1
|
Suntornlohanakul O, Ronchi CL, Arlt W, Prete A. Sexual dimorphism in benign adrenocortical tumours. Eur J Endocrinol 2025; 192:R1-R12. [PMID: 40296186 DOI: 10.1093/ejendo/lvaf088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Benign adrenocortical tumours are the most common adrenal neoplasms. Evidence over the past few decades has highlighted sex differences in their prevalence, clinical characteristics, and treatment outcomes. Cortisol-producing adenomas causing either Cushing's syndrome, particularly those with PRKACA or GNAS somatic mutations associated with a more severe phenotype, or mild autonomous cortisol secretion (MACS) are more commonly observed in women. The mechanisms underpinning this sexual dimorphism remain to be fully elucidated. Studies in mice have revealed a protective role of androgens in males, leading to a decelerated growth rate of adrenocortical cells. Furthermore, evidence from human adrenal tumour tissue suggests that oestrogen, progesterone, and luteinising hormone/choriogonadotropin signalling in the adrenal cortex may play a role in adrenal tumourigenesis and steroid production. Clinically, this is supported by the increased incidence of cortisol-producing adrenocortical adenomas or nodular hyperplasia during puberty, pregnancy, and menopause. Notably, women with MACS seem to be more vulnerable to the harmful effects of cortisol excess and carry a higher mortality risk than men. Women with aldosterone-producing adenomas have a higher prevalence of somatic KCNJ5 mutations than men, and patients harbouring these mutations are likely to have more favourable clinical outcomes after adrenalectomy. In this review, we summarise the possible mechanisms behind the sexual dimorphism of benign adrenocortical tumours and provide an up-to-date overview of the sex-specific differences in their prevalence, clinical presentation, and outcomes, focusing on cortisol and aldosterone excess. Considering sexual dimorphism is crucial to guide diagnosis and management, and to counsel these patients for optimised care.
Collapse
Affiliation(s)
- Onnicha Suntornlohanakul
- Endocrinology and Metabolism Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B152TT, United Kingdom
| | - Cristina L Ronchi
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B152TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B152TT, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B152GW, United Kingdom
| | - Wiebke Arlt
- Medical Research Council Laboratory of Medical Sciences, London W120NN, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London SW72AZ, United Kingdom
| | - Alessandro Prete
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B152TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B152TT, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B152GW, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B152GW, United Kingdom
| |
Collapse
|
2
|
Ylänen A, Isojärvi J, Virtanen A, Leijon H, Vesterinen T, Aro AL, Huhtala H, Kokko E, Pörsti I, Viukari M, Nevalainen PI, Matikainen N. Adrenal aldosterone synthase (CYP11B2) histopathology and its association with disease-induced sudden death: a cross-sectional study. THE LANCET REGIONAL HEALTH. EUROPE 2025; 51:101226. [PMID: 39995489 PMCID: PMC11849129 DOI: 10.1016/j.lanepe.2025.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Background Unidentified cardiovascular risk factors may account for approximately half of sudden deaths, a devastating event with limited preventive tools. We investigated whether adrenal histopathology suggestive of primary aldosteronism, pheochromocytoma, or adrenal masses could explain part of the risk for disease-induced sudden death (DSD). Methods In this study, autopsies and histopathological analyses, including aldosterone synthase staining of adrenal glands, were performed on 403 consecutive individuals who experienced sudden death. These individuals were classified into 258 cases of DSD and 144 deaths caused by trauma, suicide, or intoxication, i.e., non-disease-induced sudden death (nDSD). This trial was registered at ClinicalTrials.gov (NCT05446779). Findings Adrenal histopathology revealed changes in 31 (7.7%) subjects of the cohort. Of these, the most prevalent findings [25 (6.2%)] were aldosterone-producing adenomas (APA) or nodules (APN), which were associated with myocardial infarction and atherosclerosis at autopsy. Individuals in the DSD group and the subgroup with sudden cardiac death (SCD) were more likely to have APA or APN than individuals in the nDSD group [23 (8.9%) vs. 2 (1.4%), p = 0.002; 16 (8.8%) vs. 2 (1.4%), p = 0.003, respectively]. APA or APN were explanatory factors for DSD (odds ratio [OR] 6.47, 95% confidence interval [CI] 1.40-29.88, p = 0.017) and SCD (OR 10.68, 95% CI 2.02-56.43, p = 0.005). Other findings included two pheochromocytomas, one bilateral adrenal metastasis, and two unilateral adrenal metastases. Interpretation In this exploratory study, APA or APN were more frequently seen in DSD and SCD than nDSD cases. Whether primary aldosteronism constitutes a novel risk factor for sudden death warrants further study. Funding Finnish State Research funds and independent research foundations: Aarne Koskelo Foundation, the Finnish Kidney Foundation, and the Finnish Foundation for Cardiovascular Research.
Collapse
Affiliation(s)
- Antero Ylänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Juhani Isojärvi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Virtanen
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Helena Leijon
- HUS Diagnostic Center, HUSLAB, Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Vesterinen
- HUS Diagnostic Center, HUSLAB, Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aapo L. Aro
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heini Huhtala
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Eeva Kokko
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Marianna Viukari
- Endocrinology, Helsinki University Hospital, ENDO-ERN (European Reference Network on Rare Endocrine Conditions) and University of Helsinki, Helsinki, Finland
| | - Pasi I. Nevalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Niina Matikainen
- Endocrinology, Helsinki University Hospital, ENDO-ERN (European Reference Network on Rare Endocrine Conditions) and University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Erceg N, Micic M, Forouzan E, Knezevic NN. The Role of Cortisol and Dehydroepiandrosterone in Obesity, Pain, and Aging. Diseases 2025; 13:42. [PMID: 39997049 PMCID: PMC11854441 DOI: 10.3390/diseases13020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Obesity, chronic pain, and aging are prevalent global challenges with profound implications for health and well-being. Central to these processes are adrenal hormones, particularly cortisol and dehydroepiandrosterone (DHEA), along with its sulfated form (DHEAS). Cortisol, essential for stress adaptation, can have adverse effects on pain perception and aging when dysregulated, while DHEA/S possess properties that may mitigate these effects. This review explores the roles of cortisol and DHEA/S in the contexts of obesity, acute and chronic pain, aging, and age-related diseases. We examine the hormonal balance, specifically the cortisol-to-DHEA ratio (CDR), as a key marker of stress system functionality and its impact on pain sensitivity, neurodegeneration, and physical decline. Elevated CDR and decreased DHEA/S levels are associated with worsened outcomes, including increased frailty, immune dysfunction, and the progression of age-related conditions such as osteoporosis and Alzheimer's disease. This review synthesizes the current literature to highlight the complex interplay between these hormones and their broader implications for health. It aims to provide insights into potential future therapies to improve pain management and promote healthy weight and aging. By investigating these mechanisms, this work contributes to a deeper understanding of the physiological intersections between pain, aging, and the endocrine system.
Collapse
Affiliation(s)
- Nikolina Erceg
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miodrag Micic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
| | - Eli Forouzan
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Takeda Y, Demura M, Yoneda T, Karashima S, Kometani M, Aono D, Konishi S, Horike SI, Nakamura Y, Yamazaki Y, Sasano H, Takeda Y. Epigenomic Alterations of the Human CYP11B Gene in Adrenal Zonation. Int J Mol Sci 2024; 25:11956. [PMID: 39596027 PMCID: PMC11593487 DOI: 10.3390/ijms252211956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The CYP11B2 gene is sporadically expressed in the zona glomerulosa (ZG), whereas the CYP11B1 gene is detected in the zona fasciculata (ZF)/reticularis (ZR), with predominant expression in the ZF. We studied the association between DNA methylation and adrenal zonation. Next, the CYP11B2 methylation statuses in the adrenal medulla (n = 4) and pheochromocytomas (n = 7) were examined. The expression of CYP11B2 in pheochromocytomas and non-functioning adenomas (NFAs) (n = 4) was also studied. Adrenals from five autopsy subjects were assessed for immunohistochemically defined adrenal zonation. We used laser capture microscopy to isolate DNA from each zone in adrenal tissues. CYP11B1 was predominantly unmethylated in the ZF but heavily methylated in the ZG and the ZR. In contrast, CYP11B2 was hypomethylated in the ZG compared with in the ZF and the ZR. In terms of the expression site and strength, the promoter methylation patterns for CYP11B2 and CYP11B1 showed capacities to express CYP11B enzymes. The DNA methylation patterns of the CYP11B2 and CYP11B1 promoters were closely associated with adrenal zonation. The unmethylated CpGs of CYP11B2 were found in the adrenal medulla and pheochromocytomas. Gene expression of CYP11B2 was detected in the pheochromocytomas. These results indicate the possibility that the synthesis of aldosterone occurs in the adrenal medulla. Further study is necessary to elucidate the pathophysiological roles for the synthesis of aldosterone in the adrenal medulla.
Collapse
Affiliation(s)
- Yoshimichi Takeda
- Saiseikai Kanazawa Hospital, 13-6 Akadochyo-ni, Kanazawa 920-0353, Japan;
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan;
| | - Takashi Yoneda
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
| | - Shigehiro Karashima
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
| | - Daisuke Aono
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
| | - Seigo Konishi
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
| | - Shin-ichi Horike
- Division of Functional Genomics, Research Center for Experimental Modeling of Human Disease, 13-1 Takara-machi, Kanazawa 920-8640, Japan;
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical and Pharmaceutical University 1-15-1 Fukumuro, Miyaginoku, Sendai 983-8536, Japan;
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.Y.); (H.S.)
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (Y.Y.); (H.S.)
| | - Yoshiyu Takeda
- Department of Health Promotion and Medicine of Future, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan (S.K.); (M.K.); (D.A.); (S.K.)
- Hypertension Center, Asanogawa General Hospital, 83 Kosakamachi-naka, Kanazawa 920-8621, Japan
| |
Collapse
|
5
|
Shironomae T, Yamazaki Y, Takeyama J, Sakai K, Sasano H, Suzuki T. Development of aldosterone biosynthesis during fetal and pediatric periods; Histological analysis of CYP11B2-positive cell distribution in the zona glomerulosa of human adrenal. J Steroid Biochem Mol Biol 2024; 244:106593. [PMID: 39094666 DOI: 10.1016/j.jsbmb.2024.106593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The distribution of CYP11B2-positive or aldosterone producing adrenocortical cells in human fetuses and children and their age-dependent changes has not been studied. We aimed to explore the changes of aldosterone biosynthesis and age-related histological alterations of the zona glomerulosa in human adrenal gland during fetal and pediatric periods. We first reviewed 125 fetal and pediatric autopsy cases and retrieved 78 adrenals from 70 cases. CYP11B2 immunohistochemistry and quantitative image analysis of its results were performed in all adrenal glands. The ratio of the definitive zone (DZ) or zona glomerulosa (ZG) / the whole adrenocortical areas started to increase in the 2nd trimester, subsequently decreased in the 3rd, increased after birth, peaked in infancy, and then gradually decreased. The ratio of CYP11B2-positive / whole adrenocortical areas remained low during the fetal period but increased after birth, peaked at infancy, and then decreased. The ratio of CYP11B2-positive / DZ or ZG areas and CYP11B2-positive areas / depth of DZ or ZG demonstrated a distinctive bimodal pattern, with one peak in the fetal period and another in the neonatal period to infancy. This is the first study to perform quantitative analysis of the distribution of CYP11B2-positive cells, the histological DZ or ZG, and the development of aldosterone biosynthesis in human adrenal glands during fetal and pediatric periods.
Collapse
Affiliation(s)
- Tsubasa Shironomae
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Urology, Miyagi Children's Hospital, Sendai, Japan
| | - Yuto Yamazaki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Junji Takeyama
- Department of Pathology, Miyagi Children's Hospital, Sendai, Japan
| | - Kiyohide Sakai
- Department of Urology, Miyagi Children's Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Wen TZ, Li TR, Chen XY, Chen HY, Wang S, Fu WJ, Xiao SQ, Luo J, Tang R, Ji JL, Huang JF, He ZC, Luo T, Zhao HL, Chen C, Miao JY, Niu Q, Wang Y, Bian XW, Yao XH. Increased adrenal steroidogenesis and suppressed corticosteroid responsiveness in critical COVID-19. Metabolism 2024; 160:155980. [PMID: 39053691 DOI: 10.1016/j.metabol.2024.155980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The effect of coronavirus disease 2019 (COVID-19) on adrenal endocrine metabolism in critically ill patients remains unclear. This study aimed to investigate the alterations in adrenal steroidogenic activity, elucidate underlying mechanisms, provide in situ histopathological evidence, and examine the clinical implications. METHODS The comparative analyses of the adrenal cortices from 24 patients with fatal COVID-19 and 20 matched controls were performed, excluding patients previously treated with glucocorticoids. SARS-CoV-2 and its receptors were identified and pathological alterations were examined. Furthermore, histological examinations, immunohistochemical staining and ultrastructural analyses were performed to assess corticosteroid biosynthesis. The zona glomerulosa (ZG) and zona fasciculata (ZF) were then dissected for proteomic analyses. The biological processes that affected steroidogenesis were analyzed by integrating histological, proteomic, and clinical data. Finally, the immunoreactivity and responsive genes of mineralocorticoid and glucocorticoid receptors in essential tissues were quantitatively measured to evaluate corticosteroid responsiveness. FINDINGS The demographic characteristics of COVID-19 patients were comparable with those of controls. SARS-CoV-2-like particles were identified in the adrenocortical cells of three patients; however, these particles did not affect cellular morphology or steroid synthesis compared with SARS-CoV-2-negative specimens. Although the adrenals exhibited focal necrosis, vacuolization, microthrombi, and inflammation, widespread degeneration was not evident. Notably, corticosteroid biosynthesis was significantly enhanced in both the ZG and ZF of COVID-19 patients. The increase in the inflammatory response and cellular differentiation in the adrenal cortices of patients with critical COVID-19 was positively correlated with heightened steroidogenic activity. Additionally, the appearance of more dual-ZG/ZF identity cells in COVID-19 adrenals was in accordance with the increased steroidogenic function. However, activated mineralocorticoid and glucocorticoid receptors and their responsive genes in vital tissues were markedly reduced in patients with critical COVID-19. INTERPRETATION Critical COVID-19 was characterized by potentiated adrenal steroidogenesis, associated with increased inflammation, enhanced differentiation and elevated dual-ZG/ZF identity cells, alongside suppressed corticosteroid responsiveness. These alterations implied the reduced effectiveness of conventional corticosteroid therapy and underscored the need for evaluation of the adrenal axis and corticosteroid sensitivity.
Collapse
Affiliation(s)
- Tian-Zi Wen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tian-Ran Li
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xin-Yu Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - He-Yuan Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shi-Qi Xiao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jie Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Rui Tang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia-Le Ji
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia-Feng Huang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong-Liang Zhao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cong Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; Jinfeng Laboratory, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; YuYue Laboratory, Chongqing, China.
| | - Xiao-Hong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
7
|
Iwahashi N, Umakoshi H, Fujita M, Fukumoto T, Ogasawara T, Yokomoto-Umakoshi M, Kaneko H, Nakao H, Kawamura N, Uchida N, Matsuda Y, Sakamoto R, Seki M, Suzuki Y, Nakatani K, Izumi Y, Bamba T, Oda Y, Ogawa Y. Single-cell and spatial transcriptomics analysis of human adrenal aging. Mol Metab 2024; 84:101954. [PMID: 38718896 PMCID: PMC11101872 DOI: 10.1016/j.molmet.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.
Collapse
Affiliation(s)
- Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Stuckey BGA, Dedic D, Zhang R, Rabbah A, Turcu AF, Auchus RJ. Abiraterone in Classic Congenital Adrenal Hyperplasia: Results of Medical Therapy Before Adrenalectomy. JCEM CASE REPORTS 2024; 2:luae077. [PMID: 38798742 PMCID: PMC11119162 DOI: 10.1210/jcemcr/luae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 05/29/2024]
Abstract
We present the case of a 20-year-old woman with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency, with uncontrolled hyperandrogenemia despite supraphysiological glucocorticoid therapy. We used abiraterone acetate, an inhibitor of the 17-hydroxylase/17,20-lyase enzyme, to suppress adrenal androgen synthesis and allow physiological glucocorticoid and mineralocorticoid therapy, as a proof-of-concept, before proceeding to bilateral adrenalectomy. We report the patient's clinical course, the changes in adrenal steroids, and the immunohistochemistry of the adrenals.
Collapse
Affiliation(s)
- Bronwyn G A Stuckey
- Keogh Institute for Medical Research, Nedlands, Western Australia 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Deila Dedic
- Murdoch Endocrinology, Murdoch, Western Australia 6150, Australia
| | - Rui Zhang
- Department of Biochemistry, PathWest Laboratory Medicine, Nedlands, Western Australia 6009, Australia
| | - Amira Rabbah
- Department of Internal Medicine/Division of Metabolism, Endocrinology, and Metabolism, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adina F Turcu
- Department of Internal Medicine/Division of Metabolism, Endocrinology, and Metabolism, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Auchus
- Department of Internal Medicine/Division of Metabolism, Endocrinology, and Metabolism, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Jiang JH, Wang YF, Zheng J, Lei YM, Chen ZY, Guo Y, Guo YJ, Guo BQ, Lv YF, Wang HH, Xie JJ, Liu YX, Jin TW, Li BQ, Zhu XS, Jiang YH, Mo ZN. Human-like adrenal features in Chinese tree shrews revealed by multi-omics analysis of adrenal cell populations and steroid synthesis. Zool Res 2024; 45:617-632. [PMID: 38766745 PMCID: PMC11188597 DOI: 10.24272/j.issn.2095-8137.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 05/22/2024] Open
Abstract
The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.
Collapse
Affiliation(s)
- Jing-Hang Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Reproductive Medicine Center, Jingmen People's Hospital, JingChu University of Technology Affiliated Central Hospital, Jingmen, Hubei 448000, China
| | - Yi-Fu Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jie Zheng
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi-Ming Lei
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Zhong-Yuan Chen
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Guo
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ya-Jie Guo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bing-Qian Guo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu-Fang Lv
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hong-Hong Wang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Juan-Juan Xie
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi-Xuan Liu
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ting-Wei Jin
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bi-Qi Li
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Xiao-Shu Zhu
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi 537000, China. E-mail:
| | - Yong-Hua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China. E-mail:
| | - Zeng-Nan Mo
- Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China. E-mail:
| |
Collapse
|
10
|
Wen TZ, Fu WJ, Xiao SQ, Wang S, Li TR, Chen XY, Chen HY, Luo J, Bian XW, Yao XH. Disorganized adrenocortical zonational structure in COVID-19 patients: Implications of critical illness duration. Pathol Res Pract 2024; 256:155251. [PMID: 38490097 DOI: 10.1016/j.prp.2024.155251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Aberrant adrenal function has been frequently reported in COVID-19 patients, but histopathological evidence remains limited. This retrospective autopsy study aims to scrutinize the impact of COVID-19 duration on adrenocortical zonational architecture and peripheral corticosteroid reactivity. The adrenal glands procured from 15 long intensive care unit (ICU)-stay COVID-19 patients, 9 short ICU-stay COVID-19 patients, and 20 matched controls. Subjects who had received glucocorticoid treatment prior to sampling were excluded. Applying hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining, we disclosed that the adrenocortical zonational structure was substantially disorganized in COVID-19 patients, which long ICU-stay patients manifested a higher prevalence of severe disorganization (67%) than short ICU-stay patients (11%; P = 0.0058). The adrenal cortex of COVID-19 patients exhibited a 40% decrease in the zona glomerulosa (ZG) area and a 74% increase in the zona fasciculata (ZF) area (both P < 0.0001) relative to controls. Furthermore, among long ICU-stay COVID-19 patients, the ZG area diminished by 31% (P = 0.0004), and the ZF area expanded by 27% (P = 0.0004) in comparison to short ICU-stay patients. The zona reticularis (ZR) area remained unaltered. Nuclear translocation of corticosteroid receptors in the liver and kidney of long ICU-stay COVID-19 patients was at least 43% lower than in short ICU-stay patients (both P < 0.05). These findings underscore the necessity for clinicians to monitor adrenal function in long-stay COVID-19 patients.
Collapse
Affiliation(s)
- Tian-Zi Wen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shi-Qi Xiao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Wang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tian-Ran Li
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xin-Yu Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - He-Yuan Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jie Luo
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Xiao-Hong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
11
|
Nonaka K, Takubo K, Aida J, Watai Y, Komatsu A, Gomi F, Shichi Y, Yamazaki Y, Ishiwata T, Sasano H, Arai T. Accelerated telomere shortening in adrenal zona reticularis in patients with prolonged critical illness. Front Endocrinol (Lausanne) 2023; 14:1244553. [PMID: 37745694 PMCID: PMC10512174 DOI: 10.3389/fendo.2023.1244553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Background The number of patients with prolonged critical illness (PCI) has been increasing in many countries, and the adrenal gland plays an important role in maintaining homeostasis during PCI. Chronic disease burden is reportedly associated with shorter telomere lengths in human tissues. Telomere shortening in human somatic cells is largely dependent on cell divisions, and critically short telomeres lead to cellular dysfunction and aging. However, the association between PCI and telomere lengths in human adrenal cells is poorly understood. In this study, we investigated this association to assess whether the burden of PCI could accelerate the aging process in adrenal cells. Methods Adrenocortical tissues from patients who died after PCI usually show a diffuse pattern of intracellular cholesterol ester depletion (i.e., lipid depletion). This study examined near-normal adrenal glands obtained from autopsied patients who died suddenly (control group) and lipid-depleted adrenal glands obtained from autopsied patients who died after PCI (PCI group). The control group included 7 men aged 80 to 94 years (mean age: 85.3 years) and 7 women aged 84 to 94 years (mean age: 87.7 years). The PCI group included 10 men aged 71 to 88 years (mean age: 78.8 years) and 8 women aged 77 to 95 years (mean age: 85.6 years). By using quantitative fluorescence in situ hybridization, relative telomere lengths (RTLs) were determined in the parenchymal cells of the three adrenocortical zones (zona glomerulosa, zona fasciculata, and zona reticularis [ZR]) and in the chromaffin cells of the medulla. The number of adrenal parenchymal cells was determined by immunohistochemistry and digital image analysis. Results RTLs in ZR cells were significantly shorter in the PCI group than in the control group for both men and women (P = 0.0001 for men and P = 0.0012 for women). However, RTLs in the remaining three types of adrenal cells did not differ between the control and PCI groups for both men and women. The number of ZR cells was higher in the PCI group than in the control group for both men and women (P < 0.0001 for both men and women). The proportion of the number of ZR cells to the total number of adrenocortical parenchymal cells was also higher in the PCI group than in the control group (P < 0.0001 for both men and women). The Ki-67 proliferation index in ZR cells was higher in the PCI group than in the control group (P = 0.0039 for men and P = 0.0063 for women). Conclusions This study demonstrated ZR cell-specific telomere shortening in patients with adrenal lipid depletion who died after PCI. Our results suggest that the reactive proliferation of ZR cells accelerates the telomere shortening and aging process in ZR cells in these patients. The results of our study may contribute to the understanding of adrenal aging during PCI.
Collapse
Affiliation(s)
- Keisuke Nonaka
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoriko Watai
- Department of Drug Discovery Support Business, Summit Pharmaceuticals International, Tokyo, Japan
| | - Akiko Komatsu
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuuki Shichi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
12
|
Jin J, Yang X, Gong H, Li X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int J Mol Sci 2023; 24:12790. [PMID: 37628974 PMCID: PMC10454612 DOI: 10.3390/ijms241612790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Compared to young people and adults, there are differences in the ability of elderly people to resist diseases or injuries, with some noticeable features being gender-dependent. However, gender differences in age-related viscera alterations are not clear. To evaluate a potential possibility of gender differences during the natural aging process, we used three age groups to investigate the impact on spleens, kidneys, and adrenal glands. The immunofluorescence results showed that male-specific p21 proteins were concentrated in the renal tubule epithelial cells of the kidney. Histological staining revealed an increase in the frequencies of fat vacuoles located in the renal tubule epithelial cells of the cortex, under the renal capsule in the kidneys of male mice with age. In female mice, we found that the width of the globular zone in the adrenal gland cortex was unchanged with age. On the contrary, the male displayed a reduction in width. Compared to females, the content of epinephrine in adrenal gland tissue according to ELISA analysis was higher in adults, and a greater decline was observed in aged males particularly. These data confirmed the age-dependent differences between female and male mice; therefore, gender should be considered one of the major factors for personalized treatment in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Warde KM, Smith LJ, Basham KJ. Age-related Changes in the Adrenal Cortex: Insights and Implications. J Endocr Soc 2023; 7:bvad097. [PMID: 37564884 PMCID: PMC10410302 DOI: 10.1210/jendso/bvad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological function. This process affects all organs including the adrenal cortex, which normally functions to produce essential steroid hormones including mineralocorticoids, glucocorticoids, and androgens. With increasing age, features such as reduced adrenal cortex size, altered zonation, and increased myeloid immune cell infiltration substantially alter the structure and function of the adrenal cortex. Many of these hallmark features of adrenal cortex aging occur both in males and females, yet are more enhanced in males. Hormonally, a substantial reduction in adrenal androgens is a key feature of aging, which is accompanied by modest changes in aldosterone and cortisol. These hormonal changes are associated with various pathological consequences including impaired immune responses, decreased bone health, and accelerated age-related diseases. One of the most notable changes with adrenal aging is the increased incidence of adrenal tumors, which is sex dimorphic with a higher prevalence in females. Increased adrenal tumorigenesis with age is likely driven by both an increase in genetic mutations as well as remodeling of the tissue microenvironment. Novel antiaging strategies offer a promising avenue to mitigate adrenal aging and alleviate age-associated pathologies, including adrenal tumors.
Collapse
Affiliation(s)
- Kate M Warde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Lorenzo J Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Chen Y, Yang J, Zhang Y, Sun Y, Zhang X, Wang X. Age-related morphometrics of normal adrenal glands based on deep learning-aided segmentation. Heliyon 2023; 9:e16810. [PMID: 37346358 PMCID: PMC10279821 DOI: 10.1016/j.heliyon.2023.e16810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVE This study aims to evaluate the morphometrics of normal adrenal glands in adult patients semiautomatically using a deep learning-based segmentation model. MATERIALS AND METHODS A total of 520 abdominal CT image series with normal findings, from January 1, 2016, to March 14, 2019, were retrospectively collected for the training of the adrenal segmentation model. Then, 1043 portal venous phase image series of inpatient contrast-enhanced abdominal CT examinations with normal adrenal glands were included for analysis and grouped by every 10-year gap. A 3D U-Net-based segmentation model was used to predict bilateral adrenal labels followed by manual modification of labels as appropriate. Quantitative parameters (volume, CT value, and diameters) of the bilateral adrenal glands were then analyzed. RESULTS In the study cohort aged 18-77 years old (554 males and 489 females), the left adrenal gland was significantly larger than the right adrenal gland [all patients, 2867.79 (2317.11-3499.89) mm3 vs. 2452.84 (1983.50-2935.18) mm3, P < 0.001]. Male patients showed a greater volume of bilateral adrenal glands than females in all age groups (all patients, left: 3237.83 ± 930.21 mm3 vs. 2646.49 ± 766.42 mm3, P < 0.001; right: 2731.69 ± 789.19 mm3 vs. 2266.18 ± 632.97 mm3, P = 0.001). Bilateral adrenal volume in male patients showed an increasing then decreasing trend as age increased that peaked at 38-47 years old (left: 3416.01 ± 886.21 mm3, right: 2855.04 ± 774.57 mm3). CONCLUSIONS The semiautomated measurement revealed that the adrenal volume differs as age increases. Male patients aged 38-47 years old have a peaked adrenal volume.
Collapse
Affiliation(s)
- Yuanchong Chen
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Jiejin Yang
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Yaofeng Zhang
- Beijing Smart-imaging Technology Co. Ltd., Beijing, 100011, China
| | - Yumeng Sun
- Beijing Smart-imaging Technology Co. Ltd., Beijing, 100011, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
15
|
Schiffer L, Kempegowda P, Sitch AJ, Adaway JE, Shaheen F, Ebbehoj A, Singh S, McTaggart MP, O'Reilly MW, Prete A, Hawley JM, Keevil BG, Bancos I, Taylor AE, Arlt W. Classic and 11-oxygenated androgens in serum and saliva across adulthood: a cross-sectional study analyzing the impact of age, body mass index, and diurnal and menstrual cycle variation. Eur J Endocrinol 2023; 188:lvac017. [PMID: 36651154 DOI: 10.1093/ejendo/lvac017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE 11-oxygenated androgens significantly contribute to the circulating androgen pool. Understanding the physiological variation of 11-oxygenated androgens and their determinants is essential for clinical interpretation, for example, in androgen excess conditions. We quantified classic and 11-oxygenated androgens in serum and saliva across the adult age and body mass index (BMI) range, also analyzing diurnal and menstrual cycle-dependent variation. DESIGN Cross-sectional. Morning serum samples were collected from 290 healthy volunteers (125 men, 22-95 years; 165 women, 21-91 years). Morning saliva samples were collected by a sub-group (51 women and 32 men). Diurnal saliva profiles were collected by 13 men. Twelve women collected diurnal saliva profiles and morning saliva samples on 7 consecutive days during both follicular and luteal menstrual cycle phases. METHODS Serum and salivary steroids were quantified by liquid chromatography-tandem mass spectrometry profiling assays. RESULTS Serum classic androgens decreased with age-adjusted BMI, for example, %change kg/m2 for 5α-dihydrotestosterone: men -5.54% (95% confidence interval (CI) -8.10 to -2.98) and women -1.62% (95%CI -3.16 to -0.08). By contrast, 11-oxygenated androgens increased with BMI, for example, %change kg/m2 for 11-ketotestosterone: men 3.05% (95%CI 0.08-6.03) and women 1.68% (95%CI -0.44 to 3.79). Conversely, classic androgens decreased with age in both men and women, while 11-oxygenated androgens did not. Salivary androgens showed a diurnal pattern in men and in the follicular phase in women; in the luteal phase, only 11-oxygenated androgens showed diurnal variation. CONCLUSIONS Classic androgens decrease while active 11-oxygenated androgens increase with increasing BMI, pointing toward the importance of adipose tissue mass for the activation of 11-oxygenated androgens. Classic but not 11-oxygenated androgens decline with age.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Punith Kempegowda
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Alice J Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Joanne E Adaway
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester, United Kingdom
| | - Fozia Shaheen
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Andreas Ebbehoj
- Division of Endocrinology, Metabolism, Diabetes and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sumitabh Singh
- Division of Endocrinology, Metabolism, Diabetes and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Malcom P McTaggart
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester, United Kingdom
| | - Michael W O'Reilly
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Endocrinology Research Group, Department of Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - James M Hawley
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester, United Kingdom
| | - Brian G Keevil
- Department of Clinical Biochemistry, Wythenshawe Hospital, Manchester, United Kingdom
| | - Irina Bancos
- Division of Endocrinology, Metabolism, Diabetes and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
16
|
Kitamura T, Blinder AR, Nanba K, Tsuiki M, Mishina M, Okuno H, Moriyoshi K, Yamazaki Y, Sasano H, Yoneyama K, Udager AM, Rainey WE, Yasoda A, Satoh-Asahara N, Tagami T. ACTH-independent production of 11-oxygenated androgens and glucocorticoids in an adrenocortical adenoma. Eur J Endocrinol 2022; 187:K39-K45. [PMID: 36691941 DOI: 10.1530/eje-22-0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE STATEMENT Due to its rarity, biochemical and histologic characteristics of androgen and glucocorticoid co-secreting adrenocortical adenomas are largely unknown. Herein, we report a case of adrenocortical adenoma that caused marked hyperandrogenemia and mild autonomous cortisol secretion. In this study, we investigated serum steroid profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and histologic characteristics of the resected tumor. LC-MS/MS revealed highly elevated levels of 11-oxygenated androgens which have not been well studied in adrenal tumors. The expression patterns of steroidogenic enzymes determined by immunohistochemistry supported the results of steroid profiling and suggested the capacity of the tumor cells to produce 11-oxygenated androgens. Measurement of 11-oxygenated steroids should facilitate a better understanding of androgen-producing adrenocortical neoplasms.
Collapse
Affiliation(s)
- Takuya Kitamura
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Amy R Blinder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, Kyoto, Japan
| | - Mika Tsuiki
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Mutsuki Mishina
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiroshi Okuno
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koki Moriyoshi
- Department of Diagnostic Pathology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Aaron M Udager
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Akihiro Yasoda
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, Kyoto, Japan
| | - Tetsuya Tagami
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, Kyoto, Japan
| |
Collapse
|
17
|
van de Wiel E, Chaman Baz AH, Küsters B, Mukai K, van Bonzel L, van Erp M, Deinum J, Langenhuijsen J. Changes of the CYP11B2 Expressing Zona Glomerulosa in Human Adrenals From Birth to 40 Years of Age. Hypertension 2022; 79:2565-2572. [DOI: 10.1161/hypertensionaha.122.19052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Aldosterone synthase (CYP11B2) antibodies for immunohistochemistry, enables to visualize aldosterone-producing zona glomerulosa (ZG), aldosterone-producing micronodules, and aldosterone-producing adenomas. The architecture of the ZG differs in old versus young age but the evolution of the changes is not well known. The pathogenesis of aldosterone-producing micronodules and aldosterone-producing adenomas is still unclear and research on the ZG in young populations is limited. In this study, we elucidate changes in human ZG with age by quantifying the CYP11B2 expression.
Methods:
We collected 83 human adrenal glands from 57 autopsy cases aged 0 to 40 years old. In 26 cases, both adrenals were available. We performed immunohistochemistry targeting CYP11B2 and quantified the relative CYP11B2 expressing area, CYP11B2 continuity, the mean gap length between CYP11B2-expressing areas and the maximum extension of CYP11B2 area (depth).
Results:
We found a negative correlation between age and the relative CYP11B2 expressing area, a negative correlation between age and CYP11B2 continuity, a positive correlation between age and mean gap length, and a positive correlation between age and maximum CYP11B2 depth. The changes in expression patterns of relative CYP11B2 expressing area, CYP11B2 continuity and mean gap length were seen in both adrenals of the same autopsy case.
Conclusions:
The decline of relative CYP11B2 expressing ZG area and continuity may indicate involution of the ZG, which is supported by an increase of gaps and maximum CYP11B2 depth indicating clustering, comparable to formation of aldosterone-producing micronodules. The similarities in both adrenals from the same case indicate that these changes occur bilaterally.
Collapse
Affiliation(s)
- Elle van de Wiel
- Department of Urology (E.v.d.W., A.-H.C.B., L.v.B., J.L.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amir-Hossein Chaman Baz
- Department of Urology (E.v.d.W., A.-H.C.B., L.v.B., J.L.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benno Küsters
- Department of Pathology (B.K., M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kuniaki Mukai
- Keio University School of Medicine, Medical Education Center, Tokyo, Japan (K.M.)
| | - Lidia van Bonzel
- Department of Urology (E.v.d.W., A.-H.C.B., L.v.B., J.L.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merijn van Erp
- Department of Pathology (B.K., M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Deinum
- Department of Internal Medicine (J.D.), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Langenhuijsen
- Department of Urology (E.v.d.W., A.-H.C.B., L.v.B., J.L.), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Abstract
Adrenarche is the maturational increase in adrenal androgen production that normally begins in early childhood. It results from changes in the secretory response to adrenocorticotropin (ACTH) that are best indexed by dehydroepiandrosterone sulfate (DHEAS) rise. These changes are related to the development of the zona reticularis (ZR) and its unique gene/enzyme expression pattern of low 3ß-hydroxysteroid dehydrogenase type 2 with high cytochrome b5A, sulfotransferase 2A1, and 17ß-hydroxysteroid dehydrogenase type 5. Recently 11-ketotestosterone was identified as an important bioactive adrenarchal androgen. Birth weight, body growth, obesity, and prolactin are related to ZR development. Adrenarchal androgens normally contribute to the onset of sexual pubic hair (pubarche) and sebaceous and apocrine gland development. Premature adrenarche causes ≥90% of premature pubarche (PP). Its cause is unknown. Affected children have a significantly increased growth rate with proportionate bone age advancement that typically does not compromise growth potential. Serum DHEAS and testosterone levels increase to levels normal for early female puberty. It is associated with mildly increased risks for obesity, insulin resistance, and possibly mood disorder and polycystic ovary syndrome. Between 5% and 10% of PP is due to virilizing disorders, which are usually characterized by more rapid advancement of pubarche and compromise of adult height potential than premature adrenarche. Most cases are due to nonclassic congenital adrenal hyperplasia. Algorithms are presented for the differential diagnosis of PP. This review highlights recent advances in molecular genetic and developmental biologic understanding of ZR development and insights into adrenarche emanating from mass spectrometric steroid assays.
Collapse
Affiliation(s)
- Robert L Rosenfield
- University of Chicago Pritzker School of Medicine, Section of Adult and Pediatric Endocrinology, Metabolism, and Diabetes, Chicago, IL, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Baker JE, Plaska SW, Qin Z, Liu CJ, Rege J, Rainey WE, Udager AM. Targeted RNA sequencing of adrenal zones using immunohistochemistry-guided capture of formalin-fixed paraffin-embedded tissue. Mol Cell Endocrinol 2021; 530:111296. [PMID: 33915228 PMCID: PMC8456741 DOI: 10.1016/j.mce.2021.111296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Adequate access to fresh or frozen normal adrenal tissue has been a primary limitation to the enhanced characterization of the adrenal zones via RNA sequencing (RNAseq). Herein, we describe the application of targeted RNAseq to formalin-fixed paraffin-embedded (FFPE) normal adrenal gland specimens. Immunohistochemistry (IHC) was used to visualize and guide the capture of the adrenocortical zones and medulla. Following IHC-based tissue capture and isolation of RNA, high-throughput targeted RNAseq highlighted clear transcriptomic differences and identified differentially expressed genes among the adrenal zones. Our data demonstrate the ability to capture FFPE adrenal zone tissue for targeted transcriptomic analyses. Future comparison of normal adrenal zones will improve our understanding of transcriptomic patterns and help identify potential novel pathways controlling zone-specific steroid production.
Collapse
Affiliation(s)
- Jessica E Baker
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samuel W Plaska
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrine, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Aaron M Udager
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|