1
|
Abstract
Understanding of vitamin D physiology is important because about half of the population is being diagnosed with deficiency and treated with supplements. Clinical guidelines were developed based on observational studies showing an association between low serum levels and increased cardiovascular risk. However, new randomized controlled trials have failed to confirm any cardiovascular benefit from supplementation in the general population. A major concern is that excess vitamin D is known to cause calcific vasculopathy and valvulopathy in animal models. For decades, administration of vitamin D has been used in rodents as a reliable experimental model of vascular calcification. Technically, vitamin D is a misnomer. It is not a true vitamin because it can be synthesized endogenously through ultraviolet exposure of the skin. It is a steroid hormone that comes in 3 forms that are sequential metabolites produced by hydroxylases. As a fat-soluble hormone, the vitamin D-hormone metabolites must have special mechanisms for delivery in the aqueous bloodstream. Importantly, endogenously synthesized forms are carried by a binding protein, whereas dietary forms are carried within lipoprotein particles. This may result in distinct biodistributions for sunlight-derived versus supplement-derived vitamin D hormones. Because the cardiovascular effects of vitamin D hormones are not straightforward, both toxic and beneficial effects may result from current recommendations.
Collapse
Affiliation(s)
- Linda L Demer
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.) .,Physiology (L.L.D., Y.T.).,Bioengineering (L.L.D.)
| | - Jeffrey J Hsu
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.)
| | - Yin Tintut
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.).,Physiology (L.L.D., Y.T.).,Orthopaedic Surgery (Y.T.), University of California, Los Angeles
| |
Collapse
|
2
|
A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish. G3-GENES GENOMES GENETICS 2016; 6:3389-3398. [PMID: 27558670 PMCID: PMC5068958 DOI: 10.1534/g3.116.032201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skull morphology is fundamental to evolution and the biological adaptation of species to their environments. With aquaculture fish species, head size is also important for economic reasons because it has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head size (head length, head width, and head depth). One significantly associated region on linkage group (LG) 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for head length. For head width, significantly associated regions were found on LG9, and additional suggestively associated regions were identified on LGs 5 and 7. No region was found associated with head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes involved in bone development. Comparative analysis indicated that homologs of several candidate genes are also involved in skull morphology in various other species ranging from amphibian to mammalian species, suggesting possible evolutionary conservation of those genes in the control of skull morphologies.
Collapse
|
3
|
Jules J, Yang S, Chen W, Li YP. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:47-75. [PMID: 26123302 DOI: 10.1016/bs.pmbts.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins' regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases.
Collapse
Affiliation(s)
- Joel Jules
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA; Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
4
|
Keinan D, Yang S, Cohen RE, Yuan X, Liu T, Li YP. Role of regulator of G protein signaling proteins in bone. Front Biosci (Landmark Ed) 2014; 19:634-48. [PMID: 24389209 DOI: 10.2741/4232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS gene expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases.
Collapse
Affiliation(s)
- David Keinan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214
| | - Robert E Cohen
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Xue Yuan
- Department of Oral Biology School of Dental Medicine, University at Buffalo, The State University of New York, B36 Foster Hall, Buffalo, NY 14214
| | - Tongjun Liu
- Department of Oral Biology School of Dental Medicine, University at Buffalo, The State University of New York, B36 Foster Hall, Buffalo, NY 14214
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham AL 35294, USA
| |
Collapse
|
5
|
Barradas AMC, Monticone V, Hulsman M, Danoux C, Fernandes H, Tahmasebi Birgani Z, Barrère-de Groot F, Yuan H, Reinders M, Habibovic P, van Blitterswijk C, de Boer J. Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Integr Biol (Camb) 2013; 5:920-31. [PMID: 23752904 DOI: 10.1039/c3ib40027a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcium phosphate (CaP) based ceramics are used as bone graft substitutes in the treatment of bone defects. The physico-chemical properties of these materials determine their bioactivity, meaning that molecular and cellular responses in the body will be tuned accordingly. In a previous study, we compared two porous CaP ceramics, hydroxyapatite (HA) and β-tricalcium phosphate (TCP), which, among other properties, differ in their degradation behaviour in vitro and in vivo, and we demonstrated that the more degradable β-TCP induced more bone formation in a heterotopic model in sheep. This is correlated to in vitro data, where human bone marrow derived mesenchymal stromal cells (MSC) exhibited higher expression of osteogenic differentiation markers, such as osteopontin, osteocalcin and bone sialoprotein, when cultured in β-TCP than in HA. More recently, we also showed that this effect could be mimicked in vitro by exposure of MSC to high concentrations of calcium ions (Ca(2+)). To further correlate surface physico-chemical dynamics of HA and β-TCP ceramics with the molecular response of MSC, we followed Ca(2+) release and surface changes in time as well as cell attachment and osteogenic differentiation of MSC on these ceramics. Within 24 hours, we observed differences in cell morphology, with MSC cultured in β-TCP displaying more pronounced attachment and spreading than cells cultured in HA. In the same time frame, β-TCP induced expression of G-protein coupled receptor (GPCR) 5A and regulator of G-protein signaling 2, revealed by DNA microarray analysis. These genes, associated with the protein kinase A and GPCR signaling pathways, may herald the earliest response of MSC to bone-inducing ceramics.
Collapse
Affiliation(s)
- Ana M C Barradas
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
7
|
Regulator of G protein signaling 2 is a key modulator of airway hyperresponsiveness. J Allergy Clin Immunol 2012; 130:968-76.e3. [PMID: 22704538 DOI: 10.1016/j.jaci.2012.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/29/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Drugs targeting individual G protein-coupled receptors are used as asthma therapies, but this strategy is limited because of G protein-coupled receptor signal redundancy. Regulator of G protein signaling 2 (RGS2), an intracellular selective inhibitor of multiple bronchoconstrictor receptors, may play a central role in the pathophysiology and treatment of asthma. OBJECTIVE We defined functions and mechanisms of RGS2 in regulating airway hyperresponsiveness (AHR), the pathophysiologic hallmark of asthma. METHODS Real-time PCR and Western blot were used to determine changes in RGS2 expression in ovalbumin-sensitized/-challenged mice. We also used immunohistochemistry and real-time PCR to compare RGS2 expression between human asthmatic and control subjects. The AHR of RGS2 knockout mice was assessed by using invasive tracheostomy and unrestrained plethysmography. Effects of loss of RGS2 on mouse airway smooth muscle (ASM) remodeling, contraction, intracellular Ca(2+), and mitogenic signaling were determined in vivo and in vitro. RESULTS RGS2 was highly expressed in human and murine bronchial epithelium and ASM and was markedly downregulated in lungs of ovalbumin-sensitized/-challenged mice. Lung tissues and blood monocytes from asthma patients expressed significantly lower RGS2 protein (lung) and mRNA (monocytes) than from nonasthma subjects. The extent of reduction of RGS2 on human monocytes correlated with increased AHR. RGS2 knockout caused spontaneous AHR in mice. Loss of RGS2 augmented Ca(2+) mobilization and contraction of ASM cells. Loss of RGS2 also increased ASM mass and stimulated ASM cell growth via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. CONCLUSION We identified RGS2 as a potent modulator of AHR and a potential novel therapeutic target for asthma.
Collapse
|
8
|
Wang J, Zhu X, Li X, Wang W, Wang X, Liu L, Deng Q, Bai G, Wang J, Feng H, Wang Z, Liu G. Effects of copper on proliferation and autocrine secretion of insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) in chondrocytes from newborn pigs in vitro. Biol Trace Elem Res 2011; 144:588-96. [PMID: 22180012 DOI: 10.1007/s12011-011-9033-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/09/2011] [Indexed: 11/30/2022]
Abstract
Chondrocytes from the lateral trochlear ridge of the distal femur taken from 1-day-old piglets were cultured in medium supplemented with 0, 7.8, 15.6, 31.2, and 62.5 μmol/L copper. Insulin-like growth factor-1 (IGF-1) and IGF-binding protein 3 (IGFBP-3) levels in culture medium were determined by radioimmunoassay. DNA synthesis in chondrocytes was measured by tritiated thymidine ((3)H-TdR) incorporation. Proliferation-promoting activity and incorporation of (3)H-TdR in chondrocytes were increased in all culture media supplemented with copper and 15% fetal calf serum (FCS). The contents of IGF-1 and IGFBP-3 were also enhanced significantly in culture media containing 15% FCS and supplemented with copper at 15.6, 31.2, and 62.5 μmol/L. The optimal copper concentration for promoting chondrocyte proliferation and autocrine secretion of IGF-1 and IGFBP-3 was 31.2 μmol/L.
Collapse
Affiliation(s)
- Jianguo Wang
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhai Y, Chen L, Hömme M, Hackert T, Gross ML, Hoffmann GF, Schaefer F, Schmitt CP. Expression and function of matrix Gla protein in human peritoneal mesothelial cells. Nephrol Dial Transplant 2010; 25:3213-21. [PMID: 20368306 DOI: 10.1093/ndt/gfq190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND Chronic peritoneal dialysis (PD) is associated with peritoneal calcification. Studies in vascular tissue suggest that ectopic calcification is not merely a passive but a regulated process resembling bone mineralization. We investigated whether peritoneal calcification is controlled by matrix Gla protein (MGP) secreted by peritoneal mesothelial cells. METHODS Human primary mesothelial cells (HPMC) were exposed to constituents of PD fluids and to cytokines relevant to peritoneal integrity. Messenger RNA was quantitated by real-time reverse transcription polymerase chain reaction (RT-PCR), protein abundance by Western blot and in vivo protein expression immunohistochemically. To demonstrate functional relevance, MGP was silenced in HPMC by siRNA transfection and calcium phosphate matrix deposition measured by o-cresolphthalein complexone method and von Kossa staining. RESULTS MGP was consistently detected in the mesothelial cell layer of peritoneal tissue specimens from uraemic and non-uraemic patients, in HPMC and in culture medium. MGP mRNA and protein abundance was increased by glucose and IGF1 and decreased by TGFß1. Suppression of MGP increased matrix calcium and phosphorus deposition by 90 ± 6% and 100 ± 4% at 1 mM ambient Ca(2+) and phosphorus concentration. Deposition was not increased any further by higher medium Ca(2+)/phosphorus concentrations nor reduced by inhibition of the phosphate cotransporter Pit1. CONCLUSION MGP is expressed by HPMC and regulated by glucose, IGF1 and TGFß1. It is a potent inhibitor of calcification in vitro and may thus play a role in the regulation of peritoneal calcium homeostasis.
Collapse
Affiliation(s)
- Yihui Zhai
- 1Division of Pediatric Nephrology, Center for Children and Adolescent Medicine, University Hospital for Pediatric and Adolescent Medicine, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
de Castro LF, Lozano D, Dapía S, Portal-Núñez S, Caeiro JR, Gómez-Barrena E, Esbrit P. Role of the N- and C-terminal Fragments of Parathyroid-Hormone-Related Protein as Putative Therapies to Improve Bone Regeneration Under High Glucocorticoid Treatment. Tissue Eng Part A 2010; 16:1157-68. [DOI: 10.1089/ten.tea.2009.0355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Daniel Lozano
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| | - Sonia Dapía
- Trabeculae®, San Cibrao das Viñas, Ourense, Spain
| | - Sergio Portal-Núñez
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| | | | - Enrique Gómez-Barrena
- Orthopedic Department, Jiménez Díaz Foundation and Autonomous University of Madrid, Madrid, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| |
Collapse
|
11
|
Endale M, Kim SD, Lee WM, Kim S, Suk K, Cho JY, Park HJ, Wagley Y, Kim S, Oh JW, Rhee MH. Ischemia induces regulator of G protein signaling 2 (RGS2) protein upregulation and enhances apoptosis in astrocytes. Am J Physiol Cell Physiol 2009; 298:C611-23. [PMID: 20032508 DOI: 10.1152/ajpcell.00517.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signaling (RGS) family members, such as RGS2, interact with Galpha subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and attenuating the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. They are also reported to regulate G protein-effector interactions and form multiprotein signaling complexes. Ischemic stress-induced changes in RGS2 expression have been described in astrocytes, and these changes are associated with intracellular signaling cascades, suggesting that RGS2 upregulation may be an important mechanism by which astrocytes may regulate RGS2 function in response to physiological stress. However, information on the functional roles of stress-induced modulation of RGS2 protein expression in astrocyte function is limited. We report the role of ischemic stress in RGS2 protein expression in rat C6 astrocytoma cells and primary mouse astrocytes. A marked increase in RGS2 occurred after ischemic stress induced by chemicals (sodium azide and 2-deoxyglucose) or oxygen-glucose deprivation (OGD, real ischemia). RGS2 mRNA expression was markedly enhanced by 1 h of exposure to chemical ischemia or 6 h of OGD followed by 2 or 6 h of recovery, respectively. This enhanced expression in primary astrocytes and C6 cells was restored to baseline levels after 12 h of recovery from chemically induced ischemic stress or 4-6 h of recovery from OGD. RGS2 protein was also significantly expressed at 12-24 h of recovery from ischemic insult. Ischemia-induced RGS2 upregulation was associated with enhanced apoptosis. It significantly increased annexin V-positive cells, cleaved caspase-3, and enhanced DNA ladder formation and cell cycle arrest. However, a small interfering RNA (siRNA)-mediated RGS2 knockdown reversed the apoptotic cell death associated with ischemia-induced RGS2 upregulation. Upregulated RGS2 was significantly inhibited by SB-203580, a p38 MAPK inhibitor. Rottlerin, a potent inhibitor of PKCdelta, completely abrogated the increased RGS2 expression. We also examine whether ischemia-induced RGS2-mediated apoptosis is affected by siRNA-targeted endogenous PKCdelta downregulation or its phosphorylation. Although RGS2 upregulation was not affected, siRNA transfection significantly suppressed endogenous PKCdelta mRNA and protein expressions. Ischemia-induced PKCdelta phosphorylation and caspase-3 cleavage were dose dependently inhibited by PKCdelta knockdown, and this endogenous PKCdelta suppression reversed ischemia-induced annexin V-positive cells. This study suggests that ischemic stress increases RGS2 expression and that this condition contributes to enhanced apoptosis in C6 cells and primary astrocytes. The signaling it follows may involve PKCdelta and p38 MAPK pathways.
Collapse
Affiliation(s)
- Mehari Endale
- Laboratory of Physiology and Signaling, College of Veterinary Medicine, Kyungpook National Univ., Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hömme M, Schaefer F, Mehls O, Schmitt CP. Differential regulation of RGS-2 by constant and oscillating PTH concentrations. Calcif Tissue Int 2009; 84:305-12. [PMID: 19225708 DOI: 10.1007/s00223-009-9222-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 01/18/2009] [Indexed: 02/07/2023]
Abstract
PTH has diverse effects on bone metabolism: anabolic when given intermittently, catabolic when given continuously. The cellular mechanisms underlying the varying target cell response are not clear yet. PTH induces RGS-2, a member of the Regulator of G-protein Signaling protein family, via cAMP/PKA, and inactivates PKC-mediated signaling. To investigate intracellular signaling pathways with different PTH concentration-time patterns, we treated UMR 106-01 osteoblast-like cells in a perfusion system. PTH was administered intermittently (4 min/h, 10(-7) M) or continuously at an equivalent cumulative dose (6.6 x 10(-9) M). cAMP was measured using radioimmunoassay, mRNA levels using real-time rtPCR and ribonuclease protection assay, and protein levels using Western immunoblotting. A single PTH pulse transiently increased cAMP levels by 2000% +/- 1200%. In contrast to continuous PTH exposure, cAMP induction remained unchanged with intermittent PTH, ruling out desensitization of the PTH receptor. In continuously perfused cells, RGS-2 abundance was three to five times higher than in cells intermittently exposed to PTH for up to 12 h. MKP-1 and -3 were significantly less induced with pulsatile PTH; exposure-mode-dependent differences in MMP-13 and IGFBP-5 were small. Pulsatile but not continuous PTH administration prevents PTHrP receptor desensitization and accumulation of RGS-2 in osteoblasts, which should preserve PKC-dependent signaling.
Collapse
Affiliation(s)
- M Hömme
- Division of Pediatric Nephrology, University Hospital for Pediatric and Adolescent Medicine, Im Neuenheimer Feld 153, 69120, Heidelberg, Germany.
| | | | | | | |
Collapse
|
13
|
Olkku A, Mahonen A. Wnt and steroid pathways control glutamate signalling by regulating glutamine synthetase activity in osteoblastic cells. Bone 2008; 43:483-93. [PMID: 18555765 DOI: 10.1016/j.bone.2008.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/06/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
Glutamate signalling has recently been found functional also outside the central nervous system, especially in bone. Glutamate is converted to glutamine by glutamine synthetase (GS), which is therefore able to regulate intracellular concentrations of glutamate. We previously characterized the induction of GS expression by glucocorticoids (GCs) in human osteoblast-like cells. Besides this observation, the mechanisms controlling GS in bone are unknown. Therefore, the aim of our present study was to investigate further the regulation of GS in osteoblastic cells. We observed that vitamin D inhibited basal and, even more efficiently, GC-stimulated GS activity by affecting both the mRNA and protein levels of the enzyme in human MG-63 osteoblast-like cells. In osteoblasts derived from rat bone marrow stem cells (rMSCs), GS activity was induced accordingly by the osteogenic culture conditions including GCs. Also in these primary cells, vitamin D clearly inhibited GS activity. In addition, the canonical Wnt signalling pathway was characterized as a negative regulator of GS activity. All these changes in GS activity were reflected on the intracellular glutamate concentration. Our results provide novel evidence that GS activity and expression are regulated by several different signalling pathways in osteoblastic cells. Therefore, GS is a strategic enzyme in controlling glutamate concentration in bone environment: GCs decreased the amount of this signalling molecule while vitamin D and Wnt signalling pathway increased it. Interestingly, GS activity and expression declined rapidly when the rMSC derived osteoblasts began to mineralize. Due to its downregulation during osteoblast mineralization, GS could be held as a marker for osteoblast development. Further supporting this, GS activity was stimulated and intracellular glutamate concentration maintained by the N-methyl-d-aspartate (NMDA) type glutamate receptor antagonist MK801, which inhibited osteogenic differentiation of the rMSCs. GS, a novel target for both steroidal and Wnt pathways in bone, might be a central player in the regulation of osteoblastogenesis and/or intercellular signal transmission. Therefore, the proper understanding of the interplay of these three signalling cascades, i.e., steroidal, Wnt, and glutamate signalling, gives vital information on how bone cells communicate together aiming to keep bone healthy.
Collapse
Affiliation(s)
- Anu Olkku
- Institute of Biomedicine, Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|
14
|
Exogenous PTH and endogenous 1,25-dihydroxyvitamin D are complementary in inducing an anabolic effect on bone. J Bone Miner Res 2008; 23:1257-66. [PMID: 18348699 DOI: 10.1359/jbmr.080318] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PTH and 1,25(OH)(2)D each exert dual anabolic and catabolic skeletal effects. We assessed the potential interaction of PTH and 1,25(OH)(2)D in promoting skeletal anabolism by comparing the capacity of exogenous, intermittently injected PTH(1-34) to produce bone accrual in mice homozygous for the 1 alpha(OH)ase-null allele [1 alpha(OH)ase(-/-) mice] and in wildtype mice. In initial studies, 3-mo-old wildtype mice were either injected once daily (40 microg/kg) or infused continuously (120 microg/kg/d) with PTH(1-34) for up to 1 mo. Infused PTH reduced BMD, increased the bone resorption marker TRACP-5b, and raised serum calcium but did not increase serum 1,25(OH)(2)D. Injected PTH increased serum 1,25(OH)(2)D and BMD, raised the bone formation marker osteocalcin more than did infused PTH, and did not produce sustained hypercalcemia as did PTH infusion. In subsequent studies, 3-mo-old 1 alpha(OH)ase(-/-) mice, raised on a rescue diet, and wildtype littermates were injected with PTH(1-34) (40 microg/kg) either once daily or three times daily for 1 mo. In 1 alpha(OH)ase(-/-) mice, baseline bone volume (BV/TV) and bone formation (BFR/BS) were lower than in wildtype mice. PTH administered intermittently increased BV/TV and BFR/BS in a dose-dependent manner, but the increases were always less than in wildtype mice. These studies show that exogenous PTH administered continuously resorbs bone without raising endogenous 1,25(OH)(2)D. Intermittently administered PTH can increase bone accrual in the absence of 1,25(OH)(2)D, but 1,25(OH)(2)D complements this PTH action. An increase in endogenous 1,25(OH)(2)D may therefore facilitate an optimal skeletal anabolic response to PTH and may be relevant to the development of improved therapeutics for enhancing skeletal anabolism.
Collapse
|
15
|
Roy AA, Nunn C, Ming H, Zou MX, Penninger J, Kirshenbaum LA, Dixon SJ, Chidiac P. Up-regulation of endogenous RGS2 mediates cross-desensitization between Gs and Gq signaling in osteoblasts. J Biol Chem 2006; 281:32684-93. [PMID: 16950788 DOI: 10.1074/jbc.m604416200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins limit G protein signals. In this study, we investigated the role of RGS2 in the control of G protein signaling cascades in osteoblasts, the cells responsible for bone formation. Expression of RGS2 was up-regulated in primary cultures of mouse calvarial osteoblasts by parathyroid hormone-related peptide (PTHrP)-(1-34), which stimulates G(s) signaling. RGS2 was also up-regulated by extracellular ATP, which selectively activates G(q), as well as by forskolin and phorbol myristate acetate, which activate targets downstream of G(s) and G(q), respectively. To assess the role of endogenous RGS2, we characterized G(s) and G(q) signaling in osteoblasts derived from wild type and rgs2(-/-) mice. Under control conditions, nucleotide-stimulated calcium release, endothelin-stimulated accumulation of inositol phosphates, and PTHrP-stimulated cAMP accumulation were equivalent in osteoblasts isolated from wild type and rgs2(-/-) mice. Thus, basal levels of endogenous RGS2 do not appear to regulate G(s) or G(q) signaling in osteoblasts. Interestingly, forskolin treatment of wild type but not rgs2(-/-) osteoblasts suppressed both endothelin-stimulated accumulation of inositol phosphates and nucleotide-stimulated calcium release, indicating that up-regulation of RGS2 by G(s) signaling desensitizes G(q) signals. Furthermore, pretreatment with ATP suppressed PTHrP-dependent cAMP accumulation in wild type but not rgs2(-/-) osteoblasts, implying that up-regulation of RGS2 by G(q) signaling desensitizes G(s) signals. Our findings demonstrate that endogenously expressed RGS2 can limit G(s) signaling. Moreover, up-regulation of RGS2 contributes to cross-desensitization of G(s)- and G(q)-coupled signals.
Collapse
Affiliation(s)
- Anju Anne Roy
- Department of Physiology and Pharmacology, Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, the University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Romero DG, Plonczynski MW, Gomez-Sanchez EP, Yanes LL, Gomez-Sanchez CE. RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells. Endocrinology 2006; 147:3889-97. [PMID: 16627589 DOI: 10.1210/en.2005-1532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulator of G protein signaling (RGS) proteins interact with Galpha-subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. Angiotensin (Ang) II interacts with its G protein-coupled receptor in zona glomerulosa adrenal cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. We studied Ang II-mediated regulation of RGS2, the role of RGS2 in steroidogenesis, and the intracellular signal events involved in H295R human adrenal cells. We report that both H295R cells and human adrenal gland express RGS2 mRNA. In H295R cells, Ang II caused a rapid and transient increase in RGS2 mRNA levels quantified by real-time RT-PCR. Ang II effects were mimicked by calcium ionophore A23187 and blocked by calcium channel blocker nifedipine. Ang II effects also were blocked by calmodulin antagonists (W-7 and calmidazolium) and calcium/calmodulin-dependent kinase antagonist KN-93. RGS2 overexpression by retroviral infection in H295R cells caused a decrease in Ang II-stimulated aldosterone secretion but did not modify cortisol secretion. In reporter assays, RGS2 decreased Ang II-mediated aldosterone synthase up-regulation. These results suggest that Ang II up-regulates RGS2 mRNA by the calcium/calmodulin-dependent kinase pathway in H295R cells. RGS2 overexpression specifically decreases aldosterone secretion through a decrease in Ang II-mediated aldosterone synthase-induced expression. In conclusion, RGS2 expression is induced by Ang II to terminate the intracellular signaling cascade generated by Ang II. RGS2 alterations in expression levels or functionality could be implicated in deregulations of Ang II signaling and abnormal aldosterone secretion by the adrenal gland.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, Montgomery Veterans Administration Medical Center, USA.
| | | | | | | | | |
Collapse
|
17
|
Hoogendam J, Parlevliet E, Miclea R, Löwik CWGM, Wit JM, Karperien M. Novel early target genes of parathyroid hormone-related peptide in chondrocytes. Endocrinology 2006; 147:3141-52. [PMID: 16497793 DOI: 10.1210/en.2006-0075] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have performed microarray analysis to identify PTHrP target genes in chondrocytes. ATDC5 cells were cultured as micromasses to induce chondrocyte differentiation. On d 8 of culture, the cells had a prehypertrophic appearance. This time point was chosen for isolation of RNA at 0, 1, 2, and 4 h after a challenge with 10(-7) M PTHrP. Samples were subjected to a cDNA microarray using competition hybridization. A list of 12 genes (P < 10(-3)), the expression regulation of which by PTHrP was confirmed by quantitative PCR analysis, was generated. This included seven up-regulated and five down-regulated genes. Three genes were known to be involved in PTHrP regulation, and six were previously found in growth plate chondrocytes. Most of the genes (10 of 12) were implicated in signal transduction and regulation. PTHrP also induced expression of the up-regulated genes in KS483 osteoblasts, suggesting involvement in a more generalized response to PTHrP. The vast majority of the up-regulated genes (six of seven) contained cAMP response element-binding protein- and/or activating protein-1 transcription factor-binding sites in their promoter regions. Remarkably, a number of PTHrP-regulated genes contained signal transducer and activator of transcription factor (Stat)-binding sites in their promoters. In transient transfection assays, we show that PTHrP is able to positively regulate the activity of Stat3-specific and negatively regulate the activity of Stat5-specific promoter-reporter constructs in ATDC5 and UMR106 cells. In combination with the expression regulation of genes involved in Janus kinase/Stat signaling, this data suggest a previously unrecognized interaction between PTHrP and Janus kinase/Stat signaling.
Collapse
Affiliation(s)
- Jakomijn Hoogendam
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Kiepe D, Ciarmatori S, Haarmann A, Tönshoff B. Differential expression of IGF system components in proliferating vs. differentiating growth plate chondrocytes: the functional role of IGFBP-5. Am J Physiol Endocrinol Metab 2006; 290:E363-71. [PMID: 16204335 DOI: 10.1152/ajpendo.00363.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The growth plate is an important target tissue for insulin-like growth factors (IGFs), but little is known about the regulation of the IGF system during the developmental sequence of chondrocytes. We therefore examined the expression profile of IGF system components in proliferating vs. differentiating growth plate chondrocytes by use of two cell culture models of the growth cartilage. In rat growth plate chondrocytes in primary culture, IGF-I expression increased twofold during the process of differentiation. IGF-binding protein-3 (IGFBP-3) expression showed a biphasic pattern of with a twofold increase at the onset of differentiation and a downregulation in late differentiating chondrocytes to 25% of baseline levels; the expression patterns of IGFBP-2, -4 and -6 were not dependent on the developmental stage. In IGF- and IGFBP-3-deficient RCJ3.1C5.18 (RCJ) mesenchymal chondrogenic cells, IGFBP-2 and -6 synthesis declined by 50% during differentiation. IGFBP-5 expression was markedly upregulated during the process of differentiation in both cell culture models. Although IGFBP-5 overexpression did not have an IGF-independent effect on RCJ cell differentiation, it promoted IGF-I-enhanced differentiation of these cells. A potential mechanism for this effect is the specific increase of Akt phosphorylation in IGFBP-5-overexpressing cells in the presence of IGF-I, indicating an increased activity of the phosphatidylinositol (PI) 3-kinase pathway. These data suggest that the developmental stage of the chondrocyte is an important determinant of IGF and IGFBP expression and imply a functional role for IGFBP-5 for upregulating IGF action during chondrocyte differentiation in vivo.
Collapse
Affiliation(s)
- Daniela Kiepe
- University Children's Hospital, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Obradovic D, Gronemeyer H, Lutz B, Rein T. Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem 2006; 96:500-9. [PMID: 16336217 DOI: 10.1111/j.1471-4159.2005.03579.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is growing evidence for a role of vitamin D3 signalling in the brain. In this study, we investigated the influence of vitamin D3, in combination with glucocorticoids, on differentiation of the hippocampal progenitor line HIB5, as well as survival of rat primary hippocampal cells. In HIB5, pre-treatment with dexamethasone (Dex) alone inhibited neurite outgrowth and abolished activation of the mitogen-activated protein kinase (MAPK) pathway during platelet-derived growth factor (PDGF)-induced differentiation, consistent with previous findings. Interestingly, pre-treating HIB5 with vitamin D3 significantly reduced these effects of Dex and, in addition, lowered the transactivational function of the glucocorticoid receptor (GR) in transient reporter gene assays. A further impact of vitamin D3 on glucocorticoid effects was observed in a rat primary hippocampal culture known to be particularly sensitive to prolonged GR activation. In this model, Dex induced considerable cell death after 72 h of exposure in vitro. However, 24 h of pre-treatment with low doses of vitamin D3 substantially reduced the degree of Dex-induced apoptosis in primary hippocampal cells. Taken together, our experiments demonstrate a cross-talk between vitamin D3 and glucocorticoids in two hippocampal models, a feature that may have important implications in disorders with dysregulated glucocorticoid signalling, including major depression.
Collapse
|
20
|
Kiepe D, Ciarmatori S, Hoeflich A, Wolf E, Tönshoff B. Insulin-like growth factor (IGF)-I stimulates cell proliferation and induces IGF binding protein (IGFBP)-3 and IGFBP-5 gene expression in cultured growth plate chondrocytes via distinct signaling pathways. Endocrinology 2005; 146:3096-104. [PMID: 15845624 DOI: 10.1210/en.2005-0324] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bioactivity of IGF-I in the cellular microenvironment is modulated by both inhibitory and stimulatory IGF binding proteins (IGFBPs), whose production is partially under control of IGF-I. However, little is known on the IGF-mediated regulation of these IGFBPs in the growth plate. We therefore studied the effect of IGF-I on IGFBP synthesis and the involved intracellular signaling pathways in two cell culture models of rat growth plate chondrocytes. In growth plate chondrocytes in primary culture, incubation with IGF-I increased the concentrations of IGFBP-3 and IGFBP-5 in conditioned cell culture medium in a dose- and time-dependent manner. Coincubation of IGF-I with specific inhibitors of the p42/44 MAPK pathway (PD098059 or U0126) completely abolished the stimulatory effect of IGF-I on IGFBP-3 mRNA expression but did not affect increased IGFBP-5 mRNA levels. In contrast, inhibition of the phosphatidylinositol-3 kinase signaling pathway by LY294002 abrogated both IGF-I-stimulated IGFBP-3 and -5 mRNA expression. Comparable results regarding IGFBP-5 were obtained in the mesenchymal chondrogenic cell line RCJ3.1C5.18, which does not express IGFBP-3. The IGF-I-induced IGFBP-5 gene expression required de novo mRNA transcription and de novo protein synthesis. These data suggest that IGF-I modulates its activity in cultured rat growth plate chondrocytes by the synthesis of both inhibitory (IGFBP-3) and stimulatory (IGFBP-5) binding proteins. The finding that IGF-I uses different and only partially overlapping intracellular signaling pathways for the regulation of two IGFBPs with opposing biological functions might be important for the modulation of IGF bioactivity in the cellular microenvironment.
Collapse
Affiliation(s)
- Daniela Kiepe
- University Children's Hospital, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Schmitt CP, Hömme M, Schaefer F. Structural organization and biological relevance of oscillatory parathyroid hormone secretion. Pediatr Nephrol 2005; 20:346-51. [PMID: 15700141 DOI: 10.1007/s00467-004-1767-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 11/09/2004] [Indexed: 10/25/2022]
Abstract
Parathyroid gland secretory activity exhibits seasonal and circadian fluctuations, which are in synchrony with changes in serum calcium, phosphate, and bone turnover. In addition, an ultradian rhythm exists, which comprises seven pulses per hour, accounts for 30% of basal parathyroid hormone (PTH) release, and is highly sensitive to changes in ionized calcium. Acute hypocalcemia induces a selective, severalfold increase in pulse frequency and amplitude, whereas hypercalcemia suppresses the pulsatile secretion component, as does prolonged calcitriol therapy. Chronic renal failure is associated with a GFR dependent decrease in metabolic PTH clearance accounting for a two- to threefold increase in plasma PTH concentrations, a consistent increase of PTH burst mass and frequency, and a markedly reduced capacity to counteract changes in ionized calcium by modulation of pulsatile PTH release. Continuous PTH excess destroys bone, whereas intermittent administration of pharmacological doses of PTH improves bone morphology and strength in experimental and clinical settings. The molecular mechanisms of the exposure pattern dependent, contrasting biological effects of PTH may involve differential regulation of osteoblastic G protein signaling feedback circuits. In this context, calcimimetic and calcilytic agents are promising new therapeutic tools allowing for tight control of plasma PTH and restoration of circadian PTH rhythmicity.
Collapse
Affiliation(s)
- C P Schmitt
- Division of Pediatric Nephrology, University Children's Hospital, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
22
|
Centrella M, Christakos S, McCarthy TL. Skeletal hormones and the C/EBP and Runx transcription factors: interactions that integrate and redefine gene expression. Gene 2005; 342:13-24. [PMID: 15527960 DOI: 10.1016/j.gene.2004.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 05/27/2004] [Accepted: 06/17/2004] [Indexed: 11/27/2022]
Abstract
Systemic hormones and local growth factors have significant and often complex roles in normal tissue development, growth, remodeling, and repair. Early efforts in skeletal tissue attempted to define active panels of these agents and their direct effects on cell proliferation, matrix production, and secretion of other soluble mediators of differentiated cell function. Initial results resolved many of these questions and began to unveil functional interactions between specific hormones and growth factors. More recent evidence suggests that interactions between individual hormone systems also occur in less anticipated but probably not less meaningful ways. In some cases, these interactions may help to define a spectrum of effects on gene expression by focusing, refocusing, or integrating the activity of previously recognized transcription regulators. Other studies in isolated osteoblasts predict that certain steroid hormones have distinctive effects on specific transcription factors with important roles in bone growth and repair. In this review, we focus on studies that define functional and physical interactions between molecular mediators of hormone activity that could directly effect skeletal growth factor biology.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8041, USA.
| | | | | |
Collapse
|
23
|
Gennero I, Moulin P, Edouard T, Conte-Auriol F, Tauber MT, Salles JP. Métabolisme minéral osseux: données récentes et perspectives relatives à l’ostéogenèse. Arch Pediatr 2004; 11:1473-83. [PMID: 15596338 DOI: 10.1016/j.arcped.2004.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Important data have recently been added to our knowledge of bone mineral metabolism in children. Molecular pathophysiology of several pediatric syndromes has been clarified. Specially, the components of endocrine and metabolic regulations are tightly related with regard to the trophicity of bone. On another hand, the impact of several therapeutics of bone diseases like biphosphonates, parathormone (PTH) or growth hormone on bone anabolism is now strongly emphasized. All these points are important for the becoming of bone pediatric diseases in the adult life. Here we analyze the essential components of mineral metabolism and of its regulation in view of the recent biological data, like PTH/PTHrP (PTH-related peptide)-evoked cell signaling, the role of FGF 23 (Fibroblast growth factor 23) in hypophosphatemia and the regulation of vitamin D metabolism by 1alpha-hydroxylase. Inter-relation of these regulating elements is present in several genetic diseases and in the Mc Cune Albright syndrome. Relationships between metabolic and endocrine factors are analyzed considering their impact on PTH secretion and osteogenesis.
Collapse
Affiliation(s)
- I Gennero
- Laboratoire de biochimie, hôpital La Grave, TSA 60033, 31059 Toulouse 9, France
| | | | | | | | | | | |
Collapse
|
24
|
Taymans JM, Kia HK, Claes R, Cruz C, Leysen J, Langlois X. Dopamine receptor-mediated regulation of RGS2 and RGS4 mRNA differentially depends on ascending dopamine projections and time. Eur J Neurosci 2004; 19:2249-60. [PMID: 15090051 DOI: 10.1111/j.0953-816x.2004.03336.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RGS2 and RGS4 mRNAs are regulated in the rat striatum by dopaminergic agents. The present study further characterizes this regulation in three experiments. First, dopamine type 1 (receptor) (D1)- and dopamine type 2 (receptor) (D2)-mediated regulator of G-protein signalling (RGS) gene regulation was investigated in animals with deleted ascending dopaminergic pathways. We showed that RGS2 expression is controlled by D1 receptors either by direct action on D1 receptors or indirectly by presynaptic D2 receptors. Conversely, RGS4 gene expression is independent of presynaptic D2 receptors. Second, the study of colocalization between RGS2 or RGS4 and D1 or D2 by double labelling in situ hybridization histochemistry revealed broad expression of RGS2 and RGS4 mRNA in striatal subpopulations with colocalization of RGS2 and RGS4 with both D1 and D2 receptors. Finally, to test how far their gene regulation is temporally concerted, changes in RGS2 and RGS4 mRNA levels were measured in parallel with receptor occupancy by specific dopaminergic drugs at different time-points. RGS2 was rapidly/transiently up-regulated by the D1 agonist SKF82958 and the D2 antagonist haloperidol (peak at 0.5 h) and down-regulated by the D1 antagonist SCH23390 and the D2 agonist quinpirole (trough at 1 and 2 h). RGS4 showed a delayed/transient up-regulation with SCH23390 and quinpirole (peak at 4 and 2 h) and down-regulation with haloperidol (trough at 8 h). Depending on the drug used, the degree of receptor occupancy did (D1 agonist and RGS2) or did not (D2 antagonist and RGS2) run parallel to RGS gene expression changes, indicating that certain drug effects are direct and others indirect. The precise control of RGS2 and RGS4 expression by dopamine receptors pleads in favour of their potential contribution to the fine-tuning of D1 and D2 receptor signalling cascades.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Johnson and Johnson Pharmaceutical Research and Development, Central Nervous System Discovery Research, Psychiatry One Department, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | | | | | | | |
Collapse
|