1
|
Fletcher R, Hoppe M, McQuail JA, Hernandez CM, Hernandez AR. Ketogenic Diet-Induced Alterations in Neuronal Signaling-Related Proteins are Not Due to Differences in Synaptosome Protein Levels. Mol Neurobiol 2025:10.1007/s12035-025-04988-1. [PMID: 40299298 DOI: 10.1007/s12035-025-04988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Impaired cognitive function is a hallmark of advancing age, and the potential to reverse or delay these cognitive deficits through dietary intervention holds promise for improving quality of life for older adults. Specifically, ketogenic diets (KDs) have now been widely used for the treatment of several neurological and peripheral disorders, including diseases profoundly affecting cognitive health, of which advanced age is the single greatest risk factor. However, the precise mechanisms of the efficacy of KD-based interventions to reverse age-related cognitive and neurobiological declines are not fully elucidated. We have previously demonstrated that a KD improves cognitive function, with concurrent increases in global levels of proteins related to synaptic signaling in the aging hippocampus (HPC) and prefrontal cortex (PFC). Despite these advances, it remains unclear as to whether these changes reflect biochemical modifications specifically localized to synaptic terminals. To address this important, unanswered question, we purified synaptosomes from the HPC and PFC of aging rats fed a KD or control diet (CD) for a minimum of 4 months and quantified 10 proteins related to synaptic transmission. In contrast to previous studies of global protein expression, the signaling proteins measured did not show significant differences between diet groups in synaptosomes isolated from either region. When pre-mortem performance on an Object-Place Paired Association task was considered, we found a significant correlation between several proteins within the HPC and PFC synaptosomes of CD-fed rats, more pronounced in CD-fed aged rats, that are conspicuously absent in KD-fed rats from both age groups. Moreover, there is a significant alteration in the ratio of VGAT/VGluT1, markers of excitatory and inhibitory synaptic vesicles, in the PFC with dietary intervention that is absent in the HPC, confirming prior reports of regionally specific alterations in excitatory and inhibitory signaling post KD. These new and extended findings reveal important, naturally occurring associations between protein levels localized to synaptic terminals, while clarifying that effects KD likely increase synaptic abundance without altering the biochemical composition of isolated synapses.
Collapse
Affiliation(s)
| | - Meagan Hoppe
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph A McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Caesar M Hernandez
- Department of Medicine, Division of Geriatrics, University of Alabama at Birmingham, Gerontology & Palliative Care, 845 19th St. South Rm 768, Birmingham, AL, 35205, USA
| | - Abbi R Hernandez
- Department of Medicine, Division of Geriatrics, University of Alabama at Birmingham, Gerontology & Palliative Care, 845 19th St. South Rm 768, Birmingham, AL, 35205, USA.
| |
Collapse
|
2
|
Wan S, Zhou X, Xie F, Zhou F, Zhang L. Ketogenic diet and cancer: multidimensional exploration and research. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1010-1024. [PMID: 39821829 DOI: 10.1007/s11427-023-2637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 01/19/2025]
Abstract
The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.
Collapse
Affiliation(s)
- Shiyun Wan
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Daida T, Shin BC, Cepeda C, Devaskar SU. Neurodevelopment Is Dependent on Maternal Diet: Placenta and Brain Glucose Transporters GLUT1 and GLUT3. Nutrients 2024; 16:2363. [PMID: 39064806 PMCID: PMC11279700 DOI: 10.3390/nu16142363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose is the primary energy source for most mammalian cells and its transport is affected by a family of facilitative glucose transporters (GLUTs) encoded by the SLC2 gene. GLUT1 and GLUT3, highly expressed isoforms in the blood-brain barrier and neuronal membranes, respectively, are associated with multiple neurodevelopmental disorders including epilepsy, dyslexia, ADHD, and autism spectrum disorder (ASD). Dietary therapies, such as the ketogenic diet, are widely accepted treatments for patients with the GLUT1 deficiency syndrome, while ameliorating certain symptoms associated with GLUT3 deficiency in animal models. A ketogenic diet, high-fat diet, and calorie/energy restriction during prenatal and postnatal stages can also alter the placental and brain GLUTs expression with long-term consequences on neurobehavior. This review focuses primarily on the role of diet/energy perturbations upon GLUT isoform-mediated emergence of neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomoko Daida
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| |
Collapse
|
4
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
5
|
Riikonen R. Biochemical mechanisms in pathogenesis of infantile epileptic spasm syndrome. Seizure 2023; 105:1-9. [PMID: 36634586 DOI: 10.1016/j.seizure.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms leading to infantile epileptic spasm syndrome (IESS) remain obscure. The only common factor seems to be that the spasms are restricted to a limited period of infancy, during a certain maturational state. Here the current literature regarding the biochemical mechanisms of brain maturation in IESS is reviewed, and various hypotheses of the pathophysiology are put together. They include: (1) imbalance of inhibitory (NGF, IGF-1, ACTH, GABA) and excitatory factors (glutamate, nitrites) which distinguishes the different etiological subgroups, (2) abnormality of the hypothalamic pituitary adrenal (HPA) axis linking insults and early life stress, (3) inflammation (4) yet poorly known genetic and epigenetic factors, and (5) glucocorticoid and vigabatrin action on brain development, pinpointing at molecular targets of the pathophysiology from another angle. An altered maturational process may explain why so many, seemingly independent etiological factors lead to the same clinical syndrome and frequently to developmental delay. Understanding these factors can provide ideas for novel therapies.
Collapse
Affiliation(s)
- Raili Riikonen
- Children's Hospital, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
6
|
Dang LT. More Hormones, Less Spasms: IGF-1 as a Potential Therapy for Infantile Spasms. Epilepsy Curr 2023; 23:130-132. [PMID: 37122414 PMCID: PMC10131574 DOI: 10.1177/15357597221149265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
[Box: see text]
Collapse
|
7
|
Field R, Field T, Pourkazemi F, Rooney K. Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2022; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
8
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
9
|
A combination of ketogenic diet and voluntary exercise ameliorates anxiety and depression-like behaviors in Balb/c mice. Neurosci Lett 2022; 770:136443. [PMID: 34990761 DOI: 10.1016/j.neulet.2021.136443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023]
Abstract
The positive effects of both ketogenic diet (KD) and regular voluntary exercise on anxiety and depression behavior have been recently reported in rodent animals, but the effects of pairing a KD with exercise on depression and anxiety are unknown. In this study, we aimed to investigate the effects of combination of KD and regular voluntary exercise on anxiety and depression-like behavior in Balb/c mice. We've demostrated that anxiety and depression levels decreased in KD-exercised (KD-Ex) mice. β-hydroxybutyrate (BHB) levels increased while glucose, insulin levels and LDL/HDL ratio decreased in KD-Ex mice. There was a negative correlation between BHB and the time spent in the closed arms of elevated plus maze (EPM) or the time spent in periphery walls of open field test (OFT) and the immobility time in forced swim test (FST) which all of them are indicators of low depression and anxiety levels. There was a positive correlation between LDL/HDL ratio and the time spent in the closed arms of EPM or the immobility time in FST. The immobility time in FST was positively correlated with insulin while the mobility time in FST was negatively correlated with glucose. In conclusion, these results suggest that decline in anxiety and depression-like behaviors resulted from KD with regular voluntary exercise may be associated with increased BHB levels and decreased LDL/HDL ratio and insulin or glucose levels. Further research is necessary for our understanding of the mechanisms by which pairing a KD with voluntary exercise influences brain and behavior.
Collapse
|
10
|
Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Med Sci (Basel) 2021; 9:medsci9040072. [PMID: 34842769 PMCID: PMC8628994 DOI: 10.3390/medsci9040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
Due to a difference in genetics, environmental factors, and nutrition, just like in people, dogs age at different rates. Brain aging in people and dogs share similar morphological changes including irreversible cortical atrophy, cerebral amyloid angiopathy, and ventricular enlargement. Due to severe and irreversible brain atrophy, some aging dogs develop cognitive dysfunction syndrome (CDS), which is equivalent to dementia or Alzheimer’s disease (AD) in people. The risk factors and causes of CDS in dogs have not been fully investigated, but age, gender, oxidative stress, and deficiency of sex hormones appears to be associated with increased risk of accelerated brain aging and CDS in dogs. Both AD and CDS are incurable diseases at this moment, therefore more efforts should be focused on preventing or reducing brain atrophy and minimizing the risk of AD in people and CDS in dogs. Since brain atrophy leads to irreversible cognitive decline and dementia, an optimal nutritional solution should be able to not only enhance cognitive function during aging but also reduce irreversible brain atrophy. Up to now, only one nutritional intervention has demonstrated both cognition-enhancing benefits and atrophy-reducing benefits.
Collapse
|
11
|
Murugan M, Boison D. Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy Res 2020; 167:106444. [PMID: 32854046 PMCID: PMC7655615 DOI: 10.1016/j.eplepsyres.2020.106444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
High fat, low carbohydrate ketogenic diets (KD) have been in use for the treatment of epilepsy for almost a hundred years. Remarkably, seizures that are resistant to conventional anti-seizure drugs can in many cases be controlled by the KD therapy, and it has been shown that many patients with epilepsy become seizure free even after discontinuation of the diet. These findings suggest that KD combine anti-seizure effects with disease modifying effects. In addition to the treatment of epilepsy, KDs are now widely used for the treatment of a wide range of conditions including weight reduction, diabetes, and cancer. The reason for the success of metabolic therapies is based on the synergism of at least a dozen different mechanisms through which KDs provide beneficial activities. Among the newest findings are epigenetic mechanisms (DNA methylation and histone acetylation) through which KD exerts long-lasting disease modifying effects. Here we review mechanisms through which KD can affect neuroprotection in the brain, and how a combination of those mechanisms with epigenetic alterations can attenuate and possibly reverse the development of epilepsy.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, United States; Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, United States; Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
12
|
Rajpal A, Ismail-Beigi F. Intermittent fasting and 'metabolic switch': Effects on metabolic syndrome, prediabetes and type 2 diabetes. Diabetes Obes Metab 2020; 22:1496-1510. [PMID: 32372521 DOI: 10.1111/dom.14080] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Various intermittent fasting (IF) dietary plans have gained popularity among obese individuals in recent years as a means of achieving weight loss. However, studies evaluating the effect of IF regimens in people with metabolic syndrome, prediabetes and type 2 diabetes (T2D) are limited. The aim of the present review was to briefly elucidate the biochemical and physiological mechanisms underlying the positive effects of IF, especially the effect of the proposed 'metabolic switch' on metabolism. Next, we examined the efficacy and safety of IF regimens in individuals with metabolic syndrome, prediabetes and T2D. To achieve this, we performed a MEDLINE PubMed search using combinations of various IF terms, including trials in which participants met the additional criteria for metabolic syndrome, prediabetes or T2D. We found four studies in individuals with metabolic syndrome, one study in people with prediabetes, and eight studies in people with T2D evaluating the effects of different IF regimens. The limited available evidence, with small sample sizes and short trial durations, suggests that IF regimens have a similar effectiveness compared with calorie-restriction diets for weight loss and improvement in glycaemic variables. In general, most IF regimens are effective and safe. However, there is an increased risk of hypoglycaemia in patients with T2D who are treated with insulin or sulphonylureas. Moreover, long-term adherence to these regimens appears uncertain. There is a need for large controlled randomized trials to evaluate the efficacy of IF regimens, especially in individuals with metabolic syndrome and prediabetes. If proven to be sustainable and efficacious for prolonged periods, IF could offer a promising approach to improving health at the population level, and would result in multiple public health benefits.
Collapse
Affiliation(s)
- Aman Rajpal
- Department of Medicine, Case Western Reserve University and Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University and Cleveland VA Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Santillán-Cigales JJ, Mercado-Gómez OF, Arriaga-Ávila V, Landgrave-Gómez J, Guevara-Guzmán R. Daytime-restricted feeding modulates the expression of inflammatory mediators and diminishes reactive astrogliosis and microgliosis following status epilepticus. Brain Res 2020; 1734:146724. [PMID: 32057806 DOI: 10.1016/j.brainres.2020.146724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Jair Santillán-Cigales
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Octavio Fabián Mercado-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Virginia Arriaga-Ávila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jorge Landgrave-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
14
|
Guo Y, Zhang C, Shang FF, Luo M, You Y, Zhai Q, Xia Y, Suxin L. Ketogenic Diet Ameliorates Cardiac Dysfunction via Balancing Mitochondrial Dynamics and Inhibiting Apoptosis in Type 2 Diabetic Mice. Aging Dis 2020; 11:229-240. [PMID: 32257538 PMCID: PMC7069456 DOI: 10.14336/ad.2019.0510] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet (KD) has been widely used in clinical studies and shown to hace an anti-diabetic effect, but the underlying mechanisms have not been fully elaborated. Our aim was to investigate the effects and the underling mechanisms of the KD on cardiac function in db/db mice. In the present study, db/db mice were subjected to a normal diet (ND) or KD. Fasting blood glucose, cardiac function and morphology, mitochondrial dynamics, oxidative stress, and apoptosis were measured 8 weeks post KD treatment. Compared with the ND, the KD improved glycemic control and protected against diabetic cardiomyopathy in db/db mice, and improved mitochondrial function, as well as reduced oxidative stress were observed in hearts. In addition, KD treatment exerted an anti-apoptotic effect in the heart of db/db mice. Further data showed that the PI3K/Akt pathway was involved in this protective effect. Our data demonstrated that KD treatment ameliorates cardiac dysfunction by inhibiting apoptosis via activating the PI3K-Akt pathway in type 2 diabetic mice, suggesting that the KD is a promising lifestyle intervention to protect against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| | - Minghao Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yuehua You
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Shaanxi 710032, China.
| | - Yong Xia
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University College of Medicine, OH 43210, USA.
| | - Luo Suxin
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Li J, Liu Y, Liu HQ, Chen L, Li RJ. Ketogenic Diet Potentiates Electrical Stimulation-Induced Peripheral Nerve Regeneration after Sciatic Nerve Crush Injury in Rats. Mol Nutr Food Res 2020; 64:e1900535. [PMID: 31914235 DOI: 10.1002/mnfr.201900535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/23/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Recent findings indicate that the ketogenic diet (KD) is neuroprotective and electrical stimulation (ES) can improve functional recovery from peripheral nerve injury. However, it is not clear whether KD and ES play a synergistical role in the peripheral nerve recovery following injury. METHODS AND RESULTS A KD consisting of a 3:1 ratio of fat to carbohydrate + protein is used and is coupled with ES treatment in a rat model of peripheral nerve crush injury. Neuromuscular recovery is evaluated by electromyography, and axonal regeneration and myelination by histological methods. The effects on insulin-like growth factor 1 (IGF-1) and IGF-1 receptor expression in peripheral nerve tissue, pre- and post-nerve injury, are also investigated. The combination of KD and ES synergistically increases muscle force in biceps femoris and gluteus maximus and prevents development of hypersensitivity in biceps femoris. It promotes peripheral nerve regeneration by increasing total axons, axon density, and axonal diameter, as well as myelin thickness and axon/fiber ratio. These effects are due to modulation of the IGF system as the treatment expression of IGF-1 and IGF-1 receptor in regenerated nerve tissue. CONCLUSION The results establish that KD and ES promote peripheral nerve regeneration. Patients recovering from peripheral nerve injury may benefit from this combinational approach.
Collapse
Affiliation(s)
- Ji Li
- Department of Anesthesia, The First Hospital of Jilin University, 71 XinMin Street, Changchun, 130021, P. R. China
| | - Yang Liu
- Department of Hand Surgery, The First Hospital of Jilin University, 71 XinMin Street, Changchun, 130021, P. R. China
| | - Huan-Qiu Liu
- Department of Anesthesia, The First Hospital of Jilin University, 71 XinMin Street, Changchun, 130021, P. R. China
| | - Lei Chen
- Department of Hand Surgery, The First Hospital of Jilin University, 71 XinMin Street, Changchun, 130021, P. R. China
| | - Rui-Jun Li
- Department of Hand Surgery, The First Hospital of Jilin University, 71 XinMin Street, Changchun, 130021, P. R. China
| |
Collapse
|
16
|
Vitaliti G, Pavone P, Marino S, Saporito MAN, Corsello G, Falsaperla R. Molecular Mechanism Involved in the Pathogenesis of Early-Onset Epileptic Encephalopathy. Front Mol Neurosci 2019; 12:118. [PMID: 31156384 PMCID: PMC6529508 DOI: 10.3389/fnmol.2019.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that neurologic inflammation may both precipitate and sustain seizures, suggesting that inflammation may be involved not only in epileptogenesis but also in determining the drug-resistant profile. Extensive literature data during these last years have identified a number of inflammatory markers involved in these processes of "neuroimmunoinflammation" in epilepsy, with key roles for pro-inflammatory cytokines such as: IL-6, IL-17 and IL-17 Receptor (IL-17R) axis, Tumor-Necrosis-Factor Alpha (TNF-α) and Transforming-Growth-Factor Beta (TGF-β), all responsible for the induction of processes of blood-brain barrier (BBB) disruption and inflammation of the Central Nervous System (CNS) itself. Nevertheless, many of these inflammatory biomarkers have also been implicated in the pathophysiologic process of other neurological diseases. Future studies will be needed to identify the disease-specific biomarkers in order to distinguish epilepsies from other neurological diseases, as well as recognize different epileptic semiology. In this context, biological markers of BBB disruption, as well as those reflecting its integrity, can be useful tools to determine the pathological process of a variety of neurological diseases. However; how these molecules may help in the diagnosis and prognostication of epileptic disorders remains yet to be determined. Herein, authors present an extensive literature review on the involvement of both, systemic and neuronal immune systems, in the early onset of epileptic encephalopathy.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Silvia Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Marco Andrea Nicola Saporito
- Neonatal Intensive Care Unit, Santo Bambino Hospital of Catania, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele”, Catania, Italy
| |
Collapse
|
17
|
Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketogenic Diet Modulates NAD +-Dependent Enzymes and Reduces DNA Damage in Hippocampus. Front Cell Neurosci 2018; 12:263. [PMID: 30214397 PMCID: PMC6125375 DOI: 10.3389/fncel.2018.00263] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet's (KD) anti-seizure effects have long been documented. Recently, its therapeutic potential in multiple neurodegenerative and neurodevelopmental disorders has emerged. Yet experimental evidence for a fundamental mechanism underlying beneficial effects across numerous diseases remains lacking. We previously showed that feeding rats a KD produced an early (within 2 days) and persistent elevation of hippocampal nicotinamide adenine dinucleotide+ (NAD+), an essential metabolic coenzyme and signaling molecule. NAD+ is a marker of cellular health and a substrate for enzymes implicated in longevity and DNA damage repair such as sirtuins and poly-ADP ribose polymerase-1 (PARP-1). As a result, activation of NAD+-dependent enzymes' downstream pathways could be the origin of KD's broad beneficial effects. Here rats were fed ad libitum regular chow or KD for 2 days or 3 weeks and the levels of hippocampal sirtuins, PARP-1, and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine were quantified. We found a significant immediate and persistent increase in the collective activity of nuclear sirtuin enzymes, and a significant augmentation of Sirt1 mRNA at 2 days. Levels of PARP-1 and 8-hydroxy-2'-deoxyguanosine decreased after 2 days of treatment and further declined at 3 weeks. Our data show that a KD can rapidly modulate energy metabolism by acting on NAD+-dependent enzymes and their downstream pathways. Thus, therapy with a KD can potentially enhance brain health and increase overall healthspan via NAD+-related mechanisms that render cells more resilient against DNA damage and a host of metabolic, epileptic, neurodegenerative, or neurodevelopmental insults.
Collapse
Affiliation(s)
- Marwa Elamin
- Graduate Program in Neuroscience, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - David N Ruskin
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Paola Sacchetti
- Graduate Program in Neuroscience, Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
18
|
Zhang Y, Xu J, Zhang K, Yang W, Li B. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms. Curr Neuropharmacol 2018; 16:66-70. [PMID: 28521671 PMCID: PMC5771386 DOI: 10.2174/1570159x15666170517153509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/12/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet.Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Methods: Data was obtained from the websites including Web of Science, Medline, Pubmed,Scopus, based on these keywords: “Ketogenic diet” and “epilepsy”. Results: As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. Conclusion: In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy.
Collapse
Affiliation(s)
- Yifan Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Jingwei Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
19
|
Zhang Q, Xu L, Xia J, Wang D, Qian M, Ding S. Treatment of Diabetic Mice with a Combination of Ketogenic Diet and Aerobic Exercise via Modulations of PPARs Gene Programs. PPAR Res 2018; 2018:4827643. [PMID: 29743883 PMCID: PMC5884211 DOI: 10.1155/2018/4827643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 02/06/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes is a prevalent chronic disease arising as a serious public health problem worldwide. Diet intervention is considered to be a critical strategy in glycemic control of diabetic patients. Recently, the low-carbohydrate ketogenic diet is shown to be effective in glycemic control and weight loss. However, hepatic lipid accumulation could be observed in mice treated with ketogenic diet. On the other hand, exercise is a well-known approach for treating nonalcoholic fatty liver disease. We thus hypothesize that the combination of ketogenic diet and exercise could improve insulin sensitivity, while minimizing adverse effect of hepatic steatosis. In order to test this hypothesis, we established diabetic mice model with streptozotocin (STZ) and divided them into control group, ketogenic diet group, and ketogenic diet with aerobic exercise group. We found that after six weeks of intervention, mice treated with ketogenic diet and ketogenic diet combined with exercise both have lower body weights, HbAlc level, HOMA index, and improvements in insulin sensitivity, compared with diabetes group. In addition, mice in ketogenic diet intervention exhibited hepatic steatosis shown by serum and hepatic parameters, as well as histochemistry staining in the liver, which could be largely relieved by exercise. Furthermore, gene analysis revealed that ketogenic diet in combination with exercise reduced PPARγ and lipid synthetic genes, as well as enhancing PPARα and lipid β-oxidation gene program in the liver compared to those in ketogenic diet without exercise. Overall, the present study demonstrated that the combination of ketogenic diet and a moderate-intensity aerobic exercise intervention improved insulin sensitivity in diabetic mice, while avoiding hepatic steatosis, which provided a novel strategy in the combat of diabetes.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19:63-80. [PMID: 29321682 PMCID: PMC5913738 DOI: 10.1038/nrn.2017.156] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Maggie Schmaedick
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| |
Collapse
|
21
|
Limited daily feeding and intermittent feeding have different effects on regional brain energy homeostasis during aging. Biogerontology 2018; 19:121-132. [PMID: 29340834 DOI: 10.1007/s10522-018-9743-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Albeit aging is an inevitable process, the rate of aging is susceptible to modifications. Dietary restriction (DR) is a vigorous nongenetic and nonpharmacological intervention that is known to delay aging and increase healthspan in diverse species. This study aimed to compare the impact of different restricting feeding regimes such as limited daily feeding (LDF, 60% AL) and intermittent feeding (IF) on brain energy homeostasis during aging. The analysis was focused on the key molecules in glucose and cholesterol metabolism in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. We measured the impact of different DRs on the expression levels of AMPK, glucose transporters (GLUT1, GLUT3, GLUT4), and the rate-limiting enzyme in the cholesterol synthesis pathway (HMGCR). Additionally, we assessed the changes in the amounts of cholesterol, its metabolite, and precursors following LDF and IF. IF decreased the levels of AMPK and pAMPK in the cortex while the increased levels were detected in the hippocampus. Glucose metabolism was more affected in the cortex, while cholesterol metabolism was more influenced in the hippocampus. Overall, the hippocampus was more resilient to the DRs, with fewer changes compared to the cortex. We showed that LDF and IF differently affected the brain energy homeostasis during aging and that specific brain regions exhibited distinct vulnerabilities towards DRs. Consequently, special attention should be paid to the DR application among elderly as different phases of aging do not respond equally to altered nutritional regimes.
Collapse
|
22
|
Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci 2017; 18:ijms18112441. [PMID: 29149058 PMCID: PMC5713408 DOI: 10.3390/ijms18112441] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction. Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. Methods. In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: “GH/IGF-1” associated with “neuroregeneration”, “amyotrophic lateral sclerosis”, “Alzheimer disease”, “Parkinson’s disease”, “brain”, and “neuron”. Results. Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. Conclusions. Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42-47891 Falciano, San Marino.
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca via Cadore, 48-20900 Monza Brianza, Italy.
| | - Laura Rizzi
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, 48-20900 Monza Brianza, Italy.
| |
Collapse
|
23
|
Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketone-Based Metabolic Therapy: Is Increased NAD + a Primary Mechanism? Front Mol Neurosci 2017; 10:377. [PMID: 29184484 PMCID: PMC5694488 DOI: 10.3389/fnmol.2017.00377] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
The ketogenic diet’s (KD) anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s) of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD), a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes) associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.
Collapse
Affiliation(s)
- Marwa Elamin
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - David N Ruskin
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Paola Sacchetti
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
24
|
Riikonen R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. Int J Mol Sci 2017; 18:E2056. [PMID: 28954393 PMCID: PMC5666738 DOI: 10.3390/ijms18102056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Insulin-like growth factors play a key role for neuronal growth, differentiation, the survival of neurons and synaptic formation. The action of IGF-1 is most pronounced in the developing brain. In this paper we will try to give an answer to the following questions: Why are studies in children important? What clinical studies in neonatal asphyxia, infantile spasms, progressive encephalopathy-hypsarrhythmia-optical atrophy (PEHO) syndrome, infantile ceroid lipofuscinosis (INCL), autistic spectrum disorders (ASD) and subacute sclerosing encephalopathy (SSPE) have been carried out? What are IGF-based therapeutic strategies? What are the therapeutic approaches? We conclude that there are now great hopes for the therapeutic use of IGF-1 for some neurological disorders (particularly ASD).
Collapse
Affiliation(s)
- Raili Riikonen
- Child Neurology, Children's Hospital, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
25
|
Abstract
The positive effects of the ketogenic diet (KD) on social behavior have been recently reported in patients and rodent models of autism spectrum disorder (ASD). Given the beneficial effects of the KD on epilepsy, mitochondrial function, carbohydrate metabolism, and inflammation, treatment based on the KD has the potential to reduce some of the ASD-associated symptoms, including abnormal social interactions. It is not known whether the KD influences sociability by reducing the pathological processes underlying ASD or through some independent mechanism. The aim of the present study was to evaluate the influence of the KD on the social behavior of rats. Four-week-old Long-Evans males were treated with the KD for 4 subsequent weeks. Afterwards, behavioral tests were performed in order to evaluate sociability, locomotor activity, working memory, and anxiety-related behaviors. Additionally we performed the social interaction test in animals that were receiving β-hydroxybutyrate or acetone. We have observed that rats fed with the KD showed increased social exploration in three different experimental settings. We did not observe any changes in the level of social interactions in animals treated with exogenous ketone bodies. The results did not show any difference in mobility or anxiety-related behaviors or working memory between the animals fed with the KD or standard rodent chow. In conclusion, we showed that the KD affects the social behavior of wild-type young adult male rats, which was not associated with other behavioral changes.
Collapse
|
26
|
Control of seizures by ketogenic diet-induced modulation of metabolic pathways. Amino Acids 2016; 49:1-20. [PMID: 27683025 DOI: 10.1007/s00726-016-2336-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug's mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD's modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, D-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD's ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.
Collapse
|
27
|
Wilkins HM, Swerdlow RH. Relationships Between Mitochondria and Neuroinflammation: Implications for Alzheimer's Disease. Curr Top Med Chem 2016; 16:849-57. [PMID: 26311426 DOI: 10.2174/1568026615666150827095102] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/03/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Mitochondrial dysfunction and neuroinflammation occur in Alzheimer's disease (AD). The causes of these pathologic lesions remain uncertain, but links between these phenomena are increasingly recognized. In this review, we discuss data that indicate mitochondria or mitochondrial components may contribute to neuroinflammation. While mitochondrial dysfunction could cause neuroinflammation, neuroinflammation could also cause mitochondrial dysfunction. However, based on the systemic nature of AD mitochondrial dysfunction as well as data from experiments we discuss, the former possibility is perhaps more likely. If correct, then manipulation of mitochondria, either directly or through manipulations of bioenergetic pathways, could prove effective in reducing metabolic dysfunction and neuroinflammation in AD patients. We also review some potential approaches through which such manipulations may be achieved.
Collapse
Affiliation(s)
| | - Russell H Swerdlow
- University of Kansas School of Medicine, MS 2012, Landon Center on Aging, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
28
|
Walker LE, Janigro D, Heinemann U, Riikonen R, Bernard C, Patel M. WONOEP appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia 2016; 57:1354-62. [PMID: 27374986 DOI: 10.1111/epi.13460] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Peripheral biomarkers have myriad potential uses for treatment, prediction, prognostication, and pharmacovigilance in epilepsy. To date, no single peripheral biomarker has demonstrated proven effectiveness, although multiple candidates are in development. In this review, we discuss the major areas of focus including inflammation, blood-brain barrier dysfunction, redox alterations, metabolism, hormones and growth factors.
Collapse
Affiliation(s)
- Lauren E Walker
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Damir Janigro
- Flocel, Inc., Case Western Reserve University Cleveland, Cleveland, Ohio, U.S.A
| | - Uwe Heinemann
- Neuroscience Research Center Charité, Berlin, Germany
| | - Raili Riikonen
- University of Kuopio, University of Eastern Finland, Kuopio, Finland
| | | | - Manisha Patel
- Department of Pharmaceutical Science, University of Colorado, Aurora, Colorado, U.S.A
| |
Collapse
|
29
|
Purow B. Repurposing existing agents as adjunct therapies for glioblastoma. Neurooncol Pract 2015; 3:154-163. [PMID: 31386097 DOI: 10.1093/nop/npv041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/16/2022] Open
Abstract
Numerous non-oncologic medications have been found in the last decade to have anti-cancer properties. While the focus in oncology research should clearly remain on deriving new therapeutic strategies, repurposing these existing medications may offer the potential to rapidly enhance the effectiveness of treatment for resistant cancers. Glioblastoma, the most common and lethal brain cancer, is highly resistant to standard therapies and would benefit from even minor improvements in treatment. Numerous agents already in the clinic for non-cancer applications have been found to also possess potential against cancer or specifically against glioblastoma. These include agents with activities affecting oxidative stress, the immune reponse, epigenetic modifiers, cancer cell metabolism, and angiogenesis and invasiveness. This review serves as a guide for potential ways to repurpose individual drugs alongside standard glioblastoma therapies.
Collapse
Affiliation(s)
- Benjamin Purow
- Neurology Department, University of Virginia Neuro-Oncology Division, Old Medical School Room 4881, 21 Hospital Drive, Charlottesville, VA 22908, USA (B.P.)
| |
Collapse
|
30
|
Phillips-Farfán BV, Rubio Osornio MDC, Custodio Ramírez V, Paz Tres C, Carvajal Aguilera KG. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front Cell Neurosci 2015; 9:90. [PMID: 25814935 PMCID: PMC4356078 DOI: 10.3389/fncel.2015.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
Caloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway.
Collapse
Affiliation(s)
| | | | | | - Carlos Paz Tres
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía México City, México
| | | |
Collapse
|
31
|
Sussman D, Germann J, Henkelman M. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring. Brain Behav 2015; 5:e00300. [PMID: 25642385 PMCID: PMC4309881 DOI: 10.1002/brb3.300] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/12/2014] [Accepted: 11/10/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The ketogenic diet (KD) has seen an increase in popularity for clinical and non-clinical purposes, leading to rise in concern about the diet's impact on following generations. The KD is known to have a neurological effect, suggesting that exposure to it during prenatal brain development may alter neuro-anatomy. Studies have also indicated that the KD has an anti-depressant effect on the consumer. However, it is unclear whether any neuro-anatomical and/or behavioral changes would occur in the offspring and persist into adulthood. METHODS To fill this knowledge gap we assessed the brain morphology and behavior of 8-week-old young-adult CD-1 mice, who were exposed to the KD in utero, and were fed only a standard-diet (SD) in postnatal life. Standardized neuro-behavior tests included the Open-Field, Forced-Swim, and Exercise Wheel tests, and were followed by post-mortem Magnetic Resonance Imaging (MRI) to assess brain anatomy. RESULTS The adult KD offspring exhibit reduced susceptibility to anxiety and depression, and elevated physical activity level when compared with controls exposed to the SD both in utero and postnatally. Many neuro-anatomical differences exist between the KD offspring and controls, including, for example, a cerebellar volumetric enlargement by 4.8%, a hypothalamic reduction by 1.39%, and a corpus callosum reduction by 4.77%, as computed relative to total brain volume. CONCLUSIONS These results suggest that prenatal exposure to the KD programs the offspring neuro-anatomy and influences their behavior in adulthood.
Collapse
Affiliation(s)
- Dafna Sussman
- Physiology and Experimental Medicine, The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Jurgen Germann
- Mouse Imaging Center (MICe), The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Center (MICe), The Hospital for Sick ChildrenToronto, Ontario, Canada
| |
Collapse
|
32
|
Lee JW, Norden AD, Ligon KL, Golby AJ, Beroukhim R, Quackenbush J, Wells W, Oelschlager K, Maetzold D, Wen PY. Tumor associated seizures in glioblastomas are influenced by survival gene expression in a region-specific manner: a gene expression imaging study. Epilepsy Res 2014; 108:843-52. [PMID: 24690158 PMCID: PMC4076930 DOI: 10.1016/j.eplepsyres.2014.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 11/15/2022]
Abstract
Tumor associated seizures (TAS) are common and cause significant morbidity. Both imaging and gene expression features play significant roles in determining TAS, with strong interactions between them. We describe gene expression imaging tools which allow mapping of brain regions where gene expression has significant influence on TAS, and apply these methods to study 77 patients who underwent surgical evaluation for supratentorial glioblastomas. Tumor size and location were measured from MRI scans. A 9-set gene expression profile predicting long-term survivors was obtained from RNA derived from formalin-fixed paraffin embedded tissue. A total of 32 patients (42%) experienced preoperative TAS. Tumor volume was smaller (31.1 vs. 58.8 cubic cm, p<0.001) and there was a trend toward median survival being higher (48.4 vs. 32.7 months, p=0.055) in patients with TAS. Although the expression of only OLIG2 was significantly lower in patients with TAS in a groupwise analysis, gene expression imaging analysis revealed regions with significantly lower expression of OLIG2 and RTN1 in patients with TAS. Gene expression imaging is a powerful technique that demonstrates that the influence of gene expression on TAS is highly region specific. Regional variability should be evaluated with any genomic or molecular markers of solid brain lesions.
Collapse
Affiliation(s)
- Jong Woo Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States.
| | - Andrew D Norden
- Center for Neuro-oncology, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, United States
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States; Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, United States
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Rameen Beroukhim
- Center for Neuro-oncology, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, United States
| | - John Quackenbush
- Department of Biostatistics, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, United States
| | - William Wells
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, United States
| | - Kristen Oelschlager
- Castle Biosciences Inc., 3330N 2nd Street, Suite 207, Phoenix, AZ 85012, United States
| | - Derek Maetzold
- Castle Biosciences Inc., 3330N 2nd Street, Suite 207, Phoenix, AZ 85012, United States
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, United States
| |
Collapse
|
33
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
34
|
Napoli E, Dueñas N, Giulivi C. Potential therapeutic use of the ketogenic diet in autism spectrum disorders. Front Pediatr 2014; 2:69. [PMID: 25072037 PMCID: PMC4074854 DOI: 10.3389/fped.2014.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
The ketogenic diet (KGD) has been recognized as an effective treatment for individuals with glucose transporter 1 (GLUT1) and pyruvate dehydrogenase (PDH) deficiencies as well as with epilepsy. More recently, its use has been advocated in a number of neurological disorders prompting a newfound interest in its possible therapeutic use in autism spectrum disorders (ASD). One study and one case report indicated that children with ASD treated with a KGD showed decreased seizure frequencies and exhibited behavioral improvements (i.e., improved learning abilities and social skills). The KGD could benefit individuals with ASD affected with epileptic episodes as well as those with either PDH or mild respiratory chain (RC) complex deficiencies. Given that the mechanism of action of the KGD is not fully understood, caution should be exercised in ASD cases lacking a careful biochemical and metabolic characterization to avoid deleterious side effects or refractory outcomes.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California Davis , Davis, CA , USA
| | - Nadia Dueñas
- Department of Molecular Biosciences, University of California Davis , Davis, CA , USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California Davis , Davis, CA , USA ; Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute , Sacramento, CA , USA
| |
Collapse
|
35
|
Abstract
Increasing attention is being paid to nutritional and metabolic management of traumatic brain injury patients. The gross metabolic changes that occur after injury have been found to be influenced by both macronutrients, that is, dietary ratios of fat, carbohydrates, and protein, and micronutrients, for example, vitamins and minerals. Alterations in diet and nutritional strategies have been shown to decrease both morbidity and mortality after injury. Despite this knowledge, defining optimal nutritional support following traumatic brain injury continues to be an ongoing challenge.
Collapse
Affiliation(s)
- Tiffany Greco
- Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA
| | | |
Collapse
|
36
|
Singhi P, De Meirleir L, Lissens W, Singhi S, Saini AG. Pyruvate dehydrogenase-e1α deficiency presenting as recurrent demyelination: an unusual presentation and a novel mutation. JIMD Rep 2013; 10:107-11. [PMID: 23430811 DOI: 10.1007/8904_2012_211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022] Open
Abstract
The nucleus-encoded mitochondrial pyruvate dehydrogenase enzyme complex plays key roles in cellular energy metabolism and acid-base equilibrium. Pyruvate dehydrogenase complex deficiency is due to loss-of-function mutation in one of the five component enzymes, most commonly E1α-subunit. The common clinical presentation ranges from fatal infantile lactic acidosis in newborns to chronic neurological dysfunction. We describe here an unusual presentation of E1α-subunit deficiency presenting as recurrent demyelination, Guillain-Barré syndrome-like demyelinating polyneuropathy at the onset, and ophthalmoplegia in a young infant. The clinical phenotype of the mutation in the patient was unique as compared to the previous reported cases of pyruvate dehydrogenase deficiency. The mother was found to be a mosaic carrier of the mutation. This phenotypic variability of pyruvate dehydrogenase complex deficiency and early suspicion of its unusual neurological manifestations is highlighted. Thiamine and ketogenic diet can be helpful.
Collapse
Affiliation(s)
- Pratibha Singhi
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India,
| | | | | | | | | |
Collapse
|
37
|
Peres RC, Nogueira DB, de Paula Guimarães G, da Costa EL, Ribeiro DA. Implications of ketogenic diet on weight gain, motor activity and cicatrization in Wistar rats. Toxicol Mech Methods 2012; 23:144-9. [DOI: 10.3109/15376516.2012.735276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Weaver C, Turner N, Hall J. Review of the neuroanatomic landscape implicated in glucose sensing and regulation of nutrient signaling: immunophenotypic localization of diabetes gene Tcf7l2 in the developing murine brain. J Chem Neuroanat 2012; 45:1-17. [PMID: 22796301 DOI: 10.1016/j.jchemneu.2012.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 01/25/2023]
Abstract
Genetic variants in the transcription factor 7-like 2(Tcf7l2) gene have been found to confer a significant risk of type 2 diabetes and attenuated insulin secretion. Based on its genomic wide association Tcf7l2 is considered the single most important predictor of diabetes to date. Previous studies of Tcf7l2 mRNA localization in the adult brain suggest a putative role of Tcf7l2 in the CNS regulation of energy homeostasis. The present study further characterizes the immunophenotypic distribution of peptide expression in the brains of Tcf7l2 progeny during developmental time periods between E12.5 and P1. Tcf7l2(-/-) is lethal beyond P1. Results show that while negligible TCF7L2 expression is found in the developing brains of Tcf7l2(-/-)mice, TCF7L2 protein is relatively widespread and robustly expressed in the brain by E18.5 and exhibits specific expression within neuronal populations and regions of the brain in Tcf7l2(+/-) and Tcf7l2(+/+) progeny. Strong immunophenotypic labeling was found in the diencephalic structure of the thalamus that suggests a role of Tcf7l2 in the development and maintenance of thalamic activity. Strongly expressed TCF7L2 was localized in select hypothalamic and preoptic nuclei indicative of Tcf7l2 function within neurons controlling energy balance. Definitive neuronal staining for TCF7L2 within nuclei of the brain stem and circumventricular organs extends TCF7L2 localization within autonomic neurons and its potential integration with autonomic function. In addition robust TCF7L2 expression was found in the tectal and tegmental structures of the superior and inferior colliculi as well as transient expression in neuroepithelium of the cerebral and hippocampal cortices of E16 and E18.5. Patterns of TCF7L2 peptide localization when compared to the adult protein synthetic chemical/anatomical landscape of glucose sensing exhibit a good correlational fit between its expression and regions, nuclei, and pathways regulating energy homeostasis via integration and response to peripheral endocrine, metabolic and neuronal signaling. TCF was also found co-localized with peptides that regulate energy homeostasis including AgRP, POMC and NPY. TCF7l2, some variants of which have been shown to impair GLP-1-induced insulin secretion, was also found co-localize with GLP-1 in adult TCF wild type progeny. Impaired Tcf7l2-mediated neural regulation may contribute to the risk and/or underlying pathophysiology of type 2 diabetes that has found high expression in genomic studies of Tcf7l2 variants.
Collapse
Affiliation(s)
- Cyprian Weaver
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
39
|
Pan Y. Enhancing brain functions in senior dogs: a new nutritional approach. Top Companion Anim Med 2011; 26:10-6. [PMID: 21435621 DOI: 10.1053/j.tcam.2011.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/07/2011] [Indexed: 12/22/2022]
Abstract
Aging induces many morphological and metabolic changes in the brain, which may eventually lead to cognitive impairment and dementia called cognitive dysfunction syndrome in senior dogs. Cognitive impairment and dementia can adversely affect the quality of life in both dogs and their owners. Progress has been made over the past years to understand how aging affects brain and its functions in humans and animals including dogs. Existing data indicate that aging-induced changes in the brain are gradual and irreversible. Therefore, it is too late to effectively manage dogs with cognitive impairment and cognitive dysfunction syndrome. The best option to manage brain aging successfully is to reduce or prevent aging-induced changes in the brain by correcting early metabolic changes and eliminating risk factors associated with brain aging and dementia. This article reviews behavioral, morphological, and metabolic changes in the brain induced by aging and discusses a novel nutritional solution for the aging-induced metabolic changes in the brain.
Collapse
Affiliation(s)
- Yuanlong Pan
- Nestlé Purina Research, St. Louis, MO 63164, USA.
| |
Collapse
|
40
|
Langley-Evans SC, Daniel ZC, Wells CA, Ryan KJP, Plant R, Welham SJM. Protein restriction in the pregnant mouse modifies fetal growth and pulmonary development: role of fetal exposure to {beta}-hydroxybutyrate. Exp Physiol 2010; 96:203-15. [PMID: 20851857 DOI: 10.1113/expphysiol.2010.054460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maternal undernutrition during sensitive periods of pregnancy results in offspring predisposed towards the development of a number of diseases of adulthood, including hypertension and diabetes. In order to determine the nature of any gross alterations in fetal growth during early organogenesis, we supplied timed-mated pregnant mice with diets containing 6% protein (6%P), 9% protein (9%P) or 18% protein (18%P; control) from day 0 of pregnancy. At embryonic days 11 (E11), 12 (E12) and 13 (E13), females were killed and fetuses removed. Gross morphological analysis revealed that fetal limb growth was impaired between E11 and E12 in 6%P animals, but this recovered by E13. Likewise, fetal liver growth and lung branching morphogenesis were seen to exhibit an initial growth impairment at E12 followed by a rapid recovery by E13. Coincident with the observed changes in fetal growth, we noted an elevation in maternal hepatic triglyceride content, expression of the ketogenic 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) and circulating plasma β-hydroxybutyrate (BOHB). In addition, fetal liver Hmgcs2 expression was switched on by E13 in both 6%P- and 9%P-exposed animals. Exogenous BOHB did not influence branching morphogenesis in fetal lung explant cultures; however, we cannot rule out the possibility that this may occur in vivo. In conclusion, we find that disturbance of fetal growth by maternal dietary protein restriction is associated and therefore potentially indicated by changes in maternal and fetal ketone body metabolism.
Collapse
Affiliation(s)
- Simon C Langley-Evans
- University of Nottingham, Nutritional Sciences, Sutton Bonington Campus, Division of Nutritional Sciences, Loughborough, Leicestershire, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Tai KK, Pham L, Truong DD. Intracisternal administration of glibenclamide or 5-hydroxydecanoate does not reverse the neuroprotective effect of ketogenic diet against ischemic brain injury-induced neurodegeneration. Brain Inj 2010; 23:1081-8. [PMID: 19909054 DOI: 10.3109/02699050903421123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To investigate the role of ATP-sensitive potassium (K(ATP)) channels in the neuroprotective effects of a ketogenic diet against cardiac arrest-induced cerebral ischemic brain injury-induced neurodegeneration. RESEARCH DESIGN Male Sprague Dawley rats were randomly divided into three groups and were fed with a ketogenic diet for 25 days before being subjected to a cardiac arrest-induced cerebral ischemia for 8 minutes 30 seconds. Four hours before cardiac arrest-induced cerebral ischemia, one group was intracisternally injected with glibenclamide, a plasma membrane K(ATP) channel blocker. The second group was injected with 5-hydroxydecanoate, a mitochondrial K(ATP) channel blocker. The third group was without the pre-treatment with K(ATP) channel antagonist. Nine days after the cardiac arrest, rats were sacrificed. Fluoro-jade (FJ) staining was used to evaluate cerebral ischemic neurodegeneration in the rat brain sections. MAIN OUTCOMES AND RESULTS The number of FJ-positive degenerating neurons in the CA1 area of the hippocampus, the cerebellum and the thalamic reticular nucleus of the ketogenic diet-fed rats with or without glibenclamide or 5-hydroxydecanoate pre-treatment before cardiac arrest-induced cerebral ischemia is zero. CONCLUSIONS The results suggest that K(ATP) channels do not play a significant role in the neuroprotective effects of the ketogenic diet against cardiac arrest-induced cerebral ischemic injury-induced neurodegeneration.
Collapse
Affiliation(s)
- K-K Tai
- Long Beach Memorial Medical Center, Long Beach, CA 90806, USA.
| | | | | |
Collapse
|
42
|
Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington's disease. Eur J Hum Genet 2010; 18:1057-60. [PMID: 20512158 DOI: 10.1038/ejhg.2010.72] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We previously identified a systemic metabolic defect associated with early weight loss in patients with Huntington's disease (HD), suggesting a lack of substrates for the Krebs cycle. Dietary anaplerotic therapy with triheptanoin is used in clinical trials to promote energy production in patients with peripheral and brain Krebs cycle deficit, as its metabolites - C5 ketone bodies - cross the blood-brain barrier. We conducted a short-term clinical trial in six HD patients (UHDRS (Unified Huntington Disease Rating Scale)=33+/-13, 15-49) to monitor the tolerability of triheptanoin. We also assessed peripheral markers of short-term efficacy that were shown to be altered in the early stages of HD, that is, low serum IGF1 and (31)P-NMR spectroscopy (NMRS) in muscle. At baseline, (31)P-NMRS displayed two patients with end-exercise muscle acidosis despite a low work output. On day 2, the introduction of triheptanoin was well tolerated in all patients, and in particular, there was no evidence of mitochondrial overload from triheptanoin-derived metabolites. After 4 days of triheptanoin-enriched diet, muscle pH regulation was normalized in the two patients with pretreatment metabolic abnormalities. A significant increase in serum IGF1 was also observed in all patients (205+/-60 ng/ml versus 246+/-68 ng/ml, P=0.010). This study provides a rationale for extending our anaplerotic approach with triheptanoin in HD.
Collapse
|
43
|
Riikonen RS, Jääskeläinen J, Turpeinen U. Insulin-like growth factor-1 is associated with cognitive outcome in infantile spasms. Epilepsia 2010; 51:1283-9. [DOI: 10.1111/j.1528-1167.2009.02499.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
de Melo Lucena AL, Lima de Oliveira S, da Rocha Ataide T, Ximenes da Silva A, Rêgo Cabral C, de Almeida Rabello Oliveira M, Martins Porto de Souza T, Rodrigues de Mendonça C, Fernandes Lima CM, do Carmo Lins Vasconcelos Balwani M. High‐fat diet based on trienantin has no adverse metabolic effects in rats. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200800298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ana L. de Melo Lucena
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | - Suzana Lima de Oliveira
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | - Terezinha da Rocha Ataide
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | - Adriana Ximenes da Silva
- Laboratório de Eletrofisiologia Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | - Cyro Rêgo Cabral
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | | | | | - Clara Rodrigues de Mendonça
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | - Carindja M. Fernandes Lima
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió‐AL, Brazil
| | | |
Collapse
|
45
|
Payne AG. Experimental regimen targeting the ependyma slows disease progression in four patients with amyotrophic lateral sclerosis. Med Hypotheses 2009; 72:548-50. [DOI: 10.1016/j.mehy.2008.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 11/21/2008] [Accepted: 12/26/2008] [Indexed: 12/12/2022]
|
46
|
Spulber G, Spulber S, Hagenäs L, Amark P, Dahlin M. Growth dependence on insulin-like growth factor-1 during the ketogenic diet. Epilepsia 2008; 50:297-303. [PMID: 18727678 DOI: 10.1111/j.1528-1167.2008.01769.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To examine the influence of the ketogenic diet (KD) on linear growth and insulin-like growth factor I (IGF-I) levels in children with pharmacotherapy-resistant epilepsy. METHODS A prospective study was designed to evaluate growth, serum IGF-I levels, blood beta-hydroxybutyric acid (beta-OHB), and seizure frequency before and during KD in 22 children (median age 5.5 years). Growth was assessed by measurements of weight, height, body mass index (BMI), and height velocity. Standard deviation scores (SDS) were calculated for all measured parameters as well as for serum IGF-I to eliminate the influence of age- and sex-related differences among patients. RESULTS Fourteen of the 22 patients responded to the KD. Weight, height, BMI, and height velocity decreased significantly during the KD. We found that the KD had profound influence on growth and IGF-I levels. No correlation was found between seizure response and growth alterations. Height velocity correlated negatively with beta-OHB during the KD. The slope of the regression of height velocity against IGF-I decreased significantly during the KD. CONCLUSIONS Height velocity was most affected in those with pronounced ketosis, which implies that, in clinical practice, the level of ketosis should be related to outcomes in seizure response and growth. Our data indicate that growth disturbances and the decreased sensitivity of growth to similar IGF-I levels during KD are independent of seizure reduction. The metabolic status induced by KD may be the mechanism underlying both alterations of linear growth and seizure reduction.
Collapse
Affiliation(s)
- Gabriela Spulber
- Department of Neuropediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration. J Neural Transm (Vienna) 2008; 115:1011-7. [PMID: 18478178 DOI: 10.1007/s00702-008-0050-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Ketogenic diet (KD) is an effective treatment for intractable epilepsies. We recently found that KD can prevent seizure and myoclonic jerk in a rat model of post-hypoxic myoclonus. In the present study, we tested the hypothesis that KD can prevent the cerebral ischemic neurodegeneration in this animal model. Rats fed a standard diet or KD for 25 days were being subjected to mechanically induced cardiac arrest brain ischemia for 8 min 30 s. Nine days after cardiac arrest, frozen rat brains were sectioned for evaluation of ischemia-induced neurodegeneration using fluoro-jade (FJ) staining. The FJ positive degenerating neurons were counted manually. Cardiac arrest-induced cerebral ischemia in rats fed the standard diet exhibited extensive neurodegeneration in the CA1 region of the hippocampus, the number of FJ positive neurons was 822+/-80 (n=4). They also showed signs of neurodegeneration in the Purkinje cells of the cerebellum and in the thalamic reticular nucleus, the number of FJ positive neurons in the cerebellum was 55+/-27 (n=4), the number of FJ positive neurons in the thalamic reticular nucleus was 22+/-5 (n=4). In contrast, rats fed KD showed no evidence of neurodegeneration, the number of FJ positive neurons in these areas were zero. The results demonstrate that KD can prevent cardiac arrest-induced cerebral ischemic neurodegeneration in selected brain regions.
Collapse
|
48
|
Tai KK, Truong DD. Ketogenic diet prevents seizure and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia. Neurosci Lett 2007; 425:34-8. [PMID: 17825488 DOI: 10.1016/j.neulet.2007.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/25/2007] [Accepted: 08/07/2007] [Indexed: 11/19/2022]
Abstract
Although the mechanism underlying the anti-epileptic effects of a ketogenic diet (KD) is not known, KD is reported to be an effective treatment for intractable epilepsy, in particular among children. Here, we evaluated whether a KD can reduce posthypoxic seizure and myoclonic jerks in a rat model of cardiac arrest-induced cerebral hypoxia. In this study, rats were divided into two groups: one group received a normal diet while the other group was fed a KD for 25 days before being subjected to cardiac arrest-induced cerebral hypoxia. We found that rats fed a normal diet developed seizures and severe myoclonic jerks in response to auditory stimuli after the hypoxic insults, whereas the rats on the KD did not develop seizure and showed much less severe myoclonic jerks in response to auditory stimuli. The results suggested that the KD has beneficial effects against posthypoxic seizure and myoclonus.
Collapse
Affiliation(s)
- Kwok-Keung Tai
- The Parkinson's and Movement Disorder Research Laboratory, Long Beach Memorial Medical Center, 2625 Pasadena Ave., Long Beach, CA 90806, USA.
| | | |
Collapse
|
49
|
Yudkoff M, Daikhin Y, Melø TM, Nissim I, Sonnewald U, Nissim I. The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect. Annu Rev Nutr 2007; 27:415-30. [PMID: 17444813 PMCID: PMC4237068 DOI: 10.1146/annurev.nutr.27.061406.093722] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many epileptic patients, anticonvulsant drugs either fail adequately to control seizures or they cause serious side effects. An important adjunct to pharmacologic therapy is the ketogenic diet, which often improves seizure control, even in patients who respond poorly to medications. The mechanisms that explain the therapeutic effect are incompletely understood. Evidence points to an effect on brain handling of amino acids, especially glutamic acid, the major excitatory neurotransmitter of the central nervous system. The diet may limit the availability of oxaloacetate to the aspartate aminotransferase reaction, an important route of brain glutamate handling. As a result, more glutamate becomes accessible to the glutamate decarboxylase reaction to yield gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter and an important antiseizure agent. In addition, the ketogenic diet appears to favor the synthesis of glutamine, an essential precursor to GABA. This occurs both because ketone body carbon is metabolized to glutamine and because in ketosis there is increased consumption of acetate, which astrocytes in the brain quickly convert to glutamine. The ketogenic diet also may facilitate mechanisms by which the brain exports to blood compounds such as glutamine and alanine, in the process favoring the removal of glutamate carbon and nitrogen.
Collapse
Affiliation(s)
- Marc Yudkoff
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 2006; 60:223-35. [PMID: 16807920 DOI: 10.1002/ana.20899] [Citation(s) in RCA: 418] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The full anticonvulsant effect of the ketogenic diet (KD) can require weeks to develop in rats, suggesting that altered gene expression is involved. The KD typically is used in pediatric epilepsies, but is effective also in adolescents and adults. Our goal was to use microarray and complementary technologies in adolescent rats to understand its anticonvulsant effect. METHODS Microarrays were used to define patterns of gene expression in the hippocampus of rats fed a KD or control diet for 3 weeks. Hippocampi from control- and KD-fed rats were also compared for the number of mitochondrial profiles in electron micrographs, the levels of selected energy metabolites and enzyme activities, and the effect of low glucose on synaptic transmission. RESULTS Most striking was a coordinated upregulation of all (n = 34) differentially regulated transcripts encoding energy metabolism enzymes and 39 of 42 transcripts encoding mitochondrial proteins, which was accompanied by an increased number of mitochondrial profiles, a higher phosphocreatine/creatine ratio, elevated glutamate levels, and decreased glycogen levels. Consistent with increased energy reserves, synaptic transmission in hippocampal slices from KD-fed animals was resistant to low glucose. INTERPRETATION These data show that a calorie-restricted KD enhances brain metabolism. We propose an anticonvulsant mechanism of the KD involving mitochondrial biogenesis leading to enhanced alternative energy stores.
Collapse
|