1
|
Yuan L, He Q, Zhang Y, Luo H, Xiang W, Deng C, Li C, Li X, Yao L, Ke D, Wang S, Zhou J, Wang J. 6-Gingerol microneedle promotes diabetic wound healing by regulating macrophage polarization. Int Immunopharmacol 2025; 151:114288. [PMID: 40007376 DOI: 10.1016/j.intimp.2025.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Diabetic wound-healing difficulties are common for patients with diabetes. Compared to normal wound healing processes, the hyperglycaemic environment in diabetic wounds increases the proportion of M1 macrophages significantly, thereby prolonging the inflammatory phase of wound healing. Consequently, treatment approaches targeting macrophages are gaining increasing attention in both research and clinical practice. 6-Gingerol (6-G), a natural compound derived from ginger, is recognized for its anti-inflammatory, anti-tumour, and antioxidant properties. However, its application in diabetic wound treatment has been limited by poor water solubility and low bioavailability. In this study, we developed a hydrogel microneedle system (6-G@MN) combining 6-G with polyethylene glycol, hyaluronic acid, and gelatin. Our results demonstrated that 6-G@MN effectively promotes angiogenesis and collagen deposition in diabetic wounds while rebalancing macrophage populations in diabetic mice. Additionally, 6-G was shown to inhibit lipopolysaccharide-induced M1 macrophage polarization in vitro and to activate the AMPK/mTOR signalling pathway. In conclusion, we developed 6-G@MN as a novel therapeutic approach that integrates the advantages of the traditional Chinese medicine component 6-G with modern microneedle technology. By targeting macrophage polarization, the system can offer a promising strategy for improving the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ling Yuan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhang
- Department of General Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, China
| | - Wei Xiang
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Chendan Deng
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Chunli Li
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xuezhi Li
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Ling Yao
- Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Dazhi Ke
- Department of General Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing University of Chinese Medicine, Chongqing 402760, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, China.
| | - Jianjun Zhou
- Chongqing University of Chinese Medicine, Chongqing 402760, China.
| | - Jianwei Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing University of Chinese Medicine, Chongqing 402760, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, China.
| |
Collapse
|
2
|
Hua Q, Wang Q, Wang X, Jiang X, Gong M, Li J, Li T, Wang X, Cao X, Yu J, Toreniyazov E, Zong B, Xu X, Shi F, Adu-Frimpong M. Preparation of PEG-modified isoquercitrin liposomes and anti-chronic kidney disease research. J Liposome Res 2025:1-15. [PMID: 40125927 DOI: 10.1080/08982104.2025.2480782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
The clinical application of Isoquercitrin (IQ) is limited by its low water solubility and short retention time in the body, despite its diverse pharmacological effects. To address these issues, we prepared polyethylene glycol (PEG)-modified IQ liposomes (IQ-L) using the thin film dispersion method and optimized the formulation through a combination of One Factor at a Time (OFAT) method and response surface experiments. Characterization of the IQ-L that was prepared using the optimal formulation revealed a particle size of 185.48 nm, a polydispersity index of 0.252, a zeta potential of -33.88 mV, and an impressive encapsulation efficiency of 97.84%. In vitro release studies showed a significantly higher cumulative release rate for IQ-L compared to free IQ. Pharmacokinetic evaluations in rats demonstrated a 4.54-fold increase in the area under the concentration-time curve, a 1.63-fold prolongation of the half-life, and a 2.07-fold increase in peak concentration for IQ-L compared to unmodified IQ. Moreover, assessments of renal function in a mouse model indicated promising therapeutic effects. In summary, the PEG-modified liposome system greatly improved the solubility and in vivo retention time of IQ, thus making it a potential clinical agent for the treatment of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xue Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Bin Zong
- Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK Ghana
| |
Collapse
|
3
|
Kou X, Su D, Zhang J, Pan F, Zhu J, Meng Q, Ke Q. Cyclodextrin-Based Pickering Emulsion Significantly Increases 6-Gingerol Loading Through Two Different Mechanisms: Cyclodextrin Cavity and Pickering Core. Foods 2025; 14:1066. [PMID: 40232095 PMCID: PMC11942410 DOI: 10.3390/foods14061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
We previously found that host-guest interactions can drive gingerols (Gs) and cyclodextrins (CDs) together to form inclusion complexes (G/CD), which can further construct amphiphilic microcrystals and resultant Pickering emulsions through self-assembly. In this follow-up study, we explored the detailed formation processes and mechanisms of the 6-G/β-CD inclusion complex and the resultant Pickering emulsion. The influence of the 6-G/β-CD molar ratio on the structure, morphology, and loading capacity of the inclusion complex and resultant Pickering emulsion were investigated. The results show that the cyclodextrin-based Pickering emulsion can load 6-G in two places; one place is the cyclodextrin cavity, whose loading capacity is up to 9.28%, while the other one is the Pickering core, with its highest loading capacity at 32.31% when the 6-G/β-CD molar ratio is 5:1. In the above case, the 6-G/β-CD inclusion complex was found to form a unit cell with a 1:2 molar ratio and then self-assemble into amphiphilic microcrystals through cage-type arrangement structures at the oil-water interface, mainly driven by van der Waals forces and hydrogen bonds. This study is helpful in the design and preparation of CD-based high-loading carriers for bioactive compound delivery.
Collapse
Affiliation(s)
- Xingran Kou
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Dongdong Su
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Jingzhi Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Jiamin Zhu
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Qinfei Ke
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| |
Collapse
|
4
|
Chang TS, Ding HY, Wu JY, Lin HY, Wang TY. Glycosylation of 6-gingerol and unusual spontaneous deglucosylation of two novel intermediates to form 6-shogaol-4'- O-β-glucoside by bacterial glycosyltransferase. Appl Environ Microbiol 2024; 90:e0077924. [PMID: 39315794 PMCID: PMC11497796 DOI: 10.1128/aem.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-β-diglucoside (1), 6-gingerol-4'-O-β-glucoside (2), 6-gingerol-5-O-β-glucoside (3), 6-shogaol-4'-O-β-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-β-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-β-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-β-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-β-diglucoside (1) and 6-gingerol-5-O-β-glucoside (3) caused spontaneous deglucosylation through β-elimination to form 6-shogaol-4'-O-β-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-β-glucoside (4). The assays showed 6-shogaol-4'-O-β-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-β-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. IMPORTANCE Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Han-Ying Lin
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Alshaikh F, Al-Samydai A, Issa R, Alshaer W, Alqaraleh M, Al-Halaseh LK, Alsanabrah A, Ghanim BY, Al Azzam KM, Qinna NA. Encapsulation of gingerol into nanoliposomes: Evaluation of in vitro anti-inflammatory and anti-cancer activity. Biomed Chromatogr 2024; 38:e5899. [PMID: 38797863 DOI: 10.1002/bmc.5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Nanoliposomes (NLs) are ideal carriers for delivering complex molecules and phytochemical products, but ginger by-products, despite their therapeutic benefits, have poor bioavailability due to their low water solubility and stability. Crude ginger extracts (CGEs) and 6-gingerol were individually encapsulated within NLs for in vitro activity assessment. In vitro evaluation of anti-proliferative and anti-inflammatory properties of encapsulated 6-gingerol and CGE was performed on healthy human periodontal ligament (PDL) fibroblasts and MDA-MB-231 breast cancer cells. Encapsulation efficiency and loading capacity of 6-gingerol reached 25.23% and 2.5%, respectively. NLs were found stable for up to 30 days at 4°C with a gradual load loss of up to 20%. In vitro cytotoxic effect of encapsulated 6-gingerol exceeded 70% in the MDA-MB-231 cell line, in a comparable manner with non-encapsulated 6-gingerol and CGE. The effect of CGE with an IC50 of 3.11 ± 0.39, 7.14 ± 0.80, and 0.82 ± 0.55 μM and encapsulated 6-gingerol on inhibiting IL-8 was evident, indicating its potential anti-inflammatory activity. Encapsulating 6-gingerol within NLs enhanced its stability and facilitated its biological activity. All compounds, including vitamin C, were equivalent at concentrations below 2 mg/mL, with a slight difference in antioxidant activity. The concentrations capable of inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) substrate were comparable.
Collapse
Affiliation(s)
- Fatima Alshaikh
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Reem Issa
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Lidia K Al-Halaseh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Alaa Alsanabrah
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Khaldun M Al Azzam
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
6
|
Chang TS, Wu JY, Ding HY, Lin HY, Wang TY. Exploring gingerol glucosides with enhanced anti-inflammatory activity through a newly identified α-glucosidase (ArG) from Agrobacterium radiobacter DSM 30147. J Biosci Bioeng 2024:S1389-1723(24)00167-1. [PMID: 38997871 DOI: 10.1016/j.jbiosc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 μM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 μM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Han-Ying Lin
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Polat HK, Gözcü S, Ünal S, Paçacı T, Aytekin E, Karakuyu NF, Köngül Şafak E, Gültekin Y, Yazıksız Y, Kurt N. Gingerol containing polymeric nanofibers: a healing touch for accelerated wound recovery. Drug Dev Ind Pharm 2024; 50:706-719. [PMID: 39115285 DOI: 10.1080/03639045.2024.2390033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE In the current research, 6-gingerol (GA)-loaded nanofiber drug delivery system were developed, and their potential usage in wound healing was evaluated. SIGNIFICANCE This study investigates the effectiveness of nanofibrous membranes composed of sodium alginate (SA), poly(vinyl alcohol) (PVA), and 6-gingerol (GA) as delivery systems for anti-inflammatory agents in the context of wound dressings. METHODS GA-loaded SA/PVA nanofiber was prepared using electrospinning. In vitro characterization of this nanofiber included the examination of comprehensive in vitro characterization, anti-inflammatory and antioxidant activities, cytotoxicity, a scratch tes and in vivo skin test. RESULTS GA was extracted from Zingiber officinale, and its successful isolation was confirmed through analyses such as H-NMR, C-NMR. Then GA was electrospuned into the SA/PVA nanofibers, and scanning electron microscopy (SEM) imaging revealed that the fiber diameters of the formulations ranged between 148 nm and 176 nm. Anti-inflammatory and antioxidant studies demonstrated that the effectiveness of GA increased with higher doses; however, this increase was accompanied by decreased cell viability. In vitro release studies revealed that GA exhibited a burst release within the first 8 h, followed by a controlled release, reaching completion within 24 h. Within the scope of in vitro release kinetics, release data are mathematically compatible with the Weibull model with high correlation. The scratch test results indicated that TB2 (%1 GA) promoted epithelialization. Furthermore, it was determined that TB2 (%1 GA) did not cause any irritation. CONCLUSIONS As a result, TB2 shows promise as a formulation for wound dressings, offering potential benefits in the field of wound care.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Department of Pharmaceutical Technology, Republic of Turkey Ministry of Health, Turkish Medicines and Medical Devices Agency, Ankara, Türkiye
| | - Sefa Gözcü
- Faculty of Pharmacy, Department of Pharmacognosy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Sedat Ünal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, Kayseri, Türkiye
| | - Timur Paçacı
- Department of Chemistry, Gaziosmanpaşa University, Tokat, Türkiye
| | - Eren Aytekin
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Türkiye
| | - Nasıf Fatih Karakuyu
- Faculty of Pharmacy, Department of Pharmacology, Suleyman Demirel University, Isparta, Türkiye
| | - Esra Köngül Şafak
- Faculty of Pharmacy, Department of Pharmacognosy, Erciyes University, Kayseri, Türkiye
| | - Yakup Gültekin
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Selcuk University, Konya, Turkey
| | - Yonca Yazıksız
- Department of Pharmaceutical Technology, Republic of Turkey Ministry of Health, Turkish Medicines and Medical Devices Agency, Ankara, Türkiye
| | - Nihat Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gaziosmanpasa University, Tokat, Türkiye
| |
Collapse
|
8
|
Shi F, Du M, Wang Q, Adu-Frimpong M, Li C, Zhang X, Ji H, Toreniyazov E, Cao X, Wang Q, Xu X. Isoliquiritigenin Containing PH Sensitive Micelles for Enhanced Anti-Colitis Activity. J Pharm Sci 2024; 113:918-929. [PMID: 37777013 DOI: 10.1016/j.xphs.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Isoliquiritigenin (ISL) is known to have a variety of pharmacological activities, but its poor water solubility limits its application. In order to improve the bioavailability of ISL and its anti-colitis activity, this study aims to develop an effective drug delivery system loaded with ISL. In this study, ISL pH-sensitive micelles (ISL-M) were prepared by thin film hydration method. The micellar size (PS), polydispersity index (PDI), electrokinetic potential (ζ-potential), drug loading (DL), encapsulation rate (EE) and other physical parameters were characterized. The storage stability of ISL-M was tested, release in vitro and pharmacokinetic studies in rats were performed, and the anti-inflammatory effect of ISL-M on ulcerative colitis induced by dextran sulfate sodium (DSS) was evaluated. The results showed that PS, PDI, ZP, EE% and DL% of ISL-M were 151.15±1.04 nm, 0.092±0.014, -31.32±0.721 mV, 93.97±1.53 % and 8.42±0.34 %, respectively. Compared with unformulated ISL (F-ISL), the cumulative release rate of ISL-M in the three different media was significantly increased and showed a certain pH sensitivity. The area under drug curve (AUC0-t) and peak concentration (Cmax) of ISL-M group were 2.94 and 4.06 times higher than those of ISL group. In addition, ISL-M is expected to develop new methods for increasing the bioavailability and anti-inflammatory activity of ISL.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Qin Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK 0215-5321, Ghana
| | - Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Xinyue Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, PR China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| |
Collapse
|
9
|
Shi F, Yin W, Adu-Frimpong M, Li X, Xia X, Sun W, Ji H, Toreniyazov E, Qilong W, Cao X, Yu J, Xu X. In-vitro and in-vivo evaluation and anti-colitis activity of esculetin-loaded nanostructured lipid carrier decorated with DSPE-MPEG2000. J Microencapsul 2023; 40:442-455. [PMID: 37191893 DOI: 10.1080/02652048.2023.2215345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Encapsulation of esculetin into DSPE-MPEG2000 carrier was performed to improve its water solubility and oral bioavailability, as well as enhance its anti-inflammatory effect on a mouse model of ulcerative colitis that was induced with dextran sulphate sodium (DSS). METHODS We determined the in-vitro and in-vivo high-performance liquid chromatographic (HPLC) analysis method of esculetin; Esculetin-loaded nanostructure lipid carrier (Esc-NLC) was prepared using a thin-film dispersion method, wherein a particle size analyser was used to measure the particle size (PS) and zeta potential (ZP) of the Esc-NLC, while a transmission electron microscope (TEM) was employed to observe its morphology. Also, HPLC was used to measure its drug loading (DL), encapsulation efficiency (EE) and the in-vitro release of the preparation, as well as investigate the pharmacokinetic parameters. In addition, its anti-colitis effect was evaluated via histopathological examination of HE-stained sections and detection of the concentrations of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (β), and IL-6 in serum with ELISA kits. RESULTS The PS of Esc-NLC was 102.29 ± 0.63 nm with relative standard deviation (RSD) of 1.08% (with poly-dispersity index-PDI of 0.197 ± 0.023), while the ZP was -15.67 ± 1.39 mV with RSD of 1.24%. Solubility of esculetin was improved coupled with prolonged release time. Its pharmacokinetic parameters were compared with that of free esculetin, wherein the maximum concentration of the drug in plasma was increased by 5.5 times. Of note, bioavailability of the drug was increased by 1.7 times, while the half-life was prolonged by 2.4 times. In the anti-colitis efficacy experiment, the mice in Esc and Esc-NLC groups exhibited significantly reduced levels of TNF-α, IL-1β, and IL-6 in their sera comparable to the DSS group. Colon histopathological examination revealed that mice with ulcerative colitis in both Esc and Esc-NLC groups displayed improved inflammation, amid the Esc-NLC groups having the best prophylactic treatment effect. CONCLUSION Esc-NLC could ameliorate DSS-induced ulcerative colitis by improving bioavailability, prolonging drug release time and regulating cytokine release. This observation confirmed the potential of Esc-NLC to reduce inflammation in ulcerative colitis, albeit the need for follow-up research to verify the application of this strategy to clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Wenxiong Yin
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, GH, 0215-5321, UK
| | - Xiaoxiao Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Weigang Sun
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, CN, P.R. China
| | - Elmurat Toreniyazov
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
- Tashkent State Agricultural University (Nukus branch), Nukus, UZ, P.R. China
| | - Wang Qilong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, P.R. China
| |
Collapse
|
10
|
Wang Q, Wang Z, Song J, Xu K, Tian W, Cai X, Mo J, Cao Y, Xiao J. Homogalacturonan enriched pectin based hydrogel enhances 6-gingerol's colitis alleviation effect via NF-κB/NLRP3 axis. Int J Biol Macromol 2023; 245:125282. [PMID: 37331544 DOI: 10.1016/j.ijbiomac.2023.125282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
A nanolipidcarrier (NLC) loaded homogalacturonan enriched pectin (citrus modified pectin, MCP4) hydrogel was designed as a novel colon inflammation site-specific oral delivery system for 6-gingerol (6G) (6G-NLC/MCP4 hydrogel) administration, and its colitis alleviation effect were investigated. 6G-NLC/MCP4 exhibited typical "cage-like" ultrastructure with 6G-NLC embedded in the hydrogel matrix as observed by cryoscanning electron microscope. And due to the homogalacturonan (HG) domain in MCP4 specifically combined with Galectin-3, which is overexpressed in the inflammatory region, the 6G-NLC/MCP4 hydrogel targeted to severe inflammatory region. Meanwhile, the prolonged-release characteristics of 6G-NLC provided sustained release of 6G in severe inflammatory regions. The matrix of hydrogel MCP4 and 6G achieved synergistic alleviation effects for colitis through NF-κB/NLRP3 axis. Specifically, 6G mainly regulated the NF-κB inflammatory pathway and inhibited the activity of NLRP3 protein, while MCP4 regulated the expression of Galectin-3 and peripheral clock gene Rev-Erbα/β to prevent the activation of inflammasome NLRP3.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangjie Xu
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Xu Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiamei Mo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China.
| |
Collapse
|
11
|
Kharwade R, Ali N, Gangane P, Pawar K, More S, Iqbal M, Bhat AR, AlAsmari AF, Kaleem M. DOE-Assisted Formulation, Optimization, and Characterization of Tioconazole-Loaded Transferosomal Hydrogel for the Effective Treatment of Atopic Dermatitis: In Vitro and In Vivo Evaluation. Gels 2023; 9:gels9040303. [PMID: 37102915 PMCID: PMC10137874 DOI: 10.3390/gels9040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
The present study was performed to determine the therapeutic effects of tioconazole (Tz)-loaded novel transferosome carriers (TFs) for the treatment of atopic dermatitis (AD). Method: Tioconazole transferosomes suspension (TTFs) was formulated and optimized using a 32 factorial design. After that, the optimized batch of TTFs loaded into Carbopol 934 and sodium CMC was prepared with hydrogel and noted as TTFsH. Subsequently, it was evaluated for pH, spread ability, drug content, in vitro drug release, viscosity, in vivo scratching and erythema score, skin irritation, and histopathology study. Result: The optimized batch of TTFs (B4) showed the values of vesicle size, flux, and entrapment efficiency to be 171.40 ± 9.03 nm, 48.23 ± 0.42, and 93.89 ± 2.41, respectively. All batches of TTFsH showed sustained drug release for up to 24 h. The F2 optimized batch released Tz in an amount of 94.23 ± 0.98% with a flux of 47.23 ± 0.823 and followed the Higuchi kinetic model. The in vivo studies provided evidence that the F2 batch of TTFsH was able to treat atopic dermatitis (AD) by reducing the erythema and the scratching score compared to that of the marketed formulation (Candiderm cream, Glenmark). The histopathology study supported the result of the erythema and scratching score study with intact skin structure. It showed that a formulated low dose of TTFsH was safe and biocompatible to both the dermis and the epidermis layer of skin. Conclusion: Thus, a low dose of F2-TTFsH is a promising tool that effectively targeted the skin for the topical delivery of Tz to treat atopic dermatitis symptoms.
Collapse
Affiliation(s)
- Rohini Kharwade
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Purushottam Gangane
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Kapil Pawar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Sachin More
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abid R. Bhat
- Department of Emergency Medicine, University of Maryland School of Medicine, 685 West Baltimore St, HSFI Rm 280I, Baltimore, MD 21201, USA
| | - Abdullah F. AlAsmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, India
| |
Collapse
|
12
|
Soni A, Bhandari MP, Tripathi GK, Bundela P, Khiriya PK, Khare PS, Kashyap MK, Dey A, Vellingiri B, Sundaramurthy S, Suresh A, Pérez de la Lastra JM. Nano-biotechnology in tumour and cancerous disease: A perspective review. J Cell Mol Med 2023; 27:737-762. [PMID: 36840363 PMCID: PMC10002932 DOI: 10.1111/jcmm.17677] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/26/2023] Open
Abstract
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood-brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood-brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.
Collapse
Affiliation(s)
- Ambikesh Soni
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Priyavand Bundela
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical SchoolAmity University HaryanaHaryanaIndia
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityWest BengalKolkataIndia
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational ResearchDepartment of ZoologySchool of Basic Sciences, Central University of PunjabMaulana Azad National Institute of TechnologyBathindaIndia
| | - Suresh Sundaramurthy
- Department of Chemical EngineeringMaulana Azad National Institute of TechnologyMadhya PradeshBhopalIndia
| | - Arisutha Suresh
- Department of EnergyMaulana Azad National Institute of Technology & M/s Eco Science & TechnologyMadhya PradeshBhopalIndia
| | - José M. Pérez de la Lastra
- Biotecnología de macromoléculasInstituto de Productos Naturales y Agrobiología, (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
13
|
Preparation, Characterization, Wound Healing, and Cytotoxicity Assay of PEGylated Nanophytosomes Loaded with 6-Gingerol. Nutrients 2022; 14:nu14235170. [PMID: 36501201 PMCID: PMC9741217 DOI: 10.3390/nu14235170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Nutrients are widely used for treating illnesses in traditional medicine. Ginger has long been used in folk medicine to treat motion sickness and other minor health disorders. Chronic non-healing wounds might elicit an inflammation response and cancerous mutation. Few clinical studies have investigated 6-gingerol's wound-healing activity due to its poor pharmacokinetic properties. However, nanotechnology can deliver 6-gingerol while possibly enhancing these properties. Our study aimed to develop a nanophytosome system loaded with 6-gingerol molecules to investigate the delivery system's influence on wound healing and anti-cancer activities. METHODS We adopted the thin-film hydration method to synthesize nanophytosomes. We used lipids in a ratio of 70:25:5 for DOPC(dioleoyl-sn-glycero-3-phosphocholine): cholesterol: DSPE/PEG2000, respectively. We loaded the 6-gingerol molecules in a concentration of 1.67 mg/mL and achieved size reduction via the extrusion technique. We determined cytotoxicity using lung, breast, and pancreatic cancer cell lines. We performed gene expression of inflammation markers and cytokines according to international protocols. RESULTS The synthesized nanophytosome particle sizes were 150.16 ± 1.65, the total charge was -13.36 ± 1.266, and the polydispersity index was 0.060 ± 0.050. Transmission electron microscopy determined the synthesized particles' spherical shape and uniform size. The encapsulation efficiency was 34.54% ± 0.035. Our biological tests showed that 6-gingerol nanophytosomes displayed selective antiproliferative activity, considerable downregulation of inflammatory markers and cytokines, and an enhanced wound-healing process. CONCLUSIONS Our results confirm the anti-cancer activity of PEGylated nanophytosome 6-gingerol, with superior activity exhibited in accelerating wound healing.
Collapse
|
14
|
Ahmad N, Khalid MS, Khan MF, Ullah Z. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Liu J, Hao D, Guo Z, Yu L, Li T, Mei K, Li X, Chen J, Wu Q. Multi-unit pellet drug delivery system of Danggui Decoction extracts for chemoprevention of IBD-associated colorectal cancer in rats. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Verma M, Fatima S, Ansari IA. Phytofabricated Nanoparticle Formulation for Cancer Treatment: A Comprehensive Review. Curr Drug Metab 2022; 23:818-826. [PMID: 35490313 DOI: 10.2174/1389200223666220427101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023]
Abstract
In recent times, nanotechnology has made significant advances in the field of cancer. The majority of chemotherapeutic drugs do not selectively target cancer cells, and they might cause side effects and damage to healthy cells, resulting in a variety of adverse effects. Having a thorough understanding of nanoparticles may improve drug targeting and administration. The nano-engineering of pharmacological and natural compounds can improve the diagnosis and treatment. Polymeric micelles, liposomes, and dendrimers are examples of innovative cancer therapeutic nano-formulations. It has been demonstrated that quantum dots, nano-suspensions, and gold nanoparticles can improve drug delivery. Nanomedicines may be delivered more effectively, focusing on cancerous cells instead of healthy tissues, which minimizes undesirable side effects and drug resistance to chemotherapeutic agents. However, limited water solubility, low stability, poor absorption, and quick metabolism limit their therapeutic effectiveness. Nanotechnology has generated unique formulations to optimise the potential use of phytochemicals in anticancer therapy. Nanocomposites can improve phytochemical solubility and bioavailability, extend their half-life in circulation, and even transport phytochemicals to specific locations. The progress in using phytochemical-based nanoparticles in cancer treatment is summarized in this paper.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral University, IIRC1, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral University, IIRC1, Lucknow, India
| | | |
Collapse
|
19
|
Kharwade R, More S, Suresh E, Warokar A, Mahajan N, Mahajan U. Improvement in Bioavailability and Pharmacokinetic Characteristics of Efavirenz with Booster Dose of Ritonavir in PEGylated PAMAM G4 Dendrimers. AAPS PharmSciTech 2022; 23:177. [PMID: 35750994 DOI: 10.1208/s12249-022-02315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Efavirenz (EFV) with a booster dose of ritonavir (RTV) (EFV-RTV) inhibits the metabolism of EFV and improves its bioavailability. However, inadequate organ perfusion with surface permeability glycoprotein (P-gp) efflux sustains the viable HIV. Hence, the present investigations were aimed to evaluate the pharmacokinetics and tissue distribution efficiency of EFV by encapsulating it into PEGyalated PAMAM (polyamidoamine) G4 dendrimers with a booster dose of RTV (PPG4ER). The entrapment efficiency of PEGylated PAMAM G4 dendrimers was found to be 94% and 92.12% for EFV and RTV respectively with a zeta potential of 0.277 mV. The pharmacokinetics and tissue distribution behavior of EFV within PPG4ER was determined by developing and validating a simple, sensitive, and reliable bioanalytical method of RP-HPLC. The developed bioanalytical method was very sensitive with a quantification limit of 18.5 ng/ml and 139.2 ng/ml for EFV and RTV, respectively. The comparative noncompartmental pharmacokinetic parameters of EFV were determined by administrating a single intraperitoneal dose of EFV, EFV-RTV, and PPG4ER to Wistar rats. The PPG4ER produced prolonged release of EFV with a mean residential time (MRT) of 24 h with Cmax 7.68 µg/ml in plasma against EFV-RTV with MRT 11 h and Cmax 3.633 µg/ml. The PPG4ER was also detected in viral reservoir tissues (lymph node and spleen) for 3-4 days, whereas free EFV and EFV-RTV were cleared within 72 h. The pharmacokinetic data including Cmax, t1/2, AUCtot, and MRT were significantly improved in PPG4ER as compared with single EFV and EFV-RTV. This reveals that the PPG4ER has great potential to target the virus harbors tissues and improve bioavailability.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India.
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Elizabeth Suresh
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| | - Ujwala Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS), 440037, India
| |
Collapse
|
20
|
Development of Cyclodextrin-Functionalized Transethoniosomes of 6-Gingerol: Statistical Optimization, In Vitro Characterization and Assessment of Cytotoxic and Anti-Inflammatory Effects. Pharmaceutics 2022; 14:pharmaceutics14061170. [PMID: 35745746 PMCID: PMC9227240 DOI: 10.3390/pharmaceutics14061170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The poor solubility and stability of 6-gingerol (6-G) could hamper its clinical applications. The aim of the current study was to develop a novel ultra-deformable cyclodextrin-functionalized transethoniosomes (CD-TENs) as a promising delivery system for 6-G. Transethoniosomes (TENs) are flexible niosomes (NVs) due to their content of ethanol and edge activators (EAs). CD-functionalized nanoparticles could improve drug solubility and stability compared to the corresponding nanovesicles. 6-G-loaded ethoniosomes (ENs) were formulated by the ethanol injection technique in the presence and absence of EA and CD to explore the impact of the studied independent variables on entrapment efficiency (EE%) and % 6-G released after 24 h (Q24h). According to the desirability criteria, F8 (CD-functionalized transethoniosomal formula) was selected as the optimized formulation. F8 demonstrated higher EE%, permeation, deformability and stability than the corresponding TENs, ENs and NVs. Additionally, F8 showed higher cytotoxic and anti-inflammatory activity than pure 6-G. The synergism between complexation with CD and novel ultra-deformable nanovesicles (TENs) in the form of CD-TENs can be a promising drug delivery carrier for 6-G.
Collapse
|
21
|
Wei Y, Li K, Zhao W, He Y, Shen H, Yuan J, Pi C, Zhang X, Zeng M, Fu S, Song X, Lee RJ, Zhao L. The Effects of a Novel Curcumin Derivative Loaded Long-Circulating Solid Lipid Nanoparticle on the MHCC-97H Liver Cancer Cells and Pharmacokinetic Behavior. Int J Nanomedicine 2022; 17:2225-2241. [PMID: 35607705 PMCID: PMC9123937 DOI: 10.2147/ijn.s363237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Department of Pharmacy, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People’s Republic of China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, People’s Republic of China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH, 43210, USA
- Correspondence: Robert J Lee, The Ohio State University, 500 W 12th Ave, Columbus, OH, 43210, USA, Tel +1-614-292-4172, Fax +1-614-292-4172, Email
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Ling Zhao, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, People’s Republic of China, Tel +86 830 3160093, Fax +86 830 3160093, Email
| |
Collapse
|
22
|
Xi Y, Wang W, Xu N, Shi C, Xu G, Sun J, He H, Jiang T. Myricetin loaded nano-micelles delivery system reduces bone loss induced by ovariectomy in rats through inhibition of osteoclast formation. J Pharm Sci 2022; 111:2341-2352. [PMID: 35341721 DOI: 10.1016/j.xphs.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
In recent years, much attention has been paid to the therapeutic effects of phytochemicals on osteoporosis. Other studies have shown that myricetin (MY) could promote osteogenic activity and inhibit osteoclastic effect, albeit little is known about effect of MY micellar system on osteoporosis. Therefore, we sought to discuss the therapeutic effect and mechanism of MY-loaded bone-targeting micelles on osteoporosis induced by ovariectomy (OVA) in rats. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles were prepared via ethanol injection method, while in vitro release study, bone targeting, pharmacokinetic studies, and the effect on proliferation of osteoblasts were investigated. Further, the therapeutic effect on osteoporosis was studied through ovariectomized rats. Compared with free MY, oral bioavailability of AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles in rats was increased by 3.54 times. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles exhibited bone targeting potential, and could significantly increase the activity of alkaline phosphatase and promote the proliferation of osteoblasts. Importantly, AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles mainly regulated bone metabolism by inhibiting bone resorption, thereby improving the symptoms of osteoporosis in OVA rats. The AL-P(LLA-CL)-PEG-P(LLA-CL)-MY micelles substantially enhanced the oral bioavailability of MY and demonstrated good bone targeting capability, thereby suggesting its prospect as carrier for osteoporotic improvement in OVA rats.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weiheng Wang
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Ning Xu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Changgui Shi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Guohua Xu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jinxing Sun
- Department of Spine Surgery, Shandong Wendeng Osteopathic Hospital, Weihai 264200, China
| | - Hailong He
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Tingwang Jiang
- Department of Key Laboratory, The Affiliated Changshu Hospital of Xuzhou Medical School, The Second People's Hospital of Changshu, Changshu 215500, China.
| |
Collapse
|
23
|
Arcusa R, Villaño D, Marhuenda J, Cano M, Cerdà B, Zafrilla P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front Nutr 2022; 9:809621. [PMID: 35369082 PMCID: PMC8971783 DOI: 10.3389/fnut.2022.809621] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Ginger is composed of multiple bioactive compounds, including 6-gingerol, 6-shogaol, 10-gingerol, gingerdiones, gingerdiols, paradols, 6-dehydrogingerols, 5-acetoxy-6-gingerol, 3,5-diacetoxy-6-gingerdiol, and 12-gingerol, that contribute to its recognized biological activities. Among them, the major active compounds are 6-shogaol and 6-gingerol. Scientific evidence supports the beneficial properties of ginger, including antioxidant and anti-inflammatory capacities and in contrast, a specific and less studied bioactivity is the possible neuroprotective effect. The increase in life expectancy has raised the incidence of neurodegenerative diseases (NDs), which present common neuropathological features as increased oxidative stress, neuroinflammation and protein misfolding. The structure-activity relationships of ginger phytochemicals show that ginger can be a candidate to treat NDs by targeting different ligand sites. Its bioactive compounds may improve neurological symptoms and pathological conditions by modulating cell death or cell survival signaling molecules. The cognitive enhancing effects of ginger might be partly explained via alteration of both the monoamine and the cholinergic systems in various brain areas. Moreover, ginger decreases the production of inflammatory related factors. The aim of the present review is to summarize the effects of ginger in the prevention of major neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis.
Collapse
|
24
|
Thant Y, Wang Q, Wei C, Liu J, Zhang K, Bao R, Zhu Q, Weng W, Yu Q, Zhu Y, Xu X, Yu J. TPGS conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of Myricetin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Roudsari NM, Lashgari NA, Momtaz S, Roufogalis B, Abdolghaffari AH, Sahebkar A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021; 47:933-951. [PMID: 34388275 DOI: 10.1002/biof.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Basil Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
26
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
27
|
Wang Q, Wang Y, Xie Y, Adu-Frimpong M, Wei C, Yang X, Cao X, Deng W, Toreniyazov E, Ji H, Xu X, Yu J. Nonionic surfactant vesicles as a novel drug delivery system for increasing the oral bioavailability of Ginsenoside Rb1. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Man F, Meng C, Liu Y, Wang Y, Zhou Y, Ma J, Lu R. The Study of Ginger-Derived Extracellular Vesicles as a Natural Nanoscale Drug Carrier and Their Intestinal Absorption in Rats. AAPS PharmSciTech 2021; 22:206. [PMID: 34297224 DOI: 10.1208/s12249-021-02087-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles have been widely used in drug delivery systems and clinical studies as a new natural nanoscale drug carrier. Most of these studies focused on the extracellular vesicles from animals, but few involved in the extracellular vesicles from edible plants. This study was the first to explore the potential and value of ginger-derived extracellular vesicles (GDEVs) as drug carrier by using the content ratio method and to further study their intestinal absorption in rats. In this experiment, GDEVs were extracted and purified by ultrahigh-speed centrifugation. GDEVs were saucer-like with a particle size of 70.09±19.24 nm and a zeta potential of -27.70±12.20 mV. In this experiment, high-performance liquid chromatography was used to explore the difference in gingerol content between GDEVs and ginger slices. Under the same mass, the contents of 6-gingerol (6G), 8-gingerol (8G), and 10-gingerol (10G) in GDEVs were 10.21-fold, 22.69-fold, and 32.36-fold of those in ginger slices, respectively. In this experiment, the absorption kinetics and absorption site of GDEVs were investigated using in situ single-pass intestinal perfusion method in rats. GDEVs could be absorbed by the small intestine in the concentration range of 15-60 mg/mL, and the absorption trend of different intestinal segments was duodenum > jejunum > ileum. These results indicated that GDEVs had good loading capacity and significant prospects as a carrier of the drug delivery system. At the same time, combining the oil-water partition coefficient (6G < 8G < 10G) of three gingerol compounds, we speculated that the loading capacity of GDEVs increased with the increase of the lipid solubility of the compounds. This study fully demonstrated the potential and value of ginger-derived extracellular vesicles as natural nanocarrier and provided an important reference for the further application of plant-derived extracellular vesicles in the drug delivery system.
Collapse
Affiliation(s)
- Fulong Man
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Chen Meng
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Yang Liu
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Yuchen Wang
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Yun Zhou
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Jinqian Ma
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Rong Lu
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China.
- Weihai Neoland Biosciences Co.,Ltd. C-301,Torch Innovative Imbark base, No.213-2 Huoju Road, Weihai, 264209, Shandong, China.
| |
Collapse
|
29
|
Miao Z, Zhang L, Gu M, Huang J, Wang X, Yan J, Xu Y, Wang L. Preparation of Fraxetin Long Circulating Liposome and Its Anti-enteritis Effect. AAPS PharmSciTech 2021; 22:110. [PMID: 33733385 DOI: 10.1208/s12249-021-01940-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
This study sought to improve the oral bioavailability and enhance the anti-enteritis effect of fraxetin by incorporating it into long circulating liposomes (F-LC-Lipo). The optimal formulation of F-LC-Lipo was obtained via orthogonal design. The particle size, morphology, encapsulation efficiency, stability, and anti-enteritis effect of F-LC-Lipo were evaluated. The particle size of F-LC-Lipo was 166.65 ± 8.75 nm with entrapment efficiency (EE) of 92.18 ± 0.17%. The release rate in different dissolution media (pH 1.2 HCl, DDW, and pH 7.4 PBS) was significantly higher than that of fraxetin solution. Compared with the free fraxetin solution, F-LC-Lipo increased oral bioavailability of fraxetin by 4.43 times (443%). More importantly, F-LC-Lipo could improve the levels of interleukin-1 beta (IL-1β), IL-6, malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), prostaglandin E2 (PEG2), and IL-10 in rats with enteritis. Overall, these results suggested that LC-Lipo may serve as a potential carrier for improving the solubility and oral bioavailability of fraxetin as well as improving its enteritis effect.
Collapse
|
30
|
Improvement of Oral Bioavailability and Anti-Tumor Effect of Zingerone Self-Microemulsion Drug Delivery System. J Pharm Sci 2021; 110:2718-2727. [PMID: 33610568 DOI: 10.1016/j.xphs.2021.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
This study sought to prepare a self-microemulsion drug delivery system containing zingerone (Z-SMEDDS) to improve the low oral bioavailability of zingerone and anti-tumor effect. Z-SMEDDS was characterized by particle size, zeta potential and encapsulation efficiency, while its pharmacokinetics and anti-tumor effects were also evaluated. Z-SMEDDS had stable physicochemical properties, including average particle size of 17.29 ± 0.07 nm, the zeta potential of -22.81 ± 0.29 mV, and the encapsulation efficiency of 97.96% ± 0.02%. In vitro release studies have shown the release of zingerone released by Z-SMEDDS was significantly higher than free zingerone in different release media. The relative oral bioavailability of Z-SMEDDS was 7.63 times compared with free drug. Meanwhile, the half inhibitory concentration (IC50)of Z-SMEDDS and free zingerone was 8.45 μg/mL and 13.30 μg/mL, respectively on HepG2. This study may provide a preliminary basis for further clinical research and application of Z-SMEDDS.
Collapse
|
31
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
32
|
Weng W, Wang Q, Wei C, Adu-Frimpong M, Toreniyazov E, Ji H, Yu J, Xu X. Mixed micelles for enhanced oral bioavailability and hypolipidemic effect of liquiritin: preparation, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2021; 47:308-318. [PMID: 33494627 DOI: 10.1080/03639045.2021.1879839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Liquiritin, as one of the main flavonoids in Glycyrrhiza, exhibits extensive pharmacological effects, such as the anti-oxidant, anti-inflammatory, anti-tumor and so on. Herein, the aqueous solubility and oral bioavailability of liquiritin was purposely enhanced via the preparation of the mixed micelles. METHODS The liquiritin-loaded micelles (LLM) were fabricated via thin-film dispersion method. The optimal LLM formulation was evaluated through physical properties including particle size (PS), encapsulation efficiency (EE) and drug loading (DL). In vitro accumulate release as well as in vivo pharmacokinetics were also evaluated. Moreover, the hypolipidemic activity of LLM was observed in the hyperlipidemia mice model. RESULTS The LLM exhibited a homogenous spherical shape with small mean PS, good stability and high encapsulation efficiency. The accumulate release rates in vitro of the LLM were obviously higher than free liquiritin. The oral bioavailability of the formulation was heightened by 3.98 times in comparison with the free liquiritin. More importantly, LLM increased the hypolipidemic and effect of alleviating lipid metabolism disorder in hepatocytes of liquiritin in hyperlipidemia mice model. CONCLUSIONS Collectively, the improved solubility of liquiritin in water coupled with its enhanced oral bioavailability and concomitant hypolipidemic activity could be attributed to the incorporation of the drug into the mixed micelles.
Collapse
Affiliation(s)
- Wen Weng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Chunmei Wei
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus branch), Nukus, The Republic of Uzbekistan.,Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Hao Ji
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China.,Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, People's Republic of China
| |
Collapse
|
33
|
Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm 2021; 592:120036. [DOI: 10.1016/j.ijpharm.2020.120036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
|
34
|
Gu M, Lu L, Wei Q, Miao Z, Zhang H, Gao L, Li L. Improved oral bioavailability and anti-chronic renal failure activity of chrysophanol via mixed polymeric micelles. J Microencapsul 2020; 38:47-60. [PMID: 33175576 DOI: 10.1080/02652048.2020.1849440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS This study was designed to prepare chrysophanol-loaded micelles (CLM) to improve the oral bioavailability, targetability and anti-chronic renal failure (CRF) activity of chrysophanol (CH). METHODS The preparation of CLM was achieved via thin-film dispersion technique. The in vitro release of CLM compared with free CH was measured in phosphate buffer solution (PBS) containing 0.5%w/v sodium dodecyl sulphate (pH 6.8) while the pharmacokinetic and anti-CRF activity study was also conducted in rats. Moreover, the tissue distribution of CLM was investigated in the mice. RESULTS The CLM had particle size (PS) of 29.64 ± 0.71 nm, and encapsulation efficiency (EE) of 90.48 ± 1.22%w/w. The cumulative release rate of CH from the micellar system was significantly higher than that of the free CH (86%m/m vs. 15%m/m, p < 0.01). In vivo pharmacokinetic studies showed that the bioavailability of CLM after oral administration was substantially improved (about 3.4 times) compared with free drugs (p < 0.01). Also, it was observed that CLM accumulated well in the liver and brain. Moreover, in vitro renal podocytes study showed that CLM had better protection against renal podocyte damage than the free CH. In addition, CLM significantly (p < 0.01) reduced levels of blood urea nitrogen (BUN), kidney injury molecule-1 (Kim-1), and serum creatinine (SCr), which obviously improved kidney damage in rats with CRF. CONCLUSIONS Collectively, these findings suggest that mixed micelles may be used as a promising drug delivery system for oral bioavailability improvement and concomitantly enhance the anti-CRF activity of CH, as well as provide a basis for the clinical application of CH.
Collapse
Affiliation(s)
- Mingjia Gu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Lidan Lu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qingxue Wei
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Zhiwei Miao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Hang Zhang
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Leiping Gao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Lejun Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
35
|
Geng Q, Zhao Y, Wang L, Xu L, Chen X, Han J. Development and Evaluation of Astaxanthin as Nanostructure Lipid Carriers in Topical Delivery. AAPS PharmSciTech 2020; 21:318. [PMID: 33175290 DOI: 10.1208/s12249-020-01822-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/16/2020] [Indexed: 12/29/2022] Open
Abstract
The study is designed to formulate, optimize, and evaluate astaxanthin (ASTA)-loaded nanostructured lipid carrier (NLC) with an aim to improve its stability, water solubility, skin permeability and retention and reduce drug-related side effects. ASTA was extracted from Haematococcus pluvialis. ASTA-NLC was formulated by the technique of melt emulsification-ultrasonic and optimized taking solid:liquid lipid ratio, total lipid:drug ratio, drug concentration, emulsifier types, and amounts as independent variables with particle sizes (PS) and entrapment efficiency (EE) as dependent variables. The optimized formulation (N21) exhibited spherical surfaced stable nanoparticles of 67.4 ± 2.1 nm size and 94.3 ± 0.5% EE. Formulation N21 was then evaluated for its physiological properties, physicochemical properties, drug content, in vitro release and skin penetration, and retention analysis. The ASTA-NLC was found to be nonirritating, homogenous, and with excellent stability and water solubility. In vitro release studies showed the cumulative release rate of NLC was 83.0 ± 3.4% at 48 h. The skin penetration and retention studies indicated that cumulative permeability was 174.10 ± 4.38 μg/cm2 and the retention was 8.00 ± 1.62 μg/cm2 within 24 h. It can be concluded that NLC serves as a promising carrier for site specific targeting with better stability and skin penetration.
Collapse
|
36
|
Improved oral bioavailability and target delivery of 6-shogaol via vitamin E TPGS-modified liposomes: Preparation, in-vitro and in-vivo characterizations. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
38
|
Mousavi T, Hadizadeh N, Nikfar S, Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin Drug Discov 2020; 15:1309-1341. [PMID: 32749894 DOI: 10.1080/17460441.2020.1791077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taraneh Mousavi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Hadizadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Eh Suk VR, Mohd Latif F, Teo YY, Misran M. Development of nanostructured lipid carrier (NLC) assisted with polysorbate nonionic surfactants as a carrier for l-ascorbic acid and Gold Tri.E 30. Journal of Food Science and Technology 2020; 57:3259-3266. [PMID: 32728274 DOI: 10.1007/s13197-020-04357-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
Lipid nanocarrier displays the advantages over conventional drug carriers as they are formulated with biodegradable and non-irritant lipids. However, the main drawbacks are the agglomeration of lipid particles, instability over storage, low drug loading, and the burst release of active ingredients. In this study, we investigated the effects of various polysorbate nonionic surfactants namely Tween 20, 40, 60, or 80 on the nanostructured lipid carrier (NLC). NLC incorporated with polysorbate nonionic surfactant was prepared by using high-pressure homogenization technique. The average size was reduced to 139.9 ± 15.8 nm in the presence of Tween 80 and remained stable in nano-size even incubated for 28 days. Encapsulation of l-ascorbic acid or Gold Tri.E 30 showed a high encapsulation efficiency of more than 75%, where the highest was Gold Tri.E in the presence of Tween 60 at 99.7%. In vitro release study showed that the release of both l-ascorbic acid and Gold Tri.E was significantly reduced in NLC with Tween as compared to bare active ingredients and NLC without Tween. In conclusion, the incorporation of Tween successfully produced a lipid nanocarrier that has the potential to be developed as a carrier of various active ingredients such as nutrients, extracts, and drugs.
Collapse
Affiliation(s)
- Vicit Rizal Eh Suk
- Colloid Laboratory, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farhanim Mohd Latif
- Colloid Laboratory, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yin Yin Teo
- Colloid Laboratory, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Misni Misran
- Colloid Laboratory, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019; 24:molecules24234246. [PMID: 31766544 PMCID: PMC6930546 DOI: 10.3390/molecules24234246] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the foremost causes of death globally and also the major stumbling block of increasing life expectancy. Although the primary treatment of surgical resection, chemotherapy, and radiotherapy have greatly reduced the mortality of cancer, the survival rate is still low because of the metastasis of tumor, a range of adverse drug reactions, and drug resistance. For all this, it is relevant to mention that a growing amount of research has shown the anticarcinogenic effect of phytochemicals which can modulate the molecular pathways and cellular events include apoptosis, cell proliferation, migration, and invasion. However, their pharmacological potential is hindered by their low water solubility, low stability, poor absorption, and rapid metabolism. In this scenario, the development of nanotechnology has created novel formulations to maximize the potential use of phytochemicals in anticancer treatment. Nanocarriers can enhance the solubility and stability of phytochemicals, prolong their half-life in blood and even achieve site-targeting delivery. This review summarizes the advances in utilizing nanoparticles in cancer therapy. In particular, we introduce several applications of nanoparticles combined with apigenin, resveratrol, curcumin, epigallocatechin-3-gallate, 6-gingerol, and quercetin in cancer treatment.
Collapse
|
41
|
Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol 2019; 69:190-199. [PMID: 31446004 DOI: 10.1016/j.semcancer.2019.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
The use of nanoparticles dramatically increases the safety and efficacy of the most common anticancer drugs. The main advantages of nano-drugs and delivery systems based on nano-technology are effective targeting, delayed release, increased half-life, and less systemic toxicity. The use of nano-carriers has led to significant improvements in drug delivery to targets compared with traditional administration of these drugs. In this review, the main tendencies in nano-drug formulations as well as factors limiting their use in clinical settings are discussed. Additionally, the current status of approved nano-drugs for cancer treatment is reviewed.
Collapse
Affiliation(s)
- Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia
| | - Kuo Chen
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, USA
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow, 119991, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
42
|
Banerjee S, Pillai J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol 2019; 15:499-515. [PMID: 31104522 DOI: 10.1080/17425255.2019.1621289] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Solid matrix mediated lipid nanoparticle formulations (LNFs) retain some of the best features of ideal drug carriers necessary for improving the oral absorption and bioavailability (BA) of both hydrophilic and hydrophobic drugs. LNFs with solid matrices may be typically categorized into three major types of formulations, viz., solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugate nanoparticles (LDC-NPs). Solid matrix based LNFs are, potentially, the most appropriate delivery systems for poorly water soluble drugs in need of improved drug solubility, permeability, absorption, or increased oral BA. In addition, LNFs as matrices are able to encapsulate both hydrophobic and hydrophilic drugs in a single matrix based on their excellent ability to form cores and shells. Interestingly, LNFs also act as delivery devices to impart chemical stability to various orally administered drugs. Areas covered: Aim of the review is to forecast the presentation of pharmacokinetic characteristics of solid lipid matrix based nanocarriers which are typically biocompatible, biodegradable and non-toxic carrier systems for efficient oral delivery of various drugs. Efficient delivery is broadly mediated by the fact that lipophilic drugs are readily soluble in lipidic substrates that are capable of permeating across the gut epithelium following oral administration, subsequently delivering the moiety of interest more efficiently across the gut mucosal membrane. This enhances the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile. This article specifically focuses on the biopharmaceutical and pharmacokinetic aspects of such solid lipid matrix based nanoformulations and possible mechanisms for better drug absorption and improved BA following oral administration. It also briefly reviews methods to access the efficacy of LNFs for improving oral BA of drugs, regulatory aspects and some interesting lipid-derived commercial formulations, with a concluding remark. Expert opinion: LNFs enhance the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile.
Collapse
Affiliation(s)
- Subham Banerjee
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Guwahati , Assam , India.,b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| | - Jonathan Pillai
- b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| |
Collapse
|
43
|
Xie YJ, Wang QL, Adu-Frimpong M, Liu J, Zhang KY, Xu XM, Yu JN. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Dev Ind Pharm 2019; 45:1224-1232. [PMID: 30681382 DOI: 10.1080/03639045.2019.1574812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Isoliquiritigenin (ISL) possesses a variety of pharmacological activities amid poor solubility in water which has restricted its clinical application. In this study, isoliquiritigenin-loaded F127/P123 polymeric micelles (ISL-FPM) were successfully prepared and evaluated in vitro and in vivo. The particle size, polydispersity index, and zeta potential of the selected formulation were 20.12 ± 0.72 nm, 0.183 ± 0.046, and -38.31 ± 0.33 mV, respectively, coupled with high encapsulation efficiency of 93.76 ± 0.31%. Drug-loading test showed the solubility of ISL after formulating into micelles was 232 times higher than its intrinsic solubility. Moreover, critical micelle concentration (CMC) was tested with fluorescence probe method and turned out to be quite low, which implied high stability of ISL-FPM. Release profile in HCl (pH 1.2), double distilled water, and PBS (pH 7.4) of ISL-FPM reached over 80%, while free ISL was around 40%. Pharmacokinetic research revealed that formulated ISL-FPM significantly increased bioavailability by nearly 2.23-fold compared to free ISL. According to the results of in vitro antioxidant activity, scavenging DPPH activity of ISL was significantly strengthened when it was loaded into polymeric micelles. Altogether, ISL-FPM can act as a promising approach to improve solubility as well as enhance bioavailability and antioxidant activity of ISL.
Collapse
Affiliation(s)
- Yu-Jiao Xie
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| | - Qi-Long Wang
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| | - Michael Adu-Frimpong
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| | - Jian Liu
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| | - Kang-Yi Zhang
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| | - Xi-Ming Xu
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| | - Jiang-Nan Yu
- a Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering , Jiangsu University , Zhenjiang , People's Republic of China
| |
Collapse
|
44
|
Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. NANOMATERIALS 2019; 9:nano9040638. [PMID: 31010180 PMCID: PMC6523119 DOI: 10.3390/nano9040638] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Many therapeutically active molecules are non-soluble in aqueous systems, chemically and biologically fragile or present severe side effects. Lipid-based nanoparticle (LBNP) systems represent one of the most promising colloidal carriers for bioactive organic molecules. Their current application in oncology has revolutionized cancer treatment by improving the antitumor activity of several chemotherapeutic agents. LBNPs advantages include high temporal and thermal stability, high loading capacity, ease of preparation, low production costs, and large-scale industrial production since they can be prepared from natural sources. Moreover, the association of chemotherapeutic agents with lipid nanoparticles reduces active therapeutic dose and toxicity, decreases drug resistance and increases drug levels in tumor tissue by decreasing them in healthy tissue. LBNPs have been extensively assayed in in vitro cancer therapy but also in vivo, with promising results in some clinical trials. This review summarizes the types of LBNPs that have been developed in recent years and the main results when applied in cancer treatment, including essential assays in patients.
Collapse
|
45
|
Liu Y, Sun C, Li W, Adu-Frimpong M, Wang Q, Yu J, Xu X. Preparation and Characterization of Syringic Acid-Loaded TPGS Liposome with Enhanced Oral Bioavailability and In Vivo Antioxidant Efficiency. AAPS PharmSciTech 2019; 20:98. [PMID: 30719694 DOI: 10.1208/s12249-019-1290-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, syringic acid-loaded TPGS liposome (SA-TPGS-Ls) was successfully prepared to improve oral bioavailability of syringic acid (SA). SA is a natural and notable antioxidant activity compound with its limited bioavailability ascribable to its poor aqueous solubility and fast elimination. Recently, TPGS has become a perfect molecular biomaterial in developing several carrier systems with sustained, controlled, and targeted the drug delivery. SA-TPGS-Ls was prepared via thin-film dispersion method and characterized in terms of particle size, stability, morphology, and encapsulation efficiency (EE). The results showed that SA-TPGS-Ls had regular spherical-shaped nanoparticles with EE of 96.48 ± 0.76%. The pharmacokinetic studies demonstrated a delayed MRT and prolonged t1/2, while relative oral bioavailability increased by 2.8 times. Tissue distribution showed that SA-TPGS-Ls maintained liver drug concentration while delayed elimination was also observed in the kidney. In CCl4-induced hepatotoxicity study, the activities of hepatic T-AOC, GSH-Px, CAT, GSH, and SOD were greatly elevated, while serum biological markers ALT, AST, and AKP were reduced after treatment of mice with SA-TPGS-Ls. Histopathological studies confirmed that SA-TPGS-Ls could remarkably improve the status of hepatic tissues. Collectively, SA-TPGS-Ls significantly improved the drug encapsulation efficiency, stability coupled with bioavailability of SA, hence increasing in vivo antioxidant activity of the drug.
Collapse
|