1
|
Abbasi U, Khan MZ, Fatima M, Gupta G, Molugulu N, Sahebkar A, Abourehab MAS, Kesharwani P. Exploring the potential of nanoemulgels for dermatological disorders. J Drug Target 2025:1-23. [PMID: 40275860 DOI: 10.1080/1061186x.2025.2497368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/30/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND AND PURPOSE Nanoemulgels are an advanced innovation in dermatological formulations designed to treat various skin diseases. By combining the advantages of hydrogels and nanoemulsions, these hybrid systems optimise drug delivery and improve therapeutic results. Because of their nanoscale droplets, nanoemulsions improve solubility by increasing surface area and stability and bioavailability of medications. METHODS AND RESULTS When embedded in a hydrogel matrix, their transformation into nanoemulgels, provide regulated and prolonged drug release, ensuring sustained therapeutic action. The ability of nanoemulgels to penetrate deeply into the layers of skin and get past obstacles like the stratum corneum to improve drug penetration and efficacy makes them highly effective in dermatology. Since the gel component helps to reduce the surface and interfacial tension and a rise in spreading coefficient along with the viscosity. The benefits of using NEGs for external use include their thixotropic, greaseless, readily dispersed properties, longer shelf life, emollient, effortlessly removed, non-staining clear, cosmetically attractive and environment friendly characteristics. CONCLUSIONS By providing an overview of research on nanoemulgels' permeability mechanisms, pharmacokinetics, uses, properties and the difficulties involved in topical drug delivery for skin disorders, this review emphasises the potential of these materials as topical drug delivery systems in dermatology.
Collapse
Affiliation(s)
- Umar Abbasi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Mohd Zaid Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, India
- School of Allied Medical Sciences, Lovely Professional University, Phagwara, India
| | | | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| |
Collapse
|
2
|
Tsai MJ, Chang WY, Chiu IH, Lin IL, Wu PC. Improvement in Skin Penetration Capacity of Linalool by Using Microemulsion as a Delivery Carrier: Formulation Optimization and In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051446. [PMID: 37242688 DOI: 10.3390/pharmaceutics15051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Linalool is an aromatic oil with analgesic, anti-inflammatory and anti-UVB-induced skin damage effects. The aim of this study was to develop a linalool-loaded microemulsion formulation for topical application. In order to quickly obtain an optimal drug-loaded formulation, statistical tools of the response surface methodology and a mixed experimental design with four independent variables of oil (X1), mixed surfactant (X2), cosurfactant (X3) and water (X4) were used to design a series of model formulations in order to analyze the effect of the composition on the characteristics and permeation capacity of linalool-loaded microemulsion formulations and to obtain an appropriate drug-loaded formulation. The results showed that the droplet size, viscosity and penetration capacity of linalool-loaded formulations were significantly affected by formulation component proportions. The skin deposition amount of the drug and flux of such formulations expressively increased about 6.1-fold and 6.5-fold, respectively, when compared to the control group (5% linalool dissolved in ethanol). After 3 months of storage, the physicochemical characteristics and drug level did not show a significant change. The linalool formulation-treated rat skin showed non-significant irritation compared to skin treatments in the distilled-water-treated group. The results showed that specific microemulsion applications might be considered as potential drug delivery carriers for essential oil topical application.
Collapse
Affiliation(s)
- Ming-Jun Tsai
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Neurology, An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Wen-Yu Chang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Lal DK, Kumar B, Saeedan AS, Ansari MN. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023; 15:pharmaceutics15041187. [PMID: 37111672 PMCID: PMC10145625 DOI: 10.3390/pharmaceutics15041187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The anti-inflammatory drugs that are generally available possess the disadvantage of hydrophobicity, which leads to poor permeability and erratic bioavailability. Nanoemulgels (NEGs) are novel drug delivery systems that aim to improve the solubility and permeability of drugs across the biological membrane. The nano-sized droplets in the nanoemulsion enhance the permeation of the formulation, along with surfactants and co-surfactants that act as permeation enhancers and can further improve permeability. The hydrogel component of NEG helps to increase the viscosity and spreadability of the formulation, making it ideal for topical application. Moreover, oils that have anti-inflammatory properties, such as eucalyptus oil, emu oil and clove oil, are used as oil phases in the preparation of the nanoemulsion, which shows a synergistic effect with active moiety and enhances its overall therapeutic profile. This leads to the creation of hydrophobic drugs that possess enhanced pharmacokinetic and pharmacodynamic properties, and simultaneously avoid systemic side effects in individuals with external inflammatory disorders. The nanoemulsion's effective spreadability, ease of application, non-invasive administration, and subsequent ability to achieve patient compliance make it more suitable for topical application in the combat of many inflammatory disorders, such as dermatitis, psoriasis, rheumatoid arthritis, osteoarthritis and so on. Although the large-scale practical application of NEG is limited due to problems regarding its scalability and thermodynamic instability, which arise from the use of high-energy approaches during the production of the nanoemulsion, these can be resolved by the advancement of an alternative nanoemulsification technique. Considering the potential advantages and long-term benefits of NEGs, the authors of this paper have compiled a review that elaborates the potential significance of utilizing nanoemulgels in a topical delivery system for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15010164. [PMID: 36678794 PMCID: PMC9863395 DOI: 10.3390/pharmaceutics15010164] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Nano-emulgel is an emerging drug delivery system intended to enhance the therapeutic profile of lipophilic drugs. Lipophilic formulations have a variety of limitations, which includes poor solubility, unpredictable absorption, and low oral bioavailability. Nano-emulgel, an amalgamated preparation of different systems aims to deal with these limitations. The novel system prepared by the incorporation of nano-emulsion into gel improves stability and enables drug delivery for both immediate and controlled release. The focus on nano-emulgel has also increased due to its ability to achieve targeted delivery, ease of application, absence of gastrointestinal degradation or the first pass metabolism, and safety profile. This review focuses on the formulation components of nano-emulgel for topical drug delivery, pharmacokinetics and safety profiles.
Collapse
Affiliation(s)
- Mahipal Reddy Donthi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Siva Ram Munnangi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- R&D Healthcare Division Emami Ltd., 13, BT Road, Kolkata 700056, India
- Correspondence: ; Tel.: +91-8239703734
| |
Collapse
|
5
|
Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19. CHEMISTRY AFRICA 2022. [PMCID: PMC8934726 DOI: 10.1007/s42250-022-00345-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our world is under serious threat of environmental degradation, climate change and in association with this the out breaks of diseases as pandemics. The devastating impact of the very recent COVID-19, The sharp increase in cases of Cancer, Pulmonary failure, Heart health has triggered questions for the sustainable development of pharmaceutical and medical sciences. In the search of inclusive and effective strategies to meet today’s demand, improvised methodologies and alternative green chemical, bio-based precursors are being introduced by scientists around the globe. In this extensive review we have presented the potentiality and Realtime applications of both synthetic and bio-based surfactants in bio-medical and pharmaceutical fields. For their excellent unique amphoteric nature and ability to solubilise in both organic and inorganic drugs, surfactants are one of the most potential candidates for bio-medicinal fields such as dermatology, drug delivery, anticancer treatment, surfactant therapy, vaccine formulation, personal hygiene care and many more. The self-assembly property of surfactants is a very powerful function for drug delivery systems that increases the bio-availability of the poorly aqueous soluble pharmaceutical products by influencing their solubility. Over the decades many researchers have reported the antimicrobial, anti-adhesive, antibiofilm, anti-inflammatory, antioxidant activities of surfactants regarding its utility in medicinal purposes. In some reports surfactants are found to have spermicidal and laxative activity too. This comprehensive report is targeted to enlighten the versatile applications of Surfactants in drug delivery, vaccine formulation, Cancer Treatment, Therapeutic and cosmetic Pharmaceutical Sciences and prevention of pulmonary failure due to COVID-19.
Collapse
|
6
|
Roy A, Nishchaya K, Rai VK. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin Drug Deliv 2022; 19:303-319. [PMID: 35196938 DOI: 10.1080/17425247.2022.2045944] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Nanoemulsion-based drug delivery approaches have witnessed massive acceptance over the years and acquired a significant foothold owing to their tremendous benefits over the others. It has widely been used for transdermal delivery of hydrophobic and hydrophilic drugs with solubility, lipophilicity, and bioavailability issues. AREAS COVERED The review highlights the recent advancements and applications of transdermal nanoemulsions. Their utilities and characteristics, clinical pertinence showcasing intellectual properties and advancements, potential in treating disorders accompanying liquid, semisolid, and solid dosage forms, the ability to modulate a drug's physicochemical properties, and regulatory status are thoroughly summarized. EXPERT OPINION Despite tremendous therapeutic utilities and extensive investigations, this field of transdermal nanoemulsion-based technologies yet tackles several challenges such as optimum use of surfactant mixtures, economic burden due to high energy consumption during production, lack of concrete regulatory requirement, etc. Provided with the concrete guidelines on the safe use of surfactants, stability, use of scalable and economical methods, and the use of NE as a transdermal system would solve the purpose best as nanoemulsion shows remarkable improvement in drug release profiles and bioavailability of many drugs. Nevertheless, a better understanding of nanoemulsion technology holds a promising outlook and would land more opportunities and better delivery outcomes.
Collapse
Affiliation(s)
- Ankita Roy
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kumar Nishchaya
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vineet Kumar Rai
- Department of Pharmacy, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
7
|
Enhancement of the Topical Bioavailability and Skin Whitening Effect of Genistein by Using Microemulsions as Drug Delivery Carriers. Pharmaceuticals (Basel) 2021; 14:ph14121233. [PMID: 34959634 PMCID: PMC8703605 DOI: 10.3390/ph14121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genistein, the most abundant isoflavone of the soy-derived phytoestrogen compounds, is a potent antioxidant and inhibitor of tyrosine kinase, which can inhibit UVB-induced skin carcinogenesis in hairless mice and UVB-induced erythema on human skin. In current study, genistein-loaded microemulsions were developed by using the various compositions of oil, surfactants, and co-surfactants and used as a drug delivery carrier to improve the solubility, peremability, skin whitening, and bioavailbility of genistein. The mean droplet size and polydispersity index of all formulations was less than 100 nm and 0.26 and demonstrated the formation of microemulsions. Similarly, various studies, such as permeation, drug skin deposition, pharmacokinetics, skin whitening test, skin irritation, and stability, were also conducted. The permeability of genistein was significantly affected by the composition of microemulsion formulation, particular surfactnat, and cosurfactant. In-vitro permeation study revealed that both permeation rate and deposition amount in skin were significantly increased from 0.27 μg/cm2·h up to 20.00 μg/cm2·h and 4.90 up to 53.52 μg/cm2, respectively. In in-vivo whitening test, the change in luminosity index (ΔL*), tended to decrease after topical application of genistein-loaded microemulsion. The bioavailability was increased 10-fold by topical administration of drug-loaded microemulsion. Conclusively, the prepared microemulsion has been enhanced the bioavailability of genistein and could be used for clinical purposes.
Collapse
|
8
|
Razzaq FA, Asif M, Asghar S, Iqbal MS, Khan IU, Khan SUD, Irfan M, Syed HK, Khames A, Mahmood H, Ibrahim AY, El Sisi AM. Glimepiride-Loaded Nanoemulgel; Development, In Vitro Characterization, Ex Vivo Permeation and In Vivo Antidiabetic Evaluation. Cells 2021; 10:cells10092404. [PMID: 34572054 PMCID: PMC8467883 DOI: 10.3390/cells10092404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Glimepiride (GMP), an oral hypoglycemic agent is extensively employed in the treatment of type 2 diabetes. Transdermal delivery of GMP has been widely investigated as a promising alternative to an oral approach but the delivery of GMP is hindered owing to its low solubility and permeation. The present study was designed to formulate topical nanoemulgel GMP system and previously reported solubility enhanced glimepiride (GMP/βCD/GEL-44/16) in combination with anti-diabetic oil to enhance the hypoglycemic effect. Nanoemulsions were developed using clove oil, Tween-80, and PEG-400 and were gelled using xanthan gum (3%, w/w) to achieve the final nanoemulgel formulations. All of the formulations were evaluated in terms of particle size, zeta potential, pH, conductivity, viscosity, and in vitro skin permeation studies. In vivo hypoglycemic activity of the optimized nanoemulgel formulations was evaluated using a streptozocin-induced diabetes model. It was found that a synergistic combination of GMP with clove oil improved the overall drug permeation across the skin membrane and the hypoglycemic activity of GMP. The results showed that GMP/βCD/GEL-44/16-loaded nanoemulgel enhanced the in vitro skin permeation and improved the hypoglycemic activity in comparison with pure and marketed GMP. It is suggested that topical nano emulsion-based GMP gel and GMP/βCD/GEL-44/16 could be an effective alternative for oral therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fizza Abdul Razzaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.R.); (S.A.); (I.U.K.); (M.I.); (H.M.)
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.R.); (S.A.); (I.U.K.); (M.I.); (H.M.)
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.R.); (S.A.); (I.U.K.); (M.I.); (H.M.)
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.R.); (S.A.); (I.U.K.); (M.I.); (H.M.)
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.R.); (S.A.); (I.U.K.); (M.I.); (H.M.)
- Correspondence: or
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hira Mahmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (F.A.R.); (S.A.); (I.U.K.); (M.I.); (H.M.)
| | - Asim Y. Ibrahim
- Faculty of Pharmacy, Omdurman Islamic University, P.O. Box 382, Omdurman 14415, Sudan;
| | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
9
|
Chen TY, Tai YY, Chang LC, Wu PC. Fabrication, optimisation and evaluation of cisplatin-loaded nanostructured carriers for improved urothelium permeability for intravesical administration. J Microencapsul 2021; 38:405-413. [PMID: 34275419 DOI: 10.1080/02652048.2021.1957037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To design microemulsions as carriers to improve cisplatin permeation capability for intravesical administration. METHOD The response surface methodology with factorial design was used to investigate and optimise the influence of the compositions e.g. capryol 90 and 5-pentanediol/transcutol mixture on the permeation accumulation amount and tissue deposition amount of cisplatin-loaded microemulsions. The in vitro permeation study and in vivo intravesical test were conducted to prove the effect of microemulsions. RESULTS The droplet size and the viscosity of all drug-loaded formulations ranged 235.8-309.3 nm and 550.8-861.7 cps, respectively. The permeation accumulation amounts significantly increased about 26-fold, by used microemulsion as carriers. In vivo study, the cisplatin deposition amount in bladder tissue significantly increased 4.1-fold (p < 0.05) and the penetration depth increased from 60 μm up 120 μm. The nanocarrier showed considerable thermodynamic stability. CONCLUSION The designed nanocarrier was considered to be a promising delivery system for cisplatin intravesical administration.
Collapse
Affiliation(s)
- Ting-Yu Chen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Yu-Yao Tai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC
| | - Li-Ching Chang
- School of Medicine for International Students, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan, ROC
| |
Collapse
|
10
|
Bi W, Liyuan G, Wenjuan W, Qiang X. Skin targeting of resveratrol-loaded starch-based Pickering emulsions: preparation, characterization, and evaluation. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04856-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Park C, Zuo J, Somayaji V, Lee BJ, Löbenberg R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int J Pharm 2021; 604:120766. [PMID: 34087415 DOI: 10.1016/j.ijpharm.2021.120766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a stable microemulsion (ME) for transdermal delivery of tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). The lipid-based vehicles were selected by screening cannabinoid solubility and the emulsifying ability of surfactants. Pseudo-ternary phase diagrams were constructed by formulation of cannabinoids with Capryol® 90 as oil phase, Tween® 80, Solutol® HS15, Procetyl® AWS, and Cremophor® RH40 as surfactants, ethanol as cosurfactant, and distilled water as the aqueous phase. A significant improvement in transmembrane flux (Jss), permeability coefficient (Kp), and enhancement ratio (ER) was found in one system compared to other formulations. This ME consisted of 1.0% (w/w) of cannabinoids, 5% (w/w) of Capryol® 90, 44% (w/w) Smix (2:1, Procetyl® AWS and Ethanol) and 50.0% (w/w) of distilled water. Additionally, the effects of pH on the permeation of the cannabinoids were investigated. Based on the pH value THCA and CBDA-loaded ME exhibited the highest permeation at pH 5.17 and pH 5.25. After storing the pH-adjusted P2 ME and the optimized P2 ME for 180 days at 4℃ and 25℃, the content of cannabinoids was over 95%. Consequently, the cannabinoid-loaded ME system is a promising option for solubilizing and stabilizing lipophilic drugs like cannabinoids and utilize them for transdermal delivery.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Vijay Somayaji
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
12
|
Hung WH, Chen PK, Fang CW, Lin YC, Wu PC. Preparation and Evaluation of Azelaic Acid Topical Microemulsion Formulation: In Vitro and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13030410. [PMID: 33808836 PMCID: PMC8003802 DOI: 10.3390/pharmaceutics13030410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was to design oil in water (O/W) microemulsion formulations for the topical administration of azelaic acid. The permeability of azelaic acid through rat skin and the anti-inflammatory activities of the formulations were conducted to examine the efficacy of the designed formulations. Skin irritation and stability tests were also performed. The permeability of azelaic acid was significantly increased by using O/W microemulsions as carriers. The edema index of ear swelling percentage was significantly recovered by the 5% drug-loaded formulation and a 20% commercial product, demonstrating that the experimental formulation possessed comparable effect with the commercial product on the improvement of inflammation. The experimental formulation did not cause significant skin irritation compared to the negative control group. Moreover, the drug-loaded formulation also showed thermodynamic stability and chemical stability after storage for 30 days. In conclusion, the O/W microemulsion was a potential drug delivery carrier for azelaic acid topical application.
Collapse
Affiliation(s)
- Wan-Hsuan Hung
- Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City 81342, Taiwan; (W.-H.H.); (C.-W.F.)
| | - Ping-Kang Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
| | - Chih-Wun Fang
- Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City 81342, Taiwan; (W.-H.H.); (C.-W.F.)
| | - Ying-Chi Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Correspondence: (Y.-C.L.); (P.-C.W.)
| | - Pao-Chu Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (Y.-C.L.); (P.-C.W.)
| |
Collapse
|
13
|
Bashir M, Ahmad J, Asif M, Khan SUD, Irfan M, Y Ibrahim A, Asghar S, Khan IU, Iqbal MS, Haseeb A, Khalid SH, As Abourehab M. Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:1457-1472. [PMID: 33654396 PMCID: PMC7910103 DOI: 10.2147/ijn.s294653] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Rheumatoid arthritis is an autoimmune disorder that directly affects joints. However, other body organs including heart, eyes, skin, blood vessels and lungs may also be affected. The purpose of this study was to design and evaluate a nanoemulgel formulation of diflunisal (DIF) and solubility enhanced diflunisal (DIF-IC) for enhanced topical anti-inflammatory activity. Methodology Nanoemulsion formulations of both DIF and DIF-IC were prepared and incorporated in three different gelling agents, namely carboxymethylcellulose sodium (CMC-Na), sodium alginate (Na-ALG) and xanthan gum (XG). All the formulations were evaluated in term of particle size, pH, conductivity, viscosity, zeta potential and in vitro drug release. The formulation 2 (NE2) of both DIF and DIF-IC which expressed optimum release and satisfactory physicochemical properties was incorporated with gelling agents to produce final nanoemulgel formulations. The optimized nanoemulgel formulation was subjected to three different in vivo anti-inflammatory models including carrageenan-induced paw edema model, histamine-induced paw edema model and formalin-induced paw edema model. Results DIF-IC-loaded nanoemulgel formulations yielded significantly enhanced in vitro skin permeation than DIF-loaded nanoemulgel. The nanoemulgel formulation of DIF-IC formulated with XG produced improved in vivo anti-inflammatory activity. Conclusion It was recommended that DIF-IC-based nanoemulgel formulation prepared with XG could be a better option for effective topical treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Mehreen Bashir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Ahmad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Y Ibrahim
- Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mohammed As Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
14
|
Efficient Prediction of In Vitro Piroxicam Release and Diffusion From Topical Films Based on Biopolymers Using Deep Learning Models and Generative Adversarial Networks. J Pharm Sci 2021; 110:2531-2543. [PMID: 33548245 DOI: 10.1016/j.xphs.2021.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to simultaneously predict the drug release and skin permeation of Piroxicam (PX) topical films based on Chitosan (CTS), Xanthan gum (XG) and its Carboxymethyl derivatives (CMXs) as matrix systems. These films were prepared by the solvent casting method, using Tween 80 (T80) as a permeation enhancer. All of the prepared films were assessed for their physicochemical parameters, their in vitro drug release and ex vivo skin permeation studies. Moreover, deep learning models and machine learning models were applied to predict the drug release and permeation rates. The results indicated that all of the films exhibited good consistency and physicochemical properties. Furthermore, it was noticed that when T80 was used in the optimal formulation (F8) based on CTS-CMX3, a satisfactory drug release pattern was found where 99.97% of PX was released and an amount of 1.18 mg/cm2 was permeated after 48 h. Moreover, Generative Adversarial Network (GAN) efficiently enhanced the performance of deep learning models and DNN was chosen as the best predictive approach with MSE values equal to 0.00098 and 0.00182 for the drug release and permeation kinetics, respectively. DNN precisely predicted PX dissolution profiles with f2 values equal to 99.99 for all the formulations.
Collapse
|
15
|
Zhang M, Sun R, Xia Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. ACTA ACUST UNITED AC 2020; 65:243-272. [PMID: 31926064 DOI: 10.1515/bmt-2019-0019] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Pay-load deliveries across the skin barrier to the systemic circulation have been one of the most challenging delivery options. Necessitated requirements of the skin and facilitated skin layer cross-over delivery attempts have resulted in development of different non-invasive, non-oral methods, devices and systems which have been standardized, concurrently used and are in continuous upgrade and improvements. Iontophoresis, electroporation, sonophoresis, magnetophoresis, dermal patches, nanocarriers, needled and needle-less shots, and injectors are among some of the methods of transdermal delivery. The current review covers the current state of the art, merits and shortcomings of the systems, devices and transdermal delivery patches, including drugs' and other payloads' passage facilitation techniques, permeation and absorption feasibility studies, as well as physicochemical properties affecting the delivery through different transdermal modes along with examples of drugs, vaccines, genes and other payloads.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Pharmacy,Buraydah Colleges, PO Box 31717, Qassim 51418, Saudi Arabia
| | - Varsha Singh
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India
| | - Mohammad Yusuf
- College of Pharmacy, University of Taif, Taif Al-Haweiah, Taif, Saudi Arabia.https://orcid.org/0000-0003- 1417-7774
| | - Riaz A Khan
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India.,Department of Medicinal Chemistry, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
17
|
Naz F, Rahul, Fatima M, Naseem S, Khan W, Mondal AC, Siddique YH. Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson's disease. Neuropharmacology 2020; 177:108216. [PMID: 32707222 DOI: 10.1016/j.neuropharm.2020.108216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease due to the degeneration of dopaminergic neurons in substantia nigra pars compacta of the mid brain. The present study investigates the neuro-protective role of synthesized ropinirole silver nanocomposite (RPAgNC) in Drosophila model of PD. α-synuclein accumulation in the brain of flies (PD flies) leads to the damage of dopaminergic neurons, dopamine depletion, impaired muscular coordination, memory decline and increase in oxidative stress. Ingestion of the RPAgNC by Drosophila significantly prevented the neuronal degeneration compared to only ropinirole. The results confirm that the RPAgNC exerts more neuro-protective effect compared to dopamine agonist i.e. ropinirole as such drug in experimental PD flies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mahino Fatima
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swaleha Naseem
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Wasi Khan
- Department of Physics, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Zhang H, Zhao Z, Chen W, Lv M, Cheng J, Sun Z. In vitro and in vivo studies of micro-depots using tailored microemulsion for sustained local anaesthesia. Pharm Dev Technol 2020; 25:874-881. [PMID: 32274946 DOI: 10.1080/10837450.2020.1754425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In clinical practice, lidocaine is used as local anesthetic for the management of post-operative pain. The commercial formulation including gels, injections and ointments showed short duration of action (1 to 2 h). In this paper, the efforts have being made to develop tailored lidocaine-microemulsion (o/w), which on penetration in the skin layer cause micro-depots formation due to destabilization of the microemulsion system. To identify the microemulsion region, pseudo ternary diagrams were constructed using Capmul MCM as oil, Pluronic F68 as tri-block surfactant, polyethylene glycol 200 as co-surfactant at 1:4 and 1:6 ratios (S:Co-S). The selected 5%w/v lidocaine loaded microemulsion [Ld-ME-2(1:4)] was stable in thermodynamic test and during shelf life period (3 months). In ex vivo permeability study, the lidocaine release from Ld-ME-2(1:4) microemulsion was sustained in comparison to the marketed lidocaine ointment. The skin irritation study confirmed the safety of lidocaine loaded microemulsion. Tail flick test showed improved and sustain local anaesthetic effect in comparison to the market ointment. The improved efficacy of microemulsion system, was due to high penetration in the skin layer due to local precipitation of lidocaine from microemulsion. The findings suggest that the tailored microemulsion could be a potential strategy to prolong the local anaesthesia.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zeyu Zhao
- Department of Anesthesiology, Sichuan Bayi Rehabilitation Center (Sichuan Provincial Rehabilitation Hospital), Chengdu, China
| | - Wenjia Chen
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, China
| | - Miaomiao Lv
- Department of Anesthesiology, The 323 Hospital of PLA, Xi'an, China
| | - Junmei Cheng
- Department of Pathology, Central Laboratory of Heze Medical College, Heze, China
| | - Zhihua Sun
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
19
|
Zhao Z, Lian Y, Zhu Y, Ye H, Liu M, Li J. Depot lidocaine-loaded microemulsion for prolonged local anesthesia: Different efficacy model studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Lidocaine tripotassium phosphate complex laden microemulsion for prolonged local anaesthesia: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 185:110632. [DOI: 10.1016/j.colsurfb.2019.110632] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
|
21
|
Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Sun R, Xia N, Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1635027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Nan Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Elmataeeshy ME, Sokar MS, Bahey-El-Din M, Shaker DS. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Tabosa MAM, de Andrade ARB, Lira AAM, Sarmento VHV, de Santana DP, Leal LB. Microemulsion Formulations for the Transdermal Delivery of Lapachol. AAPS PharmSciTech 2018; 19:1837-1846. [PMID: 29637497 DOI: 10.1208/s12249-018-0995-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 11/30/2022] Open
Abstract
This project was carried out to investigate the feasibility of using microemulsions for transdermal delivery of lapachol. From the screening of surfactants and oils, a range of microemulsions were developed using oleic acid, a mixture of Cremophor EL and Tween 20 and water. The solubility of lapachol was determined in these ingredients and in the formulated microemulsions. The microemulsions were characterised using cross-polarising light microscopy, their electrical conductivity, pH, zeta potential and rheology were analysed, and they were also investigated using small-angle X-ray scattering and differential scanning calorimetry. Ex vivo studies were performed using porcine ear skin and Franz diffusion cells to investigate the permeation and retention of lapachol. Systems containing different concentrations of Cremophor EL (8.4-41.6%), Tween 20 (5.4-41.6%) and oleic acid (12-31.9%) are able to form microemulsions. Lapachol was delivered more effectively through the skin from all of the microemulsions tested than by the control (oleic acid). These studies indicated that microemulsions incorporating lapachol were formed successfully and that these enhanced drug delivery and retention in the skin. Microemulsion systems may, therefore, provide promising vehicles for percutaneous delivery of lapachol.
Collapse
|
25
|
Setya S, Madaan T, Tariq M, Razdan BK, Talegaonkar S. Appraisal of Transdermal Water-in-Oil Nanoemulgel of Selegiline HCl for the Effective Management of Parkinson's Disease: Pharmacodynamic, Pharmacokinetic, and Biochemical Investigations. AAPS PharmSciTech 2018; 19:573-589. [PMID: 28875405 DOI: 10.1208/s12249-017-0868-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 11/30/2022] Open
Abstract
In the present study, the potential of transdermal nanoemulsion gel of selegiline hydrochloride for the treatment of Parkinson's disease was investigated. Water-in-oil nanoemulsions were developed by comparing low- and high-energy methods and were subjected to thermodynamic stability tests, in vitro permeation, and characterization studies. In vitro studies indicated that components of nanoemulsion acted as permeation enhancers with highest flux of 3.531 ± 1.94 μg/cm2/h from nanoemulsion SB6 containing 0.5 mg selegiline hydrochloride, 3% distilled water, 21% S mix (Span 85, Tween 80, PEG 400), and 76% isopropyl myristate by weight. SB6 with the least droplet size of 183.4 ± 0.35 nm, polydispersity index of 0.42 ± 0.06 with pH of 5.9 ± 0.32 and viscosity of 22.42 ± 0.14 cps was converted to nanoemulsion gel NEGS4 (viscosity = 22,200 ± 400 cps) by addition of Viscup160® for ease of application and evaluated for permeation, safety, and pharmacokinetic profile in Wistar rats. It provided enhancement ratio 3.69 times greater than conventional gel. NEGS4 showed 6.56 and 5.53 times increase in bioavailability in comparison to tablet and conventional gel, respectively, along with sustained effect. Therefore, the developed water-in-oil nanoemulsion gel promises to be an effective vehicle for transdermal delivery of selegiline hydrochloride.
Collapse
|
26
|
Microemulsion formulation design and evaluation for hydrophobic compound: Catechin topical application. Colloids Surf B Biointerfaces 2018; 161:121-128. [DOI: 10.1016/j.colsurfb.2017.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
27
|
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2017; 270:203-225. [PMID: 29199062 DOI: 10.1016/j.jconrel.2017.11.049] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Nidhi Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Kuldeep Singh Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Narayan Prasad Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India.
| |
Collapse
|
28
|
Lefnaoui S, Moulai-Mostefa N, Yahoum MM, Gasmi SN. Design of antihistaminic transdermal films based on alginate–chitosan polyelectrolyte complexes: characterization and permeation studies. Drug Dev Ind Pharm 2017; 44:432-443. [DOI: 10.1080/03639045.2017.1395461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sonia Lefnaoui
- Materials and Environmental Laboratory, University of Medea, Ain D’Heb, Medea, Algeria
- Faculty of Sciences, University of Medea, Ain D’Heb, Medea, Algeria
| | - Nadji Moulai-Mostefa
- Materials and Environmental Laboratory, University of Medea, Ain D’Heb, Medea, Algeria
| | - Madiha M. Yahoum
- Materials and Environmental Laboratory, University of Medea, Ain D’Heb, Medea, Algeria
- Faculty of Sciences, University of Medea, Ain D’Heb, Medea, Algeria
| | - Sarah N. Gasmi
- Faculty of Sciences, University of Medea, Ain D’Heb, Medea, Algeria
| |
Collapse
|
29
|
Kaur G, Mehta S. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Wang Q, Hu C, Zoghbi A, Huang J, Xia Q. Oil-in-oil-in-water pre-double emulsions stabilized by nonionic surfactants and silica particles: A new approach for topical application of rutin. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Potential and future scope of nanoemulgel formulation for topical delivery of lipophilic drugs. Int J Pharm 2017; 526:353-365. [PMID: 28461261 DOI: 10.1016/j.ijpharm.2017.04.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022]
Abstract
The Nanoemulgel drug delivery system is a formulation related intervention to improve the systemic delivery and therapeutic profile of lipophilic drugs. Nanoemulgel is an amalgamated formulation of two different systems in which nanoemulsion containing drug is incorporated into a gel base. The fusion of the two systems makes this formulation advantageous in several ways. Lipophilic drugs can be easily incorporated and the skin permeability of the incorporated drugs can be enhanced in several folds due to the finely distributed droplets of nanoemulsion phase. As a result, the pharmacokinetic and pharmacodynamic profiles of the lipophilic drugs are improved significantly. An increasing trend in topical nanoemulgel use in recent years has been noticed because of the better acceptability of the preparation to the patients due to their noninvasive delivery, avoidance of gastrointestinal side effects, easier applicability and good therapeutic and safety profile. Despite of having few limitations, nanoemulgel formulation can be considered as a potential and promising candidates for topical delivery of lipophilic drugs in the future. The aim of this review is to evaluate and report the current potential and future scope of nanoemulgel formulation for becoming an effective delivery system for poorly water soluble drugs. In this review, we have summarized and discussed the outcome of different studies on permeability, pharmacokinetic, pharmacodynamic and safety profile of the drugs delivered topically through nanoemulgel. Rationality of use along with the major challenges to overcome for nanoemulgel formulation has been discussed.
Collapse
|
32
|
Palmer BC, DeLouise LA. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016; 21:E1719. [PMID: 27983701 PMCID: PMC5639878 DOI: 10.3390/molecules21121719] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] Open
Abstract
Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.
Collapse
Affiliation(s)
- Brian C Palmer
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Lisa A DeLouise
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA.
- Department of Dermatology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
33
|
Elnaggar YS, Talaat SM, Bahey-El-Din M, Abdallah OY. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies. Int J Nanomedicine 2016; 11:5531-5547. [PMID: 27822033 PMCID: PMC5087767 DOI: 10.2147/ijn.s117817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.
Collapse
Affiliation(s)
- Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria
| | - Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University
| |
Collapse
|
34
|
Chen P, Zhang H, Cheng S, Zhai G, Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Nanocarriers enhance the transdermal bioavailability of resveratrol: In-vitro and in-vivo study. Colloids Surf B Biointerfaces 2016; 148:650-656. [PMID: 27697739 DOI: 10.1016/j.colsurfb.2016.09.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Abstract
The aim of this study was to develop and assess the potential of nanostructured emulsion carriers for resveratrol topical application. Different compositions of resveratrol-loaded nanostructured emulsions were prepared using different types and amounts of surfactants and oily phases (isopropyl myristate and caproyl 90). The produced nanostructured emulsions were within the nanosized range 23.4-422.2nm with low viscosity range 2.15-17.53cps. The transdermal amount and deposition amount in the skin after 24 applications of resveratrol-loaded nanostructured emulsion were significantly increased about 896.2-fold and 10.2-fold respectively, when compared to the drug-saturated solution-treated group. Nanostructured emulsion containing IPM and low amounts of mixed surfactant of Tween80/Span 20 showed highest permeation capacity. In vivo study showed that the plasma concentration of resveratrol could be maintained at high levels for a long time after topical application of drug-loaded nanostructured emulsion. The histological examination demonstrated that the free drug- and drug-loaded nanostructured emulsion demonstrated considerably less irritation than the standard irritation group (0.8% paraformaldehyde-treated). The residual contents of resveratrol in the tested formulations after 3 months of storage at 25°C and 40°C were more than 99.97±3.90%. The results of present work confirm the high potential of nanostructured emulsion as carriers for drug topical application.
Collapse
|
36
|
Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int J Pharm 2016; 505:147-58. [PMID: 27005906 DOI: 10.1016/j.ijpharm.2016.03.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Olmesartan is a hydrophobic antihypertensive drug with a short biological half-life, and low bioavailability, presents a challenge with respect to its oral administration. The objective of the work was to formulate, optimize and evaluate the transdermal potential of novel vesicular nano-invasomes, containing above anti-hypertensive agent. To achieve the above purpose, soft carriers (viz. nano-invasomes) of olmesartan with β-citronellene as potential permeation enhancer were developed and optimized using Box-Behnken design. The physicochemical characteristics e.g., vesicle size, shape, entrapment efficiency and skin permeability of the nano-invasomes formulations were evaluated. The optimized formulation was further evaluated for in vitro drug release, confocal microscopy and in vivo pharmacokinetic study. The optimum nano-invasomes formulation showed vesicles size of 83.35±3.25nm, entrapment efficiency of 65.21±2.25% and transdermal flux of 32.78±0.703 (μg/cm(2)/h) which were found in agreement with the predicted value generated by Box-Behnken design. Confocal laser microscopy of rat skin showed that optimized formulation was eventually distributed and permeated deep into the skin. The pharmacokinetic study presented that transdermal nano-invasomes formulation showed 1.15 times improvement in bioavailability of olmesartan with respect to the control formulation in Wistar rats. It was concluded that the response surfaces estimated by Design Expert(®) illustrated obvious relationship between formulation factors and response variables and nano-invasomes were found to be a proficient carrier system for transdermal delivery of olmesartan.
Collapse
|
37
|
Aqil M, Kamran M, Ahad A, Imam SS. Development of clove oil based nanoemulsion of olmesartan for transdermal delivery: Box–Behnken design optimization and pharmacokinetic evaluation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 23factorial design andin vivoevaluation in rabbits. Drug Deliv 2016; 23:1608-22. [DOI: 10.3109/10717544.2015.1132797] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
39
|
Abstract
Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.
Collapse
|
40
|
Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application. PLoS One 2015; 10:e0131026. [PMID: 26158639 PMCID: PMC4497736 DOI: 10.1371/journal.pone.0131026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Excessive production of radical oxygen species in skin is a contributor to a variety of skin pathologies. Naringenin is a potent antioxidant. The purpose of the present study was to develop elastic liposomes for naringenin topical application. Naringenin-loaded elastic liposomes containing different amounts of Tween 80 and cholesterol were prepared. The physicochemical properties including vesicle size, surface charge, encapsulation efficiency, and permeability capacity were determined to evaluate the effect of components. The stability of formulation and skin irritation caused by drug-loaded elastic liposomes were also evaluated for assessment of the clinical utility of elastic liposomes. Saturated aqueous solution of naringenin and naringenin dissolved in 10% Tween 80 solution (5 mg/mL) were used as the control group. The result showed that in using elastic liposomes as carrier, the deposition amounts in the skin of naringenin were significantly increased about 7.3~11.8-fold and 1.2~1.9-fold respectively, when compared with the saturated aqueous solution and Tween 80 solution-treated groups. The level of drug was more than 98.89±3.90% after 3 months of storage at 4℃. In a skin irritation test, the result showed experimental formulation exhibit considerably less irritating than the positive control (paraformaldehyde-treated) group, suggesting its potential therapeutic application.
Collapse
Affiliation(s)
- Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan, ROC
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan, ROC
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Jhih-Wun Fang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
41
|
Preparation and evaluation of submicron-carriers for naringenin topical application. Int J Pharm 2015; 481:84-90. [PMID: 25615985 DOI: 10.1016/j.ijpharm.2015.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/30/2014] [Accepted: 01/18/2015] [Indexed: 11/21/2022]
Abstract
Submicron emulsion system is one kind of submicron-carrier that can ensure close contact and increase the amount of drug transport into the skin. In the present study, naringenin was loaded into a submicron emulsion system for topical applications. The enhancement effect of drug permeability through skin, stability, and skin irritation of naringenin-loaded submicron emulsions were evaluated. The results showed that the transdermal amount and deposition amount in skin of naringenin from submicron emulsion formulations were significantly increased when compared to the control group of saturated aqueous solution of naringenin. The drug-loaded submicron emulsions showed thermodynamic stability after centrifugation and cooling-heating cycle tests. The level of drug was more than 98% after 3 months of storage at 25°C and 40°C. In skin irritation test, the result also demonstrated that naringenin-loaded submicron emulsion had less skin irritation, indicating that the formulation can possibly be developed for topical application.
Collapse
|
42
|
Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation. Int J Pharm 2014; 477:47-56. [DOI: 10.1016/j.ijpharm.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/31/2023]
|
43
|
Tsai MJ, Fu YS, Lin YH, Huang YB, Wu PC. The effect of nanoemulsion as a carrier of hydrophilic compound for transdermal delivery. PLoS One 2014; 9:e102850. [PMID: 25068531 PMCID: PMC4113283 DOI: 10.1371/journal.pone.0102850] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
The purpose of the present study was to investigate the effect of nanoemulsions as a carrier vehicle of hydrophilic drug for transdermal delivery. The response surface methodology with a mixture design was used to evaluate the effect of ingredient levels of nanoemulsion formulations including cosurfactant (isopropyl alcohol, 20 ∼ 30%), surfactant (mixed of Brij 30 and Brij 35, 20 ∼ 30%), and distilled-water (34.5 ∼ 50.0%) on properties of the drug-loaded nanoemulsions including physicochemical characters and drug permeability through rat skin. The result showed that the hydrophilic drug in aqueous solution with or without penetration enhancer could not transport across rat skin after 12 h of application. Used nanoemulsions as carrier vehicle, the permeation rate of drug was significantly increased from 0 to 63.23 µg/cm2/h and the lag time was shortened from more than 12 h to about 2.7 ∼ 4.0 h. Moreover, the drug-loaded nanoemulsion formulation also showed physicochemical stability after 3 month storage at 25°C and 40°C.
Collapse
Affiliation(s)
- Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, School of Medicine, Medical College, China Medical University, Taichung, Taiwan, ROC
- Department of Neurology, Tainan Municipal An-Nan Hospital, Tainan, Taiwan, ROC
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yu-Hsuan Lin
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
44
|
Formulation optimization of arecoline patches. ScientificWorldJournal 2014; 2014:945168. [PMID: 24707220 PMCID: PMC3953398 DOI: 10.1155/2014/945168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022] Open
Abstract
The response surface methodology (RSM) including polynomial equations has been used to design an optimal patch formulation with appropriate adhesion and flux. The patch formulations were composed of different polymers, including Eudragit RS 100 (ERS), Eudragit RL 100 (ERL) and polyvinylpyrrolidone K30 (PVP), plasticizers (PEG 400), and drug. In addition, using terpenes as enhancers could increase the flux of the drug. Menthol showed the highest enhancement effect on the flux of arecoline.
Collapse
|
45
|
Rachmawati H, Budiputra DK, Mauludin R. Curcumin nanoemulsion for transdermal application: formulation and evaluation. Drug Dev Ind Pharm 2014; 41:560-6. [PMID: 24502271 DOI: 10.3109/03639045.2014.884127] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this work is to develop a curcumin nanoemulsion for transdermal delivery. The incorporation of curcumin inside a nanoglobul should improve curcumin stability and permeability. A nanoemulsion was prepared by the self-nanoemulsification method, using an oil phase of glyceryl monooleate, Cremophor RH40 and polyethylene glycol 400. Evaluation of the nanoemulsion included analysis of particle size, polydispersity index, zeta potential, physical stability, Raman spectrum and morphology. In addition, the physical performance of the nanoemulsion in Viscolam AT 100P gel was studied. A modified vertical diffusion cell and shed snake skin of Python reticulatus were used to study the in vitro permeation of curcumin. A spontaneously formed stable nanoemulsion has a loading capacity of 350 mg curcumin/10 g of oil phase. The mean droplet diameter, polydispersity index and zeta potential of optimized nanoemulsion were 85.0 ± 1.5 nm, 0.18 ± 0.0 and -5.9 ± 0.3 mV, respectively. Curcumin in a nanoemulsion was more stable than unencapsulated curcumin. Furthermore, nanoemulsification significantly improved the permeation flux of curcumin from the hydrophilic matrix gel; the release kinetic of curcumin changed from zero order to a Higuchi release profile. Overall, the developed nanoemulsion system not only improved curcumin permeability but also protected the curcumin from chemical degradation.
Collapse
Affiliation(s)
- Heni Rachmawati
- Department of Pharmacy, Bandung Institute of Technology , Bandung , Indonesia
| | | | | |
Collapse
|
46
|
Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: In vitro/in vivo evaluation. Int J Pharm 2013; 453:569-78. [DOI: 10.1016/j.ijpharm.2013.06.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
|
47
|
Huang CT, Tsai MJ, Lin YH, Fu YS, Huang YB, Tsai YH, Wu PC. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology. Int J Nanomedicine 2013; 8:2295-304. [PMID: 23919086 PMCID: PMC3699131 DOI: 10.2147/ijn.s43474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%-30%), isopropyl alcohol (20%-30%), and distilled water (40%-50%) on the properties of the drug-loaded microemulsions, including permeation rate (flux) and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 μg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 μg/cm(2) and 513.8 μg/cm(2) per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15) containing 3% citalopram with an application area of 3.46 cm(2) is able to reach a minimum effective therapeutic concentration with no erythematous reaction.
Collapse
Affiliation(s)
- Chi-Te Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Shakeel F, Haq N, Alanazi FK, Alsarra IA. Impact of various nonionic surfactants on self-nanoemulsification efficiency of two grades of Capryol (Capryol-90 and Capryol-PGMC). J Mol Liq 2013; 182:57-63. [DOI: 10.1016/j.molliq.2013.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Lou H, Qiu N, Crill C, Helms R, Almoazen H. Development of w/o microemulsion for transdermal delivery of iodide ions. AAPS PharmSciTech 2013; 14:168-76. [PMID: 23250709 DOI: 10.1208/s12249-012-9901-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value<0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.
Collapse
|
50
|
Maali A, Mosavian MTH. Preparation and Application of Nanoemulsions in the Last Decade (2000–2010). J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2011.648498] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|