1
|
Apprato G, Caron G, Deshmukh G, Garcia-Jimenez D, Haid RTU, Pike A, Reichel A, Rynn C, Donglu Z, Wittwer MB. Finding a needle in the haystack: ADME and pharmacokinetics/pharmacodynamics characterization and optimization toward orally available bifunctional protein degraders. Expert Opin Drug Discov 2025. [PMID: 39956925 DOI: 10.1080/17460441.2025.2467195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Degraders are an increasingly important sub-modality of small molecules as illustrated by an ever-expanding number of publications and clinical candidate molecules in human trials. Nevertheless, their preclinical optimization of ADME and PK/PD properties has remained challenging. Significant research efforts are being directed to elucidate underlying principles and to derive rational optimization strategies. AREAS COVERED In this review the authors summarize current best practices in terms of in vitro assays and in vivo experiments. Furthermore, the authors collate and comment on the current understanding of optimal physicochemical characteristics and their impact on absorption, distribution, metabolism and excretion properties including the current knowledge of Drug-Drug interactions. Finally, the authors describe the Pharmacokinetic prediction and Pharmacokinetic/Pharmacodynamic -concepts unique to degraders and how to best implement these in research projects. EXPERT OPINION Despite many recent advances in the field, continued research will further our understanding of rational design regarding degrader optimization. Machine-learning and computational approaches will become increasingly important once larger, more robust datasets become available. Furthermore, tissue-targeting approaches (particularly regarding the Central Nervous System will be increasingly studied to elucidate efficacious drug regimens that capitalize on the catalytic mode of action. Finally, additional specialized approaches (e.g. covalent degraders, LOVdegs) can enrich the field further and offer interesting alternative approaches.
Collapse
Affiliation(s)
- Giulia Apprato
- CASSMedChem, Molecular Biotechnology and Health Sciences Dept, University of Torino, Torino, Italy
| | - Giulia Caron
- CASSMedChem, Molecular Biotechnology and Health Sciences Dept, University of Torino, Torino, Italy
| | | | - Diego Garcia-Jimenez
- CASSMedChem, Molecular Biotechnology and Health Sciences Dept, University of Torino, Torino, Italy
| | - Robin Thomas Ulrich Haid
- Preclinical Modeling & Simulation, Pharma R&D, Bayer AG, Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Andreas Reichel
- Preclinical Modeling & Simulation, Pharma R&D, Bayer AG, Berlin, Germany
| | - Caroline Rynn
- Roche Products Ltd, Hexagon Place, 6 Falcon Way, Welwyn Garden City, UK
| | | | - Matthias Beat Wittwer
- pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. 4070 Basel, Switzerland
| |
Collapse
|
2
|
Goyon A. Keeping up with a Quickly Diversifying Pharmaceutical Landscape. ACS MEASUREMENT SCIENCE AU 2024; 4:615-619. [PMID: 39713029 PMCID: PMC11659996 DOI: 10.1021/acsmeasuresciau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
Small molecules and antibodies have dominated the pharmaceutical landscape for decades. However, limitations associated with therapeutic targets deemed "undruggable" and progress in biology and chemistry have led to the blossoming of drug modalities and therapeutic approaches. In 2023, a high number of 9 oligonucleotide and peptide products were approved by the Food and Drug Administration (FDA), accounting for 16% of all drugs approved. Additionally, for the first time, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 gene therapy product was approved for the treatment of sickle cell disease. New drug modalities possess a wide range of physicochemical properties and structures, which complicates their analytical characterization. Impurities are formed at each step of the oligonucleotide and peptide solid phase synthesis and during shelf life. Longer chain lengths lead to a higher number of closely related impurities that become increasingly more difficult to separate from the full-length product. Chemical modifications such as phosphorothioates (PS) result in the presence of diastereomers, which often require orthogonal methods for their profiling and strategies to prevent their interference with the separation of achiral impurities. In-vitro produced mRNA and plasmid DNA also present a variety of quality attributes that need to be determined, such as the polyA tail length or capping efficiency. Analytical challenges arise from the variety of drug modality physiochemical properties and attributes, fast turnaround times, and heightened level of characterization needed to enable data-driven decisions early in the drug development process. This perspective provides the author's views on the lessons learned and strategies employed in recent years.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Meloni V, Halstenberg L, Mareczek L, Lu J, Liang B, Gottschalk N, Mueller LK. Exploring Orodispersible Films Containing the Proteolysis Targeting Chimera ARV-110 in Hot Melt Extrusion and Solvent Casting Using Polyvinyl Alcohol. Pharmaceutics 2024; 16:1499. [PMID: 39771478 PMCID: PMC11678735 DOI: 10.3390/pharmaceutics16121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five". METHODS We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice. Given the high thermal stability of ARV-110, the PROTAC was subjected to two primary ODF manufacturing techniques: Hot melt extrusion (HME) and solvent casting. To establish the HME method, pre-screening through vacuum compression molding was performed. The films were characterized based on their disintegration in artificial saliva, drug release in a physiological environment, and mechanical strength. RESULTS All formulations demonstrated enhanced solubility of ARV-110, achieving exceptional results in terms of disintegration times and resistance to applied stress. CONCLUSIONS The findings from the experiments outlined herein establish a solid foundation for the successful production of orodispersible films for the delivery of PROTACs.
Collapse
Affiliation(s)
- Valentina Meloni
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | | | - Lena Mareczek
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | - Jankin Lu
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Bonnie Liang
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | | | - Lena K. Mueller
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| |
Collapse
|
4
|
Ma B, Argikar UA, Cheruzel L, Cho S, Hauri S, Johnson KM, Liu J, Schadt S, Wang S, Khojasteh SC. Metabolism of new drug modalities research advances - 2023 year in review. Drug Metab Rev 2024; 56:223-246. [PMID: 38895934 DOI: 10.1080/03602532.2024.2370331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
With contributions from colleagues across academia and industry, we have put together the annual reviews of research advances on drug biotransformation and bioactivation since 2016 led by Cyrus Khojasteh. While traditional small molecules and biologics are still predominant in drug discovery, we start to notice a paradigm shift toward new drug modalities (NDMs) including but not limited to peptide and oligonucleotide therapeutics, protein degraders (heterobifunctional degraders and molecule glues), conjugated drugs and covalent inhibitors. The readers can learn more on each new drug modality from several recent comprehensive reviews (Blanco et al. 2022; Hillebrand et al. 2024; Phuna et al. 2024). Based on this trend, we put together this stand-alone review branched from our previous efforts (Baillie et al. 2016; Khojasteh et al. 2023) with a focus on the metabolism of NDMs. We collected 11 articles which exemplify recent discoveries and perspectives in this field.
Collapse
Affiliation(s)
- Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Lionel Cheruzel
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Simon Hauri
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, Maryland Heights, MO, USA
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
5
|
Mareczek L, Mueller LK, Halstenberg L, Geiger TM, Walz M, Zheng M, Hausch F. Use of Poly(vinyl alcohol) in Spray-Dried Dispersions: Enhancing Solubility and Stability of Proteolysis Targeting Chimeras. Pharmaceutics 2024; 16:924. [PMID: 39065621 PMCID: PMC11279962 DOI: 10.3390/pharmaceutics16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
PROTACs, proteolysis targeting chimeras, are bifunctional molecules inducing protein degradation through a unique proximity-based mode of action. While offering several advantages unachievable by classical drugs, PROTACs have unfavorable physicochemical properties that pose challenges in application and formulation. In this study, we show the solubility enhancement of two PROTACs, ARV-110 and SelDeg51, using Poly(vinyl alcohol). Hereby, we apply a three-fluid nozzle spray drying set-up to generate an amorphous solid dispersion with a 30% w/w drug loading with the respective PROTACs and the hydrophilic polymer. Dissolution enhancement was achieved and demonstrated for t = 0 and t = 4 weeks at 5 °C using a phosphate buffer with a pH of 6.8. A pH shift study on ARV-110-PVA is shown, covering transfer from simulated gastric fluid (SGF) at pH 2.0 to fasted-state simulated intestinal fluid (FaSSIF) at pH 6.5. Additionally, activity studies and binding assays of the pure SelDeg51 versus the spray-dried SelDeg51-PVA indicate no difference between both samples. Our results show how modern enabling formulation technologies can partially alleviate challenging physicochemical properties, such as the poor solubility of increasingly large 'small' molecules.
Collapse
Affiliation(s)
| | | | | | - Thomas M. Geiger
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Michael Walz
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Min Zheng
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
6
|
Zhang D, Ma B, Dragovich PS, Ma L, Chen S, Chen EC, Ye X, Liu J, Pizzano J, Bortolon E, Chan E, Zhang X, Chen YC, Levy ES, Yauch RL, Khojasteh SC, Hop CECA. Tissue distribution and retention drives efficacy of rapidly clearing VHL-based PROTACs. COMMUNICATIONS MEDICINE 2024; 4:87. [PMID: 38755248 PMCID: PMC11099041 DOI: 10.1038/s43856-024-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Proteolysis-targeting chimeras (PROTACs) are being developed for therapeutic use. However, they have poor pharmacokinetic profiles and their tissue distribution kinetics are not known. METHODS A typical von Hippel-Lindau tumor suppressor (VHL)-PROTAC 14C-A947 (BRM degrader)-was synthesized and its tissue distribution kinetics was studied by quantitative whole-body autoradiography (QWBA) and tissue excision in rats following IV dosing. Bile duct-cannulated (BDC) rats allowed the elucidation of in vivo clearance pathways. Distribution kinetics was evaluated in the tissues and tumors of mice to support PK-PD correlation. In vitro studies enabled the evaluation of cell uptake mechanisms and cell retention properties. RESULTS Here, we show that A947 quickly distributes into rat tissues after IV dosing, where it accumulates and is retained in tissues such as the lung and liver although it undergoes fast clearance from circulation. Similar uptake/retention kinetics enable tumor growth inhibition over 2-3 weeks in a lung cancer model. A947 quickly excretes in the bile of rats. Solute carrier (SLC) transporters are involved in hepatocyte uptake of PROTACs. Sustained BRM protein degradation is seen after extensive washout that supports prolonged cell retention of A947 in NCI-H1944 cells. A947 tissue exposure and pharmacodynamics are inversely correlated in tumors. CONCLUSIONS Plasma sampling for VHL-PROTAC does not represent the tissue concentrations necessary for efficacy. Understanding of tissue uptake and retention could enable less frequent IV administration to be used for therapeutic dosing.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Bin Ma
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Li Ma
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Shu Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Eugene C Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaofen Ye
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Liu
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer Pizzano
- Arvinas; 5 Science Park, 395 Winchester Ave, New Haven, CT, 06511, USA
| | | | - Emily Chan
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xing Zhang
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yi-Chen Chen
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Robert L Yauch
- Genentech; 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | | |
Collapse
|
7
|
Yang W, Saboo S, Zhou L, Askin S, Bak A. Early evaluation of opportunities in oral delivery of PROTACs to overcome their molecular challenges. Drug Discov Today 2024; 29:103865. [PMID: 38154757 DOI: 10.1016/j.drudis.2023.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
PROteolysis TArgeting Chimeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are intractable to classic inhibitors. Heterobifunctional in nature, PROTACs are small molecules that offer a unique mechanism of protein degradation by hijacking the ubiquitin-mediated protein degradation pathway, known as the ubiquitin-proteasome system. Herein, we present an analysis on the structural characteristics of this novel chemical modality. Furthermore, we review and discuss the formulation opportunities to overcome the oral delivery challenges of PROTACs in drug discovery.
Collapse
Affiliation(s)
- Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA.
| | - Sugandha Saboo
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| |
Collapse
|
8
|
Hofmann N, Harms M, Mäder K. ASDs of PROTACs: Spray-dried solid dispersions as enabling formulations. Int J Pharm 2024; 650:123725. [PMID: 38113976 DOI: 10.1016/j.ijpharm.2023.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are a promising class of pharmaceutical agents with a unique mode of action. PROTACs enable the targeting of a broad variety of structures including transcription factors and other "undruggable" targets. The poor solubility and slow dissolution of PROTACs currently limit the extensive use of their potential. Up to date, only very limited drug delivery options have been examined to address this challenge. Therefore, we explored the potential of amorphous solid dispersions (ASDs) by spray drying a model PROTAC with different polymers. The resulting formulations were assessed in terms of purity, solid state, dissolution performance, and stability. A strong increase in supersaturation compared to the physical mixture was provided, although in both systems the PROTAC molecule itself was already in the amorphous state. Evaluation of the reasons for the superiority of the ASD formulations revealed that the major factor was the homogeneous, molecular distribution of the active pharmaceutical ingredient (API) in the polymer matrix, as well as improved wettability of the formulation containing Soluplus compared to the physical mixture. The manufactured formulations were stable over a minimum of 8 weeks when protected from light and humidity.
Collapse
Affiliation(s)
- Nicole Hofmann
- Global Drug Product Development, Orals Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Meike Harms
- Global Drug Product Development, Orals Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty I of Natural Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
9
|
Hix MA, Walker AR. AutoParams: An Automated Web-Based Tool To Generate Force Field Parameters for Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:6293-6301. [PMID: 37773638 DOI: 10.1021/acs.jcim.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Many research questions benefit from molecular dynamics simulations to observe the motions and conformations of molecules over time, which rely on force fields that describe sets of common molecules by category. With the increase of importance for large data sets used in machine learning and growing computational efficiency, the ability to rapidly create large numbers of force field inputs is of high importance. Unusual molecules, such as nucleotide analogues, functionalized carbohydrates, and modified amino acids, are difficult to describe consistently using standard force fields, requiring the development of custom parameters for each unique molecule. While these parameters may be created by individual users, the process can become time-consuming or may introduce errors that may not be immediately apparent. We present an open-source automated parameter generation service, AutoParams, which requires minimal input from the user and creates useful Amber force field parameter sets for most molecules, particularly those that combine molecular types (e.g., a carbohydrate functionalized with a benzene). We include hierarchical atom-typing logic that makes it straightforward to expand with additional force fields and settings, and options for creating monomers in polymers, such as functionalized amino acids. It can be straightforwardly linked to any charge generation program and currently has interfaces to Psi4, PsiRESP, and TeraChem. It is open source and is available via GitHub. It includes error checking and testing protocols to ensure the parameters will be sufficient for subsequent molecular dynamics simulations and streamlines the creation of force field databases.
Collapse
Affiliation(s)
- Mark A Hix
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489, United States
| |
Collapse
|
10
|
Yang W, Lipert M, Nofsinger R. Current screening, design, and delivery approaches to address low permeability of chemically synthesized modalities in drug discovery and early clinical development. Drug Discov Today 2023; 28:103685. [PMID: 37356613 DOI: 10.1016/j.drudis.2023.103685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
A drug's permeability across biological membranes is a key property associated with the successful development of an orally absorbed drug candidate. Although a variety of methods are available for predicting and assessing permeability, some are more preferred than others at specific stages of drug discovery and development across the pharmaceutical industry. Permeability measurements may be interpreted differently depending on the chosen method. Herein, we present a refreshed perspective on the screening approaches and philosophy in permeability evaluation, from early drug discovery to early clinical development. Additionally, we review and discuss chemical design and drug delivery technologies that can be leveraged to overcome permeability challenges, which are increasingly being used with emerging modalities.
Collapse
Affiliation(s)
- Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA.
| | - Maya Lipert
- Molecular Profiling and Drug Delivery, Small Molecule CMC Development, AbbVie, Inc., North Chicago, IL, USA
| | | |
Collapse
|
11
|
Schulz JA, Stresser DM, Kalvass JC. Plasma Protein-Mediated Uptake and Contradictions to the Free Drug Hypothesis: A Critical Review. Drug Metab Rev 2023:1-34. [PMID: 36971325 DOI: 10.1080/03602532.2023.2195133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
According to the free drug hypothesis (FDH), only free, unbound drug is available to interact with biological targets. This hypothesis is the fundamental principle that continues to explain the vast majority of all pharmacokinetic and pharmacodynamic processes. Under the FDH, the free drug concentration at the target site is considered the driver of pharmacodynamic activity and pharmacokinetic processes. However, deviations from the FDH are observed in hepatic uptake and clearance predictions, where observed unbound intrinsic hepatic clearance (CLint,u) is larger than expected. Such deviations are commonly observed when plasma proteins are present and form the basis of the so-called plasma protein-mediated uptake effect (PMUE). This review will discuss the basis of plasma protein binding as it pertains to hepatic clearance based on the FDH, as well as several hypotheses that may explain the underlying mechanisms of PMUE. Notably, some, but not all, potential mechanisms remained aligned with the FDH. Finally, we will outline possible experimental strategies to elucidate PMUE mechanisms. Understanding the mechanisms of PMUE and its potential contribution to clearance underprediction is vital to improving the drug development process.
Collapse
|
12
|
Zeng YS, Peng J, Gao XF, Tian D, Zhan W, Liu J, Hu XJ, Huang S, Tian ST, Qiu L, Liang AL, Wang FY, Dong RH, Guang B, Yang T. A novel gut-restricted RIPK1 inhibitor, SZ-15, ameliorates DSS-induced ulcerative colitis. Eur J Pharmacol 2022; 937:175381. [DOI: 10.1016/j.ejphar.2022.175381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
13
|
Chen Y, Xiong SH, Li F, Kong XJ, Ouyang DF, Zheng Y, Yu H, Hu YJ. Delivery of therapeutic small interfering RNA: The current patent-based landscape. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:150-161. [PMID: 35847171 PMCID: PMC9263868 DOI: 10.1016/j.omtn.2022.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Implementing small interfering RNA (siRNA) is a promising therapy because it silences disease-related genes theoretically. However, the efficient delivery of siRNA is challenging, which limits its therapeutic applications. Various pharmaceutical delivery systems containing key technologies have been developed and patented, which are of great concern to developers in the field. Despite numerous studies devoted to siRNA-delivery technologies, few researchers have systematically examined relevant patents. Patents, as bridges connecting academic progress with applicable innovation, encapsulate cumulative technological innovations and provide valuable information for academic research and commercial development. This study aims to analyze advances in therapeutic siRNA delivery technology from a patent perspective. A total of 11,509 patent documents from 3,309 patent families were collected, classified into 10 technological categories, and comprehensively analyzed. An overall patent landscape of siRNA delivery was presented from the temporal, spatial, organizational, and technological dimensions. This work is expected to help researchers and developers in the field of siRNA delivery form a basis for decision-making by combining our findings with supplementary data.
Collapse
|
14
|
Watari A, Fujiwara K, Yagi K, Tachibana K, Katsurada T, Myoui A, Kondoh M. Homoharringtonine is a transdermal granular permeation enhancer. Biochem Biophys Res Commun 2022; 616:140-144. [PMID: 35679696 DOI: 10.1016/j.bbrc.2022.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
Although modulation of claudin-1-based tight junction (TJ) in stratum granulosum is an option for transdermal absorption of drugs, granular permeation enhancers have never been developed. We previously found that homoharringtonine (HHT), a natural alkanoid, weakened intestinal epithelial barrier with changing expression and cellular localization of TJ components such as claudin-1 and claudin-4. In the present study, we investigated whether HHT is an epidermal granular permeation enhancer. Treatment of normal human epidermal keratinocytes (NHEK) cells with HHT decreased claudin-1 and claudin-4 but not zonula occludens-1 and E-cadherin. HHT lowered TJ-integrity in NHEK cells, accompanied by permeation-enhancement of dextran (4 kDa) in a dose-dependent manner. Transdermal treatment of mice with HHT weakened epidermal barrier. HHT treatment enhanced transdermal absorption of dextran with a molecular mass of up to 10 kDa. Together, HHT may be a transdermal absorption enhancer.
Collapse
Affiliation(s)
- Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Department of Medical Innovation, Osaka University Hospital, Osaka, Japan.
| | - Kana Fujiwara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Akira Myoui
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Bassand C, Villois A, Gianola L, Laue G, Ramazani F, Riebesehl B, Sanchez-Felix M, Sedo K, Ullrich T, Duvnjak Romic M. Smart design of patient centric long-acting products: from preclinical to marketed pipeline trends and opportunities. Expert Opin Drug Deliv 2022; 19:1265-1283. [PMID: 35877189 DOI: 10.1080/17425247.2022.2106213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION We see a development in the field of long-acting products to serve patients with chronic diseases by providing benefits in adherence, efficacy and safety of the treatment. This review investigates features of long-acting products on the market/pipeline to understand which drug substance (DS) and drug product (DP) characteristics likely enable a successful patient-centric, low-dosing frequency product. AREAS COVERED This review evaluates marketed/pipeline long-acting products with greater than one week release of small molecules and peptides by oral and injectable route of administration (RoA), with particular focus on patient centricity, adherence impact, health outcomes, market trends, and the match of DS/DP technologies which lead to market success. EXPERT OPINION Emerging trends are expected to change the field of long-acting products in the upcoming years by increasing capability in engineered molecules (low solubility, long half-life, high potency, etc.), directly developing DP as long-acting oral/injectable, increasing the proportion of products for local drug delivery, and a direction towards more subcutaneous, self-administered products. Among long-acting injectable products, nanosuspensions show a superiority in dose per administration and dosing interval, overwhelming the field of infectious diseases with the recently marketed products.
Collapse
Affiliation(s)
- Céline Bassand
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Lucas Gianola
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Grit Laue
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Bernd Riebesehl
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Manuel Sanchez-Felix
- Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, MA 02139, USA
| | - Kurt Sedo
- PharmaCircle LLC, Sunny Isles Beach, FL, USA
| | - Thomas Ullrich
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | | |
Collapse
|
16
|
Kell SR, Wang Z, Ji H. Fragment hopping protocol for the design of small-molecule protein-protein interaction inhibitors. Bioorg Med Chem 2022; 69:116879. [PMID: 35749838 DOI: 10.1016/j.bmc.2022.116879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Fragment-based ligand discovery (FBLD) is one of the most successful approaches to designing small-molecule protein-protein interaction (PPI) inhibitors. The incorporation of computational tools to FBLD allows the exploration of chemical space in a time- and cost-efficient manner. Herein, a computational protocol for the development of small-molecule PPI inhibitors using fragment hopping, a fragment-based de novo design approach, is described and a case study is presented to illustrate the efficiency of this protocol. Fragment hopping facilitates the design of PPI inhibitors from scratch solely based on key binding features in the PPI complex structure. This approach is an open system that enables the inclusion of different state-of-the-art programs and softwares to improve its performances.
Collapse
Affiliation(s)
- Shelby R Kell
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States; Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
17
|
Jimenez DG, Sebastiano MR, Caron G, Ermondi G. Are we ready to design oral PROTACs®? ADMET AND DMPK 2022; 9:243-254. [PMID: 35300370 PMCID: PMC8920102 DOI: 10.5599/admet.1037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
PROTACs® are expected to strongly impact the future of drug discovery. Therefore, in this work we firstly performed a statistical study to highlight the distribution of E3 ligases and POIs collected in PROTAC-DB, the main online database focused on degraders. Moreover, since the emerging technology of protein degradation deals with large and complex chemical structures, the second part of the paper focuses on how to set up a property-based design strategy to obtain oral degraders. For this purpose, we calculated a pool of seven previously ad hoc selected 2D descriptors for the 2258 publicly available degraders in PROTAC-DB (average values: MW= 972.9 Da, nC= 49.5, NAR= 4.5, PHI= 17.3, nHDon= 4.5, nHAcc= 17.7 and TPSA= 240 Å2) and compared them to a dataset of 50 bRo5 orally approved drugs. Then, a chemical space based on nC, PHI and TPSA was built and subregions with optimal permeability and bioavailability were identified. Bioavailable degraders (ARV-110 and ARV-471) tend to be closer to the Ro5 region, using mainly semi-rigid linkers. Permeable degraders, on the other hand, are placed in an average central region of the chemical space but chameleonicity could allow them to be located closer to the two Arvinas compounds.
Collapse
Affiliation(s)
- Diego Garcia Jimenez
- University of Torino, Molecular Biotechnology and Health Sciences Dept., CASSMedChem, via Quarello 15, 10135 Torino, Italy
| | - Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Dept., CASSMedChem, via Quarello 15, 10135 Torino, Italy
| | - Giulia Caron
- University of Torino, Molecular Biotechnology and Health Sciences Dept., CASSMedChem, via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Dept., CASSMedChem, via Quarello 15, 10135 Torino, Italy
| |
Collapse
|
18
|
Carmichael N, Day PJR. Cell Surface Transporters and Novel Drug Developments. Front Pharmacol 2022; 13:852938. [PMID: 35350751 PMCID: PMC8957865 DOI: 10.3389/fphar.2022.852938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the numerous scientific and technological advances made within the last decade the attrition rates for new drug discovery remain as high as 95% for anticancer drugs. Recent drug development has been in part guided by Lipinski's Rule of 5 (Ro5) even though many approved drugs do not comply to these rules. With Covid-19 vaccine development strategy dramatically accelerating drug development perhaps it is timely to question the generic drug development process itself to find a more efficient, cost effective, and successful approach. It is widely believed that drugs permeate cells via two methods: phospholipid bilayer diffusion and carrier mediated transporters. However, emerging evidence suggests that carrier mediated transport may be the primary mechanism of drug uptake and not diffusion as long believed. Computational biology increasingly assists drug design to achieve desirable absorption, distribution, metabolism, elimination and toxicity (ADMET) properties. Perfecting drug entry into target cells as a prerequisite to intracellular drug action is a logical and compelling route and is expected to reduce drug attrition rates, particularly gaining favour amongst chronic lifelong therapeutics. Novel drug development is rapidly expanding from the utilisation of beyond the rule of five (bRo5) to pulsatile drug delivery systems and fragment based drug design. Utilising transporters as drug targets and advocating bRo5 molecules may be the solution to increasing drug specificity, reducing dosage and toxicity and thus revolutionising drug development. This review explores the development of cell surface transporter exploitation in drug development and the relationship with improved therapeutic index.
Collapse
Affiliation(s)
- Natasha Carmichael
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Philip J. R. Day
- School of Biological Sciences and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Strutt R, Sheffield F, Barlow NE, Flemming AJ, Harling JD, Law RV, Brooks NJ, Barter LMC, Ces O. UV-DIB: label-free permeability determination using droplet interface bilayers. LAB ON A CHIP 2022; 22:972-985. [PMID: 35107110 DOI: 10.1039/d1lc01155c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low μM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Felix Sheffield
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nathan E Barlow
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - John D Harling
- Medicinal Chemistry, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Robert V Law
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Laura M C Barter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| |
Collapse
|
20
|
Discovery solubility measurement and assessment of small molecules with drug development in mind. Drug Discov Today 2022; 27:1315-1325. [PMID: 35114363 DOI: 10.1016/j.drudis.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Solubility is a key physicochemical property for the success of any drug candidate. Although the methods used and their rationales for determining solubility are subject to project needs and stages along the drug discovery-drug development pipeline, an artificial boundary can exist at the discovery-development interface. This boundary results in less effective solubility knowledge sharing and data integration among scientists in both drug discovery and drug development. Herein, we present a refreshed perspective on solubility. Solubility experimentation is not a one-size-fits-all measurement; instead, we stress the importance of constructing a seamless solubility understanding of a molecule as it progresses from a new chemical entity into a drug product.
Collapse
|
21
|
Page S, Khan T, Kühl P, Schwach G, Storch K, Chokshi H. Patient Centricity Driving Formulation Innovation: Improvements in Patient Care Facilitated by Novel Therapeutics and Drug Delivery Technologies. Annu Rev Pharmacol Toxicol 2022; 62:341-363. [PMID: 34990203 DOI: 10.1146/annurev-pharmtox-052120-093517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Innovative formulation technologies can play a crucial role in transforming a novel molecule to a medicine that significantly enhances patients' lives. Improved mechanistic understanding of diseases has inspired researchers to expand the druggable space using new therapeutic modalities such as interfering RNA, protein degraders, and novel formats of monoclonal antibodies. Sophisticated formulation strategies are needed to deliver the drugs to their sites of action and to achieve patient centricity, exemplified by messenger RNA vaccines and oral peptides. Moreover, access to medical information via digital platforms has resulted in better-informed patient groups that are requesting consideration of their needs during drug development. This request is consistent with health authority efforts to upgrade their regulations to advance age-appropriate product development for patients. This review describes formulation innovations contributingto improvements in patient care: convenience of administration, preferred route of administration, reducing dosing burden, and achieving targeted delivery of new modalities.
Collapse
Affiliation(s)
- Susanne Page
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Tarik Khan
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Peter Kühl
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Gregoire Schwach
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Kirsten Storch
- Pharma Technical Development, Roche Diagnostics GmbH, 68305 Mannheim, Germany
| | - Hitesh Chokshi
- Pharma Technical Development, Roche TCRC Inc., Little Falls, New Jersey 07424, USA
| |
Collapse
|
22
|
Plais L, Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem Biol 2022; 3:7-17. [PMID: 35128404 PMCID: PMC8729180 DOI: 10.1039/d1cb00161b] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
While macrocyclic peptides are extensively researched for therapeutically relevant protein targets, DNA-encoded chemical libraries (DELs) are developed at a quick pace to discover novel small molecule binders. The combination of both fields has been explored since 2004 and the number of macrocyclic peptide DELs is steadily increasing. Macrocycles with high affinity and potency were identified for diverse classes of proteins, revealing DEL's huge potential. By giving a historical perspective, we would like to review the methods which permitted the rise of macrocyclic peptide DELs, describe the different DELs which were created and discuss the achievements and challenges of this emerging field.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
23
|
Weis E, Johansson MJ, Martín‐Matute B. Late-Stage Amination of Drug-Like Benzoic Acids: Access to Anilines and Drug Conjugates through Directed Iridium-Catalyzed C-H Activation. Chemistry 2021; 27:18188-18200. [PMID: 34672032 PMCID: PMC9299223 DOI: 10.1002/chem.202103510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/17/2022]
Abstract
The functionalization of C-H bonds, ubiquitous in drugs and drug-like molecules, represents an important synthetic strategy with the potential to streamline the drug-discovery process. Late-stage aromatic C-N bond-forming reactions are highly desirable, but despite their significance, accessing aminated analogues through direct and selective amination of C-H bonds remains a challenging goal. The method presented herein enables the amination of a wide array of benzoic acids with high selectivity. The robustness of the system is manifested by the large number of functional groups tolerated, which allowed the amination of a diverse array of marketed drugs and drug-like molecules. Furthermore, the introduction of a synthetic handle enabled expeditious access to targeted drug-delivery conjugates, PROTACs, and probes for chemical biology. This rapid access to valuable analogues, combined with operational simplicity and applicability to high-throughput experimentation has the potential to aid and considerably accelerate drug discovery.
Collapse
Affiliation(s)
- Erik Weis
- Department of Organic ChemistryStockholm University106 91StockholmSweden
- Medicinal ChemistryResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)Biopharmaceuticals R&DAstraZenecaGothenburgPepparedsleden 1431 50MölndalSweden
| | - Magnus J. Johansson
- Department of Organic ChemistryStockholm University106 91StockholmSweden
- Medicinal ChemistryResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)Biopharmaceuticals R&DAstraZenecaGothenburgPepparedsleden 1431 50MölndalSweden
| | | |
Collapse
|
24
|
Zagotto G, Bortoli M. Drug Design: Where We Are and Future Prospects. Molecules 2021; 26:7061. [PMID: 34834152 PMCID: PMC8622624 DOI: 10.3390/molecules26227061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Medicinal chemistry is facing new challenges in approaching precision medicine. Several powerful new tools or improvements of already used tools are now available to medicinal chemists to help in the process of drug discovery, from a hit molecule to a clinically used drug. Among the new tools, the possibility of considering folding intermediates or the catalytic process of a protein as a target for discovering new hits has emerged. In addition, machine learning is a new valuable approach helping medicinal chemists to discover new hits. Other abilities, ranging from the better understanding of the time evolution of biochemical processes to the comprehension of the biological meaning of the data originated from genetic analyses, are on their way to progress further in the drug discovery field toward improved patient care. In this sense, the new approaches to the delivery of drugs targeted to the central nervous system, together with the advancements in understanding the metabolic pathways for a growing number of drugs and relating them to the genetic characteristics of patients, constitute important progress in the field.
Collapse
Affiliation(s)
- Giuseppe Zagotto
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marco Bortoli
- Institute of Computational Chemistry and Catalysis (IQCC) and Department of Chemistry, Faculty of Sciences, University of Girona, C/M. A. Capmany 69, 17003 Girona, Spain;
| |
Collapse
|
25
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|
26
|
Terranova N, Venkatakrishnan K, Benincosa LJ. Application of Machine Learning in Translational Medicine: Current Status and Future Opportunities. AAPS JOURNAL 2021; 23:74. [PMID: 34008139 PMCID: PMC8130984 DOI: 10.1208/s12248-021-00593-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The exponential increase in our ability to harness multi-dimensional biological and clinical data from experimental to real-world settings has transformed pharmaceutical research and development in recent years, with increasing applications of artificial intelligence (AI) and machine learning (ML). Patient-centered iterative forward and reverse translation is at the heart of precision medicine discovery and development across the continuum from target validation to optimization of pharmacotherapy. Integration of advanced analytics into the practice of Translational Medicine is now a fundamental enabler to fully exploit information contained in diverse sources of big data sets such as “omics” data, as illustrated by deep characterizations of the genome, transcriptome, proteome, metabolome, microbiome, and exposome. In this commentary, we provide an overview of ML applications in drug discovery and development, aligned with the three strategic pillars of Translational Medicine (target, patient, dose) and offer perspectives on their potential to transform the science and practice of the discipline. Opportunities for integrating ML approaches into the discipline of Pharmacometrics are discussed and will revolutionize the practice of model-informed drug discovery and development. Finally, we posit that joint efforts of Clinical Pharmacology, Bioinformatics, and Biomarker Technology experts are vital in cross-functional team settings to realize the promise of AI/ML-enabled Translational and Precision Medicine.
Collapse
Affiliation(s)
- Nadia Terranova
- Translational Medicine, Merck Institute for Pharmacometrics, Merck Serono S.A., Lausanne, Switzerland
| | - Karthik Venkatakrishnan
- Translational Medicine, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - Lisa J Benincosa
- Translational Medicine, EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA.
| |
Collapse
|
27
|
Zhang M, Yang J, Zhao X, Zhao Y, Zhu S. Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy. Sci Rep 2021; 11:7382. [PMID: 33795817 PMCID: PMC8016862 DOI: 10.1038/s41598-021-86914-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of irreversible blindness globally. Qidengmingmu Capsule (QC) is a Chinese patent medicine used to treat DR, but the molecular mechanism of the treatment remains unknown. In this study, we identified and validated potential molecular mechanisms involved in the treatment of DR with QC via network pharmacology and molecular docking methods. The results of Ingredient-DR Target Network showed that 134 common targets and 20 active ingredients of QC were involved. According to the results of enrichment analysis, 2307 biological processes and 40 pathways were related to the treatment effects. Most of these processes and pathways were important for cell survival and were associated with many key factors in DR, such as vascular endothelial growth factor-A (VEGFA), hypoxia-inducible factor-1A (HIF-1Α), and tumor necrosis factor-α (TNFα). Based on the results of the PPI network and KEGG enrichment analyses, we selected AKT1, HIF-1α, VEGFA, TNFα and their corresponding active ingredients for molecular docking. According to the molecular docking results, several key targets of DR (including AKT1, HIF-1α, VEGFA, and TNFα) can form stable bonds with the corresponding active ingredients of QC. In conclusion, through network pharmacology methods, we found that potential biological mechanisms involved in the alleviation of DR by QC are related to multiple biological processes and signaling pathways. The molecular docking results also provide us with sound directions for further experiments.
Collapse
Affiliation(s)
- Mingxu Zhang
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China
| | - Jiawei Yang
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Lvyuan Road, Haidin District, Beijing, 100089, China
| | - Xiulan Zhao
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China
| | - Ying Zhao
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China
| | - Siquan Zhu
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China. .,Department of Ophthalmology, Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
28
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
29
|
Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
30
|
Liu J, Pandya P, Afshar S. Therapeutic Advances in Oncology. Int J Mol Sci 2021; 22:2008. [PMID: 33670524 PMCID: PMC7922397 DOI: 10.3390/ijms22042008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Around 77 new oncology drugs were approved by the FDA in the past five years; however, most cancers remain untreated. Small molecules and antibodies are dominant therapeutic modalities in oncology. Antibody-drug conjugates, bispecific antibodies, peptides, cell, and gene-therapies are emerging to address the unmet patient need. Advancement in the discovery and development platforms, identification of novel targets, and emergence of new technologies have greatly expanded the treatment options for patients. Here, we provide an overview of various therapeutic modalities and the current treatment options in oncology, and an in-depth discussion of the therapeutics in the preclinical stage for the treatment of breast cancer, lung cancer, and multiple myeloma.
Collapse
Affiliation(s)
| | | | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (P.P.)
| |
Collapse
|
31
|
Yang W, Bhattachar SN, Patel PJ, Landis M, Patel D, Reid DL, Duvnjak Romic M. Modulating target engagement of small molecules via drug delivery: approaches and applications in drug discovery and development. Drug Discov Today 2020; 26:713-723. [PMID: 33333320 DOI: 10.1016/j.drudis.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Drug-delivery technologies for modified drug release have been in existence for decades, but their utilization has been largely limited to post-launch efforts improving therapeutic outcomes. Recently, they have gained renewed importance because the pharmaceutical industry is steadily shifting to a more integrated discovery-development approach. In discovery, modulating target engagement via drug-delivery technologies can enable crucial pharmacological studies for building well-defined criteria for molecular design. In development, earlier implementation of delivery technologies can enhance the value of drug products through reduced dosing frequency and improved tolerability and/or safety profile, thereby leading to better adherence and therapeutic effectiveness.
Collapse
Affiliation(s)
- Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA 02451, USA.
| | - Shobha N Bhattachar
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Phenil J Patel
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Margaret Landis
- Molecular Pharmaceutics, Pharmaceutical Sciences, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Dipal Patel
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Inc., Princeton, NJ 08543, USA
| | - Darren L Reid
- Pre-Pivotal Drug Product and Cellular Sciences, Drug Product Technologies, Amgen, Inc., Cambridge, MA 02142, USA
| | | |
Collapse
|
32
|
Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020; 25:molecules25245804. [PMID: 33316949 PMCID: PMC7763478 DOI: 10.3390/molecules25245804] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms encompassing a great diversity of species, which are able to grow under all types of extreme environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides, phenols, pigments and terpenes, among others. This review presents an overview of antibacterial peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides. This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria. The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations still persist for their pharmaceutical applications.
Collapse
|
33
|
Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discov Today 2020; 25:969-982. [PMID: 32298797 DOI: 10.1016/j.drudis.2020.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Targeted protein degraders are an emerging modality. Their properties fall outside the traditional small-molecule property space and are in the 'beyond rule of 5' space. Consequently, drug discovery programs focused on developing orally bioavailable degraders are expected to face complex drug metabolism and pharmacokinetics (DMPK) challenges compared with traditional small molecules. Nevertheless, little information is available on the DMPK optimization of oral degraders. Therefore, in this review, we discuss our experience of these DMPK optimization challenges and present methodologies and strategies to overcome the hurdles dealing with this new small-molecule modality, specifically in developing oral degraders to treat cancer.
Collapse
|