1
|
Yang Y, Xiao J, Qiu W, Jiang L. Cross-Talk Between Thyroid Disorders and Nonalcoholic Fatty Liver Disease: From Pathophysiology to Therapeutics. Horm Metab Res 2024; 56:697-705. [PMID: 38408595 DOI: 10.1055/a-2276-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The medical community acknowledges the presence of thyroid disorders and nonalcoholic fatty liver disease (NAFLD). Nevertheless, the interconnection between these two circumstances is complex. Thyroid hormones (THs), including triiodothyronine (T3) and thyroxine (T4), and thyroid-stimulating hormone (TSH), are essential for maintaining metabolic balance and controlling the metabolism of lipids and carbohydrates. The therapeutic potential of THs, especially those that target the TRβ receptor isoform, is generating increasing interest. The review explores the pathophysiology of these disorders, specifically examining the impact of THs on the metabolism of lipids in the liver. The purpose of this review is to offer a thorough analysis of the correlation between thyroid disorders and NAFLD, as well as suggest potential therapeutic approaches for the future.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Qiu
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Luxia Jiang
- Department of Cardiac Surgery ICU, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
3
|
Wang L, Cheng Q. APOBEC-1 Complementation Factor: From RNA Binding to Cancer. Cancer Control 2024; 31:10732748241284952. [PMID: 39334524 PMCID: PMC11439182 DOI: 10.1177/10732748241284952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND APOBEC-1 complementation factor (A1CF) and Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-1 (APOBEC-1) constitute the minimal proteins necessary for the editing of apolipoprotein B (apoB) mRNA in vitro. Unlike APOBEC-1 and apoB mRNA, the ubiquitous expression of A1CF in human tissues suggests its unique biological significance, with various factors such as protein kinase C, thyroid hormones, and insulin regulating the activity and expression of A1CF. Nevertheless, few studies have provided an overview of this topic. OBJECTIVE We conducted a literature review to describe the molecular mechanisms of A1CF and its relevance to human diseases. METHOD In the PubMed database, we used the keywords 'A1CF' and 'APOBEC-1 complementation factor' to collect peer-reviewed articles published in English from 2000 to 2023. Two authors independently reviewed the articles and reached the consensus. RESULT After reviewing 127 articles, a total of 61 articles that met the inclusion criteria were included in the present review. Studies revealed that A1CF is involved in epigenetic regulation of reproductive cells affecting embryonic development, and that it is closely associated with the occurrence of gout due to its editing properties on apoB. A1CF can also affect the process of epithelial-mesenchymal transition in renal tubular epithelial cells and promote liver regeneration by controlling the stability of IL-6 mRNA, but no influence on cardiac function was found. Furthermore, increasing evidence suggests that A1CF may promote the occurrence and development of breast cancer, lung cancer, renal cell carcinoma, hepatocellular carcinoma, endometrial cancer, and glioma. CONCLUSION This review clarifies the association between A1CF and other complementary factors and their impact on the development of human diseases, aiming to provide guidance for further research on A1CF, which can help treat human diseases and promote health.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Thyroid Surgery, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Cheng
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Hatziagelaki E, Paschou SA, Schön M, Psaltopoulou T, Roden M. NAFLD and thyroid function: pathophysiological and therapeutic considerations. Trends Endocrinol Metab 2022; 33:755-768. [PMID: 36171155 DOI: 10.1016/j.tem.2022.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide rising challenge because of hepatic, but also extrahepatic, complications. Thyroid hormones are master regulators of energy and lipid homeostasis, and the presence of abnormal thyroid function in NAFLD suggests pathogenic relationships. Specifically, persons with hypothyroidism feature dyslipidemia and lower hepatic β-oxidation, which favors accumulation of triglycerides and lipotoxins, insulin resistance, and subsequently de novo lipogenesis. Recent studies indicate that liver-specific thyroid hormone receptor β agonists are effective for the treatment of NAFLD, likely due to improved lipid homeostasis and mitochondrial respiration, which, in turn, may contribute to a reduced risk of NAFLD progression. Taken together, the possible coexistence of thyroid disease and NAFLD calls for increased awareness and optimized strategies for mutual screening and management.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis. Cells 2021; 10:cells10092375. [PMID: 34572025 PMCID: PMC8468809 DOI: 10.3390/cells10092375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were modeled by system biology. Results: We found that gene expression is mostly regulated by either T3 or CORT, or their additive effect when they both regulate the same genes. A small but non-negligible fraction of genes (12%) displayed non-trivial regulations indicative of complex interactions between the signaling pathways. Strikingly, DNA methylation changes display the opposite and are dominated by cross-talks. Conclusion: Cross-talks between thyroid hormones and glucocorticoids are more complex than initially envisioned and are not limited to the simple addition of their individual effects, a statement that can be summarized with the pseudo-equation: TH ∙ GC > TH + GC. DNA methylation changes are highly dynamic and buffered from genome expression.
Collapse
|
6
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
7
|
Zhou J, Dong X, Liu Y, Jia Y, Wang Y, Zhou J, Jiang Z, Chen K. Gestational hypothyroidism elicits more pronounced lipid dysregulation in mice than pre-pregnant hypothyroidism. Endocr J 2020; 67:593-605. [PMID: 32161203 DOI: 10.1507/endocrj.ej19-0455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone is crucial for regulating lipid and glucose metabolism, which plays essential role in maintaining the health of pregnant women and their offspring. However, the current literature is just focusing on the development of offspring born to the untreated mothers with hypothyroidism, rather than mothers themselves. Additionally, the interaction between hypothyroidism and pregnancy, and its impact on the women's health are still elusive. Therefore, this study was designed to compare the metabolic differences in dams with hypothyroidism starting before pregnancy and after pregnancy. Pre-pregnant hypothyroidism was generated in 5-week-old female C57/BL/6J mice using iodine-deficient diet containing 0.15% propylthiouracil for 4 weeks, and the hypothyroidism was maintained until delivery. Gestational hypothyroidism was induced in dams after mating, using the same diet intervention until delivery. Compared with normal control, gestational hypothyroidism exhibited more prominent increase than pre-pregnant hypothyroidism in plasma total cholesterol and low-density lipoprotein cholesterol, and caused hepatic triglycerides accumulation. Similarly, more significant elevations of protein expressions of SREBP1c and p-ACL, while more dramatic inhibition of CPT1A and LDL-R levels were also observed in murine livers with gestational hypothyroidism than those with pre-pregnant hypothyroidism. Moreover, the murine hepatic levels of total cholesterol and gluconeogenesis were dramatically and equally enhanced in two hypothyroid groups, while plasma triglycerides and protein expressions of p-AKT, p-FoxO1 and APOC3 were reduced substantially in two hypothyroid groups. Taken together, our current study illuminated that gestational hypothyroidism may elicit more pronounced lipid dysregulation in dams than dose the pre-pregnant hypothyroidism.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Xuan Dong
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yajing Liu
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yajing Jia
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Yang Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Ji Zhou
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230021, China
| | - Keyang Chen
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
- Department of Health Inspection and Quarantine, Anhui Medical University School of Public Health, Hefei, Anhui 230032, China
- Department of Ophthalmology, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230021, China
| |
Collapse
|
8
|
Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines (Basel) 2020; 8:vaccines8020246. [PMID: 32456126 PMCID: PMC7350023 DOI: 10.3390/vaccines8020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its saliva. During the disease progression, the cattle are prominently subjected to anaemia, weight loss, intermittent fever, chills, neuronal degeneration, congestive heart failure, and finally death. According to their different genetic programs governing the level of tolerance to AAT, cattle breeds are classified as either resistant or susceptible. In this study, we focus on the cattle breeds N’Dama and Boran which are known to be resistant and susceptible to trypanosomiasis, respectively. Despite the rich literature on both breeds, the gene regulatory mechanisms of the underlying biological processes for their resistance and susceptibility have not been extensively studied. To address the limited knowledge about the tissue-specific transcription factor (TF) cooperations associated with trypanosomiasis, we investigated gene expression data from these cattle breeds computationally. Consequently, we identified significant cooperative TF pairs (especially DBP−PPARA and DBP−THAP1 in N’Dama and DBP−PAX8 in Boran liver tissue) which could help understand the underlying AAT tolerance/susceptibility mechanism in both cattle breeds.
Collapse
|
9
|
Blanc V, Davidson NO. APOBEC-1-mediated RNA editing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:594-602. [PMID: 20836050 DOI: 10.1002/wsbm.82] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA editing defines a molecular process by which a nucleotide sequence is modified in the RNA transcript and results in an amino acid change in the recoded message from that specified in the gene. We will restrict our attention to the type of RNA editing peculiar to mammals, i.e., nuclear C to U RNA editing. This category of RNA editing contrasts with RNA modifications described in plants, i.e., organellar RNA editing (reviewed in Ref 1). Mammalian RNA editing is genetically and biochemically classified into two groups, namely insertion-deletional and substitutional. Substitutional RNA editing is exclusive to mammals, again with two types reported, namely adenosine to inosine and cytosine to uracil (C to U). This review will examine mammalian C to U RNA editing of apolipoproteinB (apoB) RNA and the role of the catalytic deaminase Apobec-1. We will speculate on the functions of Apobec-1 beyond C to U RNA editing as implied from its ability to bind AU-rich RNAs and discuss evidence that dysregulation of Apobec-1 expression might be associated with carcinogenesis through aberrant RNA editing or altered RNA stability.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63105, USA
| |
Collapse
|
10
|
Abstract
Substitutional RNA editing represents an important posttranscriptional enzymatic pathway for increasing genetic plasticity by permitting production of different translation products from a single genomically encoded template. One of the best-characterized examples in mammals is C to U deamination of the nuclear apolipoprotein B (apoB) mRNA. ApoB mRNA undergoes a single, site-specific cytidine deamination event yielding an edited transcript that results in tissue-specific translation of two distinct isoforms, referred to as apoB100 and apoB48. Tissue- and site-specific cytidine deamination of apoB mRNA is mediated by an incompletely characterized holoenzyme containing a minimal core complex consisting of an RNA-specific cytidine deaminase, Apobec-1 and a requisite cofactor, apobec-1 complementation factor (ACF). The underlying biochemical and genetic mechanisms regulating tissue-specific apoB mRNA editing have been accelerated through development and characterization of physiological rodent models as well as knockout and transgenic animal strains.
Collapse
|
11
|
Galloway CA, Ashton J, Sparks JD, Mooney RA, Smith HC. Metabolic regulation of APOBEC-1 complementation factor trafficking in mouse models of obesity and its positive correlation with the expression of ApoB protein in hepatocytes. Biochim Biophys Acta Mol Basis Dis 2010; 1802:976-85. [PMID: 20541607 DOI: 10.1016/j.bbadis.2010.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
APOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals.
Collapse
Affiliation(s)
- Chad A Galloway
- University of Rochester, Department of Biochemistry and Biophysics, 601 Elmwood Ave Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
12
|
Ramos HE, Labedan I, Carré A, Castanet M, Guemas I, Tron E, Madhi F, Delacourt C, Maciel RMB, Polak M. New cases of isolated congenital central hypothyroidism due to homozygous thyrotropin beta gene mutations: a pitfall to neonatal screening. Thyroid 2010; 20:639-45. [PMID: 20553196 DOI: 10.1089/thy.2009.0462] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Congenital central hypothyroidism (CCH) is a rare condition that is often diagnosed in late childhood in countries where neonatal screening programs rely solely on detecting thyrotropin (TSH) elevation. TSHbeta gene mutation is one of the causes of CCH. We describe two cases of c.Q49X mutation and three cases of c.C105Vfs114X mutation in exon 3 of the TSH beta-subunit gene. SUMMARY We found two different TSHbeta gene mutations in two families. In one family, we identified a missense mutation in exon 3 leading to a premature stop at position 49 (c.Q49X) in the two affected twins. In the other family, the three affected siblings had a 313delT nucleotide deletion leading to a frame shift responsible for premature termination at codon 114 (c.C105Vfs114X); neonatal screening showed very low TSH levels in all three patients. The presence of inappropriately low TSH levels at birth in the three affected members of the second family raises questions about the value of the TSH level for CCH screening. CONCLUSIONS The marked phenotypic variability in patients with the c.Q49X mutation suggests modulation by interacting genes and/or differences in the genetic background. TSHbeta gene mutations should be suspected in neonates with inappropriately low TSH levels.
Collapse
Affiliation(s)
- Helton E Ramos
- Centre des Maladies Endocriniennes Rares de la Croissance, Hôpital Necker Enfants-Malade, Assistance Publique-Hôpitaux de PARIS, Institut National de la Santé et de la Recherche Médicale U845 and Pediatric Endocrine Unit, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang X, Newkirk RF, Carre W, Ghose P, Igobudia B, Townsel JG, Cogburn LA. Regulation of ANKRD9 expression by lipid metabolic perturbations. BMB Rep 2009; 42:568-73. [PMID: 19788857 DOI: 10.5483/bmbrep.2009.42.9.568] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fatty acid oxidation (FAO) defects cause abnormal lipid accumulation in various tissues, which provides an opportunity to uncover novel genes that are involved in lipid metabolism. During a gene expression study in the riboflavin deficient induced FAO disorder in the chicken, we discovered the dramatic increase in mRNA levels of an uncharacterized gene, ANKRD9. No functions have been ascribed to ANKRD9 and its orthologs, although their sequences are well conserved among vertebrates. To provide insight into the function of ANKRD9, the expression of ANKRD9 mRNA in lipidperturbed paradigms was examined. The hepatic mRNA level of ANKRD9 was repressed by thyroid hormone (T(3)) and fasting, elevated by re-feeding upon fasting. However, ANKRD9 mRNA level is reduced in response to apoptosis. Transient transfection assay with green fluorescent protein tagged- ANKRD9 showed that this protein is localized within the cytoplasm. These findings point to the possibility that ANKRD9 is involved in intracellular lipid accumulation. [BMB reports 2009; 42(9): 568-573].
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37221, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
RNA editing is a process through which the nucleotide sequence specified in the genomic template is modified to produce a different nucleotide sequence in the transcript. RNA editing is an important mechanism of genetic regulation that amplifies genetic plasticity by allowing the production of alternative protein products from a single gene. There are two generic classes of RNA editing in nuclei, involving enzymatic deamination of either C-to-U or A-to-I nucleotides. The best characterized example of C-to-U RNA editing is that of apolipoprotein B (apoB), which is mediated by a holoenzyme that contains a minimal core composed of an RNA-specific cytidine deaminase apobec-1, and its cofactor apobec-1 complementation factor (ACF). C-to-U editing of apoB RNA generates two different isoforms--apoB100 and apoB48--from a single transcript. Both are important regulators of lipid transport and metabolism, and are functionally distinct. C-to-U apoB RNA editing is regulated by a range of factors including developmental, nutritional, environmental, and metabolic stimuli. Rodent models have provided a tractable system in which to study the effects of such stimuli on lipid metabolism. In addition, both transgenic and gene knockout experiments have provided important insights into gain and loss of function approaches for studying C-to-U RNA editing in a murine background.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
15
|
Hapon MB, Varas SM, Giménez MS, Jahn GA. Reduction of mammary and liver lipogenesis and alteration of milk composition during lactation in rats by hypothyroidism. Thyroid 2007; 17:11-8. [PMID: 17274742 DOI: 10.1089/thy.2005.0267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The profound impairment in litter growth produced by untreated maternal hypothyroidism (HypoT) may be a consequence of maternal metabolic dysfunctions affecting lactation. In this work we studied the effects of HypoT on mammary and liver lipid metabolism and its consequences on milk quality. DESIGN We studied the effects of prolonged 6-propyl-2-thiouracil (PTU)-induced HypoT (0.01% PTU in drinking water starting 8 days before mating until sacrifice) on milk macronutrient composition, liver and mammary lipid metabolism and content and serum lipid, and glucose and insulin concentrations in rats on days 7, 15 (L15), and 20 (L20) of lactation. Mammary and hepatic mRNA abundances of lipogenic enzymes were measured using semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) on L15 and L20. MAIN OUTCOME Milk lactose and triglycerides (TG) were reduced by HypoT, as well as mammary acetyl CoA carboxylase (ACC) activity on L15 and L20, and ACC and lipoprotein lipase (LPL) mRNA on L20. HypoT also decreased hepatic ACC activity on both days, ACC mRNA on L15 and liver [(3)H]H(2)O incorporation to TGs and TG content on L20. HypoT diminished insulinemia, increased serum total lipids, and decreased serum TGs on some or all the days of lactation studied. CONCLUSION HypoT produces a drastic decrease in milk TGs; the main cause for this seems to be the decreases in liver TG synthesis and in circulating TGs, which, along with reduced mammary uptake of fatty acids caused by decreased LPL expression and possibly diminished mammary lipogenesis, result in an impaired mammary output of TGs to the milk. Thus, the impaired growth of the litters of HypoT mothers can be largely attributed to the low milk quality along with the impaired milk ejection.
Collapse
Affiliation(s)
- María Belén Hapon
- Laboratorio de Reproducción y Lactancia, IMBECU, CRICYT-CONICET, Mendoza, Argentina
| | | | | | | |
Collapse
|
16
|
Lehmann DM, Galloway CA, Sowden MP, Smith HC. Metabolic regulation of apoB mRNA editing is associated with phosphorylation of APOBEC-1 complementation factor. Nucleic Acids Res 2006; 34:3299-308. [PMID: 16820530 PMCID: PMC1500872 DOI: 10.1093/nar/gkl417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Apolipoprotein B (apoB) mRNA editing is a nuclear event that minimally requires the RNA substrate, APOBEC-1 and APOBEC-1 Complementation Factor (ACF). The co-localization of these macro-molecules within the nucleus and the modulation of hepatic apoB mRNA editing activity have been described following a variety of metabolic perturbations, but the mechanism that regulates editosome assembly is unknown. APOBEC-1 was effectively co-immunoprecipitated with ACF from nuclear, but not cytoplasmic extracts. Moreover, alkaline phosphatase treatment of nuclear extracts reduced the amount of APOBEC-1 co-immunoprecipitated with ACF and inhibited in vitro editing activity. Ethanol stimulated apoB mRNA editing was associated with a 2- to 3-fold increase in ACF phosphorylation relative to that in control primary hepatocytes. Significantly, phosphorylated ACF was restricted to nuclear extracts where it co-sedimented with 27S editing competent complexes. Two-dimensional phosphoamino acid analysis of ACF immunopurified from hepatocyte nuclear extracts demonstrated phosphorylation of serine residues that was increased by ethanol treatment. Inhibition of protein phosphatase I, but not PPIIA or IIB, stimulated apoB mRNA editing activity coincident with enhanced ACF phosphorylation in vivo. These data demonstrate that ACF is a metabolically regulated phosphoprotein and suggest that this post-translational modification increases hepatic apoB mRNA editing activity by enhancing ACF nuclear localization/retention, facilitating the interaction of ACF with APOBEC-1 and thereby increasing the probability of editosome assembly and activity.
Collapse
Affiliation(s)
- David M. Lehmann
- Department of Toxicology, University of RochesterRochester, NY 14642, USA
- The Environmental Health Sciences Center, University of RochesterRochester, NY 14642, USA
| | - Chad A. Galloway
- Department of Biochemistry and Biophysics, University of RochesterRochester, NY 14642, USA
| | - Mark P. Sowden
- Department of Biochemistry and Biophysics, University of RochesterRochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of RochesterRochester, NY 14642, USA
| | - Harold C. Smith
- Department of Biochemistry and Biophysics, University of RochesterRochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of RochesterRochester, NY 14642, USA
- Department of Toxicology, University of RochesterRochester, NY 14642, USA
- The Environmental Health Sciences Center, University of RochesterRochester, NY 14642, USA
- James P. Wilmot Cancer Center, University of RochesterRochester, NY 14642, USA
- To whom correspondence should be addressed. Tel: +1 585 275 4267; Fax: +1 585 275 6007;
| |
Collapse
|
17
|
Dhingra S, Bansal MP. Hypercholesterolemia and apolipoprotein B expression: regulation by selenium status. Lipids Health Dis 2005; 4:28. [PMID: 16271152 PMCID: PMC1291393 DOI: 10.1186/1476-511x-4-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 11/05/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apolipoprotein B (apoB) contains ligand-binding domain for the binding of LDL to LDL-R site, which enables the removal of LDL from circulation. Our recent data showed that selenium (Se) is involved in the lipid metabolism. The present study was aimed to understand the effect of Se deficiency (0.02 ppm) and selenium supplementation (1 ppm) on apoB expression in liver during hypercholesterolemia in male Sprague Dawley rats. Animals were fed with control and high cholesterol diet (2%) for 1 and 2 months. ApoB levels by ELISA and protein expression by western blot was done. Hepatic LDL receptor (LDL-R) activity (in vivo) and mRNA expression by RT-PCR was monitored. RESULTS In selenium deficiency and on high cholesterol diet (HCD) feeding apoB levels increased and LDL-R expression decreased significantly after 2 months. On 1 ppm selenium supplementation apoB expression significantly decreased and LDL-R expression increased after 2 months. But after one month of treatment there was no significant change observed in apoB and LDL-R expression. CONCLUSION So the present study demonstrates that Se deficiency leads to up regulation of apoB expression during experimental hypercholesterolemia. Selenium supplementation upto 1 ppm leads to downregulation of apoB expression. Further, this study will highlight the nutritional value of Se supplementation in lipid metabolism.
Collapse
Affiliation(s)
- Sanjiv Dhingra
- Department of Biophysics, Panjab University, Chandigarh-160014, India
| | - Mohinder P Bansal
- Department of Biophysics, Panjab University, Chandigarh-160014, India
| |
Collapse
|
18
|
Prieur X, Huby T, Coste H, Schaap FG, Chapman MJ, Rodríguez JC. Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J Biol Chem 2005; 280:27533-43. [PMID: 15941710 DOI: 10.1074/jbc.m503139200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apolipoprotein AV gene (APOA5) is a key determinant of plasma triglyceride levels, a major risk factor for coronary artery disease and a biomarker for the metabolic syndrome. Since thyroid hormones influence very low density lipoprotein triglyceride metabolism and clinical studies have demonstrated an inverse correlation between thyroid status and plasma triglyceride levels, we examined whether APOA5 is regulated by thyroid hormone. Here we report that 3,5,3'-triiodo-L-thyronine (T3) and a synthetic thyroid receptor beta (TRbeta) ligand increase APOA5 mRNA and protein levels in hepatocytes. Our data revealed that T3-activated TR directly regulates APOA5 promoter through a functional direct repeat separated by four nucleotides (DR4). Interestingly, we show that upstream stimulatory factor 1, a transcription factor associated with familial combined hyperlipidemia and elevated triglyceride levels in humans, and upstream stimulatory factor 2 cooperate with TR, resulting in a synergistic activation of APOA5 promoter in a ligand-dependent manner via an adjacent E-box motif. In rats, we observed that apoAV levels declines with thyroid hormone depletion but returned to normal levels upon T3 administration. In addition, treatments with a TRbeta-selective agonist increased apoAV and diminished triglyceride levels. The identification of APOA5 as a T3 target gene provides a new potential mechanism whereby thyroid hormones can influence triglyceride homeostasis. Additionally, these data suggest that TRbeta may be a potential pharmacological target for the treatment of hypertriglyceridemia.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Apolipoprotein A-V
- Apolipoproteins/metabolism
- Apolipoproteins A
- Base Sequence
- Blotting, Western
- DNA-Binding Proteins/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Genes, Reporter
- Hepatocytes/metabolism
- Humans
- Ligands
- Lipoproteins, LDL/metabolism
- Male
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Thyroid Hormone/metabolism
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Thyroid Hormone Receptors beta
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Triglycerides/metabolism
- Triiodothyronine/metabolism
- Up-Regulation
- Upstream Stimulatory Factors
Collapse
Affiliation(s)
- Xavier Prieur
- GlaxoSmithKline, 25 Avenue du Québec, 91951 Les Ulis cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Hapon MB, Varas SM, Jahn GA, Giménez MS. Effects of hypothyroidism on mammary and liver lipid metabolism in virgin and late-pregnant rats. J Lipid Res 2005; 46:1320-30. [PMID: 15741655 DOI: 10.1194/jlr.m400325-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Untreated maternal hypothyroidism (hypoT) has serious consequences in offspring development that may result from the effect on lactation of maternal metabolism dysfunction. We studied the effects of prolonged propylthiouracil (PTU)-induced hypoT (0.1% PTU in drinking water starting 8 days before mating until day 21 of pregnancy or for 30 days in virgin rats) on liver and mammary lipid metabolism and serum lipid concentrations. In virgins, hypoT reduced hepatic mRNAs associated with triglyceride (TG) and cholesterol synthesis (including fatty acid synthase and 3-hydroxy-3-methylglutaryl coenzyme A reductase), and induced lobuloalveolar mammary development. Pregnancy increased hepatic mRNAs associated with TG and cholesterol synthesis and uptake (including LDL receptor) and with lipid oxidation, such as acyl CoA oxidase. HypoT decreased mRNAs and the activity of proteins associated with TG synthesis, and mRNAs associated with cholesterol uptake and lipid oxidation. Pregnancy increased mammary mRNAs related to lipid oxidation and decreased cholesterol synthesis, whereas hypoT decreased mRNAs and activities of proteins associated with TG synthesis and decreased epithelial mammary tissue. Virgin and pregnant hypoT rats had increased circulating VLDL + LDL cholesterol. HypoT decreased circulating TGs in pregnant rats. The observed effects of hypoT may result in decreased mammary lipid availability. This, along with the decreased epithelial mammary tissue during lactogenesis, may contribute to the future lactational deficit of hypoT mothers.
Collapse
Affiliation(s)
- María Belén Hapon
- Laboratorio de Reproducción y Lactancia, IMBECU-CRICYT-CONICET, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
20
|
Fu T, Mukhopadhyay D, Davidson NO, Borensztajn J. The peroxisome proliferator-activated receptor alpha (PPARalpha) agonist ciprofibrate inhibits apolipoprotein B mRNA editing in low density lipoprotein receptor-deficient mice: effects on plasma lipoproteins and the development of atherosclerotic lesions. J Biol Chem 2004; 279:28662-9. [PMID: 15123680 DOI: 10.1074/jbc.m403271200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.
Collapse
Affiliation(s)
- Tao Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Sowden MP, Lehmann DM, Lin X, Smith CO, Smith HC. Identification of novel alternative splice variants of APOBEC-1 complementation factor with different capacities to support apolipoprotein B mRNA editing. J Biol Chem 2003; 279:197-206. [PMID: 14570923 DOI: 10.1074/jbc.m307920200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel mRNA transcripts have been identified that result from species- and tissue-specific, alternative polyadenylation and splicing of the pre-mRNA encoding the apolipoprotein B (apoB) editing catalytic subunit 1 (APOBEC-1) complementation factor (ACF) family of related proteins. The alternatively processed mRNAs encode 43- and 45-kDa proteins that are components of the previously identified p44 cluster of apoB RNA binding, editosomal proteins. Recombinant ACF45 displaced ACF64 and ACF43 in mooring sequence RNA binding but did not demonstrate strong binding to APOBEC-1. In contrast, ACF43 bound strongly to APOBEC-1 but demonstrated weak binding to mooring sequence RNA. Consequently ACF45/43 complemented APOBEC-1 in apoB mRNA editing with less efficiency than full-length ACF64. These data, together with the finding that all ACF variants were co-expressed in rat liver nuclei (the site of apoB mRNA editing), suggested that ACF variants might compete with one another for APOBEC-1 and apoB mRNA binding and thereby contribute to the regulation of apoB mRNA editing. In support for this hypothesis, the ratio of nuclear ACF65/64 to ACF45/43 decreased when hepatic editing was inhibited by fasting and increased when editing was re-stimulated by refeeding. These findings suggested a new model for the regulation of apoB mRNA editing in which the catalytic potential of editosomes is modulated at the level of their assembly by alterations in the relative abundance of multiple related RNA-binding auxiliary proteins and the expression level of APOBEC-1.
Collapse
Affiliation(s)
- Mark P Sowden
- Department of Biochemistry and Biophysics, University of Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
23
|
Blanc V, Kennedy S, Davidson NO. A novel nuclear localization signal in the auxiliary domain of apobec-1 complementation factor regulates nucleocytoplasmic import and shuttling. J Biol Chem 2003; 278:41198-204. [PMID: 12896982 DOI: 10.1074/jbc.m302951200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C to U editing of the nuclear apolipoprotein B (apoB) transcript is mediated by a core enzyme containing a catalytic deaminase, apobec-1, and an RNA binding subunit, apobec-1 complementation factor (ACF). ACF expression is predominantly nuclear, including mutant proteins with deletions of a putative nuclear localization signal. We have now identified a novel 41-residue motif (ANS) in the auxiliary domain of ACF that functions as an authentic nuclear localization signal. ANS-green fluorescence protein and ANS-beta-galactosidase chimeras were both expressed exclusively in the nucleus, whereas wild-type chimeras or an ACF deletion mutant lacking the ANS were cytoplasmic. Nuclear accumulation of ACF is transcription-dependent, temperature-sensitive, and reversible, features reminiscent of a shuttling protein. ACF relocates to the cytoplasm after actinomycin D treatment, an effect blocked by the CRM1 inhibitor leptomycin B. Heterokaryon assays confirmed directly that ACF shuttles in vivo. ACF binds to the protein carrier, transportin 2 in vivo, and colocalizes to the nucleus as determined by confocal microscopy. Co-immunoprecipitation experiments revealed that transportin 2 binds directly to the ANS motif. These data suggest that directed nuclear localization and compartmentalization of the core complex of the apoB RNA editing enzyme is regulated through a dominant targeting sequence (ANS) contained within ACF.
Collapse
Affiliation(s)
- Valerie Blanc
- Departments of Internal Medicine and Pharmacology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Thyroid hormones are key regulators of development and metabolism that modulate transcription via nuclear receptors. Although the molecular actions of thyroid hormones have been thoroughly studied, their pleiotropic effects are mediated by complex changes in expression of numerous, but still largely unknown, target genes. This review summarizes the recent advances in the characterization of target genes in different organs. RECENT FINDINGS New patterns of gene expression regulation have been described in tissues with known physiological actions of thyroid hormone, that is brain, liver, skeletal and cardiac muscles, and brown and white adipose tissues. The studies have benefited from the numerous transgenic models with altered thyroid hormone receptor expression and the application of DNA microarray technology to mouse and human tissues. SUMMARY Data on thyroid hormone-mediated control of gene expression and on the roles of the different thyroid hormone receptor isoforms bring new clues to our understanding of the molecular mechanisms of thyroid hormone action in physiological situations and, most importantly, in diseases associated with alterations of the thyroid status.
Collapse
Affiliation(s)
- Nathalie Viguerie
- French Institute of Health and Medical Research, Toulouse University Hospitals, Toulouse, France
| | | |
Collapse
|
25
|
Anant S, Blanc V, Davidson NO. Molecular regulation, evolutionary, and functional adaptations associated with C to U editing of mammalian apolipoproteinB mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:1-41. [PMID: 14604008 DOI: 10.1016/s0079-6603(03)75001-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA editing encompasses an important class of co- or posttranscriptional nucleic acid modification that has expanded our understanding of the range of mechanisms that facilitate genetic plasticity. Since the initial description of RNA editing in trypanosome mitochondria, a model of gene regulation has emerged that now encompasses a diverse range of biochemical and genetic mechanisms by which nuclear, mitochondrial, and t-RNA sequences are modified from templated versions encoded in the genome. RNA editing is genetically and biochemically distinct from other RNA modifications such as splicing, capping, and polyadenylation although, as discussed in Section I, these modifications may have relevance to the regulation of certain types of mammalian RNA editing. This review will focus on C to U RNA editing, in particular, the biochemical and genetic mechanisms that regulate this process in mammals. These mechanisms will be examined in the context of the prototype model of C to U RNA editing, namely the posttranscriptional cytidine deamination targeting a single nucleotide in mammalian apolipoproteinB (apoB). Other examples of C to U RNA editing will be discussed and the molecular mechanisms--where known--contrasted with those regulating apoB RNA editing.
Collapse
Affiliation(s)
- Shrikant Anant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|