1
|
Narala S, Ali Youssef AA, Munnangi SR, Narala N, Lakkala P, Vemula SK, Repka M. 3D printing in vaginal drug delivery: a revolution in pharmaceutical manufacturing. Expert Opin Drug Deliv 2024; 21:1543-1557. [PMID: 38236621 DOI: 10.1080/17425247.2024.2306139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, USA
| |
Collapse
|
2
|
Simon MC, Laios K, Nikolakakis I, Papaioannou TG. Three-Dimensional Printing Technology in Drug Design and Development: Feasibility, Challenges, and Potential Applications. J Pers Med 2024; 14:1080. [PMID: 39590572 PMCID: PMC11595649 DOI: 10.3390/jpm14111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The present investigation evaluates the impact of 3D-printing technology on the design of pharmaceutical drugs, considering the feasibility issues and problems concerning technological, pharmaceutical, and clinical matters. This paper aims to review how 3D printing can modify the traditional manufacturing of drugs with personalized medicine-therapy outcomes being individualized and optimized, hence improving patients' compliance. METHODS The historical development of 3D printing from rapid prototyping to advanced pharmaceutical applications is discussed. A comparison is then made between traditional drug manufacturing approaches and the different techniques of 3D printing, including stereolithography, material extrusion, and binder jetting. Feasibility is assessed based on clinical trials and studies evaluating the efficacy, safety, bioavailability, and cost-effectiveness of 3D-printed drugs. RESULTS Current evidence indicates that material selection, regulatory barriers, and scalability issues are some of the major challenges to be overcome for wider acceptance. Other matters, such as ethical issues concerning patient data privacy, the misuse of 3D-printing technology, and technical complexities related to pharmaceutical 3D printing, are discussed further. Future applications also include bioprinting and in situ printing together with their implications for personalized drug delivery, which will also be discussed. CONCLUSIONS This review stresses that intersectoral collaboration and the updating of regulatory frameworks are a must to overcome the barriers that confront 3D-printing applications in drug development. can could be an opportunity for innovative licensing and manufacturing techniques in pharmaceutical product development that can change the paradigm of personalized medicine through modern printing techniques.
Collapse
Affiliation(s)
| | | | | | - Theodore G. Papaioannou
- Department of Biomedical Engineering and Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.C.S.); (K.L.); (I.N.)
| |
Collapse
|
3
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
4
|
Švára D, Filipová B, Jelínek P, Mikeš P, Kluk A, Šoóš M. The impact of polymer mixture composition on the properties of electrospun membranes for drug delivery applications. Int J Pharm 2023; 647:123548. [PMID: 37890644 DOI: 10.1016/j.ijpharm.2023.123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Orally dispersible films (ODFs) prepared by an electrospinning are a novel type of pharmaceutical formulation. This dosage form has the potential to be beneficial for small children and the elderly, who can have problems with administration of classical tablets due to the increased risk of choking and difficulty with swallowing. Due to the highly porous nanofiber morphology, the ODFs examined in this study achieve rapid disintegration into drug microparticles when in contact with saliva. The suspension is then easier to swallow. In this study, we focus on the impact of film composition (polymer matrix composition) on the properties of electrospun membranes. In particular, we prepared ODFs composed of a mixture of PEG 100 000 with HPMC E5 and PVP k90 with HPMC E5. We found significant differences in the structure of electrospinned membranes, where samples containing PEG 100 000 and HPMC E5 exhibited much narrower distribution of fibers. Furthermore, nanofibers containing PVP k90 exhibit a faster disintegration rate, while dissolution of the drug was faster in the case of PEG 100 000 containing ODFs. The improvement was caused by both the structure and composition of the membranes.
Collapse
Affiliation(s)
- Dominik Švára
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Barbora Filipová
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Petr Jelínek
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic
| | - Petr Mikeš
- Department of Physics, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Anna Kluk
- Zentiva, k.s., U Kabelovny 130, 102 00 Prague 10, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 - Dejvice, Czech Republic.
| |
Collapse
|
5
|
Sterle Zorec B. Two-dimensional printing of nanoparticles as a promising therapeutic method for personalized drug administration. Pharm Dev Technol 2023; 28:826-842. [PMID: 37788221 DOI: 10.1080/10837450.2023.2264920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The necessity for personalized patient treatment has drastically increased since the contribution of genes to the differences in physiological and metabolic state of individuals have been exposed. Different approaches have been considered so far in order to satisfy all of the diversities in patient needs, yet none of them have been fully implemented thus far. In this framework, various types of 2D printing technologies have been identified to offer some potential solutions for personalized medication, which development is increasing rapidly. Accurate drug-on-demand deposition, the possibility of consuming multiple drug substances in one product and adjusting individual drug concentration are just some of the few benefits over existing bulk pharmaceuticals manufacture, which printing technologies brings. With inclusion of nanotechnology by printing nanoparticles from its dispersions some further opportunities such as controlled and stimuli-responsive drug release or targeted and dose depending on drug delivery were highlighted. Yet, there are still some challenges to be solved before such products can reach the pharmaceutical market. In those terms mostly chemical, physical as well as microbiological stability concerns should be answered, with which 2D printing technology could meet the treatment needs of every individual and fulfill some existing drawbacks of large-scale batch production of pharmaceuticals we possess today.
Collapse
Affiliation(s)
- Barbara Sterle Zorec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Multilayer Films Based on Chitosan/Pectin Polyelectrolyte Complexes as Novel Platforms for Buccal Administration of Clotrimazole. Pharmaceutics 2021; 13:pharmaceutics13101588. [PMID: 34683881 PMCID: PMC8538955 DOI: 10.3390/pharmaceutics13101588] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Buccal films are recognized as easily applicable, microbiologically stable drug dosage forms with good retentivity at the mucosa intended for the therapy of oromucosal conditions, especially infectious diseases. Multilayer films composed of layers of oppositely charged polymers separated by ionically interacting polymeric chains creating polyelectrolyte complexes represent very interesting and relatively poorly explored area. We aimed to develop the antifungal multilayer systems composed of cationic chitosan and anionic pectin as potential platforms for controlled delivery of clotrimazole. The systems were pharmaceutically characterized with regard to inter alia their release kinetics under different pH conditions, physicomechanical, or mucoadhesion properties with using an animal model of the buccal mucosa. The antifungal activity against selected Candida sp. and potential cytotoxicity with regard to human gingival fibroblasts were also evaluated. Interactions between polyions were characterized with Fourier transform infrared spectroscopy. Different clotrimazole distribution in the films layers highly affected their in vitro dissolution profile. The designed films were recognized as intelligent pH-responsive systems with strong antifungal effect and satisfactory safety profile. As addition of chitosan resulted in the improved antifungal behavior of the drug, the potential utilization of the films in resistant cases of oral candidiasis might be worth of further exploration.
Collapse
|
7
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
8
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
9
|
Carvalho SG, Silvestre ALP, Martins Dos Santos A, Fonseca-Santos B, Rodrigues WD, Palmira Daflon Gremião M, Chorilli M, Villanova JCO. Polymeric-based drug delivery systems for veterinary use: State of the art. Int J Pharm 2021; 604:120756. [PMID: 34058307 DOI: 10.1016/j.ijpharm.2021.120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
One of the challenges to the success of veterinary pharmacotherapy is the limited number of drugs and dosage forms available exclusively to this market, due to the interspecies variability of animals, such as anatomy, physiology, pharmacokinetics, and pharmacodynamics. For this reason, studies in this area have become a highlight, since they are still scarce in comparison with those on human drug use. To overcome many limitations related to the bioavailability, efficacy, and safety of pharmacotherapy in animals, especially livestock and domestic animals, polymers-based drug delivery systems are promising tools if they guarantee greater selectivity and less toxicity in dosage forms. In addition, these tools may be developed according to the great interspecies variability. To contribute to these discussions, this paper provides an updated review of the major polymer-based drug delivery systems projected for veterinary use. Traditional and innovative drug delivery systems based on polymers are presented, with an emphasis on films, microparticles, micelles, nanogels, nanoparticles, tablets, implants and hydrogel-based drug delivery systems. We discuss important concepts for the veterinarian about the mechanisms of drug release and, for the pharmacist, the advantages in the development of pharmaceutical forms for the animal population. Finally, challenges and opportunities are presented in the field of pharmaceutical dosage forms for veterinary use in response to the interests of the pharmaceutical industry.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Winner Duque Rodrigues
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Department of Drugs and Medicines, 14800-903 Araraquara, SP, Brazil.
| | - Janaína Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil.
| |
Collapse
|
10
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
11
|
Mucoadhesion and Mechanical Assessment of Oral Films. Eur J Pharm Sci 2021; 159:105727. [DOI: 10.1016/j.ejps.2021.105727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
|
12
|
Chou WH, Gamboa A, Morales JO. Inkjet printing of small molecules, biologics, and nanoparticles. Int J Pharm 2021; 600:120462. [PMID: 33711471 DOI: 10.1016/j.ijpharm.2021.120462] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023]
Abstract
During the last decades, inkjet printing has emerged as a novel technology and attracted the attention of the pharmaceutical industry, as a potential method for manufacturing personalized and customizable dosage forms to deliver drugs. Commonly, the desired drug is dissolved or dispersed within the ink and then dispensed in various dosage forms. Using this approach, several studies have been conducted to load hydrophilic or poorly water-soluble small molecules onto the surface of different solid substrates, including films, tablets, microneedles, and smart data-enriched edible pharmaceuticals, using two-dimensional and three-dimensional inkjet printing methods, with high dose accuracy and reproducibility. Furthermore, biological drugs, such as peptides, proteins, growth factors, and plasmids, have also been evaluated with positive results, eliciting the expected biological response; nonetheless, minor changes in the structure of these compounds with significant impaired activity cannot be dismissed. Another strategy using inkjet printing is to disperse drug-loaded nanoscale particles in the ink liquid, such as nanosuspension, nanocomplexes, or nanoparticles, which have been explored with promising results. Although these favorable outcomes, the proper selection of ink constituents and the inkjet printer, the correlation of printing cycles and effectively printed doses, the stability studies of drugs within the ink and the optimal analysis of samples before and after the printing process are the main challenges for inkjet printing, and therefore, this review analyzes these aspects to assess the body of current literature and help to guide future investigations on this field.
Collapse
Affiliation(s)
- Wai-Houng Chou
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
| | - Alexander Gamboa
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile.
| |
Collapse
|
13
|
Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - A review of trends and future perspectives in research and manufacturing. Int J Pharm 2021; 599:120443. [PMID: 33675921 DOI: 10.1016/j.ijpharm.2021.120443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
There is an ongoing global shift in pharmaceutical business models from small molecule drugs to biologics. This increase in complexity is in response to advancements in our diagnoses and understanding of diseases. With the more targeted approach coupled with its inherently more costly development and manufacturing, 2D and 3D printing are being explored as suitable techniques to deliver more personalised and affordable routes to drug discovery and manufacturing. In this review, we explore first the business context underlying this shift to biopharmaceuticals and provide an update on the latest work exploring discovery and pharmaceutics. We then draw on multiple disciplines to help reveal the shared challenges facing researchers and firms aiming to develop biopharmaceuticals, specifically when using the most commonly explored manufacturing routes of drop-on-demand inkjet printing and pneumatic extrusion. This includes separating out how to consider mechanical and chemical influences during manufacturing, the role of the chosen hardware and the challenges of aqueous formulation based on similar challenges being faced by the printing industry. Together, this provides a review of existing work and guidance for researchers and industry to help with the de-risking and rapid development of future biopharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Etienne Rognin
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK
| | | | - Ronan Daly
- Institute for Manufacturing, Department of Engineering, University of Cambridge (UK), UK.
| |
Collapse
|
14
|
Vaz VM, Kumar L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech 2021; 22:49. [PMID: 33458797 PMCID: PMC7811988 DOI: 10.1208/s12249-020-01905-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine has the potential to revolutionize the healthcare sector, its goal being to tailor medication to a particular individual by taking into consideration the physiology, drug response, and genetic profile of that individual. There are many technologies emerging to cause this paradigm shift from the conventional "one size fits all" to personalized medicine, the major one being three-dimensional (3D) printing. 3D printing involves the establishment of a three-dimensional object, in a layer upon layer manner using various computer software. 3D printing can be used to construct a wide variety of pharmaceutical dosage forms varying in shape, release profile, and drug combination. The major technological platforms of 3D printing researched on in the pharmaceutical sector include inkjet printing, binder jetting, fused filament fabrication, selective laser sintering, stereolithography, and pressure-assisted microsyringe. A possible future application of this technology could be in a clinical setting, where prescriptions could be dispensed based on individual needs. This manuscript points out the various 3D printing technologies and their applications in research for fabricating pharmaceutical products, along with their pros and cons. It also presents its potential in personalized medicine by individualizing the dose, release profiles, and incorporating multiple drugs in a polypill. An insight on how it tends to various populations is also provided. An approach of how it can be used in a clinical setting is also highlighted. Also, various challenges faced are pointed out, which must be overcome for the success of this technology in personalized medicine.
Collapse
|
15
|
Drug-Loaded Lipid-Core Micelles in Mucoadhesive Films as a Novel Dosage Form for Buccal Administration of Poorly Water-Soluble and Biological Drugs. Pharmaceutics 2020; 12:pharmaceutics12121168. [PMID: 33266132 PMCID: PMC7761273 DOI: 10.3390/pharmaceutics12121168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to develop a novel buccal dosage form to transport rhodamine 123 and human insulin as models for poorly water-soluble and biological drugs, using lipid-core micelles (LCMs)-loaded mucoadhesive films. LCMs were synthesized by a low-energy hot emulsification process, yielding spherically shaped, small-sized, monodispersed and negatively charged carriers with high entrapment efficiency. In vitro release studies demonstrated a higher release of insulin rather than rhodamine from LCMs in simulated physiological conditions, due to an initial burst release effect; however, both release profiles are mainly explained by a diffusion mechanism. Furthermore, LCMs-loaded mucoadhesive films were manufactured and preserved with similar mechanical properties and optimal mucoadhesive behavior compared to nonloaded films. Ex vivo permeation experiments using excised porcine buccal epithelium reveal that both rhodamine and insulin-loaded LCM films elicited a significantly enhanced permeation effect compared to LCMs in suspension and free drugs in solution as controls. Hence, LCMs-loaded mucoadhesive films are suitable as buccal dosage form for the transport and delivery of rhodamine 123 and insulin, as models for poorly water-soluble and biological drugs, respectively.
Collapse
|
16
|
Wallis M, Al-Dulimi Z, Tan DK, Maniruzzaman M, Nokhodchi A. 3D printing for enhanced drug delivery: current state-of-the-art and challenges. Drug Dev Ind Pharm 2020; 46:1385-1401. [DOI: 10.1080/03639045.2020.1801714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Melissa Wallis
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
17
|
Eleftheriadis GK, Katsiotis CS, Andreadis DA, Tzetzis D, Ritzoulis C, Bouropoulos N, Kanellopoulou D, Andriotis EG, Tsibouklis J, Fatouros DG. Inkjet printing of a thermolabile model drug onto FDM-printed substrates: formulation and evaluation. Drug Dev Ind Pharm 2020; 46:1253-1264. [PMID: 32597338 DOI: 10.1080/03639045.2020.1788062] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.
Collapse
Affiliation(s)
| | - Christos S Katsiotis
- Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios A Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, Thermi, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Dimitra Kanellopoulou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | | | - John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Dimitrios G Fatouros
- Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Palo M, Rönkönharju S, Tiirik K, Viidik L, Sandler N, Kogermann K. Bi-Layered Polymer Carriers with Surface Modification by Electrospinning for Potential Wound Care Applications. Pharmaceutics 2019; 11:E678. [PMID: 31842385 PMCID: PMC6969931 DOI: 10.3390/pharmaceutics11120678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/03/2022] Open
Abstract
Polymeric wound dressings with advanced properties are highly preferred formulations to promote the tissue healing process in wound care. In this study, a combinational technique was investigated for the fabrication of bi-layered carriers from a blend of polyvinyl alcohol (PVA) and sodium alginate (SA). The bi-layered carriers were prepared by solvent casting in combination with two surface modification approaches: electrospinning or three-dimensional (3D) printing. The bi-layered carriers were characterized and evaluated in terms of physical, physicochemical, adhesive properties and for the safety and biological cell behavior. In addition, an initial inkjet printing trial for the incorporation of bioactive substances for drug delivery purposes was performed. The solvent cast (SC) film served as a robust base layer. The bi-layered carriers with electrospun nanofibers (NFs) as the surface layer showed improved physical durability and decreased adhesiveness compared to the SC film and bi-layered carriers with patterned 3D printed layer. Thus, these bi-layered carriers presented favorable properties for dermal use with minimal tissue damage. In addition, electrospun NFs on SC films (bi-layered SC/NF carrier) provided the best physical structure for the cell adhesion and proliferation as the highest cell viability was measured compared to the SC film and the carrier with patterned 3D printed layer (bi-layered SC/3D carrier). The surface properties of the bi-layered carriers with electrospun NFs showed great potential to be utilized in advanced technical approach with inkjet printing for the fabrication of bioactive wound dressings.
Collapse
Affiliation(s)
- Mirja Palo
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (M.P.); (S.R.); (N.S.)
| | - Sophie Rönkönharju
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (M.P.); (S.R.); (N.S.)
| | - Kairi Tiirik
- Institute of Pharmacy, University of Tartu, Nooruse 1, EE-50411 Tartu, Estonia; (K.T.); (L.V.)
| | - Laura Viidik
- Institute of Pharmacy, University of Tartu, Nooruse 1, EE-50411 Tartu, Estonia; (K.T.); (L.V.)
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (M.P.); (S.R.); (N.S.)
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, EE-50411 Tartu, Estonia; (K.T.); (L.V.)
| |
Collapse
|
19
|
Gennari CGM, Sperandeo P, Polissi A, Minghetti P, Cilurzo F. Lysozyme Mucoadhesive Tablets Obtained by Freeze-Drying. J Pharm Sci 2019; 108:3667-3674. [PMID: 31446146 DOI: 10.1016/j.xphs.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
Lysozyme is particularly attractive for the local treatment of oral pathologies related to microbiological infections. However, the requirement of a prolonged release is difficult to achieve because of saliva swallowing and of the protein denaturation which can occur during production and storage of a dosage form. This work demonstrates the feasibility to prepare lysozyme mucoadhesive tablets by freeze-drying. Tablets were prepared by using alginate (ALG) physically "cross-linked" with calcium ion and different grades of hydroxypropyl methylcellulose (HPMC) (i.e., E5, E50, or K100). The tablets were characterized in terms of swelling or erosion behavior, in vitro mucoadhesive properties, lysozyme activity (Micrococcus lysodeikticus), drug release and ability to inactivate Staphylococcus aureus. The formulations prepared with HPMC K100 were discarded because of the fast erosion. All other formulations allowed a sustained release over at least 6 h. Independently of composition, lysozyme activity (78,311 ± 1873 Units/mg) significantly decreased in the case of tablets containing 5% and 10% w/w of protein (55,000 Units/mg and 33,000 Units/mg, respectively). Conversely, no modifications occurred in the case of tablets containing 1% w/w lysozyme. The formulation prepared by ALG/HPMC E5 7/3 ratio was efficacious against S. aureus. After 3 months of storage at 5 ± 3°C, no significant decrease in lysozyme activity was observed.
Collapse
Affiliation(s)
- Chiara G M Gennari
- Department Pharmaceutical Sciences, University of Milan, via G. Colombo 71, 20133 Milan, Italy.
| | - Paola Sperandeo
- Department Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Alessandra Polissi
- Department Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - Paola Minghetti
- Department Pharmaceutical Sciences, University of Milan, via G. Colombo 71, 20133 Milan, Italy
| | - Francesco Cilurzo
- Department Pharmaceutical Sciences, University of Milan, via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
20
|
Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, Sjöholm E, Öblom H, Sandler N, Hinrichs WLJ, Frijlink HW, Breitkreutz J, Visser JC. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv 2019; 16:981-993. [DOI: 10.1080/17425247.2019.1652595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yu Tian
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Mine Orlu
- School of Pharmacy, University College London, London, Bloomsbury, UK
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | | | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dina Kottke
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Heidi Öblom
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| |
Collapse
|
21
|
Uziel A, Shpigel T, Goldin N, Lewitus DY. Three-dimensional printing for drug delivery devices: a state-of-the-art survey. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/3dp-2018-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Over the last several decades, 3D printing technology, which encompasses many different fabrication techniques, had emerged as a promising tool in many fields of production, including the pharmaceutical industry. Specifically, 3D printing may be advantageous for drug delivery systems, systems aiming to improve the pharmacokinetics of drugs. These advantages include the ease of designing complex shapes, printing of drugs on demand, tailoring dosage to the specific needs of the patient and enhancing the bioavailability of drugs. This paper reviews the most recent advancements in this field, presenting both the abilities and limitations of several promising 3D printing methods.
Collapse
Affiliation(s)
- Almog Uziel
- Department of Plastics & Polymer Engineering, Shenkar – Engineering. Design. Art, 12 Anne Frank St, Ramat Gan, 5252626, Israel
| | - Tal Shpigel
- Department of Plastics & Polymer Engineering, Shenkar – Engineering. Design. Art, 12 Anne Frank St, Ramat Gan, 5252626, Israel
| | - Nir Goldin
- Department of Plastics & Polymer Engineering, Shenkar – Engineering. Design. Art, 12 Anne Frank St, Ramat Gan, 5252626, Israel
| | - Dan Y Lewitus
- Department of Plastics & Polymer Engineering, Shenkar – Engineering. Design. Art, 12 Anne Frank St, Ramat Gan, 5252626, Israel
| |
Collapse
|
22
|
Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm 2018; 553:97-108. [PMID: 30316794 DOI: 10.1016/j.ijpharm.2018.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Printing technologies, both 2D and 3D, have gained considerable interest during the last years for manufacturing of personalized dosage forms, tailored to each patient. Here we review the research work on 2D printing techniques, mainly inkjet printing, for manufacturing of film-based oral dosage forms. We describe the different printing techniques and give an overview of film-based oral dosage forms produced using them. The main part of the review focuses on the non-destructive analytical methods used for evaluation of qualitative aspects of printed dosage forms, e.g., solid-state properties, as well as for quantification of the active pharmaceutical ingredient (API) in the printed dosage forms, with an emphasis on spectroscopic methods. Finally, the authors share their view on the future of printed dosage forms.
Collapse
Affiliation(s)
- Magnus Edinger
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark.
| |
Collapse
|
23
|
Alomari M, Vuddanda PR, Trenfield SJ, Dodoo CC, Velaga S, Basit AW, Gaisford S. Printing T 3 and T 4 oral drug combinations as a novel strategy for hypothyroidism. Int J Pharm 2018; 549:363-369. [PMID: 30063938 DOI: 10.1016/j.ijpharm.2018.07.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Hypothyroidism is a chronic and debilitating disease that is estimated to affect 3% of the general population. Clinical experience has highlighted the synergistic value of combining triiodothyronine (T3) and thyroxine (T4) for persistent or recurrent symptoms. However, thus far a platform that enables the simultaneous and independent dosing of more than one drug for oral administration has not been developed. Thermal inkjet (TIJ) 2D printing is a potential solution to enable the dual deposition of T3 and T4 onto orodispersible films (ODFs) for therapy personalisation. In this study, a two-cartridge TIJ printer was modified such that it could print separate solutions of T3 and T4. Dose adjustments were achieved by printing solutions adjacent to each other, enabling therapeutic T3 (15-50 μg) and T4 dosages (60-180 μg) to be successfully printed. Excellent linearity was observed between the theoretical and measured dose for both T3 and T4 (R2 = 0.982 and 0.985, respectively) by changing the length of the print objective (Y-value). Rapid disintegration of the ODFs was achieved (<45 s). As such, this study for the first time demonstrates the ability to produce personalised dose combinations by TIJ printing T3 and T4 onto the same substrate for oral administration.
Collapse
Affiliation(s)
- Mustafa Alomari
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Parameswara R Vuddanda
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Pharmaceutical and Biomaterial Research Group, Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden
| | - Sarah J Trenfield
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Cornelius C Dodoo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sitaram Velaga
- Pharmaceutical and Biomaterial Research Group, Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|