction of complementary foods and eventual cessation of breastfeeding. Infant trophic AAs had elevated nitrogen isotope values relative to the mother, while the source AAs were similar between the mother and infant. Proline and threonine appeared to track the presence of human milk in the infant's diet as the isotopic composition of these AAs remained offset from maternal isotope values until the cessation of breastfeeding. DISCUSSION Although CSIA-AA is costly and labor intensive, it appears to hold potential for estimating the duration of breastfeeding, even after the introduction of complementary foods. Through the analysis of a full suite of AAs, it may also yield insights into infant physiology and AA synthesis.
Collapse
Affiliation(s)
- Alison J T Harris
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Memorial University of Newfoundland and Labrador, St. John's, Canada
| | - Guaciara M Santos
- Keck Carbon Cycle AMS Facility, University of California Irvine, Irvine, California, USA
| | - Kaelyn O Malone
- Keck Carbon Cycle AMS Facility, University of California Irvine, Irvine, California, USA
| | - Marcel T J Van Der Meer
- Marine Microbiology and Biogeochemistry Department, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Philip Riekenberg
- Marine Microbiology and Biogeochemistry Department, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Bioarchaeology, Faculty of Archaeology, University of Warsaw, Warsaw, Poland
- Arne Faculty of Arts, Masaryk University, Brno, Czechia
- Climate Change and History Research Initiative, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
4
|
López-Hernández Y, Lima-Rogel V, Mandal R, Zheng J, Zhang L, Oler E, García-López DA, Torres-Calzada C, Mejía-Elizondo AR, Poelsner J, López JA, Zubkowski A, Wishart DS. The Urinary Metabolome of Newborns with Perinatal Complications. Metabolites 2024; 14:41. [PMID: 38248844 PMCID: PMC10819924 DOI: 10.3390/metabo14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Maternal pathological conditions such as infections and chronic diseases, along with unexpected events during labor, can lead to life-threatening perinatal outcomes. These outcomes can have irreversible consequences throughout an individual's entire life. Urinary metabolomics can provide valuable insights into early physiological adaptations in healthy newborns, as well as metabolic disturbances in premature infants or infants with birth complications. In the present study, we measured 180 metabolites and metabolite ratios in the urine of 13 healthy (hospital-discharged) and 38 critically ill newborns (admitted to the neonatal intensive care unit (NICU)). We used an in-house-developed targeted tandem mass spectrometry (MS/MS)-based metabolomic assay (TMIC Mega) combining liquid chromatography (LC-MS/MS) and flow injection analysis (FIA-MS/MS) to quantitatively analyze up to 26 classes of compounds. Average urinary concentrations (and ranges) for 167 different metabolites from 38 critically ill NICU newborns during their first 24 h of life were determined. Similar sets of urinary values were determined for the 13 healthy newborns. These reference data have been uploaded to the Human Metabolome Database. Urinary concentrations and ranges of 37 metabolites are reported for the first time for newborns. Significant differences were found in the urinary levels of 44 metabolites between healthy newborns and those admitted at the NICU. Metabolites such as acylcarnitines, amino acids and derivatives, biogenic amines, sugars, and organic acids are dysregulated in newborns with bronchopulmonary dysplasia (BPD), asphyxia, or newborns exposed to SARS-CoV-2 during the intrauterine period. Urine can serve as a valuable source of information for understanding metabolic alterations associated with life-threatening perinatal outcomes.
Collapse
Affiliation(s)
- Yamilé López-Hernández
- Academic Unit of Biological Sciences, Metabolomics and Proteomics Laboratory, CONAHCyT-Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Victoria Lima-Rogel
- Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi 78290, Mexico; (V.L.-R.); (A.R.M.-E.)
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Jiamin Zheng
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Lun Zhang
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - Eponine Oler
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | | | - Claudia Torres-Calzada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| | - Ana Ruth Mejía-Elizondo
- Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi 78290, Mexico; (V.L.-R.); (A.R.M.-E.)
| | - Jenna Poelsner
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| | - Jesús Adrián López
- Academic Unit of Biological Sciences, microRNAs and Cancer Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico;
| | - Ashley Zubkowski
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
| | - David S. Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (R.M.); (J.Z.); (L.Z.); (A.Z.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada; (C.T.-C.); (J.P.)
| |
Collapse
|
5
|
Cherkaoui S, Yang L, McBride M, Turn CS, Lu W, Eigenmann C, Allen GE, Panasenko OO, Zhang L, Vu A, Liu K, Li Y, Gandhi OH, Surrey L, Wierer M, White E, Rabinowitz JD, Hogarty MD, Morscher RJ. Reprogramming neuroblastoma by diet-enhanced polyamine depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.573662. [PMID: 38260457 PMCID: PMC10802427 DOI: 10.1101/2024.01.07.573662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells1,2. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis3,4. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity5. Here we show that such inhibition can be augmented by dietary restriction of upstream amino acid substrates, leading to disruption of oncogenic protein translation, tumor differentiation, and profound survival gains in the TH-MYCN mouse model. Specifically, an arginine/proline-free diet decreases the polyamine precursor ornithine and augments tumor polyamine depletion by difluoromethylornithine. This polyamine depletion causes ribosome stalling, unexpectedly specifically at adenosine-ending codons. Such codons are selectively enriched in cell cycle genes and low in neuronal differentiation genes. Thus, impaired translation of these codons, induced by the diet-drug combination, favors a pro-differentiation proteome. These results suggest that the genes of specific cellular programs have evolved hallmark codon usage preferences that enable coherent translational rewiring in response to metabolic stresses, and that this process can be targeted to activate differentiation of pediatric cancers.
Collapse
Affiliation(s)
- Sarah Cherkaoui
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Matthew McBride
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Christina S. Turn
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Caroline Eigenmann
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - George E. Allen
- Bioinformatics Support Platform, Faculty of Medicine, University of Geneva 1211, Switzerland
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- BioCode: RNA to proteins (R2P) Platform, University of Geneva, 1211 Geneva, Switzerland
| | - Lu Zhang
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Annette Vu
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kangning Liu
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yimei Li
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Om H. Gandhi
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lea Surrey
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Wierer
- Proteomics Research Infrastructure, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eileen White
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08544, USA
| | - Michael D. Hogarty
- Division of Oncology and Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raphael J. Morscher
- Pediatric Cancer Metabolism Laboratory, Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Yao R, Cools A, Matthijs A, Deyn PPD, Maes D, Janssens GPJ. Peculiarities in the Amino Acid Composition of Sow Colostrum and Milk, and Their Potential Relevance to Piglet Development. Vet Sci 2023; 10:vetsci10040298. [PMID: 37104453 PMCID: PMC10141862 DOI: 10.3390/vetsci10040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The composition of mother's milk is considered the ideal diet for neonates. This study investigated how conserved or variable the amino acid profile of sow colostrum and milk is throughout lactation, compared with other studies in sows and other species. Twenty-five sows (parity one to seven) from one farm with gestation lengths of 114 to 116 d were sampled on d 0, 3, and 10 after parturition. The total amino acid profile of the samples was analyzed through ion-exchange chromatography, and the results were displayed as the percentage of total amino acid and compared with literature data. Most of the amino acid concentrations in sow milk decreased significantly (p < 0.05) throughout the lactation period, while the amino acid profile generally showed a conserved pattern, especially from d 3 to d 10, and was rather similar across different studies. Glutamine + glutamate was the most abundant amino acid in milk at all sampling moments, accounting for 14-17% of total amino acids. The proportions of proline, valine, and glycine in sow milk nearly accounted for 11%, 7%, and 6% respectively, and were higher compared to human, cow, and goat milk, while the methionine proportion was less than the other three. Compared to the large variations often reported in macronutrient concentrations, the amino acid profile of sow milk in the present study, as well as in others, seems well conserved across the lactation period. Similarities with characteristic differences were also observed between sow milk and piglet body composition, which might reflect the nutrition requirements of preweaning piglets. This study warrants further research exploring the link between the whole amino acid profile and the particular amino acids for suckling piglets and could facilitate insight for optimizing creep feed.
Collapse
Affiliation(s)
- Renjie Yao
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - An Cools
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Anneleen Matthijs
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Kirupananthan D, Bertolo RF, Brunton JA. Lysine Dipeptide Enhances Gut Structure and Whole-Body Protein Synthesis in Neonatal Piglets with Intestinal Atrophy. J Nutr 2022; 152:1843-1850. [PMID: 35481706 DOI: 10.1093/jn/nxac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Parenteral nutrition (PN) is often a necessity for preterm infants; however, prolonged PN leads to gut atrophy, weakened gut barrier function, and a higher risk of intestinal infections. Peptide transporter-1 (PepT1) is a di- or tripeptide transporter in the gut and, unlike other nutrient transporters, its activity is preserved with the onset of intestinal atrophy from PN. As such, enteral amino acids in the form of dipeptides may be more bioavailable than free amino acids when atrophy is present. OBJECTIVES In Yucatan miniature piglets with PN-induced intestinal atrophy, we sought to determine the structural and functional effects of enteral refeeding with lysine as a dipeptide, compared to free L-lysine. METHODS Piglets aged 7-8 days were PN-fed for 4 days to induce intestinal atrophy, then were refed with enteral diets with equimolar lysine supplied as lysyl-lysine (Lys-Lys; n = 7), free lysine (n = 7), or Lys-Lys with glycyl-sarcosine (n = 6; to determine whether competitive inhibition of Lys-Lys uptake would abolish PepT1-mediated effects). The diets provided lysine at 75% of the requirement and were gastrically delivered for a total of 18 hours. Whole-body and tissue-specific protein synthesis, as well as indices for gut structure and barrier function, were measured. RESULTS The villus height, mucosal weight, and free lysine concentration were higher in the Lys-Lys group compared to the other 2 groups (P < 0.05). Lysyl-lysine led to greater whole-body protein synthesis compared to free lysine (P < 0.05). Mucosal myeloperoxidase activity was lower in the Lys-Lys group (P < 0.05), suggesting less inflammation. The inclusion of glycyl-sarcosine with Lys-Lys abolished the dipeptide effects on whole-body and tissue-specific protein synthesis (P < 0.05), suggesting that improved lysine availability was mediated by PepT1. CONCLUSIONS Improved intestinal structure and whole-body protein synthesis suggests that feeding strategies designed to exploit PepT1 may help to avoid adverse effects when enteral nutrition is reintroduced into the compromised guts of neonatal piglets.
Collapse
Affiliation(s)
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Butrin A, Butrin A, Wawrzak Z, Moran GR, Liu D. Determination of the pH dependence, substrate specificity, and turnovers of alternative substrates for human ornithine aminotransferase. J Biol Chem 2022; 298:101969. [PMID: 35460691 PMCID: PMC9136103 DOI: 10.1016/j.jbc.2022.101969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and occurs predominantly in patients with underlying chronic liver diseases. Over the past decade, human ornithine aminotransferase (hOAT), which is an enzyme that catalyzes the metabolic conversion of ornithine into an intermediate for proline or glutamate synthesis, has been found to be overexpressed in HCC cells. hOAT has since emerged as a promising target for novel anticancer therapies, especially for the ongoing rational design effort to discover mechanism-based inactivators (MBIs). Despite the significance of hOAT in human metabolism and its clinical potential as a drug target against HCC, there are significant knowledge deficits with regard to its catalytic mechanism and structural characteristics. Ongoing MBI design efforts require in-depth knowledge of the enzyme active site, in particular, pKa values of potential nucleophiles and residues necessary for the molecular recognition of ligands. Here, we conducted a study detailing the fundamental active-site properties of hOAT using stopped-flow spectrophotometry and X-ray crystallography. Our results quantitatively revealed the pH dependence of the multistep reaction mechanism and illuminated the roles of ornithine α-amino and δ-amino groups in substrate recognition and in facilitating catalytic turnover. These findings provided insights of the catalytic mechanism that could benefit the rational design of MBIs against hOAT. In addition, substrate recognition and turnover of several fragment-sized alternative substrates of hOATs, which could serve as structural templates for MBI design, were also elucidated.
Collapse
Affiliation(s)
- Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Anastassiya Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA.
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA.
| |
Collapse
|
9
|
Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022; 12:biom12040501. [PMID: 35454090 PMCID: PMC9025450 DOI: 10.3390/biom12040501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
Collapse
Affiliation(s)
- Julian Rieck
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
- Correspondence: (S.N.S.); (R.W.V.)
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
- Correspondence: (S.N.S.); (R.W.V.)
| |
Collapse
|
10
|
Carlson Z, Hafner H, El Habbal N, Harman E, Liu S, Botezatu N, Alharastani M, Rivet C, Reynolds H, Both N, Sun H, Bridges D, Gregg B. Short Term Changes in Dietary Fat Content and Metformin Treatment During Lactation Impact Milk Composition and Mammary Gland Morphology. J Mammary Gland Biol Neoplasia 2022; 27:1-18. [PMID: 35137304 DOI: 10.1007/s10911-022-09512-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Maternal health and diet can have important consequences for offspring nutrition and metabolic health. During lactation, signals are communicated from the mother to the infant through milk via macronutrients, hormones, and bioactive molecules. In this study we designed experiments to probe the mother-milk-infant triad in the condition of normal maternal health and upon exposure to high fat diet (HFD) with or without concurrent metformin exposure. We examined maternal characteristics, milk composition and offspring metabolic parameters on postnatal day 16, prior to offspring weaning. We found that lactational HFD increased maternal adipose tissue weight, mammary gland adipocyte size, and altered milk lipid composition causing a higher amount of omega-6 (n6) long chain fatty acids and lower omega-3 (n3). Offspring of HFD dams were heavier with more body fat during suckling. Metformin (Met) exposure decreased maternal blood glucose and several milk amino acids. Offspring of met dams were smaller during suckling. Gene expression in the lactating mammary glands was impacted to a greater extent by metformin than HFD, but both metformin and HFD altered genes related to muscle contraction, indicating that these genes may be more susceptible to lactational stressors. Our study demonstrates the impact of common maternal exposures during lactation on milk composition, mammary gland function and offspring growth with metformin having little capacity to rescue the offspring from the effects of a maternal HFD during lactation.
Collapse
Affiliation(s)
- Zach Carlson
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Hannah Hafner
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Noura El Habbal
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emma Harman
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Liu
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Nathalie Botezatu
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | | | - Cecilia Rivet
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Holly Reynolds
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Nyahon Both
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Haijing Sun
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Brigid Gregg
- Department of Pediatrics, Division of Diabetes, Endocrinology and Metabolism, University of Michigan Medicine, Ann Arbor, MI, USA.
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Yu HR, Hsu TY, Tsai CC, Huang HC, Cheng HH, Lai YJ, Lin YJ, Chen CC, Li SC, Yang K. The Functional DNA Methylation Signatures Relevant to Altered Immune Response of Neonatal T Cells with l-Arginine Supplementation. Nutrients 2021; 13:nu13082780. [PMID: 34444938 PMCID: PMC8401784 DOI: 10.3390/nu13082780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
l-Arginine is an important nutrient in the infant diet that significantly regulates the maturation of the immune system in neonates, including the maturation of CD4+ T cells. The biological activities of CD4+ T cells differ substantially between neonates and adults, and these differences may be governed by epigenetic processes. Investigating these differences and the causative processes may help understand neonatal and developmental immunity. In this study, we compared the functional DNA methylation profiles in CD4+ T cells of neonates and adults, focusing on the role of l-arginine supplementation. Umbilical cord blood and adult CD4+ T cells were cultured with/without l-arginine treatment. By comparing DNA methylation in samples without l-arginine treatment, we found that CD4+ T cells of neonatal cord blood generally showed higher DNA methylation than those of adults (average CpG methylation percentage 0.6305 for neonate and 0.6254 for adult, t-test p-value < 0.0001), suggesting gene silencing in neonates. By examining DNA methylation patterns of CpG dinucleotides induced by l-arginine treatment, we found that more CpG dinucleotides were hypomethylated and more genes appeared to be activated in neonatal T-cells as compared with adult. Genes activated by l-arginine stimulation of cord blood samples were more enriched regarding immune-related pathways. CpG dinucleotides at IL-13 promoter regions were hypomethylated after l-arginine stimulation. Hypomethylated CpG dinucleotides corresponded to higher IL-13 gene expression and cytokine production. Thus, DNA methylation partially accounts for the mechanism underlying differential immune function in neonates. Modulatory effects of l-arginine on DNA methylation are gene-specific. Nutritional intervention is a potential strategy to modulate immune function of neonates.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (C.-C.C.)
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (C.-C.C.)
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (C.-C.C.)
| | - Sung-Chou Li
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (S.-C.L.); (K.Y.)
| | - Kuender Yang
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 104217, Taiwan
- Correspondence: (S.-C.L.); (K.Y.)
| |
Collapse
|
12
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
13
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
14
|
Dinesh OC, Kankayaliyan T, Rademacher M, Tomlinson C, Bertolo RF, Brunton JA. Neonatal Piglets Can Synthesize Adequate Creatine, but Only with Sufficient Dietary Arginine and Methionine, or with Guanidinoacetate and Excess Methionine. J Nutr 2021; 151:531-539. [PMID: 33437999 DOI: 10.1093/jn/nxaa369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Suckling piglets synthesize most of their creatine requirement, which consumes substantial amounts of arginine in order to synthesize guanidinoacetic acid (GAA) and methionine in order to transmethylate GAA to creatine. OBJECTIVES To determine whether supplemental GAA or creatine spare arginine and/or methionine for protein synthesis and, if GAA is supplemented, whether excess methionine is needed for conversion to creatine. METHODS Yucatan miniature piglets (9-11 days old; both sexes) were fed 1 of 5 elemental diets for 5 days: 1) low arginine (0.3 g·kg-1·d-1) and low methionine (0.20 g·kg-1·d-1; Base); 2) Base plus GAA (0.093 g·kg-1·d-1; +GAA); 3) Base plus GAA plus excess methionine (0.5 g·kg-1·d-1; +GAA/Met); 4) Base plus creatine (0.12 g·kg-1·d-1; +Cre); or 5) excess arginine (1.8 g·kg-1·d-1) and excess methionine (+Arg/Met). Isotope tracers were infused to determine whole-body GAA, creatine, and protein synthesis; tissues were analyzed for creatine synthesis enzymes and metabolite concentrations. Data were analyzed by 1-way ANOVA. RESULTS : GAA and creatine syntheses were 115% and 32% higher, respectively, with the +Arg/Met diet (P < 0.0001), in spite of 33% lower renal L-arginine: glycine amidinotransferase activity (P < 0.0001) compared to Base, suggesting substrate availability dictates synthesis rather than enzyme capacity. GAA or creatine supplementation reduced arginine conversion to creatine by 46% and 43%, respectively (P < 0.01), but did not spare amino acids for whole-body protein synthesis, suggesting that limited amino acids were diverted to protein at the expense of creatine synthesis. The +GAA/Met diet led to higher creatine concentrations in the kidney (2.6-fold) and liver (7.6-fold) than the +GAA diet (P < 0.01), suggesting excess methionine is needed for GAA conversion to creatine. CONCLUSIONS Piglets are capable of synthesizing sufficient creatine from the precursor amino acids arginine and methionine, or from GAA plus methionine.
Collapse
Affiliation(s)
- O Chandani Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | | | - Meike Rademacher
- Animal Nutrition, Evonik Nutrition & Care GmbH (Gesellschaft mit beschränkter Haftung), Hanau, Germany
| | - Christopher Tomlinson
- Departments of Paediatrics and Nutritional Sciences, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
15
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
16
|
Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, Müller A, Fehrenbacher B, Gonzalez-Menendez I, Quintanilla-Martinez L, Schröder K, Brandes RP, Schaller M, Ruf W, Eichner M, Ghoreschi K, Röcken M, Pichler BJ, Kneilling M. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 2021; 11:470-490. [PMID: 33391487 PMCID: PMC7738859 DOI: 10.7150/thno.51462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important regulators of inflammation. The exact impact of ROS/RNS on cutaneous delayed-type hypersensitivity reaction (DTHR) is controversial. The aim of our study was to identify the dominant sources of ROS/RNS during acute and chronic trinitrochlorobenzene (TNCB)-induced cutaneous DTHR in mice with differently impaired ROS/RNS production. Methods: TNCB-sensitized wild-type, NADPH oxidase 2 (NOX2)- deficient (gp91phox-/-), myeloperoxidase-deficient (MPO-/-), and inducible nitric oxide synthase-deficient (iNOS-/-) mice were challenged with TNCB on the right ear once to elicit acute DTHR and repetitively up to five times to induce chronic DTHR. We measured ear swelling responses and noninvasively assessed ROS/RNS production in vivo by employing the chemiluminescence optical imaging (OI) probe L-012. Additionally, we conducted extensive ex vivo analyses of inflamed ears focusing on ROS/RNS production and the biochemical and morphological consequences. Results: The in vivo L-012 OI of acute and chronic DTHR revealed completely abrogated ROS/RNS production in the ears of gp91phox-/- mice, up to 90 % decreased ROS/RNS production in the ears of MPO-/- mice and unaffected ROS/RNS production in the ears of iNOS-/- mice. The DHR flow cytometry analysis of leukocytes derived from the ears with acute DTHR confirmed our in vivo L-012 OI results. Nevertheless, we observed no significant differences in the ear swelling responses among all the experimental groups. The histopathological analysis of the ears of gp91phox-/- mice with acute DTHRs revealed slightly enhanced inflammation. In contrast, we observed a moderately reduced inflammatory immune response in the ears of gp91phox-/- mice with chronic DTHR, while the inflamed ears of MPO-/- mice exhibited the strongest inflammation. Analyses of lipid peroxidation, 8-hydroxy-2'deoxyguanosine levels, redox related metabolites and genomic expression of antioxidant proteins revealed similar oxidative stress in all experimental groups. Furthermore, inflamed ears of wild-type and gp91phox-/- mice displayed neutrophil extracellular trap (NET) formation exclusively in acute but not chronic DTHR. Conclusions: MPO and NOX2 are the dominant sources of ROS/RNS in acute and chronic DTHR. Nevertheless, depletion of one primary source of ROS/RNS exhibited only marginal but conflicting impact on acute and chronic cutaneous DTHR. Thus, ROS/RNS are not a single entity, and each species has different properties at certain stages of the disease, resulting in different outcomes.
Collapse
|
17
|
Clark TC, Tinsley J, Sigholt T, Macqueen DJ, Martin SAM. Arginine, ornithine and citrulline supplementation in rainbow trout: Free amino acid dynamics and gene expression responses to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:374-390. [PMID: 31968266 DOI: 10.1016/j.fsi.2020.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Supplementing the diet with functional ingredients is a key strategy to improve fish performance and health in aquaculture. The amino acids of the urea and nitric oxide (NO) cycles - arginine, ornithine and citrulline - perform crucial roles in the immune response through the generation of NO and the synthesis of polyamine used for tissue repair. We previously found that citrulline supplementation improves and maintains circulating free arginine levels in rainbow trout more effectively than arginine supplementation. Here, to test whether supplementation of urea cycle amino acids modulates the immune response in rainbow trout (Oncorhynchus mykiss), we supplemented a commercial diet with high levels (2% of total diet) of either arginine, ornithine or citrulline during a 7-week feeding trial, before challenging fish with the bacterium Aeromonas salmonicida. We carried out two separate experiments to investigate fish survival and 24 h post-infection to investigate the immediate response of free amino acid levels, and transcriptional changes in genes encoding urea cycle, NO cycle and polyamine synthesis enzymes. There were no differences in percentage fish mortality between diets, however there were numerous highly significant changes in free amino acid levels and gene expression to both dietary supplementation and infection. Out of 26 amino acids detected in blood plasma, 8 were significantly changed by infection and 9 by dietary supplementation of either arginine, ornithine or citrulline. Taurine, glycine and aspartic acid displayed the largest decreases in circulating levels in infected fish, while ornithine and isoleucine were the only amino acids that increased in concentration. We investigated transcriptional responses of the enzymes involved in arginine metabolism in liver and head kidney; transcripts for polyamine synthesis enzymes showed highly significant increases in both tissues across all diets following infection. The paralogous arginase-encoding genes, Arg1a, Arg1b, Arg2a and Arg2b, displayed complex responses across tissues and also due to diet and infection. Overall, these findings improve our understanding of amino acid metabolism following infection and suggests new potential amino acid targets for improving the immune response in salmonids.
Collapse
Affiliation(s)
- T C Clark
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK
| | - J Tinsley
- BioMar AS, Grangemouth Docks, Grangemouth, UK
| | | | - D J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S A M Martin
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK.
| |
Collapse
|
18
|
Thomaidou A, Chatziioannou AC, Deda O, Benaki D, Gika H, Mikros E, Agakidis C, Raikos N, Theodoridis G, Sarafidis K. A pilot case-control study of urine metabolomics in preterm neonates with necrotizing enterocolitis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:10-21. [PMID: 30991202 DOI: 10.1016/j.jchromb.2019.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/27/2022]
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of gastrointestinal morbidity and mortality in preterm neonates. The aim of this pilot study was to explore using metabolomics alternations in the urine metabolites related to NEC that could possibly serve as diagnostic biomarkers of the disease. Urine samples were prospectively collected at the day of initial evaluation for NEC from 15 diseased preterm neonates (five Bell's stage I and ten stage II/III) and an equal number of matched controls. Urine metabolic profiles were assessed using non-targeted nuclear magnetic resonance spectroscopy and targeted liquid chromatography-tandem mass spectrometry monitoring 108 metabolites. Multivariate statistical models with data from either analytical approach showed clear separation between the metabolic profiles of neonates with NEC and controls. Twenty-five discriminant metabolites were identified belonging to amino and organic acids, sugars and vitamins. A number of metabolite combinations were found to have an excellent diagnostic performance in detecting neonates developing NEC. Our results show that the metabolic profile of neonates with NEC differs significantly from that of controls, making possible their separation using urine metabolomic analysis. Nevertheless, whether the small set of significant metabolites detected in this investigation could be used as early diagnostic biomarkers of NEC should be validated in larger studies.
Collapse
Affiliation(s)
- Agathi Thomaidou
- 1(st) Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | | | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece
| | - Dimitra Benaki
- School of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece
| | - Emmanouel Mikros
- School of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Charalampos Agakidis
- 1(st) Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Nikolaos Raikos
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece
| | - Georgios Theodoridis
- School of Chemistry, Aristotle University of Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece
| | - Kosmas Sarafidis
- 1(st) Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece.
| |
Collapse
|
19
|
Leal J, Teixeira-Santos L, Pinho D, Afonso J, Carvalho J, de Lourdes Bastos M, Albino-Teixeira A, Fraga S, Sousa T. l-proline supplementation improves nitric oxide bioavailability and counteracts the blood pressure rise induced by angiotensin II in rats. Nitric Oxide 2018; 82:1-11. [PMID: 30423454 DOI: 10.1016/j.niox.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
We evaluated whether l-proline (Pro) supplementation improves redox status and nitric oxide (NO) bioavailability and prevents or delays angiotensin II (AngII)-induced hypertension. Male Sprague-Dawley rats were distributed to four experimental groups: Pro + AngII (Pro-Ang), Pro + Saline (Pro-Sal), Vehicle + AngII (Veh-Ang) and Veh + Saline (Veh-Sal). Pro solution (2 g.kg-1·day-1) or water (vehicle) were orally administered, from day 0 to day 21. AngII (200 ng.kg-1.min-1) or saline were infused (s.c.) from day 7 to day 21. Systolic blood pressure (SBP) was measured by the tail-cuff method. From day 20-21, animals were kept on metabolic cages for 24h-urine collection. On day 21, urine and blood were collected for further quantification of redox status biomarkers, NO-related markers (urinary nitrates and nitrites, U-NOx; plasma asymmetric dimethylarginine, P-ADMA), metabolic and renal parameters. Pro prevented the AngII-induced SBP rise [mean (95% CI), Day 19: Pro-AngII, 137 (131; 143) vs. Veh-AngII, 157 (151; 163) mm Hg, P < 0.001]. Pro-AngII rats also had increased values of U-NOx, systemic and urinary total antioxidant status (TAS), urinary H2O2 and plasma urea, as well as reduced P-ADMA and unaltered urinary isoprostanes. Plasma Pro was inversely correlated with P-ADMA (r = -0.52, p = 0.0009) and positively correlated with urinary TAS (r = 0.55, p = 0.0005) which, in turn, was inversely correlated with P-ADMA (r = -0.56, p = 0.0004). Furthermore, urinary H2O2 values decreased across P-ADMA tertiles (p for linear trend = 0.023). These results suggest that Pro reduces P-ADMA levels and improves redox status, thereby increasing NO bioavailability and counteracting the AngII-induced SBP rise. H2O2 and TAS modulation by Pro may contribute to the reduced P-ADMA concentration.
Collapse
Affiliation(s)
- Joana Leal
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e de Inovação Medicamentosa, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e de Inovação Medicamentosa, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Joana Afonso
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e de Inovação Medicamentosa, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Jorge Carvalho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal
| | - Maria de Lourdes Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e de Inovação Medicamentosa, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sónia Fraga
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal; Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, Rua Alexandre Herculano nº321, 4000-055, Porto, Portugal.
| | - Teresa Sousa
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Rua Dr. Plácido da Costa, S/N, Piso 3, 4200-450, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e de Inovação Medicamentosa, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
20
|
Albaugh VL, Mukherjee K, Barbul A. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing. J Nutr 2017; 147:2011-2017. [PMID: 28978679 PMCID: PMC5657141 DOI: 10.3945/jn.117.256404] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed.
Collapse
Affiliation(s)
- Vance L Albaugh
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN; and
| | - Kaushik Mukherjee
- Division of Acute Care Surgery, Loma Linda University School of Medicine, Loma Linda, CA
| | - Adrian Barbul
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN; and
| |
Collapse
|
21
|
Abstract
Infants born with low birth weights (<2500 g, LBW), accounting for about 15 % of newborns, have a high risk for postnatal growth failure and developing the metabolic syndromes such as type 2 diabetes, CVD and obesity later in life. Improper nutrition provision during critical stages, such as undernutrition during the fetal period or overnutrition during the neonatal period, has been an important mediator of these metabolic diseases. Considering the specific physiological status of LBW infants, nutritional intervention and optimisation during early life merit further attention. In this review, the physiological and metabolic defects of LBW infants were summarised from a nutritional perspective. Available strategies for nutritional interventions and optimisation of LBW infants, including patterns of nutrition supply, macronutrient proportion, supplementation of amino acids and their derivatives, fatty acids, nucleotides, vitamins, minerals as well as hormone and microbiota manipulators, were reviewed with an aim to provide new insights into the advancements of formulas and human-milk fortifiers.
Collapse
|
22
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
23
|
Contreras MT, Gallardo MJ, Betancourt LR, Rada PV, Ceballos GA, Hernandez LE, Hernandez LF. Correlation between plasma levels of arginine and citrulline in preterm and full-term neonates: Therapeutical implications. J Clin Lab Anal 2017; 31. [PMID: 28169465 DOI: 10.1002/jcla.22134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/13/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Preterm neonates exhibit several deficiencies that endanger their lives. Understanding those disturbances will provide tools for the management of preterm neonates. The present work focuses on arginine and citrulline which has been flagged among the biochemical landmarks of prematurity. METHODS We examined blood samples of preterm newborns as compared with mature neonates to determine the levels of arginine and citrulline by capillary zone electrophoresis with laser induced fluorescence detection (CZE-LIFD). RESULTS Significantly lower levels of arginine and citrulline were found in preterm neonates than in mature neonates (P<.01). Interestingly there was a highly significant correlation between the two amino acids in mature neonates (P<.0001). Such correlation was present in preterm neonates too (P<.01). Pearson coefficient showed that 60% of the citrulline concentration depends on arginine concentration in mature neonates. Only 20% of the citrulline concentration depends on arginine concentration in preterm neonates. Although the ratio arginine/citrulline was lower in preterm neonates than in mature neonates the difference was not statistically significant. CONCLUSIONS These results suggest that less arginine is converted to citrulline to form nitric oxide in preterm than in full-term neonates. The result is discussed in terms of the immature enzymatic systems in the preterm neonate.
Collapse
Affiliation(s)
- Mike T Contreras
- School of Nutrition, Faculty of Medicine, Universidad of Los Andes, Mérida, Venezuela
| | - Maria J Gallardo
- School of Nutrition, Faculty of Medicine, Universidad of Los Andes, Mérida, Venezuela
| | - Luis R Betancourt
- Department of Morphological Sciences, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela.,Department of Physiology, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela
| | - Pedro V Rada
- Department of Physiology, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela
| | - Gerardo A Ceballos
- Center of Biomedical Engineering and Telemedicine, Faculty of Engineering, University of Los Andes, Mérida, Venezuela
| | - Luis E Hernandez
- Department of Physiology, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela
| | - Luis F Hernandez
- Department of Physiology, Faculty of Medicine, School of Medicine, University of Los Andes, Mérida, Venezuela
| |
Collapse
|
24
|
Long Y, Tsai WB, Wang D, Hawke DH, Savaraj N, Feun LG, Hung MC, Chen HHW, Kuo MT. Argininosuccinate synthetase 1 (ASS1) is a common metabolic marker of chemosensitivity for targeted arginine- and glutamine-starvation therapy. Cancer Lett 2016; 388:54-63. [PMID: 27913198 DOI: 10.1016/j.canlet.2016.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022]
Abstract
Argininosuccinate synthetase 1 (ASS1) is the rate-limiting enzyme that catalyzes the biosynthesis of arginine (Arg). Many malignant human tumors are auxotrophic for Arg because ASS1 is silenced. ASS1 has been established as a sensor of Arg auxotrophic response and a chemosensitivity marker for Arg starvation therapy. Here, we report that ASS1 is also a sensor for glutamine (Gln)-deprivation response, and that upregulation of ASS1 expression is associated with resistance to Gln-starvation treatments. Knockdown of ASS1 expression resulted in increased sensitivity to both Arg- and Gln-starvation, whereas increased ASS1 expression by ectopic transfection is associated with resistance to both Arg- and Gln-starvation. The addition of permeable fumarate, a metabolite that bridges the tricarboxylic acid and urea cycles, resulted in downregulation of ASS1 expression and increased sensitivity to both Arg- and Gln-deprivation treatments. Mechanistically, the Gln-deprivation response, like the arginine-auxotrophic response, downregulates HIF-1α resulting in de-silencing of ASS1. Our results demonstrate that ASS1 is a common biosensor for Arg and Gln deprivation response and a shared target for Arg- and Gln-starvation therapies which have been in several current clinical trials.
Collapse
Affiliation(s)
- Yan Long
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Bin Tsai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dajuan Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Niramol Savaraj
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lynn G Feun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen H W Chen
- National Cheng Kung University, National Cheng Kung University Hospital, College of Medicine, Department of Radiation Oncology, Tainan, Taiwan
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Moonen RM, Cavallaro G, Huizing MJ, González-Luis GE, Mosca F, Villamor E. Association between the p.Thr1406Asn polymorphism of the carbamoyl-phosphate synthetase 1 gene and necrotizing enterocolitis: A prospective multicenter study. Sci Rep 2016; 6:36999. [PMID: 27833157 PMCID: PMC5105130 DOI: 10.1038/srep36999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
The p.Thr1406Asn (rs1047891) polymorphism of the carbamoyl-phosphate synthetase 1 (CPS1) gene has been linked to functional consequences affecting the downstream availability of the nitric oxide precursor L-arginine. L-arginine concentrations are decreased in preterm infants with necrotizing enterocolitis (NEC). In this multicenter prospective study, we investigated the association of the p.Thr1406Asn polymorphism with NEC in 477 preterm infants (36 cases of NEC) from 4 European neonatal intensive care units (Maastricht, Las Palmas de Gran Canaria, Mantova, and Milan). Allele and genotype frequencies of the p.Thr1406Asn polymorphism did not significantly differ between the infants with and without NEC. In contrast, the minor A-allele was significantly less frequent in the group of 64 infants with the combined outcome NEC or death before 34 weeks of corrected gestational age than in the infants without the outcome (0.20 vs. 0.31, P = 0.03). In addition, a significant negative association of the A-allele with the combined outcome NEC or death was found using the dominant (adjusted odds ratio, aOR: 0.54, 95% CI 0.29–0.99) and the additive (aOR 0.58, 95% CI 0.36–0.93) genetic models. In conclusion, our study provides further evidence that a functional variant of the CPS1 gene may contribute to NEC susceptibility.
Collapse
Affiliation(s)
- Rob M Moonen
- Department of Pediatrics, Zuyderland Medical Center Heerlen, 6130 MB, The Netherlands.,Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, 6202 AZ, The Netherlands
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, 20122, Italy
| | - Maurice J Huizing
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, 6202 AZ, The Netherlands
| | - Gema E González-Luis
- Department of Pediatrics, Hospital Universitario Materno-Infantil de Canarias, Las Palmas de Gran Canaria, 35016, Spain
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, 20122, Italy
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. RECENT FINDINGS Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter randomized controlled trial resulted in increased mortality in the glutamine-supplemented group. Within this context, defining the contribution of glutamine to the production of citrulline, and thus to de-novo arginine synthesis, has become a pressing issue. SUMMARY The beneficial effects of glutamine supplementation may be partially mediated by the effects of glutamine on citrulline synthesis by the gut and the de-novo synthesis of arginine by the kidney and other tissues. Although there is no strong evidence to support that glutamine is a major precursor for citrulline synthesis in humans, glutamine has the potential to increase overall gut function and in this way increase citrulline production.
Collapse
Affiliation(s)
- J.C. Marini
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
27
|
Leung KT, Chan KYY, Ma TPY, Yu JWS, Tong JHM, Tam YH, Cheung HM, To KF, Lam HS, Lee KH, Li K, Ng PC. Dysregulated expression of arginine metabolic enzymes in human intestinal tissues of necrotizing enterocolitis and response of CaCO2 cells to bacterial components. J Nutr Biochem 2015; 29:64-72. [PMID: 26895666 DOI: 10.1016/j.jnutbio.2015.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
The small intestine is the exclusive site of arginine synthesis in neonates. Low levels of circulating arginine have been associated with the occurrence of necrotizing enterocolitis (NEC) but the mechanism of arginine dysregulation has not been fully elucidated. We aimed to investigate (i) expressional changes of arginine synthesizing and catabolic enzymes in human intestinal tissues of NEC, spontaneous intestinal perforation (SIP) and noninflammatory surgical conditions (Surg-CTL) and to investigate the (ii) mechanisms of arginine dysregulation and enterocyte proliferation upon stimulation by bacterial components, arginine depletion, ARG1 overexpression and nitric oxide (NO) supplementation. Our results showed that expressions of arginine synthesizing enzymes ALDH18A1, ASL, ASS1, CPS1, GLS, OAT and PRODH were significantly decreased in NEC compared with Surg-CTL or SIP tissues. Catabolic enzyme ARG1 was increased (>100-fold) in NEC tissues and histologically demonstrated to be expressed by infiltrating neutrophils. No change in arginine metabolic enzymes was observed between SIP and Surg-CTL tissues. In CaCO2 cells, arginine metabolic enzymes were differentially dysregulated by lipopolysaccharide or lipoteichoic acid. Depletion of arginine reduced cell proliferation and this phenomenon could be partially rescued by NO. Overexpression of ARG1 also reduced enterocyte proliferation. We provided the first expressional profile of arginine metabolic enzymes at the tissue level of NEC. Our findings suggested that arginine homeostasis was severely disturbed and could be triggered by inflammatory responses of enterocytes and infiltrating neutrophils as well as bacterial components. Such reactions could reduce arginine and NO, resulting in mucosal damage. The benefit of arginine supplementation for NEC prophylaxis merits further clinical evaluation.
Collapse
Affiliation(s)
- Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Terence Ping Yuen Ma
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Jasmine Wai Sum Yu
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Joanna Hung Man Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yuk Him Tam
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hon Ming Cheung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Kim Hung Lee
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Karen Li
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Pak Cheung Ng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
28
|
Citrulline and nitrogen homeostasis: an overview. Amino Acids 2015; 47:685-91. [PMID: 25676932 DOI: 10.1007/s00726-015-1932-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022]
Abstract
Citrulline (Cit) is a non-essential amino acid whose metabolic properties were largely ignored until the last decade when it began to emerge as a highly promising nutrient with many regulatory properties, with a key role in nitrogen homeostasis. Because Cit is not taken up by the liver, its synthesis from arginine, glutamine, ornithine and proline in the intestine prevents the hepatic uptake of the two first amino acids which activate the urea cycle and so prevents amino acid catabolism. This sparing effect may have positive spin-off for muscle via increased protein synthesis, protein content and functionality. However, the mechanisms of action of Cit are not fully known, even if preliminary data suggest an implication of mTOR pathway. Further exploration is needed to gain a complete overview of the role of Cit in the control of nitrogen homeostasis.
Collapse
|
29
|
Wu X, Xie C, Zhang Y, Fan Z, Yin Y, Blachier F. Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids 2014; 47:45-53. [PMID: 25399054 DOI: 10.1007/s00726-014-1861-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
The present review focuses on the physiological functions of glutamate-glutamine exchange involving placental amino acid transport and umbilical amino acid uptake in mammals (particularly in sows), with special emphasis on the associated regulating mechanisms. Glutamate plus glutamine are among the most abundant and the most utilized amino acids in fetus during late gestation. During pregnancy, amino acids, notably as precursors of macromolecules including proteins and nucleotides are involved in fetal development and growth. Amino acid concentrations in fetus are generally higher than in the mother. Among amino acids, the transport and metabolism of glutamate and glutamine during fetal development exhibit characteristics that clearly emphasize the importance of the interaction between the placenta and the fetal liver. Glutamate is quite remarkable among amino acids, which originate from the placenta, and is cleared from fetal plasma. In addition, the flux of glutamate through the placenta from the fetal plasma is highly correlated with the umbilical glutamate delivery rate. Glutamine plays a central role in fetal carbon and nitrogen metabolism and exhibits one of the highest fetal/maternal plasma ratio among all amino acids in human and other mammals. Glutamate is taken up by placenta from the fetal circulation and then converted to glutamine before being released back into the fetal circulation. Works are required on the glutamate-glutamine metabolism during late pregnancy in physiological and pathophysiological situations since such works may help to improve fetal growth and development both in humans and other mammals. Indeed, glutamine supplementation appears to ameliorate fetal growth retardation in sows and reduces preweaning mortality of piglets.
Collapse
Affiliation(s)
- Xin Wu
- Hunan Engineering and Research Center of Animal and Poultry Science, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125, Changsha, China,
| | | | | | | | | | | |
Collapse
|
30
|
Hagan JB, Wasserman RL, Baggish JS, Spycher MO, Berger M, Shashi V, Lohrmann E, Sullivan KE. Safety ofL-proline as a stabilizer for immunoglobulin products. Expert Rev Clin Immunol 2014; 8:169-78. [DOI: 10.1586/eci.11.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Roucher VF, Desnots E, Naël C, Agnoux AM, Alexandre-Gouabau MC, Darmaun D, Boquien CY. Use of UPLC-ESI-MS/MS to quantitate free amino acid concentrations in micro-samples of mammalian milk. SPRINGERPLUS 2013; 2:622. [PMID: 24298434 PMCID: PMC3841331 DOI: 10.1186/2193-1801-2-622] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/16/2013] [Indexed: 01/09/2023]
Abstract
Although free amino acids (FAA) account for a small fraction of total nitrogen in mammalian milk, they are more abundant in human milk than in most formulas, and may serve as a readily available source of amino acids for protein synthesis, as well as fulfill specific physiologic roles. We used reversed phase Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization tandem mass spectrometry (ESI-MS/MS) technique for FAA profiling in milks from three species (human, rat and cow) with a simple and rapid sample preparation. The derivatization procedure chosen, combined with UPLC-ESI-MS/MS allowed the quantitation of 21 FAA using labeled amino acids (Internal Standards) over a 10 min run time in micro-samples of mammalian milk (50 μL). The low limit of quantitation was 0.05 pmol/μL for most FAA with good repeatability and reproducibility (mean CV of 5.1%). Higher levels of total FAA were found in human (3032 μM) and rat milk (3460 μM) than in bovine milk (240 μM), with wide differences in the abundances of specific FAA between species. This robust analytical method could be applied to monitor FAA profile in human breast milk, and open the way to individualized adjustment of FAA content for the nutritional management of infants.
Collapse
Affiliation(s)
- Véronique Ferchaud Roucher
- IMAD, DHU 2020, CHU Hôtel-Dieu, Nantes, F-44 000 France ; INRA, UMR 1 280 Physiologie des Adaptations Nutritionnelles, Nantes, F-44 000 France ; IMAD, DHU 2020, CHU Hôtel-Dieu, Nantes, F-44 000 France
| | | | | | | | | | | | | |
Collapse
|
32
|
Dinesh OC, Dodge ME, Baldwin MP, Bertolo RF, Brunton JA. Enteral Arginine Partially Ameliorates Parenteral Nutrition–Induced Small Intestinal Atrophy and Stimulates Hepatic Protein Synthesis in Neonatal Piglets. JPEN J Parenter Enteral Nutr 2013; 38:973-81. [DOI: 10.1177/0148607113498906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- O. Chandani Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - M. Elaine Dodge
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - Mark P. Baldwin
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - Robert F. Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| | - Janet A. Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland & Labrador, Canada
| |
Collapse
|
33
|
|
34
|
Marini JC. Arginine and ornithine are the main precursors for citrulline synthesis in mice. J Nutr 2012; 142:572-80. [PMID: 22323761 PMCID: PMC3278269 DOI: 10.3945/jn.111.153825] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent isotopic tracer studies in mice, piglets, and humans have produced conflicting results as to the main carbon skeleton precursor for citrulline and arginine synthesis. This may be due in part to the different tracers infused and models used to interpret the stable isotope data. Furthermore, previous studies usually investigated a single precursor, which prevented the direct comparison among multiple precursors. To further elucidate the contribution of different precursors to citrulline synthesis, all possible enteral and plasma precursors of citrulline were studied in a mouse model during the postabsorptive and postprandial period using multitracer protocols. In addition, three different models were used to interpret the stable isotope data. The utilization of the classic precursor-product equation, developed for i.v. infused tracers but also used to include i.g. tracers, grossly overestimated the contribution of enteral precursors. Regardless of the model employed, dietary and plasma arginine were the main precursors for citrulline synthesis during feeding and plasma arginine during feed deprivation. The contribution of arginine was directly at the site of citrulline synthesis and through plasma ornithine. The predominant role of arginine and ornithine seen in this study supports the observations in mice, piglets, and humans suggesting that ornithine amino transferase is a pivotal enzyme in this pathway.
Collapse
|
35
|
Urinary citrulline in very low birth weight preterm infants receiving intravenous nutrition. Br J Nutr 2011; 108:1150-4. [DOI: 10.1017/s0007114511006660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As gut immaturity precludes full enteral feeding, very low birth weight (VLBW) preterm infants receive parenteral nutrition (PN) during the first few weeks of life. Weaning VLBW infants off PN, however, is a top priority since PN is associated with a high risk of complications. The decision making is purely empirical, as there is currently no suitable index of gastrointestinal (GI) maturity. Plasma citrulline concentration is considered an index of GI function in conditions such as short-bowel syndrome and coeliac disease in adults. To identify the factors determining urinary citrulline excretion, and determine whether urinary citrulline excretion could be used as a non-invasive index of GI tolerance to enteral feeding, nutritional intake and urinary citrulline were monitored bi-weekly in forty-seven preterm infants < 1500 g (interquartiles 880–1320 g), during their stay in the Neonatology unit. Median urinary citrulline was 24·7 μmol/mmol creatinine (14·5–38·6 μmol/mmol creatinine). No relationship was observed with the percentage of energy tolerated enterally. In multivariate regression analysis, weak correlations were found with post-conceptional age (P = 0·001), parenteral amino acid supply (P = 0·001) and the daily volume of enteral mixture administered (P = 0·043). A significant correlation was found with urinary nitrite+nitrate excretion (r0·47;P < 0·001). We conclude that in preterm infants: (1) one of the major determinants of urinary citrulline may be the biosynthesis of citrulline from arginine by NO-synthase; (2) urinary citrulline cannot be used to predict GI tolerance. This is consistent with the observations that, in neonatal gut, citrulline is converted to argininein siturather than exported towards the kidneys as observed in adults.
Collapse
|
36
|
Tomlinson C, Rafii M, Ball RO, Pencharz PB. Arginine can be synthesized from enteral proline in healthy adult humans. J Nutr 2011; 141:1432-6. [PMID: 21677074 DOI: 10.3945/jn.110.137224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is considerable controversy recently in identifying dietary precursors for arginine synthesis. We have previously shown in human neonates and piglets that proline is the sole dietary precursor for arginine synthesis. It is unclear in adult humans whether proline is a dietary precursor for arginine. We performed a multi-tracer stable isotope study in adults using (15)N(2)-ureido arginine and (15)N proline to elucidate synthesis of citrulline and arginine and determine whether proline is a precursor for arginine. Primed, intermittent infusions of the labeled amino acids were given enterally to 5 healthy men consuming a standardized milkshake diet. Blood was sampled during plateau enrichment between 1.5 and 3 h. Plasma enrichment occurred for both tracers, giving enteral turnover estimates of 93 μmol · kg(-1) · h(-1) for arginine and 154 μmol · kg(-1) · h(-1) for proline. Appearance of the label from proline in arginine and the intermediaries, ornithine and citrulline, was measured in all participants. The rate of synthesis of arginine from proline was 3.7 μmol · kg(-1) · h(-1), which is estimated to be ~40% of newly synthesized arginine. In this first study in adult humans using an enteral proline tracer, we have demonstrated synthesis of arginine from this dietary amino acid. Therefore, as in newborns, proline must now be considered a dietary precursor for arginine in healthy adults.
Collapse
Affiliation(s)
- Chris Tomlinson
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
37
|
Tomlinson C, Rafii M, Ball RO, Pencharz P. Arginine synthesis from enteral glutamine in healthy adults in the fed state. Am J Physiol Endocrinol Metab 2011; 301:E267-73. [PMID: 21540446 DOI: 10.1152/ajpendo.00006.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.
Collapse
Affiliation(s)
- Chris Tomlinson
- Division of Gastroenterology and Nutrition,Research Institute, The Hospital for Sick Children, University of Toronto, 555 University Ave., Toronto, Ontario, Canada
| | | | | | | |
Collapse
|