1
|
Bao X, Liu C, Liu H, Wang Y, Xue P, Li Y. Association between polymorphisms of glucagon-like peptide-1 receptor gene and susceptibility to osteoporosis in Chinese postmenopausal women. J Orthop Surg Res 2024; 19:869. [PMID: 39716293 DOI: 10.1186/s13018-024-05361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The influence of the glucagon-like peptide-1 receptor (GLP-1R) on bone metabolism is well-established. However, it has been observed that single nucleotide polymorphisms (SNPs) in the GLP-1R gene can partially affect its function. Therefore, this study aims to investigate the association between SNPs in the GLP-1R gene and postmenopausal osteoporosis (PMOP) within the Chinese Han population. METHODS This study employed a cross-sectional case-control design, recruiting a total of 152 participants, including 76 patients with osteoporosis (OP) (case group) and 76 healthy individuals (control group). Seven tag SNPs of GLP-1R were selected from the National Center of Biotechnology Information and Genome Variation Server. The association between GLP-1R polymorphisms and PMOP risk was assessed using different genetic models and haplotypes, while also exploring SNP-SNP and SNP-environment interactions. RESULTS Our results showed that minor alleles A at rs3765468, A at rs3765467 and G at rs4714210 showed significant associations with an increased risk of OP. Individuals with rs3765468 AG-AA genotype and rs3765467 AG-AA genotype exhibited a significantly higher risk of PMOP. Moreover, haplotype analysis revealed a significant association of the GACACA haplotype on PMOP risk (P = 0.033). Additionally, a multiplicative interaction was observed between rs3765468 and rs3765467 that was associated with an increased risk of PMOP (Pinteraction = 0.012). CONCLUSIONS Specific SNPs in the GLP-1R gene were linked to an increased risk of PMOP. This study improves our understanding of the genetic basis of PMOP in this population and suggests that genetic screening can identify individuals at risk for developing PMOP, enabling early prevention.
Collapse
Affiliation(s)
- Xiaoxue Bao
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China
| | - Chang Liu
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiming Liu
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Department of Prosthodontics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Orthopedic Research Institution of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Bisikirska B, Labella R, Cuesta-Dominguez A, Luo N, De Angelis J, Mosialou I, Lin CS, Beck D, Lata S, Shyu PT, McMahon DJ, Guo E, Hagen J, Chung WK, Shane E, Cohen A, Kousteni S. Melatonin receptor 1A variants as genetic cause of idiopathic osteoporosis. Sci Transl Med 2024; 16:eadj0085. [PMID: 39413162 DOI: 10.1126/scitranslmed.adj0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Idiopathic osteoporosis (IOP) is a rare form of early-onset osteoporosis diagnosed in patients with no known metabolic or hormonal cause of bone loss and unknown pathogenesis. Patients with IOP commonly report both childhood fractures and family history of osteoporosis, raising the possibility of genetic etiologies of IOP. Whole-exome sequencing analyses of different IOP cohorts identified multiple variants in melatonin receptor 1A (MTNR1A) with a potential pathogenic outcome. A rare MTNR1A variant (rs374152717) was found in members of an Ashkenazi Jewish family with IOP, and an MTNR1A variant (rs28383653) was found in a nonrelated female IOP cohort (4%). Both variants occur at a substantially higher frequency in Ashkenazi Jewish individuals than in the general population. We investigated consequences of the heterozygous (rs374152717) variant [MTNR1Ac.184+1G>T (MTNR1Ac.184+1G>T)] on bone physiology. A mouse model of the human rs374152717 variant reproduced the low bone mass (BM) phenotype of young-adult patients with IOP. Low BM occurred because of induction of senescence in mutant osteoblasts followed by compromised differentiation and function. In human cells, introduction of rs374152717 led to translation of a nonfunctional protein and subsequent dysregulation of melatonin signaling. These studies provide evidence that MTNR1A mutations entail a genetic etiology of IOP and establish the rs374152717 variant as a loss-of-function allele that impairs bone turnover by inducing senescence in osteoblasts. The higher prevalence of the MTNR1A variants identified in IOP cohorts versus the general population indicates a greater risk of IOP in those carrying these variants, especially Ashkenazi Jewish individuals bearing the rs374152717 variant.
Collapse
Affiliation(s)
- Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alvaro Cuesta-Dominguez
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Na Luo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jessica De Angelis
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - David Beck
- New York University Grossman School of Medicine, New York, NY 10012, USA
| | - Sneh Lata
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter Timothy Shyu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Donald J McMahon
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jacob Hagen
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Chen X, Dou Z, Son JE, Duan M, Yang F, Zhu S, Hui CC. A novel genetic mouse model of osteoporosis with double heterozygosity of Irx3 and Irx5 characterizes sex-dependent phenotypes in bone homeostasis. Bone 2024; 190:117282. [PMID: 39401533 DOI: 10.1016/j.bone.2024.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Iroquois homeobox gene 3 (Irx3) and Irx5 encode transcription factors that play crucial roles in limb development and bone formation. Previous studies using knockout mice have revealed a role of Irx3 and Irx5 in osteogenesis in young adult mice. However, whether these genes are also essential for bone homeostasis in adulthood and contribute to bone diseases remain poorly understood. Osteoporosis is a disease characterized by lower bone mineral density and disrupted bone microarchitecture, typically occurs in postmenopausal women. Here, we demonstrate that Irx3/5dHet mice with a half-reduction of Irx3 and Irx5 dosage serve as a novel model of osteoporosis. By micro-computed tomography, we found that Irx3/5dHet mice exhibited sex-dependent bone loss patterns. While male Irx3/5dHet mice progressively lost trabecular microstructures with aging, female mutants exhibited lower bone mineral density (BMD) and bone volume fraction (BV/TV) at early adulthood (9-15 weeks old) but without further loss later at 1 year of age. Bone marrow adipocytes are known to be elevated at the expenses of lower osteogenesis in osteoporotic bone marrow. Surprisingly, we found sex-dependent changes in adipogenesis at the age of skeletal maturity that bone marrow adipocytes were reduced in female Irx3/5dHet mice along with deteriorated osteogenesis, while male mice exhibited elevated adipogenesis. In summary, we reported a novel genetic model for osteoporosis-like phenotypes, highlighting sex-dependent bone mineral density and bone marrow adipocyte characteristics.
Collapse
Affiliation(s)
- Xinyu Chen
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhengchao Dou
- Department of Molecular Genetics, University of Toronto, Program in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Joe Eun Son
- Department of Molecular Genetics, University of Toronto, Program in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Meng Duan
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Yang
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shankuan Zhu
- Chronic Disease Research Institute, The Children's Hospital, National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Program in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
4
|
Zhang J, Xu P, Liu R, Gyu JM, Cao P, Kang C. Osteoporosis and coronary heart disease: a bi-directional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1362428. [PMID: 38841298 PMCID: PMC11150617 DOI: 10.3389/fendo.2024.1362428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Background Osteoporosis (OP) and cardiovascular disease (CVD) are major global public health issues, especially exacerbated by the challenges of an aging population. As these problems intensify, the associated burden on global health is expected to increase significantly. Despite extensive epidemiological investigations into the potential association between OP and CVD, establishing a clear causal relationship remains elusive. Methods Instrumental variables were selected from summary statistics of the IEU GWAS database. Five different components of BMD (heel BMD, LS BMD, FA BMD, FN BMD, and TB BMD) were used as OP phenotypes. CHD, MI, and stroke were selected to represent CVD. Multiple analysis methods were used to evaluate the causal relationship between CVD and OP comprehensively. In addition, sensitivity analyses(Cochran's Q test, MR-Egger intercept test, and "leave one out" analysis) were performed to verify the reliability of the results. Results The MR showed a significant causal relationship between CHD on heel BMD and TB BMD; in the reverse analysis, there was no evidence that OP has a significant causal effect on CVD. The reliability of the results was confirmed through sensitivity analysis. Conclusion The study results revealed that CHD was causally associated with Heel BMD and TB BMD, while in the reverse MR analysis, the causal relationship between OP and CVD was not supported. This result posits CHD as a potential etiological factor for OP and prompts that routine bone density assessment at traditional sites (forearm, femoral neck, lumbar spine) using DAX may inadequately discern underlying osteoporosis issues in CHD patients. The recommendation is to synergistically incorporate heel ultrasound or DAX for total body bone density examinations, ensuring clinical diagnostics are both precise and reliable. Moreover, these findings provide valuable insights for public health, contributing to the development of pertinent prevention and treatment strategies.
Collapse
Affiliation(s)
- Junsheng Zhang
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Pai Xu
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Rongcan Liu
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jin Min Gyu
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Peng Cao
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chan Kang
- Department of Orthopedic Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Parvaneh M, Jamaluddin R, Ebrahimi M, Karimi G, Sabran MR. Assessing the effects of probiotic supplementation, single strain versus mixed strains, on femoral mineral density and osteoblastic gene mRNA expression in rats. J Bone Miner Metab 2024; 42:290-301. [PMID: 38796648 DOI: 10.1007/s00774-024-01512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Osteoporosis is a significant health concern characterized by weak and porous bones, particularly affecting menopausal women aged 50 and above, leading to increased risk of hip fractures and associated morbidity and mortality. MATERIALS AND METHODS We conducted a study to assess the efficacy of single-strain versus mixed-strain probiotic supplementation on bone health using an ovariectomy (OVX) rat model of induced bone loss. The probiotics evaluated were Lactobacillus helveticus (L. helveticus), Bifidobacterium longum (B. longum), and a combination of both. Rats were divided into five groups: SHAM (Control negative), OVX (Control positive), OVX +L. helveticus, OVX + B. longum, and OVX + mixed L. helveticus and B. longum. Daily oral administration of probiotics at 10^8-10^9 CFU/mL began two weeks post-surgery and continued for 16 weeks. RESULTS Both single-strain and mixed-strain probiotic supplementation upregulated expression of osteoblastic genes (BMP- 2, RUNX-2, OSX), increased serum osteocalcin (OC) levels, and improved bone formation parameters. Serum C-terminal telopeptide (CTX) levels and bone resorption parameters were reduced. However, the single-strain supplementation demonstrated superior efficacy compared to the mixed-strain approach. CONCLUSION Supplementation with B. longum and L. helveticus significantly reduces bone resorption and improves bone health in OVX rats, with single-strain supplementation showing greater efficacy compared to a mixed-strain combination. These findings highlight the potential of probiotics as a therapeutic intervention for osteoporosis, warranting further investigation in human studies.
Collapse
Affiliation(s)
- Maria Parvaneh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia
- Charles Perkins Centre, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Rosita Jamaluddin
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Golgis Karimi
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia
- NewGen, Administrative Service, Los Angeles, CA, USA
| | - Mohd Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43300, Serdang, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Shen JX, Lu Y, Meng W, Yu L, Wang JK. Exploring causality between bone mineral density and frailty: A bidirectional Mendelian randomization study. PLoS One 2024; 19:e0296867. [PMID: 38271334 PMCID: PMC10810463 DOI: 10.1371/journal.pone.0296867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The bidirectional correlation between low bone mineral density (BMD) and frailty, despite its extensive documentation, still lacks a conclusive understanding. The objective of this Mendelian randomization (MR) study is to investigate the bidirectional causal relationship between BMD and frailty. METHODS We utilized summary statistics data for BMD at different skeletal sites-including heel BMD (e-BMD, N = 40,613), forearm BMD (FA-BMD, N = 8,143), femoral neck BMD (FN-BMD, N = 32,735), and lumbar spine BMD (LS-BMD, N = 28,489), alongside frailty index (FI, N = 175,226) data in participants of European ancestry. MR analysis in our study was conducted using well-established analytical methods, including inverse variance weighted (IVW), weighted median (WM), and MR-Egger approaches. RESULTS We observed negative causal estimates between genetically predicted e-BMD (IVW β = - 0.020, 95% confidence interval (CI) = - 0.038, - 0.002, P = 0.029) and FA-BMD (IVW β = -0.035, 95% CI = -0.066, -0.004, P = 0.028) with FI. However, the results did not reach statistical significance after applying the Bonferroni correction, with a significance threshold set at P < 0.0125 (0.05/4). There was no causal effect of FN-BMD (IVW β = - 0.024, 95% CI = -0.052, 0.004, P = 0.088) and LS-BMD (IVW β = - 0.005, 95% CI = -0.034, 0.024, P = 0.749) on FI. In the reverse Mendelian randomization (MR) analysis, we observed no causal effect of FI on BMD at various skeletal sites. CONCLUSION Our study provides support for the hypothesis that low BMD may be a potential causal risk factor for frailty, but further research is needed to confirm this relationship. However, our findings did not confirm reverse causality.
Collapse
Affiliation(s)
- Jue-xin Shen
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Meng
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Yu
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun-kai Wang
- Department of Orthopedics, Chongming Branch, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Tyagi AM. Mechanism of action of gut microbiota and probiotic Lactobacillus rhamnosus GG on skeletal remodeling in mice. Endocrinol Diabetes Metab 2024; 7:e440. [PMID: 37505196 PMCID: PMC10782069 DOI: 10.1002/edm2.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Gut microbiota (GM) is the collection of small organisms such as bacteria, fungi, bacteriophages and protozoans living in the intestine in symbiotics relation within their host. GM regulates host metabolism by various mechanisms. METHODS This review aims to consolidate current information for physicians on the effect of GM on bone health. For this, an online search of the literature was conducted using the keywords gut microbiota, bone mass, osteoporosis, Lactobacillus and sex steroid. RESULTS AND CONCLUSIONS There is a considerable degree of variation in bone mineral density (BMD) within populations, and it is estimated that a significant component of BMD variability is due to genetics. However, the remaining causes of bone mass variance within populations remain largely unknown. A well-recognized cause of phenotypic variation in bone mass is the composition of the microbiome. Studies have shown that germ-free (GF) mice have higher bone mass compared to conventionally raised (CR) mice. Furthermore, GM dysbiosis, also called dysbacteriosis, is defined as any alteration in the composition of the microbial community that has been colonized in the host intestine and associated with the development of bone diseases. For instance, postmenopausal osteoporosis (PMO) and diabetes. GM can be modulated by several factors such as genetics, age, drugs, food habits and probiotics. Probiotics are defined as viable bacteria that confer health benefits by modulating GM when administered in adequate quantity. Lactobacillus rhamnosus GG (LGG) is a great example of such a probiotic. LGG has been shown to regulate bone mass in healthy mice as well as ovariectomized (OVX) mice via two different mechanisms. This review will focus on the literature regarding the mechanism by which GM and probiotic LGG regulate bone mass in healthy mice as well as in OVX mice, a model of PMO.
Collapse
|
8
|
Park Y, Sato T, Lee J. Functional and analytical recapitulation of osteoclast biology on demineralized bone paper. Nat Commun 2023; 14:8092. [PMID: 38062034 PMCID: PMC10703810 DOI: 10.1038/s41467-023-44000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoclasts are the primary target for osteoporosis drug development. Recent animal studies revealed the crucial roles of osteoblasts in regulating osteoclastogenesis and the longer lifespans of osteoclasts than previously thought with fission and recycling. However, existing culture platforms are limited to replicating these newly identified cellular processes. We report a demineralized bone paper (DBP)-based osteoblast culture and osteoclast assay platform that replicates osteoclast fusion, fission, resorption, and apoptosis with high fidelity and analytical power. An osteoid-inspired DBP supports rapid and structural mineral deposition by osteoblasts. Coculture osteoblasts and bone marrow monocytes under biochemical stimulation recapitulate osteoclast differentiation and function. The DBP-based bone model allows longitudinal quantitative fluorescent monitoring of osteoclast responses to bisphosphonate drug, substantiating significantly reducing their number and lifespan. Finally, we demonstrate the feasibility of humanizing the bone model. The DBP-based osteo assay platforms are expected to advance bone remodeling-targeting drug development with improved prediction of clinical outcomes.
Collapse
Affiliation(s)
- Yongkuk Park
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Tadatoshi Sato
- Department of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Jungwoo Lee
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Therkildsen J, Rohde PD, Nissen L, Thygesen J, Hauge EM, Langdahl BL, Boettcher M, Nyegaard M, Winther S. A genome-wide genomic score added to standard recommended stratification tools does not improve the identification of patients with very low bone mineral density. Osteoporos Int 2023; 34:1893-1906. [PMID: 37495683 PMCID: PMC10579117 DOI: 10.1007/s00198-023-06857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
The role of integrating genomic scores (GSs) needs to be assessed. Adding a GS to recommended stratification tools does not improve the prediction of very low bone mineral density. However, we noticed that the GS performed equally or above individual risk factors in discrimination. PURPOSE We aimed to investigate whether adding a genomic score (GS) to recommended stratification tools improves the discrimination of participants with very low bone mineral density (BMD). METHODS BMD was measured in three thoracic vertebrae using CT. All participants provided information on standard osteoporosis risk factors. GSs and FRAX scores were calculated. Participants were grouped according to mean BMD into very low (<80 mg/cm3), low (80-120 mg/cm3), and normal (>120 mg/cm3) and according to the Bone Health and Osteoporosis Foundation recommendations for BMD testing into an "indication for BMD testing" and "no indication for BMD testing" group. Different models were assessed using the area under the receiver operating characteristics curves (AUC) and reclassification analyses. RESULTS In the total cohort (n=1421), the AUC for the GS was 0.57 (95% CI 0.52-0.61) corresponding to AUCs for osteoporosis risk factors. In participants without indication for BMD testing, the AUC was 0.60 (95% CI 0.52-0.69) above or equal to AUCs for osteoporosis risk factors. Adding the GS to a clinical risk factor (CRF) model resulted in AUCs not statistically significant from the CRF model. Using probability cutoff values of 6, 12, and 24%, we found no improved reclassification or risk discrimination using the CRF-GS model compared to the CRF model. CONCLUSION Our results suggest adding a GS to a CRF model does not improve prediction. However, we noticed that the GS performed equally or above individual risk factors in discrimination. Clinical risk factors combined showed superior discrimination to individual risk factors and the GS, underlining the value of combined CRFs in routine clinics as a stratification tool.
Collapse
Affiliation(s)
- J Therkildsen
- Department of Rheumatology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark.
| | - P D Rohde
- Department of Health Science & Technology, Aalborg University, Selma Lagerløfs Vej 24, 9269, Gistrup, Denmark
| | - L Nissen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Hospitalsparken 15, 7400, Herning, Denmark
| | - J Thygesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
- Department of Clinical Engineering, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - E-M Hauge
- Department of Rheumatology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
| | - B L Langdahl
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - M Boettcher
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Hospitalsparken 15, 7400, Herning, Denmark
| | - M Nyegaard
- Department of Health Science & Technology, Aalborg University, Selma Lagerløfs Vej 24, 9269, Gistrup, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus, Denmark
| | - S Winther
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Hospitalsparken 15, 7400, Herning, Denmark
| |
Collapse
|
10
|
Pihlström S, Richardt S, Määttä K, Pekkinen M, Olkkonen VM, Mäkitie O, Mäkitie RE. SGMS2 in primary osteoporosis with facial nerve palsy. Front Endocrinol (Lausanne) 2023; 14:1224318. [PMID: 37886644 PMCID: PMC10598846 DOI: 10.3389/fendo.2023.1224318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Pathogenic heterozygous variants in SGMS2 cause a rare monogenic form of osteoporosis known as calvarial doughnut lesions with bone fragility (CDL). The clinical presentations of SGMS2-related bone pathology range from childhood-onset osteoporosis with low bone mineral density and sclerotic doughnut-shaped lesions in the skull to a severe spondylometaphyseal dysplasia with neonatal fractures, long-bone deformities, and short stature. In addition, neurological manifestations occur in some patients. SGMS2 encodes sphingomyelin synthase 2 (SMS2), an enzyme involved in the production of sphingomyelin (SM). This review describes the biochemical structure of SM, SM metabolism, and their molecular actions in skeletal and neural tissue. We postulate how disrupted SM gradient can influence bone formation and how animal models may facilitate a better understanding of SGMS2-related osteoporosis.
Collapse
Affiliation(s)
- Sandra Pihlström
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampo Richardt
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Pekkinen
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children´s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Riikka E. Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Dillard LJ, Rosenow WT, Calabrese GM, Mesner LD, Al-Barghouthi BM, Abood A, Farber EA, Onengut-Gumuscu S, Tommasini SM, Horowitz MA, Rosen CJ, Yao L, Qin L, Farber CR. Single-Cell Transcriptomics of Bone Marrow Stromal Cells in Diversity Outbred Mice: A Model for Population-Level scRNA-Seq Studies. J Bone Miner Res 2023; 38:1350-1363. [PMID: 37436066 PMCID: PMC10528806 DOI: 10.1002/jbmr.4882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Genome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq). The goal of the study was to determine if BMSCs could serve as a model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells from large populations of mice to inform genetic studies. By enriching for mesenchymal lineage cells in vitro, coupled with pooling of multiple samples and downstream genotype deconvolution, we demonstrate the scalability of this model for population-level studies. We demonstrate that dissociation of BMSCs from a heavily mineralized matrix had little effect on viability or their transcriptomic signatures. Furthermore, we show that BMSCs cultured under osteogenic conditions are diverse and consist of cells with characteristics of mesenchymal progenitors, marrow adipogenic lineage precursors (MALPs), osteoblasts, osteocyte-like cells, and immune cells. Importantly, all cells were similar from a transcriptomic perspective to cells isolated in vivo. We employed scRNA-seq analytical tools to confirm the biological identity of profiled cell types. SCENIC was used to reconstruct gene regulatory networks (GRNs), and we observed that cell types show GRNs expected of osteogenic and pre-adipogenic lineage cells. Further, CELLECT analysis showed that osteoblasts, osteocyte-like cells, and MALPs captured a significant component of bone mineral density (BMD) heritability. Together, these data suggest that BMSCs cultured under osteogenic conditions coupled with scRNA-seq can be used as a scalable and biologically informative model to generate cell type-specific transcriptomic profiles of mesenchymal lineage cells in large populations. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Luke J Dillard
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Will T Rosenow
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gina M Calabrese
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Larry D Mesner
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Basel M Al-Barghouthi
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Abdullah Abood
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Emily A Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Steven M Tommasini
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Mark A Horowitz
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | | | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Pickering ME, Oris C, Chapurlat R. Periostin in Osteoporosis and Cardiovascular Disease. J Endocr Soc 2023; 7:bvad081. [PMID: 37362382 PMCID: PMC10285762 DOI: 10.1210/jendso/bvad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Context Osteoporosis (OP) and cardiovascular disease (CVD), prevalent disorders worldwide, often coexist and share common risk factors. The identification of common biomarkers could significantly improve patients' preventive care. Objectives The objectives are 1, to review periostin (Postn) involvement in osteoporosis and in CVD, and 2, identify if Postn could be a common biomarker. Design This is a scoping review on Postn in OP and CVD. Methods Databases were searched, in vitro and in vivo, for publications in English on Postn, bone, and the cardiovascular system, with no limit regarding publication date. Results Postn appears as a key factor in OP and CVD. Its role as a potential biomarker in both pathologies is described in recent studies, but a number of limitations have been identified. Conclusions Current evidence provides fragmented views on Postn in OP and CVD and does not encapsulate Postn as a common pivotal thread linking these comorbidities. A number of gaps impede highlighting Postn as a common biomarker. There is room for future basic and clinical research with Postn as a marker and a target to provide new therapeutic options for aging patients with concomitant OP and CVD.
Collapse
Affiliation(s)
- Marie-Eva Pickering
- Correspondence: Marie-Eva Pickering, MD, Rheumatology Department, CHU Gabriel Montpied, 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| | - Charlotte Oris
- Service de Biologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Roland Chapurlat
- Service de Rhumatologie, Hospices Civils de Lyon, 69437 Lyon, Cedex 03, France
- Inserm UMR 1033, 69437 Lyon, Cedex 03, France
| |
Collapse
|
13
|
Boroňová I, Mathia M, Mačeková S, Bernasovská J, Gaľová J. Evaluation of COLIA1 gene rs1107946 polymorphism in relation to bone mineral density and fracture risk in Slovak postmenopausal women. Cent Eur J Public Health 2023; 31:25-29. [PMID: 37086417 DOI: 10.21101/cejph.a7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/01/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVES The aim of the study was the evaluation of the rs1107946 polymorphism of the COLIA1 gene impact on bone mineral density and fracture risk in Slovak postmenopausal women. METHODS One hundred and twenty-seven postmenopausal Slovak women with a diagnosis of osteopenia/osteoporosis were genotyped for rs1107946 polymorphism of the COLIA1 gene. Clinical and anthropometric data were obtained. DNA isolation was performed using a standard protocol. Genetic analyses of the rs1107946 polymorphism of the COLIA1 gene were performed by the TaqMan SNP genotyping assays. RESULTS The study confirmed a statistically significant relationship using an association analysis between the rs1107946 polymorphism of the COLIA1 gene genotypes and body weight of the Slovak postmenopausal women with osteopenia/osteoporosis (p = 0.03). The study revealed a significant association of the risk T allele of the rs1107946 polymorphism of the COLIA1 gene with osteoporotic fractures (p = 0.038). The odds ratio confirmed 2.060 times higher risk of osteoporotic fractures in Slovak postmenopausal women with the presence of risk T allele of the rs1107946 COLIA1 gene polymorphism (OR = 2.060; 95% CI: 1.024-4.144). CONCLUSION The results of this study revealed an association of T allele of the rs1107946 COLIA1 gene polymorphism with osteoporotic fractures in Slovak postmenopausal women with osteopenia/osteoporosis and suggest that the rs1107946 polymorphism of the COLIA1 gene may be a molecular biomarker usable in the management of osteoporosis.
Collapse
Affiliation(s)
- Iveta Boroňová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Matúš Mathia
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Soňa Mačeková
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Jarmila Bernasovská
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| | - Jana Gaľová
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia
| |
Collapse
|
14
|
Wang X, Lu C, Chen Y, Wang Q, Bao X, Zhang Z, Huang X. Resveratrol promotes bone mass in ovariectomized rats and the SIRT1 rs7896005 SNP is associated with bone mass in women during perimenopause and early postmenopause. Climacteric 2023; 26:25-33. [PMID: 35674253 DOI: 10.1080/13697137.2022.2073809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study aimed to examine the effects of SIRT1 agonist resveratrol on bone mass in ovariectomized (OVX) rats and the SIRT1 single-nucleotide polymorphism (SNP) rs7896005 on bone mass in women during menopause and early postmenopause. METHODS An animal experiment was conducted on rats that were sham-operated (SHAM), OVX or OVX and different administered doses of resveratrol. Serum markers and femur microstructure and staining were assessed. A cross-sectional study was conducted in women undergoing menopause. SIRT1 protein and SIRT1 SNP rs7896005 were evaluated. RESULTS OVX rats administered resveratrol, especially high doses, showed lower bone loss than OVX rats. Serum osteoprotegerin (OPG) and femur SIRT1, β-catenin and bone mineral density (BMD) were significantly increased, whereas receptor activator of NF-κB ligand (RANKL) was significantly decreased. Serum SIRT1 levels were significantly lower in women with low bone mass (p < 0.01). Women with the CA genotype of rs7896005 had lower bone mass than those with the CC genotype. The A allele showed a significant negative effect on bone loss risk (odds ratio = 3.48; p = 0.025). CONCLUSIONS Resveratrol stimulated SIRT1 expression and Wnt/β-catenin signaling to promote bone mass in rat femurs. Among women in perimenopause and early postmenopause, SIRT1 protected bone mass, and the A allele of SIRT1 rs7896005 was a risk factor for reduced bone mass.
Collapse
Affiliation(s)
- X Wang
- Department of Reproduction Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - C Lu
- Department of Gynecology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Y Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Q Wang
- Nanjing Medical University, Nanjing, China
| | - X Bao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Z Zhang
- Department of Reproductive Endocrinology Center, Hangzhou Women's Hospital, Hangzhou, China
| | - X Huang
- Department of Reproduction Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
15
|
Fu L, Wang Y, Hu YQ. Inferring causal effects of homocysteine and B-vitamin concentrations on bone mineral density and fractures: Mendelian randomization analyses. Front Endocrinol (Lausanne) 2022; 13:1037546. [PMID: 36518252 PMCID: PMC9742470 DOI: 10.3389/fendo.2022.1037546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES In the progress of bone metabolism, homocysteine (Hcy) and B vitamins play substantial roles. However, the causal associations of homocysteine, B-vitamin concentrations with bone mineral density (BMD), and fractures remain unclear. Therefore, we employed a two-sample Mendelian randomization (MR) design to infer the causal effects of Hcy and B vitamins on BMD and fractures. METHODS We selected instrumental variables from large genome-wide association studies (GWASs). Specifically, the exposures mainly included Hcy (sample size: 44,147), vitamin B12 (sample size: 45,576), folate (sample size: 37,465), and vitamin B6 (sample size: 1,864). The outcome variables included total body BMD (sample size: 66,628), heel BMD (sample size: 142,487), femoral neck BMD (sample size: 32,735), lumbar spine BMD (sample size: 28,498), and forearm BMD (sample size: 8143). Additionally, the total body BMD in several age strata was also included. Furthermore, the fractures of the forearm, femoral neck, lumbar spine, heel corresponding with the BMD regions, and femoral neck and lumbar spine BMD in men and women, separately, were added as additional outcomes. Two-sample MR approaches were utilized in this study. Inverse variance weighting (IVW) was adopted as the main analysis. MR-PRESSO, MR-Egger, the weighted median estimate, and multivariable MR were performed as sensitivity methods. RESULTS In the main analysis, Hcy concentrations have an inverse association with heel BMD (Beta = 0.046, 95% confidence interval (CI) -0.073 to -0.019, P = 9.59E-04) per SD unit. In addition, for one SD increase of vitamin B12, the total body BMD decreased 0.083 unit (95%CI -0.126 to -0.040, P = 1.65E-04). The trend was more obvious in age over 45 years (Beta = -0.135, 95%CI -0.203-0.067, P = 9.86E-05 for age 45-60; Beta = -0.074, 95%CI -0.141 to -0.007, P = 0.031 for age over 60 years). No association of B vitamins and Hcy levels with the risk of fractures and femoral neck and lumbar spine BMD in men and women was found in this study. Other sensitivity MR methods elucidated consistent results. CONCLUSIONS Our findings indicated that there exist the inversely causal effects of Hcy and vitamin B12 on BMD in certain body sites and age strata. These give novel clues for intervening bone-related diseases in public health and nutrition.
Collapse
Affiliation(s)
- Liwan Fu
- Center for Non-Communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Choi HG, Kim SY, Kwon BC, Kang HS, Lim H, Kim JH, Kim JH, Cho SJ, Nam ES, Min KW, Park HY, Kim NY, Choi Y, Kwon MJ. Comparison of the Coincidence of Osteoporosis, Fracture, Arthritis Histories, and DEXA T-Score between Monozygotic and Dizygotic Twins: A Cross-Sectional Study Using KoGES HTS Data. Nutrients 2022; 14:3836. [PMID: 36145209 PMCID: PMC9506177 DOI: 10.3390/nu14183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
We explored the genetic and environmental inter-relationships among osteoporosis, fracture, arthritis, and bone mineral density concordance in monozygotic twins compared to those in dizygotic twins. This cross-sectional research assessed data of 1032 monozygotic and 242 dizygotic twin pairs aged >20 years included in the Healthy Twin Study data of the Korean Genome and Epidemiology Study between 2005 and 2014. Outcomes of interest included illness concordance and absolute differences in dual-energy X-ray absorptiometry (DEXA) T-scores. We found comparable concordances of osteoporosis, fractures, osteoarthritis, and rheumatoid arthritis between monozygotic and dizygotic twins. Medical histories of osteoporosis, fractures caused by accident or falling, osteoarthritis, and rheumatoid arthritis were not distinct between monozygotic and dizygotic twins. Accidental fracture occurrence in both monozygotic twins showed significantly lower odds than that in dizygotic twins. Genetic influence on liability to fracture risk might thus be maintained. DEXA T-scores for bone mineral density indicated more comparable tendencies within monozygotic twin pairs than within dizygotic ones, suggesting the relative importance of genetic contribution to bone mineral density. The relative importance of genetic factors in bone mineral density is sustained between monozygotic twins; overt disease expression of osteoporosis, fractures, or arthritis may be affected by environmental factors.
Collapse
Affiliation(s)
- Hyo Geun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam 13488, Korea
| | - Bong Cheol Kwon
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Ho Suk Kang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Hyun Lim
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Seong Jin Cho
- Department of Pathology, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Korea
| | - Eun Sook Nam
- Department of Pathology, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Korea
| | - Kyueng Whan Min
- Department of Pathology, Hanyang University Guri Hospital, College of Medicine, Hanyang University, Guri 11923, Korea
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Medical Center, Hallym University, Anyang 14068, Korea
| | - Younghee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 18450, Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Anyang 14068, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| |
Collapse
|
17
|
Lv X, Jiang Y, Yang D, Zhu C, Yuan H, Yuan Z, Suo C, Chen X, Xu K. The role of metabolites under the influence of genes and lifestyles in bone density changes. Front Nutr 2022; 9:934951. [PMID: 36118775 PMCID: PMC9481263 DOI: 10.3389/fnut.2022.934951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Osteoporosis is a complex bone disease influenced by numerous factors. Previous studies have found that some metabolites are related to bone mineral density (BMD). However, the associations between metabolites and BMD under the influence of genes and lifestyle have not been fully investigated. Methods We analyzed the effect of metabolites on BMD under the synergistic effect of genes and lifestyle, using the data of 797 participants aged 55–65 years from the Taizhou Imaging Study. The cumulative sum method was used to calculate the polygenic risk score of SNPs, and the healthful plant-based diet index was used to summarize food intake. The effect of metabolites on BMD changes under the influence of genes and lifestyle was analyzed through interaction analysis and mediation analysis. Results Nineteen metabolites were found significantly different in the osteoporosis, osteopenia, and normal BMD groups. We found two high-density lipoprotein (HDL) subfractions were positively associated with osteopenia, and six very-low-density lipoprotein subfractions were negatively associated with osteopenia or osteoporosis, after adjusting for lifestyles and genetic factors. Tea drinking habits, alcohol consumption, smoking, and polygenic risk score changed BMD by affecting metabolites. Conclusion With the increased level of HDL subfractions, the risk of bone loss in the population will increase; the risk of bone loss decreases with the increased level of very-low-density lipoprotein subfractions. Genetic factors and lifestyles can modify the effects of metabolites on BMD. Our results show evidence for the precise prevention of osteoporosis.
Collapse
Affiliation(s)
- Xuewei Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Dantong Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- *Correspondence: Xingdong Chen,
| | - Kelin Xu
- Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Kelin Xu,
| |
Collapse
|
18
|
Sandboge S, Kuula J, Björkqvist J, Hovi P, Mäkitie O, Kajantie E. Bone mineral density in very low birthweight adults-A sibling study. Paediatr Perinat Epidemiol 2022; 36:665-672. [PMID: 35333415 PMCID: PMC9543339 DOI: 10.1111/ppe.12876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Children and adults born very low birthweight (VLBW, <1500 g) at preterm gestations have lower bone mineral density (BMD) and/or bone mineral content (BMC) than those born at term, but causality remains unknown. OBJECTIVES Our aim was to assess BMD and BMC in adults born at VLBW in a sibling comparison setting to account for shared genetic and environmental confounders. METHODS We conducted a cohort study of 77 adults born VLBW and 70 same-sex term-born siblings at mean age of 29 years. The primary outcome variables were BMD Z-scores, and BMC, of the femoral neck, lumbar spine, and whole body, measured using dual-energy X-ray absorptiometry. We analysed data by linear mixed models. RESULTS The VLBW adults had a 0.25 (95% CI 0.02, 0.47) Z-score unit lower femoral neck BMD, and 0.35 (95% CI 0.16, 0.54) grams lower femoral neck BMC than their term-born siblings, after adjustment for sex, age, and maternal smoking. Additional adjustment for adult body size attenuated the results. Lumbar spine, and whole body BMC were also lower in the VLBW group. CONCLUSIONS Individuals born at VLBW had lower BMC values at all three measurement sites, as well as lower femoral neck BMD Z-scores, compared to term-born siblings, partly explained by their smaller adult body size, but the differences were smaller than those reported previously with unrelated controls. This suggests that genetic or environmental confounders explain partly, but not exclusively, the association between preterm VLBW birth and adult bone mineralisation.
Collapse
Affiliation(s)
- Samuel Sandboge
- Population Health UnitFinnish Institute for Health and WelfareHelsinki and OuluFinland,Psychology/Welfare SciencesFaculty of Social SciencesUniversity of TampereTampereFinland
| | - Juho Kuula
- Population Health UnitFinnish Institute for Health and WelfareHelsinki and OuluFinland,Department of RadiologyMedical Imaging CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Johan Björkqvist
- Population Health UnitFinnish Institute for Health and WelfareHelsinki and OuluFinland
| | - Petteri Hovi
- Population Health UnitFinnish Institute for Health and WelfareHelsinki and OuluFinland,Pediatric Research CenterChildren's HospitalUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | - Outi Mäkitie
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland,Folkhälsan Research CenterInstitute of GeneticsHelsinkiFinland,Research Program for Clinical and Molecular MetabolismFaculty of MedicineUniversity of Helsinki HelsinkiFinland,Department of Molecular Medicine and SurgeryKarolinska Institutet, and Clinical GeneticsKarolinska University HospitalStockholmSweden
| | - Eero Kajantie
- Population Health UnitFinnish Institute for Health and WelfareHelsinki and OuluFinland,Pediatric Research CenterChildren's HospitalUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland,PEDEGO Research UnitMRC OuluOulu University Hospital and University of OuluOuluFinland,Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
19
|
Fu Y, Wang J, Schroyen M, Chen G, Zhang HJ, Wu SG, Li BM, Qi GH. Effects of rearing systems on the eggshell quality, bone parameters and expression of genes related to bone remodeling in aged laying hens. Front Physiol 2022; 13:962330. [PMID: 36117717 PMCID: PMC9470921 DOI: 10.3389/fphys.2022.962330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Public concerns regarding animal welfare are changing the selection of rearing systems in laying hens. This study investigated the effects of rearing systems on eggshell quality, bone parameters and relative expression levels of genes related to bone remodeling in aged laying hens. A total of 2,952 55-day-old Jing Tint Six pullets were randomly assigned to place in the conventional caging system (CCS) or aviary system (AVS) and kept until 95 weeks of age. The AVS group delayed the decrease of eggshell quality and alleviated the symptoms of osteoporosis in the humerus rather than in the femur. Eggshell breaking strength, thickness, weight, weight ratio, stiffness and fracture toughness were decreased linearly with age (from 55 to 95 weeks of age, p < 0.05). The AVS group had higher eggshell breaking strength, stiffness and fracture toughness than the CCS group (p < 0.05). Higher total calcium and phosphorus per egg were presented in the AVS group at 95 weeks of age (p < 0.05). At 95 weeks of age, the AVS group had a humerus with higher weight, volume, length, midpoint perimeter, cortical index, fat-free dry weight, ash content, total calcium per bone, total phosphorus per bone, average bone mineral density, strength, stiffness and work to fracture compared to the CCS group (p < 0.05). Such differences did not appear in the femur. The relative expression levels of alkaline phosphatase (ALP) and osteocalcin (OCN) genes in the femur and hormone receptors (vitamin D receptor (VDR), estrogen receptor alpha (ERα) and fibroblast growth factor 23 (FGF23)) genes in the humerus were significantly upregulated (p < 0.05) in the AVS group. The level of tartrate-resistant acid phosphatase (TRAP) transcripts was also increased (p < 0.05) in the femur of the AVS group. Overall, compared with the CCS, the AVS alleviated the deterioration of eggshell and bone qualities of aged laying hens, which may be related to the changes in the expression of genes associated with bone remodeling.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Gang Chen
- Key Laboratory of Bio-environmental Engineering, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao-ming Li
- Key Laboratory of Bio-environmental Engineering, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- *Correspondence: Guang-hai Qi, ; Bao-ming Li,
| | - Guang-hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guang-hai Qi, ; Bao-ming Li,
| |
Collapse
|
20
|
Zhang Y, Mao X, Yu X, Huang X, He W, Yang H. Bone mineral density and risk of breast cancer: A cohort study and Mendelian randomization analysis. Cancer 2022; 128:2768-2776. [PMID: 35511874 DOI: 10.1002/cncr.34252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Estrogen is involved in both bone metabolism and breast cancer proliferation. However, evidence about the risk of breast cancer according to women's bone mineral density (BMD) is scarce, and little is known about their causal associations. METHODS Women participating in the UK Biobank cohort were used to investigate the association between BMD and the risk of breast cancer using Cox regression models. Instrumental variants associated with estimated BMD (eBMD) were extracted from genome-wide association studies with European ancestry. Logistic regression was used to calculate the genetic association with breast cancer in the UK Biobank and 2-sample Mendelian randomization (MR) analyses to assess their causal associations with breast cancer. Finally, the pleiotropic conditional false discovery rate (cFDR) method was conducted to further detect common genetic variants between BMD and breast cancer. RESULTS Compared with the general population, postmenopausal women with BMD T scores <-2.5 had a lower risk of breast cancer (hazard ratio [HR], 0.77; 95% CI, 0.59-1.00), and this effect was stronger in women with fracture (HR, 0.31; 95% CI, 0.12-0.82). In MR analysis, no causal associations between eBMD and breast cancer were observed. The cFDR method identified 63 pleiotropic loci associated with both BMD and breast cancer, of which CCDC170, ESR1, and FTO might play crucial roles in their pleiotropy. CONCLUSIONS An association between BMD and the risk of postmenopausal breast cancer in the UK Biobank was observed, whereas no evidence supported their causal association. Instead, their association could be explained by pleiotropic genetic variants leading to the pathology of osteoporosis and breast cancer.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinhe Mao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xingxing Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoxi Huang
- Department of Breast, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, China
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ciuffi S, Marini F, Fossi C, Donati S, Giusti F, Botta A, Masi L, Isaia G, Marcocci C, Migliaccio S, Minisola S, Nuti R, Tarantino U, Iantomasi T, Brandi ML. Circulating MicroRNAs as Biomarkers of Osteoporosis and Fragility Fractures. J Clin Endocrinol Metab 2022; 107:2267-2285. [PMID: 35532548 DOI: 10.1210/clinem/dgac293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Measurement of circulating microRNAs (miRNAs) as potential biomarkers of fragility fracture risk has recently become a subject of investigation. OBJECTIVE Measure by next-generation sequencing (NGS), global miRNA expression in serum samples of osteoporotic subjects vs individuals with normal bone mineral density (BMD). DESIGN Samples were collected from patients with different bone phenotypes and/or fragility fractures who did not receive any antiresorptive and/or bone-forming drug at the time of blood collection. SETTING Samples and data were collected at 7 medical centers in Italy. PATIENTS NGS prescreening: 50 osteoporotic patients vs 30 individuals with normal BMD. Droplet digital polymerase chain reaction (ddPCR) validation: 213 patients with different bone phenotypes, including the NGS-analyzed cohort. RESULTS NGS identified 5 miRNAs (miR-8085, miR-320a-3p, miR-23a-3p, miR-4497, miR-145-5p) differentially expressed in osteoporosis cases without fractures vs controls. ddPCR validation confirmed lower c-miR-23a-3p expression in osteoporotic patients, with or without fracture, than in osteopenic and normal subjects and increased c-miR-320a-3p expression in osteoporotic patients with fracture and lower expression in osteoporotic patients without fracture. ddPCR analysis showed a significantly increased expression of miR-21-5p in osteoporotic patients, with or without fracture, than in osteopenic and normal subjects, not evidenced by the NGS prescreening. DISCUSSION Our study confirmed levels of c-miR-23a-3p and c-miR-21-5p as able to distinguish osteoporotic patients and subjects with normal BMD. Increased levels of c-miR-320a-3p specifically associated with fractures, independently by BMD, suggesting c-miR-320a-3p as a prognostic indicator of fracture risk in osteoporotic patients, to be confirmed in prospective studies on incident fractures.
Collapse
Affiliation(s)
- Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
- FirmoLab, F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Caterina Fossi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata," Rome, Italy
| | - Laura Masi
- AOU Careggi, SOD Malattie del Metabolismo Minerale ed Osseo, Florence, Italy
| | - Giancarlo Isaia
- Department of Medical Science, Gerontology Section, University of Turin, Turin, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of "Foro Italico" of Rome, Rome, Italy
| | - Salvatore Minisola
- Dipartimento di Scienze Cliniche, Internistiche, anestesiologiche e cardiovascolari: "Sapienza," Università di Roma, Rome, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Study of Florence, Florence, Italy
| | - Maria Luisa Brandi
- FirmoLab, F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| |
Collapse
|
22
|
Tang Y, Wei F, Yu M, Zhou H, Wang Y, Cui Z, Liu X. Absence of causal association between Vitamin D and bone mineral density across the lifespan: a Mendelian randomization study. Sci Rep 2022; 12:10408. [PMID: 35729194 PMCID: PMC9213555 DOI: 10.1038/s41598-022-14548-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Vitamin D deficiency is a candidate risk factor for osteoporosis, characterized by decreased bone mineral density (BMD). We performed this two-sample Mendelian randomization (MR) analysis to investigate the causal effect of vitamin D on BMD. We extracted 143 single-nucleotide polymorphisms from a recent GWAS on 417,580 participants of European ancestry as instrumental variables, and used summary statistics for BMD at forearm (n = 10,805), femoral neck (n = 49,988), lumbar spine (n = 44,731) and total-body of different age-stages (< 15, 15-30, 30-45, 45-60, > 60) (n = 67,358). We explored the direct effect of vitamin D on BMD with an adjusted body mass index (BMI) in a multivariable MR analysis. We found no support for causality of 25-hydroxyvitamin D on BMD at forearm, femoral neck, lumbar spine, and total-body BMD across the lifespan. There was no obvious difference between the total and direct effect of vitamin D on BMD after adjusting for BMI. Our MR analysis provided evidence that genetically determined vitamin D was not causally associated with BMD in the general population. Large-scale randomized controlled trials are warranted to investigate the role of vitamin D supplementation in preventing osteoporosis in the high-risk population.
Collapse
Affiliation(s)
- Yanchao Tang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Street, HaiDian District, Beijing, 100191, China. .,Beijing Key Laboratory of Spinal Disease Research and Engineering, Beijing, China. .,Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| | - Feng Wei
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Street, HaiDian District, Beijing, 100191, China
| | - Miao Yu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Street, HaiDian District, Beijing, 100191, China
| | - Hua Zhou
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Street, HaiDian District, Beijing, 100191, China
| | - Yongqiang Wang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Street, HaiDian District, Beijing, 100191, China
| | - Zhiyong Cui
- Health Science Center, Peking University, Beijing, China
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Street, HaiDian District, Beijing, 100191, China. .,Health Science Center, Peking University, Beijing, China.
| |
Collapse
|
23
|
Chen S, Zheng C, Chen T, Chen J, Pan Y, Chen S. Genetically Predicted Milk Intake Increased Femoral Neck Bone Mineral Density in Women But Not in Men. Front Endocrinol (Lausanne) 2022; 13:900109. [PMID: 35795146 PMCID: PMC9251187 DOI: 10.3389/fendo.2022.900109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cow milk contains more calcium, magnesium, potassium, zinc, and phosphorus minerals. For a long time, people have believed that increasing milk intake is beneficial to increasing bone density. Many confounding factors can affect milk consumption, and thus the association described to date may not be causal. We explored the causal relationship between genetically predicted milk consumption and Bone Mineral Density (BMD) of the femoral neck and lumbar spine based on 53,236 individuals from 27 studies of European ancestry using the Mendelian randomization (MR) study. 32,961 individuals of European and East Asian ancestry were used for sensitivity analysis. Methods A genetic instrument used for evaluating milk consumption is rs4988235, a locus located at 13,910 base pairs upstream of the LCT gene. A Mendelian randomization (MR) analysis was conducted to study the effect of selected single nucleotide polymorphisms (SNPs) and BMD. The summary-level data for BMD of the femoral neck and lumbar spine were obtained from two GWAS meta-analyses ['Data Release 2012' and 'Data Release 2015' in the GEnetic Factors for OSteoporosis Consortium (GEFOS)]. Results we found that genetically predicted milk consumption was not associated with FN-BMD(OR 1.007; 95% CI 0.991-1.023; P = 0.385), LS-BMD(OR 1.003; 95% CI 0.983-1.024; P = 0.743) by performing a meta-analysis of several different cohort studies. High levels of genetically predicted milk intake were positively associated with increased FN-BMD in Women. The OR for each additional milk intake increasing allele was 1.032 (95%CI 1.005-1.059; P = 0.014). However, no causal relationship was found between milk consumption and FN-BMD in men (OR 0.996; 95% CI 0.964-1.029; P = 0.839). Genetically predicted milk consumption was not significantly associated with LS-BMD in women (OR 1.017; 95% CI 0.991-1.043; P = 0.198) and men (OR 1.011; 95% CI 0.978-1.045; P = 0.523). Conclusion Our study found that women who consume more milk have a higher FN-BMD. When studying the effect of milk consumption on bone density in further studies, we need to pay more attention to women.
Collapse
Affiliation(s)
- Song Chen
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Changhua Zheng
- Department of Cardiology Nursing, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianlai Chen
- The Third Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jinchen Chen
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Yuancheng Pan
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Shunyou Chen
- Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma (2020Y2014), Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| |
Collapse
|
24
|
Abstract
Peak bone mass (PBM) is a key determinant of bone mass and fragility fractures later in life. The increase in bone mass during childhood and adolescence is mainly related to an increase in bone size rather to changes in volumetric bone density. Race, gender, and genetic factors are the main determinants of PBM achievement. Nevertheless, environmental factors such as physical activity, calcium and protein intakes, weight and age at menarche, are also playing an important role in bone mass accrual during growth. Therefore, optimization of calcium and protein intakes and weight-bearing physical activity during growth is an important strategy for optimal acquisition of PBM and bone strength and for contributing to prevent fractures later in life.
Collapse
Affiliation(s)
- Thierry Chevalley
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
25
|
Zhang L, He J, Sun X, Pang D, Hu J, Feng B. GIPR rs10423928 and bone mineral density in postmenopausal women in Shanghai. Endocr Connect 2022; 11:e210583. [PMID: 35029542 PMCID: PMC8859963 DOI: 10.1530/ec-21-0583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022]
Abstract
We demonstrated previously that there is a correlation between glucagon-like peptide-1 (GLP-1) single-nucleotide polymorphism (SNP) and bone mineral density in postmenopausal women. Both GLP-1 and glucose-dependent insulinotropic peptide are incretins. The glucose-dependent insulinotropic peptide receptor (GIPR) SNP rs10423928 has been extensively studied. However, it is not clear whether GIPR gene mutations affect bone metabolism. The aim of this study was to investigate the association between rs10423928 and bone mineral density in postmenopausal women in Shanghai. rs10423928 was detected in 884 postmenopausal women in Shanghai, and the correlation between the GIPR SNP and bone mineral density was assessed. The dominant T/T genotype of rs10423928 was found to be related to the bone mineral density of the femoral neck (P = 0.035). Overall, our findings indicate that the dominant T/T genotype of rs10423928 in postmenopausal women is significantly associated with a higher bone mineral density and that the T/T genotype exerts a bone-protective effect.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei He
- Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiang Sun
- Shanghai Institute of Technology, Shanghai, China
| | - Dongyue Pang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Hu
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Feng
- Department of Endocrinology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence should be addressed to B Feng:
| |
Collapse
|
26
|
Al-Barghouthi BM, Rosenow WT, Du KP, Heo J, Maynard R, Mesner L, Calabrese G, Nakasone A, Senwar B, Gerstenfeld L, Larner J, Ferguson V, Ackert-Bicknell C, Morgan E, Brautigan D, Farber CR. Transcriptome-wide association study and eQTL colocalization identify potentially causal genes responsible for human bone mineral density GWAS associations. eLife 2022; 11:77285. [PMID: 36416764 PMCID: PMC9683789 DOI: 10.7554/elife.77285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies (GWASs) for bone mineral density (BMD) in humans have identified over 1100 associations to date. However, identifying causal genes implicated by such studies has been challenging. Recent advances in the development of transcriptome reference datasets and computational approaches such as transcriptome-wide association studies (TWASs) and expression quantitative trait loci (eQTL) colocalization have proven to be informative in identifying putatively causal genes underlying GWAS associations. Here, we used TWAS/eQTL colocalization in conjunction with transcriptomic data from the Genotype-Tissue Expression (GTEx) project to identify potentially causal genes for the largest BMD GWAS performed to date. Using this approach, we identified 512 genes as significant using both TWAS and eQTL colocalization. This set of genes was enriched for regulators of BMD and members of bone relevant biological processes. To investigate the significance of our findings, we selected PPP6R3, the gene with the strongest support from our analysis which was not previously implicated in the regulation of BMD, for further investigation. We observed that Ppp6r3 deletion in mice decreased BMD. In this work, we provide an updated resource of putatively causal BMD genes and demonstrate that PPP6R3 is a putatively causal BMD GWAS gene. These data increase our understanding of the genetics of BMD and provide further evidence for the utility of combined TWAS/colocalization approaches in untangling the genetics of complex traits.
Collapse
Affiliation(s)
- Basel Maher Al-Barghouthi
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Biochemistry and Molecular Genetics, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Will T Rosenow
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Kang-Ping Du
- Department of Radiation Oncology, University of VirginiaCharlottesvilleUnited States
| | - Jinho Heo
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Robert Maynard
- Department of Orthopedics, Anschutz Medical Campus, University of ColoradoAuroraUnited States
| | - Larry Mesner
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Public Health Sciences, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Gina Calabrese
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Aaron Nakasone
- Department of Mechanical Engineering, Boston UniversityBostonUnited States
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado BoulderBoulderUnited States
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University Medical CenterBostonUnited States
| | - James Larner
- Department of Radiation Oncology, University of VirginiaCharlottesvilleUnited States
| | - Virginia Ferguson
- Department of Mechanical Engineering, University of Colorado BoulderBoulderUnited States
| | - Cheryl Ackert-Bicknell
- Department of Orthopedics, Anschutz Medical Campus, University of ColoradoAuroraUnited States
| | - Elise Morgan
- Department of Mechanical Engineering, Boston UniversityBostonUnited States
| | - David Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of VirginiaCharlottesvilleUnited States
| | - Charles R Farber
- Center for Public Health Genomics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Biochemistry and Molecular Genetics, School of Medicine, University of VirginiaCharlottesvilleUnited States,Department of Public Health Sciences, School of Medicine, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
27
|
Wawrzyniak A, Skrzypczak-Zielińska M, Michalak M, Kaczmarek-Ryś M, Ratajczak AE, Rychter AM, Skoracka K, Marcinkowska M, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Does the VDR gene polymorphism influence the efficacy of denosumab therapy in postmenopausal osteoporosis? Front Endocrinol (Lausanne) 2022; 13:1063762. [PMID: 36714573 PMCID: PMC9880251 DOI: 10.3389/fendo.2022.1063762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION One of the challenges of personalized medicine is a departure from traditional pharmacology toward individualized, genotype-based therapies. Postmenopausal osteoporosis is a prevalent condition requiring intensive treatment, whose effects are measurable only after a long time, and the goal is bone fracture prevention. This study aimed to determine the influence of VDR gene variation on anti-osteoporotic one-year treatment with denosumab in 63 Polish women with postmenopausal osteoporosis. MATERIALS AND METHODS The correlation between bone mineral density (BMD) of the lumbar vertebral column (L1-L4) and femoral neck, and genotype distributions for the ApaI, BsmI, FokI, and TaqI variants of the VDR gene was analyzed. Bone fractures during denosumab therapy were also investigated. RESULTS In the case of the Bsml polymorphism, female patients with BB and Bb genotypes had statistically significantly higher values of BMD and T-score/Z-score indicators, which persisted after a year of denosumab treatment. Our results indicated that the Bsml polymorphism contributes to better bone status, and, consequently, to more efficient biological therapy. The study did not reveal significant differences between changes (delta) in BMD and genotypes for the analyzed VDR gene loci. In the entire study group, one bone fracture was observed in one patient throughout the yearlong period of denosumab therapy. CONCLUSIONS BB and Bb genotypes of the Bsml polymorphism of the VDR gene determine higher DXA parameter values both before and after one-year denosumab therapy in postmenopausal women with osteoporosis.
Collapse
Affiliation(s)
- Anna Wawrzyniak
- Department of Family Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
- *Correspondence: Alicja Ewa Ratajczak,
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
28
|
Feng S, Wang H, Yan Y, Su X, Ao J, Chen W. Regulatory SNP of RREB1 is Associated With Bone Mineral Density in Chinese Postmenopausal Osteoporosis Patients. Front Genet 2021; 12:756957. [PMID: 34868232 PMCID: PMC8637614 DOI: 10.3389/fgene.2021.756957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMO) is the most common bone disorder in elderly Chinese women. Although genetic factors have been shown to have a pivotal role in PMO, studies on genetic loci associated with PMO in Chinese individuals are still lacking. We aimed to identify SNPs that contribute to PMO in Chinese individuals by conducting a genome-wide association study (GWAS). Bone mineral density (BMD) of postmenopausal Chinese women was assessed. Participants with T-score < -2.5 standard deviations (n = 341) were recruited and divided into a discovery group (n = 150) and a replication group (n = 191). GWAS was performed, with T-score as the quantitative trait, using linear regression. Our results revealed that an SNP cluster upstream of RREB1 showed a trend of association with BMD in Chinese PMO patients. The leading SNP of the cluster was rs475011 (p combined = 1.15 × 10-6, beta = 0.51), which is a splicing quantitative trait locus (sQTL) of RREB1. This association was further supported by data from the UK Biobank (UKBB; p = 9.56 × 10-12). The high BMD-associated allele G of rs475011 is related to a high intron excision ratio. This SNP may increase BMD by upregulating mature RREB1 mRNA, based on data from the Genotype-Tissue Expression (GTEx) database. We identified BMD-associated SNPs that regulate RREB1 in Chinese PMO patients. Future functional experiments are needed to further link rs475011, RREB1, and PMO in Chinese individuals.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Han Wang
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Yumeng Yan
- Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Su
- Beijing GuardianHealth Technology Co., Ltd., Beijing, China
| | - Jintao Ao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Wei Chen
- Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
29
|
Zhu M, Yin P, Hu F, Jiang J, Yin L, Li Y, Wang S. Integrating genome-wide association and transcriptome prediction model identifies novel target genes for osteoporosis. Osteoporos Int 2021; 32:2493-2503. [PMID: 34142171 PMCID: PMC8608767 DOI: 10.1007/s00198-021-06024-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
UNLABELLED In this study, we integrated large-scale GWAS summary data and used the predicted transcriptome-wide association study method to discover novel genes associated with osteoporosis. We identified 204 candidate genes, which provide novel clues for understanding the genetic mechanism of osteoporosis and indicate potential therapeutic targets. INTRODUCTION Osteoporosis is a highly polygenetic disease characterized by low bone mass and deterioration of the bone microarchitecture. Our objective was to discover novel candidate genes associated with osteoporosis. METHODS To identify potential causal genes of the associated loci, we investigated trait-gene expression associations using the transcriptome-wide association study (TWAS) method. This method directly imputes gene expression effects from genome-wide association study (GWAS) data using a statistical prediction model trained on GTEx reference transcriptome data. We then performed a colocalization analysis to evaluate the posterior probability of biological patterns: associations characterized by a single causal variant or multiple distinct causal variants. Finally, a functional enrichment analysis of gene sets was performed using the VarElect and CluePedia tools, which assess the causal relationships between genes and a disease and search for potential gene's functional pathways. The osteoporosis-associated genes were further confirmed based on the differentially expressed genes profiled from mRNA expression data of bone tissue. RESULTS Our analysis identified 204 candidate genes, including 154 genes that have been previously associated with osteoporosis, 50 genes that have not been previously discovered. A biological function analysis found that 20 of the candidate genes were directly associated with osteoporosis. Further analysis of multiple gene expression profiles showed that 15 genes were differentially expressed in patients with osteoporosis. Among these, SLC11A2, MAP2K5, NFATC4, and HSP90B1 were enriched in four pathways, namely, mineral absorption pathway, MAPK signaling pathway, Wnt signaling pathway, and PI3K-Akt signaling pathway, which indicates a causal relationship with the occurrence of osteoporosis. CONCLUSIONS We demonstrated that transcriptome fine-mapping identifies more osteoporosis-related genes and provides key insight into the development of novel targeted therapeutics for the treatment of osteoporosis.
Collapse
Affiliation(s)
- M Zhu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - P Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - F Hu
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - J Jiang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - L Yin
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Y Li
- AnLan AI, Shenzhen, China
| | - S Wang
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
30
|
Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells. Mol Cell Biochem 2021; 477:455-468. [PMID: 34783964 DOI: 10.1007/s11010-021-04292-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
SNP rs3755955 (major/minor allele: G/A) located in Iduronidase-Alpha-L- (IDUA) gene was reported to be significant for human bone mineral density (BMD). This follow-up study was to uncover the underlying association mechanism through molecular and cellular functional assays relevant to bone. We tested the effects of single nucleotide polymorphisms (SNP) rs3755955 (defined allele G as wild-type and allele A as variant-type) on osteoblastic and osteoclastic functions, as well as protein phosphorylation in stably transfected human fetal osteoblast (hFOB) cell and mononuclear-macrophage (RAW264.7) cell. In hFOB cells, transfection with variant-type IDUA significantly decreased osteoblastic gene expression (OPN, COL1A1 and RANKL) (p < 0.01), impeded cell proliferation (p < 0.05), stimulated cell apoptosis (p < 0.001) and decreased ALP enzyme activity, as compared with that of wild-type IDUA transfection. In RAW264.7 cells, transfection with variant-type IDUA significantly inhibited cell apoptosis (p < 0.01), promoted osteoclastic precursor cell migration (p < 0.0001), growth (p < 0.01), osteoclastic gene expression (TRAP, RANK, Inte-αv and Cath-K) (p < 0.05) and TRAP enzyme activity (p < 0.001), as compared with that of wild-type IDUA transfection. In both hFOB and RAW264.7 cells, the total protein and IDUA protein-specific phosphorylation levels were significantly reduced by variant IDUA transfection, as compared with that of wild-type IDUA transfection (p < 0.05). Variant allele A of phosSNP rs3755955 in IDUA gene regulates protein phosphorylation, inhibits osteoblast function and promotes osteoclastic activity. The SNP rs3755955 could alter IDUA protein phosphorylation, significantly regulates human osteoblastic and osteoclastic gene expression, and influences the growth, differentiation and activity of osteoblast and osteoclast, hence to affect BMD.
Collapse
|
31
|
Cheng B, Wen Y, Yang X, Cheng S, Liu L, Chu X, Ye J, Liang C, Yao Y, Jia Y, Zhang F. Gut microbiota is associated with bone mineral density : an observational and genome-wide environmental interaction analysis in the UK Biobank cohort. Bone Joint Res 2021; 10:734-741. [PMID: 34779240 PMCID: PMC8636179 DOI: 10.1302/2046-3758.1011.bjr-2021-0181.r1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD. METHODS A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively. RESULTS We detected five, three, and seven candidate gut microbiota-related traits for L1-L4 BMD, total BMD, and femur BMD, respectively, such as genus Dialister (p = 0.004) for L1-L4 BMD, and genus Eisenbergiella (p = 0.046) for total BMD. We also detected two common gut microbiota-related traits shared by L1-L4 BMD, total BMD, and femur total BMD, including genus Escherichia Shigella and genus Lactococcus. Interaction analysis of BMD detected several genes that interacted with gut microbiota, such as phospholipase D1 (PLD1) and endomucin (EMCN) interacting with genus Dialister in total BMD, and COL12A1 and Discs Large MAGUK Scaffold Protein 2 (DLG2) interacting with genus Lactococcus in femur BMD. CONCLUSION Our results suggest associations between gut microbiota and BMD, which will be helpful to further explore the regulation mechanism and intervention gut microbiota of BMD. Cite this article: Bone Joint Res 2021;10(11):734-741.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| |
Collapse
|
32
|
Identification of Rare LRP5 Variants in a Cohort of Males with Impaired Bone Mass. Int J Mol Sci 2021; 22:ijms221910834. [PMID: 34639175 PMCID: PMC8509722 DOI: 10.3390/ijms221910834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common bone disease characterized by reduced bone mass and increased bone fragility. Genetic contribution is one of the main causes of primary osteoporosis; therefore, both genders are affected by this skeletal disorder. Nonetheless, osteoporosis in men has received little attention, thus being underestimated and undertreated. The aim of this study was to identify novel genetic variants in a cohort of 128 males with idiopathic low bone mass using a next-generation sequencing (NGS) panel including genes whose mutations could result in reduced bone mineral density (BMD). Genetic analysis detected in eleven patients ten rare heterozygous variants within the LRP5 gene, which were categorized as VUS (variant of uncertain significance), likely pathogenic and benign variants according to American College of Medical Genetics and Genomics (ACMG) guidelines. Protein structural and Bayesian analysis performed on identified LRP5 variants pointed out p.R1036Q and p.R1135C as pathogenic, therefore suggesting the likely association of these two variants with the low bone mass phenotype. In conclusion, this study expands our understanding on the importance of a functional LRP5 protein in bone formation and highlights the necessity to sequence this gene in subjects with idiopathic low BMD.
Collapse
|
33
|
Bek JW, Shochat C, De Clercq A, De Saffel H, Boel A, Metz J, Rodenburg F, Karasik D, Willaert A, Coucke PJ. Lrp5 Mutant and Crispant Zebrafish Faithfully Model Human Osteoporosis, Establishing the Zebrafish as a Platform for CRISPR-Based Functional Screening of Osteoporosis Candidate Genes. J Bone Miner Res 2021; 36:1749-1764. [PMID: 33957005 DOI: 10.1002/jbmr.4327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jan Willem Bek
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chen Shochat
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department for Reproductive Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Juriaan Metz
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, The Netherlands
| | - Frans Rodenburg
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Institute of Biology, Leiden University, Leiden, The Netherlands.,Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Rios JJ, Denton K, Russell J, Kozlitina J, Ferreira CR, Lewanda AF, Mayfield JE, Moresco E, Ludwig S, Tang M, Li X, Lyon S, Khanshour A, Paria N, Khalid A, Li Y, Xie X, Feng JQ, Xu Q, Lu Y, Hammer RE, Wise CA, Beutler B. Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice. J Bone Miner Res 2021; 36:1548-1565. [PMID: 33905568 PMCID: PMC8862308 DOI: 10.1002/jbmr.4323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Jamie Russell
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Lewanda
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Eva Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Lyon
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anas Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Xudong Xie
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Jian Q Feng
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Qian Xu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yongbo Lu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
35
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
36
|
Szymczak-Tomczak A, Kaczmarek-Ryś M, Hryhorowicz S, Michalak M, Eder P, Skrzypczak-Zielińska M, Łykowska-Szuber L, Tomczak M, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Vitamin D, Vitamin D Receptor (VDR) Gene Polymorphisms (ApaI and FokI), and Bone Mineral Density in Patients With Inflammatory Bowel Disease. J Clin Densitom 2021; 24:233-242. [PMID: 33172802 DOI: 10.1016/j.jocd.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
In the etiology of inflammatory bowel disease (IBD) and osteoporosis, the connecting element is the involvement of environmental and genetic factors. Vitamin D receptor (VDR) gene polymorphisms may be associated with the pathogenesis of IBD and bone mineral density (BMD). The study aimed to analyze the relationship between ApaI and FokI polymorphisms of the VDR gene, serum vitamin D concentration, and BMD in patients with IBD. The studied group consisted of 172 patients (85 with Crohn's disease [CD], 87 with ulcerative colitis [UC], and 39 healthy subjects - control group [CG]) were examined. Lumbar spine densitometry (L1-L4) and the femoral neck (FN) measurements were performed using dual-energy X-ray absorptiometry (DXA). Serum concentrations of 25-hydroxyvitamin D were determined using electrochemiluminescence binding assay (ECLIA). Polymorphisms were determined with polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). . We found no statistically significant differences in vitamin D concentration between the 3 studied groups. CD patients who were FF homozygotes had significantly lower FN BMD than FF homozygous from CG (p-value < 0.05). CD patients who were Aa heterozygotes had significantly lower lumbar spine (L2-L4) BMD than Aa heterozygotes from CG (p-value < 0.05). Among patients with the same polymorphic variants, but belonging to different studied groups, statistically significant differences in bone mineral density in the lumbar spine and the closer end of the femoral neck were observed. We consider that it is the disease entity, not the polymorphism variant, may have a decisive impact on BMD.
Collapse
Affiliation(s)
- Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Michał Michalak
- Department of Computer Sciences and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Liliana Łykowska-Szuber
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Tomczak
- Department of Psychology, Poznan University of Physical Education, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
37
|
Hamad AF, Yang S, Yan L, Leslie WD, Morin SN, Walld R, Roos LL, Lix LM. The association of objectively ascertained sibling fracture history with major osteoporotic fractures: a population-based cohort study. Osteoporos Int 2021; 32:681-688. [PMID: 32935168 DOI: 10.1007/s00198-020-05635-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
UNLABELLED We investigated the association of objectively ascertained sibling fracture history with major osteoporotic fracture (hip, forearm, humerus, or clinical spine) risk in a population-based cohort using administrative databases. Sibling fracture history is associated with increased major osteoporotic fracture risk, which has implications for fracture risk prediction. INTRODUCTION We aimed to determine whether objectively ascertained sibling fracture history is associated with major osteoporotic fracture (MOF; hip, forearm, humerus, or clinical spine) risk. METHODS This retrospective cohort study used administrative databases from the province of Manitoba, Canada, which has a universal healthcare system. The cohort included men and women 40+ years between 1997 and 2015 with linkage to at least one sibling. The exposure was sibling MOF diagnosis occurring after age 40 years and prior to the outcome. The outcome was incident MOF identified in hospital and physician records using established case definitions. A multivariable Cox proportional hazards regression model was used to estimate the risk of MOF after adjustment for known fracture risk factors. RESULTS The cohort included 217,527 individuals; 91.9% were linked to full siblings (siblings having the same father and mother) and 49.0% were females. By the end of the study period, 6255 (2.9%) of the siblings had a MOF. During a median follow-up of 11 years (IQR 5-15), 5235 (2.4%) incident MOF were identified in the study cohort, including 234 hip fractures. Sibling MOF history was associated with an increased risk of MOF (hazard ratio [HR] 1.67, 95% confidence interval [CI] 1.44-1.92). The risk was elevated in both men (HR 1.57, 95% CI 1.24-1.98) and women (HR 1.74, 95% CI 1.45-2.08). The highest risk was associated with a sibling diagnosis of forearm fracture (HR 1.81, 95% CI 1.53-2.15). CONCLUSION Sibling fracture history is associated with increased MOF risk and should be considered as a candidate risk factor for improving fracture risk prediction.
Collapse
Affiliation(s)
- A F Hamad
- Department of Community Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada.
| | - S Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - L Yan
- Department of Community Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada
| | - W D Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S N Morin
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - R Walld
- Manitoba Centre for Health Policy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - L L Roos
- Department of Community Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada
- Manitoba Centre for Health Policy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - L M Lix
- Department of Community Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada
| |
Collapse
|
38
|
Strong Genetic Effects on Bone Mineral Density in Multiple Locations with Two Different Techniques: Results from a Cross-Sectional Twin Study. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57030248. [PMID: 33800136 PMCID: PMC7998330 DOI: 10.3390/medicina57030248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Previous studies have demonstrated that risk of hip fracture is at least partly heritable. The aim of this study was to determine the magnitude of the genetic component of bone mineral density (BMD), using both X-ray and ultrasound assessment at multiple sites. Materials and Methods: 216 adult, healthy Hungarian twins (124 monozygotic, MZ, 92 dizygotic, DZ; mean age 54.2 ± 14.3 years), recruited from the Hungarian Twin Registry with no history of oncologic disease underwent cross-sectional BMD studies. We measured BMD, T- and Z-scores with dual energy X-ray absorptiometry (DEXA) at multiple sites (lumbar spine, femoral neck, total hip and radius). Quantitative bone ultrasound (QUS) was also performed, resulting in a calculated value of estimated bone mineral density (eBMD) in the heel bone. Heritability was calculated using the univariate ACE model. Results: Bone density had a strong genetic component at all sites with estimates of heritability ranging from 0.613 to 0.838 in the total sample. Lumbar BMD and calcaneus eBMD had major genetic components with estimates of 0.828 and 0.838 respectively, and least heritable (0.653) at the total hip. BMD of the radius had also a strong genetic component with an estimate of 0.806. No common environmental effect was found. The remaining variance was influenced by unique environment (0.162 to 0.387). In females only, slightly higher additive genetic estimates were found, especially in the case of the femoral neck and total hip. Conclusion: Bone mineral density is strongly heritable, especially in females at all locations using both DEXA and QUS, which may explain the importance of family history as a risk factor for bone fractures. Unshared environmental effects account for the rest of the variance with slight differences in magnitude across various bone regions, supporting the role of lifestyle in preventing osteoporotic fractures with various efficacy in different bone regions.
Collapse
|
39
|
Mys K, Varga P, Stockmans F, Gueorguiev B, Neumann V, Vanovermeire O, Wyers CE, van den Bergh JPW, van Lenthe GH. High-Resolution Cone-Beam Computed Tomography is a Fast and Promising Technique to Quantify Bone Microstructure and Mechanics of the Distal Radius. Calcif Tissue Int 2021; 108:314-323. [PMID: 33452889 DOI: 10.1007/s00223-020-00773-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Obtaining high-resolution scans of bones and joints for clinical applications is challenging. HR-pQCT is considered the best technology to acquire high-resolution images of the peripheral skeleton in vivo, but a breakthrough for widespread clinical applications is still lacking. Recently, we showed on trapezia that CBCT is a promising alternative providing a larger FOV at a shorter scanning time. The goals of this study were to evaluate the accuracy of CBCT in quantifying trabecular bone microstructural and predicted mechanical parameters of the distal radius, the most often investigated skeletal site with HR-pQCT, and to compare it with HR-pQCT. Nineteen radii were scanned with four scanners: (1) HR-pQCT (XtremeCT, Scanco Medical AG, @ (voxel size) 82 μm), (2) HR-pQCT (XtremeCT-II, Scanco, @60.7 μm), (3) CBCT (NewTom 5G, Cefla, @75 μm) reconstructed and segmented using in-house developed software and (4) microCT (VivaCT40, Scanco, @19 μm-gold standard). The following parameters were evaluated: predicted stiffness, strength, bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), separation (Tb.Sp) and number (Tb.N). The overall accuracy of CBCT with in-house optimized algorithms in quantifying bone microstructural parameters was comparable (R2 = 0.79) to XtremeCT (R2 = 0.76) and slightly worse than XtremeCT-II (R2 = 0.86) which were both processed with the standard manufacturer's technique. CBCT had higher accuracy for BV/TV and Tb.Th but lower for Tb.Sp and Tb.N compared to XtremeCT. Regarding the mechanical parameters, all scanners had high accuracy (R2 [Formula: see text] 0.96). While HR-pQCT is optimized for research, the fast scanning time and good accuracy renders CBCT a promising technique for high-resolution clinical scanning.
Collapse
Affiliation(s)
- Karen Mys
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium.
- AO Research Institute Davos, Davos, Switzerland.
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | - Filip Stockmans
- Muscles & Movement, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | | | | | | | - Caroline E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joop P W van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Rheumatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Feng GJ, Wei XT, Zhang H, Yang XL, Shen H, Tian Q, Deng HW, Zhang L, Pei YF. Identification of pleiotropic loci underlying hip bone mineral density and trunk lean mass. J Hum Genet 2021; 66:251-260. [PMID: 32929176 PMCID: PMC7880826 DOI: 10.1038/s10038-020-00835-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022]
Abstract
Bone mineral density (BMD) and lean body mass (LBM) not only have a considerable heritability each, but also are genetically correlated. However, common genetic determinants shared by both traits are largely unknown. In the present study, we performed a bivariate genome-wide association study (GWAS) meta-analysis of hip BMD and trunk lean mass (TLM) in 11,335 subjects from 6 samples, and performed replication in estimated heel BMD and TLM in 215,234 UK Biobank (UKB) participants. We identified 2 loci that nearly attained the genome-wide significance (GWS, p < 5.0 × 10-8) level in the discovery GWAS meta-analysis and that were successfully replicated in the UKB sample: 11p15.2 (lead SNP rs12800228, discovery p = 2.88 × 10-7, replication p = 1.95 × 10-4) and 18q21.32 (rs489693, discovery p = 1.67 × 10-7, replication p = 1.17 × 10-3). The above 2 pleiotropic loci may play a pleiotropic role for hip BMD and TLM development. So our findings provide useful insights that further enhance our understanding of genetic interplay between BMD and LBM.
Collapse
Affiliation(s)
- Gui-Juan Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, People's Republic of China
| | - Xin-Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, People's Republic of China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, People's Republic of China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, People's Republic of China
| | - Xiao-Lin Yang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, People's Republic of China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, People's Republic of China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, People's Republic of China.
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, People's Republic of China.
| | - Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Qu Z, Jiang J, Yang F, Huang J, Zhao J, Yan S. Genetically Predicted Sex Hormone-Binding Globulin and Bone Mineral Density: A Mendelian Randomization Study. Calcif Tissue Int 2021; 108:281-287. [PMID: 33068140 DOI: 10.1007/s00223-020-00770-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Previous observational studies have identified various risk factors associated with the development of osteoporosis, including sex hormone-binding globulin (SHBG). The aim of this study was to determine the potential causal effects of circulating SHBG concentrations on bone mineral density (BMD). Two-sample Mendelian randomization (MR) approach was applied in analyses. From summary-level data of genome-wide association studies (GWAS), we selected 11 single-nucleotide polymorphisms (SNPs) associated with SHBG levels as instrumental variable, and used summary statistics for BMD at forearm (FA) (n = 8143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498) and heel (HL) (n = 394,929), and total-body BMD of different age-stages (15 or less, 15-30, 30-45, 45-60, 60 or more years old) (n = 67,358). Inverse causal associations was observed between SHBG levels and FA BMD (Effect = - 0.26; 95% CI - 0.49 to - 0.04; P = 0.022), HL eBMD (Effect = - 0.09; 95% CI - 0.12 to - 0.06; P = 3.19 × 10-9), and total-body BMD in people aged 45-60 years (Effect = - 0.16; 95% CI - 0.31 to - 2.4 × 10-3; P = 0.047) and over 60 years (Effect = - 0.19; 95% CI - 0.33 to - 0.05; P = 0.006). Our study demonstrates that circulating SHBG concentrations are inversely associated with FA and HL eBMD, and total-body BMD in people aged over 45 years, suggesting that the role of SHBG in the development of osteoporosis might be affected by chronological age of patients and skeletal sites.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jiuzhou Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Fangkun Yang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiawei Huang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianqiang Zhao
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Orthopedic Research Institute of Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
42
|
Lee JW, Lee IH, Iimura T, Kong SW. Two macrophages, osteoclasts and microglia: from development to pleiotropy. Bone Res 2021; 9:11. [PMID: 33568650 PMCID: PMC7875961 DOI: 10.1038/s41413-020-00134-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident macrophages are highly specialized to their tissue-specific microenvironments, activated by various inflammatory signals and modulated by genetic and environmental factors. Osteoclasts and microglia are distinct tissue-resident cells of the macrophage lineage in bone and brain that are responsible for pathological changes in osteoporosis and Alzheimer’s disease (AD), respectively. Osteoporosis is more frequently observed in individuals with AD compared to the prevalence in general population. Diagnosis of AD is often delayed until underlying pathophysiological changes progress and cause irreversible damages in structure and function of brain. As such earlier diagnosis and intervention of individuals at higher risk would be indispensable to modify clinical courses. Pleiotropy is the phenomenon that a genetic variant affects multiple traits and the genetic correlation between two traits could suggest a shared molecular mechanism. In this review, we discuss that the Pyk2-mediated actin polymerization pathway in osteoclasts and microglia in bone and brain, respectively, is the horizontal pleiotropic mediator of shared risk factors for osteoporosis and AD.
Collapse
Affiliation(s)
- Ji-Won Lee
- Department of Nephrology, Transplant Research Program, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Ni JJ, Yang XL, Zhang H, Xu Q, Wei XT, Feng GJ, Zhao M, Pei YF, Zhang L. Assessing causal relationship from gut microbiota to heel bone mineral density. Bone 2021; 143:115652. [PMID: 32971307 DOI: 10.1016/j.bone.2020.115652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
Abstract
Recent studies have demonstrated the important role played by gut microbiota in regulating bone development, but the evidence of such causal relationship is still sparse in human population. The aim of this study is to assess the causal relationship from gut microbiota to bone development and to identify specific causal bacteria taxa via a Mendelian randomization (MR) approach. A genome-wide association study (GWAS) summary statistic based two-sample MR analysis was performed. Summary statistics of microbiome GWAS (MGWAS) in 1126 twin pairs of the TwinsUK study was used as discovery sample, and the MGWAS in 984 Dutch participants from the LifeLines-DEEP cohort was used as replication sample. Estimated heel bone mineral density (eBMD) GWAS in 426,824 participants from the UK biobank (UKB) cohort was used as outcome. Bacteria were grouped into taxa features at both order and family levels. In the discovery sample, a total of 25 bacteria features including 9 orders and 16 families were analyzed. Fourteen features (5 orders + 9 families) were nominally significant, including 5 orders (Bacteroidales, Clostridiales, Lactobacillales, Pasteurellales and Verrucomicrobiales) and 9 families (Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Mogibacteriaceae, Pasteurellaceae, Porphyromonadaceae, Streptococcaceae, Verrucomicrobiaceae and Veillonellaceae). One order Clostridiales and its child taxon, family Lachnospiraceae, were successfully replicated in the replication sample (Clostridiales Pdiscovery = 3.32 × 10-3Preplication = 7.29 × 10-3; Lachnospiraceae Pdiscovery = 0.03 Preplication = 7.29 × 10-3). Our findings provided evidence of causal relationship from microbiota to bone development, as well as identified specific bacteria taxa that regulated bone mass variation, thus providing new insights into the microbiota mediated bone development mechanism.
Collapse
Affiliation(s)
- Jing-Jing Ni
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Xiao-Lin Yang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, PR China; Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, PR China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Qian Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Xin-Tong Wei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Gui-Juan Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Min Zhao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Yu-Fang Pei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China.
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China.
| |
Collapse
|
44
|
Skrzypczak D, Ratajczak AE, Szymczak-Tomczak A, Dobrowolska A, Eder P, Krela-Kaźmierczak I. A Vicious Cycle of Osteosarcopeniain Inflammatory Bowel Diseases-Aetiology, Clinical Implications and Therapeutic Perspectives. Nutrients 2021; 13:nu13020293. [PMID: 33498571 PMCID: PMC7909530 DOI: 10.3390/nu13020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a disorder characterized by a loss of muscle mass which leads to the reduction of muscle strength and a decrease in the quality and quantity of muscle. It was previously thought that sarcopenia was specific to ageing. However, sarcopenia may affect patients suffering from chronic diseases throughout their entire lives. A decreased mass of muscle and bone is common among patients with inflammatory bowel disease (IBD). Since sarcopenia and osteoporosis are closely linked, they should be diagnosed as mutual consequences of IBD. Additionally, multidirectional treatment of sarcopenia and osteoporosis including nutrition, physical activity, and pharmacotherapy should include both disorders, referred to as osteosarcopenia.
Collapse
|
45
|
No Interaction Effect between Interleukin-6 Polymorphisms and Acid Ash Diet with Bone Resorption Marker in Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020827. [PMID: 33478001 PMCID: PMC7835771 DOI: 10.3390/ijerph18020827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
Background: Evidence is growing that a high-acid diet might accelerate the rate of bone loss, and gene polymorphisms such as Interleukin 6 (IL6) -174G/C and -572G/C are related to bone deterioration. However, no study of the interaction between diet and IL6 polymorphisms has been conducted among Asians. Thus, the objective of this study was to determine whether IL6 gene polymorphisms modified the association between dietary acidity and the rate of bone resorption. Methods: This cross-sectional study recruited 203 postmenopausal women (age ranged from 51 to 85 years old) in community settings. The dietary intakes of the participants were assessed using a validated interviewer-administered semi-quantitative food frequency questionnaire (FFQ), while dietary acid load (DAL) was estimated using net endogenous acid production (NEAP). Agena® MassARRAY genotyping analysis and serum collagen type 1 cross-linked C-telopeptide (CTX1) were used to identify the IL6 genotype and as a bone resorption marker, respectively. The interactions between diet and single-nucleotide polymorphisms (SNPs) were assessed using linear regressions. Results: A total of 203 healthy postmenopausal women aged between 51 and 85 years participated in this study. The mean BMI of the participants was 24.3 kg/m2. In IL6 -174 G/C, all the participants carried the GG genotype, while the C allele was absent. Approximately 40% of the participants had a high dietary acid load. Dietary acid load (B = 0.15, p = 0.031) and the IL6 -572 CC genotype group (B = 0.14, p = 0.044) were positively associated with a higher bone resorption. However, there was no moderating effect of the IL6 genetic polymorphism on the relationship between and acid ash diet and bone resorption markers among the postmenopausal women (p = 0.79). Conclusion: High consumption of an acid ash diet and the IL6 -572 C allele seem to attribute to high bone resorption among postmenopausal women. However, our finding does not support the interaction effect of dietary acidity and IL6 (-174G/C and -572G/C) polymorphisms on the rate of bone resorption. Taken together, these results have given scientific research other candidate genes to focus on which may interact with DAL on bone resorption, to enhance planning for preventing or delaying the onset of osteoporosis among postmenopausal women.
Collapse
|
46
|
Tyagi AM, Darby TM, Hsu E, Yu M, Pal S, Dar H, Li JY, Adams J, Jones RM, Pacifici R. The gut microbiota is a transmissible determinant of skeletal maturation. eLife 2021; 10:e64237. [PMID: 33432923 PMCID: PMC7803376 DOI: 10.7554/elife.64237] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic factors account for the majority of the variance of human bone mass, but the contribution of non-genetic factors remains largely unknown. By utilizing maternal/offspring transmission, cohabitation, or fecal material transplantation (FMT) studies, we investigated the influence of the gut microbiome on skeletal maturation. We show that the gut microbiome is a communicable regulator of bone structure and turnover in mice. In addition, we found that the acquisition of a specific bacterial strain, segmented filamentous bacteria (SFB), a gut microbe that induces intestinal Th17 cell expansion, was sufficient to negatively impact skeletal maturation. These findings have significant translational implications, as the identification of methods or timing of microbiome transfer may lead to the development of bacteriotherapeutic interventions to optimize skeletal maturation in humans. Moreover, the transfer of SFB-like microbes capable of triggering the expansion of human Th17 cells during therapeutic FMT procedures could lead to significant bone loss in fecal material recipients.
Collapse
Affiliation(s)
- Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Trevor M Darby
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
- Department of Pediatrics, Emory UniversityAtlantaUnited States
| | - Emory Hsu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Hamid Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
| | - Rheinallt M Jones
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
- Department of Pediatrics, Emory UniversityAtlantaUnited States
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory UniversityAtlantaUnited States
- Emory Microbiome Research Center, Emory UniversityAtlantaUnited States
- Immunology and Molecular Pathogenesis Program, Emory UniversityAtlantaUnited States
| |
Collapse
|
47
|
Cai X, Dong J, Lu T, Zhi L, He X. Common variants in MAEA gene contributed the susceptibility to osteoporosis in Han Chinese postmenopausal women. J Orthop Surg Res 2021; 16:38. [PMID: 33423677 PMCID: PMC7798333 DOI: 10.1186/s13018-020-02140-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022] Open
Abstract
Background Osteoporosis (OP) is a complex bone metabolism disorder characterized by the loss of bone minerals and an increased risk of bone fracture. A recent study reported the relationship of the macrophage erythroblast attacher gene (MAEA) with low bone mineral density in postmenopausal Japanese women. Our study aimed to investigate the association of MAEA with postmenopausal osteoporosis (PMOP) in Han Chinese individuals. Methods A total of 968 unrelated postmenopausal Chinese women comprising 484 patients with PMOP and 484 controls were recruited. Four tag single nucleotide polymorphisms (SNPs) that covered the gene region of MAEA were chosen for genotyping. Single SNP and haplotypic association analyses were performed, and analysis of variance was conducted to test the correlation between blood MAEA protein level and genotypes of associated SNPs. Results SNP rs6815464 was significantly associated with the risk of PMOP. The C allele of rs6815464 was strongly correlated with the decreased risk of PMOP in our study subjects (OR[95% CI]=0.75[0.63-0.89], P=0.0015). Significant differences in MAEA protein blood levels among genotypes of SNP rs6815464 were identified in both the PMOP (F=6.82, P=0.0012) and control groups (F=11.5, P=0.00001). The C allele was positively associated with decreased MAEA protein levels in blood. Conclusion This case-control study on Chinese postmenopausal women suggested an association between SNP rs6815464 of MAEA and PMOP. Further analyses showed that genotypes of SNP rs6815464 were also associated with the blood level of MAEA protein. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02140-4.
Collapse
Affiliation(s)
- Xuan Cai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Jun Dong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Teng Lu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital of Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, 710054, China
| | - Xijing He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, China.
| |
Collapse
|
48
|
Hidalgo-Bravo A, Hernández-Medrano C, Sevilla-Montoya R, Rivera-Paredez B, Ramirez-Salazar EG, Flores-Morales J, Patiño N, Salmeron J, Valdés-Flores M, Velázquez-Cruz R. Single-nucleotide polymorphism rs10036727 in the SLIT3 gene is associated with osteoporosis at the femoral neck in older Mexican postmenopausal women. Gynecol Endocrinol 2020; 36:1096-1100. [PMID: 32762475 DOI: 10.1080/09513590.2020.1804548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AIMS Osteoporosis (OP) remains a major public health problem worldwide. The most serious complications of this disease are fragility fractures, which increase morbidity and mortality. Management of OP represents an economic burden for health systems. Therefore, it is necessary to develop new screening strategies to identify the population at risk and implement preventive measures. We previously identified the SNPs rs3801387 in WNT16, rs7108738 in SOX6, rs10036727 in SLIT3 and rs7584262 in PKDCC as associated with bone mineral density in postmenopausal women through a genome-wide association study. The aim of this study was to validate those SNPs in two independent cohorts of non-related postmenopausal women. MATERIALS AND METHODS We included 1160 women classifying them as normal, osteopenic or osteoporotic and a group with hip fragility fracture. Genotyping was performed using predesigned TaqMan assays. RESULTS The variants rs10036727 and rs7108738 showed a significant association with BMD at the femoral neck. SLIT3 has been previously proposed as a potential biomarker and therapeutic resource. CONCLUSIONS Our results provide new evidence regarding a possible involvement of SLIT3 in bone metabolisms and encourage the development of more studies in different populations to support these observations.
Collapse
Affiliation(s)
| | | | - Rosalba Sevilla-Montoya
- Department of Genetics and Human Genomics, National Institute of Perinatology, Mexico City, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Jeny Flores-Morales
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Nelly Patiño
- Subdirection of Development of Clinical Applications, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Jorge Salmeron
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
49
|
Song J, Zhang R, Lv L, Liang J, Wang W, Liu R, Dang X. The Relationship Between Body Mass Index and Bone Mineral Density: A Mendelian Randomization Study. Calcif Tissue Int 2020; 107:440-445. [PMID: 32989491 DOI: 10.1007/s00223-020-00736-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/21/2020] [Indexed: 01/28/2023]
Abstract
Body mass index (BMI) is closely associated with bone mineral density (BMD) in both men and women. However, the relationship between BMI and BMD varies according to different studies. Using SNPs strongly associated with BMI in 336,107 individuals, we conducted a two-sample Mendelian randomization study to identify whether and to what extent BMD at different skeletal sites was affected by BMI. A power calculation was also performed. We found that BMI may causally increase lumbar BMD (β 0.087; 95% CI 0.025 to 0.149; P = 0.006) and heel calcaneus BMD (β 0.120; 95% CI 0.082 to 0.157; P = 1 × 10-7). The associations of BMI with forearm and femoral neck BMD were not statistically significant. Our study suggested that higher BMI plays a causal role in increasing BMD and the effects are similar across the skeleton. BMI was causally and positively associated with lumbar and heel calcaneus BMD. However, no statistically significant effects were observed for BMI on femoral neck or forearm BMD.
Collapse
Affiliation(s)
- Jidong Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Rupeng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Leifeng Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Jialin Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Wei Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Ruiyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
50
|
Qu Z, Yang F, Hong J, Wang W, Yan S. Parathyroid Hormone and Bone Mineral Density: A Mendelian Randomization Study. J Clin Endocrinol Metab 2020; 105:5896008. [PMID: 32827441 DOI: 10.1210/clinem/dgaa579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Accumulating evidence implicates parathyroid hormone (PTH) in the development of osteoporosis. However, the causal effect of PTH on bone mineral density (BMD) remains unclear. Thus, this study is aimed at exploring the association between the concentrations of serum PTH and BMD. METHODS The instrumental variables for PTH were selected from a large-scale genome-wide association study (GWAS; n = 29 155). Outcomes included BMD of the forearm (FA; n = 8143), femoral neck (FN; n = 33 297), lumbar spine (LS; n = 32 735), heel (HL; n = 394 929), and risk of fractures in these bones (n = 361 194). Furthermore, the BMD of 5 different age groups: 15 years or younger (n = 11 807), 15-30 (n = 4180), 30-45 (n = 10 062), 45-60 (n = 18 805), and 60 years or older (n = 22 504) were extracted from a GWAS meta-analysis study. The analyses were performed using the 2-sample Mendelian randomization method. RESULTS Mendelian randomization analysis revealed that the level of serum PTH was inversely associated with BMD of FA (95% CI: -0.763 to -0.016), FN (95% CI: -0.669 to -0.304), and LS (95% CI: -0.667 to -0.243). A causal relationship between serum PTH levels and BMD was observed in individuals aged 30-45 (95% CI: -0.888 to -0.166), 45-60 (95% CI: -0.758 to -0.232), and over 60 years (95% CI: -0.649 to -0.163). MAIN CONCLUSIONS This study demonstrated that the concentrations of serum PTH is inversely associated with BMD of several bones. Further analysis revealed site- and age-specific correlations between serum PTH levels and BMD, which implies that the levels of serum PTH contribute to the development of osteoporosis.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangkun Yang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|