1
|
Tripathi A, Chhabra A, Rizvi S, Tyagi RK. Selective steroid receptor modulators, degraders and PROTACs: Therapeutic strategies in management of endocrine-related cancers. Mol Cell Endocrinol 2025; 605:112569. [PMID: 40339978 DOI: 10.1016/j.mce.2025.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Endocrine-related disorders are highly prevalent globally, affecting millions of people. Such diseases are multifactorial in origin and are influenced by the complex interplay of genetics, lifestyle, and environmental factors. Recurring disruptions in the endocrine homeostasis can lead to a cascade of endocrine-related cancers. It is well known that nuclear receptors (NRs), particularly estrogen receptor and androgen receptor malfunctioning promote the oncogenesis of breast cancer and prostate cancer, respectively. However, existing therapeutics against these diseases, including aromatase inhibitors, (anti-) hormonal therapy, etc., often yield limited success, prompting to explore alternative methods of disease management. Additionally, drug resistance is prominent in cancer patients undergoing multidrug therapy. Currently, novel drug design strategies targeting NRs are being implemented for the discovery of a new generation of small molecule modulators, including selective NR modulators (SNuRMs) and degraders (SNuRDs). Moreover, proteolysis-targeting chimeras (PROTACs) as NR degraders, are also being developed primarily to overcome drug resistance, enhance protein selectivity, and mitigate off-target toxicity. This review highlights recent advancements in SNuRMs and SNuRDs for managing NRs-associated endocrine/metabolic disorders. Furthermore, we discuss the therapeutic potential of PROTAC degraders as a stand-alone strategy for receptor-mediated disease intervention, offering new avenues for precision medicine.
Collapse
Affiliation(s)
- Anjali Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Zietara A, Dissanayake LV, Lowe M, Xu B, Levchenko V, Kain V, Halade GV, Klemens CA, Palygin O, Staruschenko A. Potassium supplementation and depletion during development of salt-sensitive hypertension in male and female SS rats. JCI Insight 2025; 10:e181778. [PMID: 40232853 DOI: 10.1172/jci.insight.181778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
The dietary sodium/potassium ratio is positively correlated with blood pressure, and understanding this relationship is crucial for improving hypertension treatment. Moreover, few studies have examined these effects in both sexes. In this study, we aimed to investigate how supplementing (1.41% K+; HK) or depleting (DK) dietary potassium affects the development of salt-sensitive (SS) hypertension in male and female Dahl SS rats. Potassium supplementation attenuated blood pressure during 5 weeks of high-salt (4% NaCl) diet in male but not in female rats. In contrast, a potassium-deficient diet prevented the development of salt-induced hypertension in both sexes, though this effect is unlikely to be protective. Both males and females on the DK diet were hypokalemic and had diminished heart rates and reduced weight gain; furthermore, females experienced high mortality. RNA-Seq of kidney cortical tissue revealed a number of genes that may underlie the sex-specific differences in phenotype. Male rats supplemented with potassium exhibited a decreased number and size of WNK4 puncta, whereas in potassium-supplemented females, there was no difference in puncta count and there was an increase in puncta size. Our data indicate there are sex-dependent differences in response to dietary potassium in hypertension and that the distal nephron compensates for severe potassium deficiency.
Collapse
Affiliation(s)
| | | | - Melissa Lowe
- Department of Molecular Pharmacology and Physiology
| | - Biyang Xu
- Department of Molecular Pharmacology and Physiology
| | | | | | - Ganesh V Halade
- Department of Internal Medicine, and
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans Hospital, Tampa, Florida, USA
| |
Collapse
|
3
|
Noto NM, Restrepo YM, Pang HW, Stoyell-Conti F, West CA, Speth RC. Comparative evaluation of biased agonists Sarcosine 1 , d-Alanine 8 -Angiotensin (Ang) II (SD Ang II) and Sarcosine 1 , Isoleucine 8 -Ang II (SI Ang II) and their radioiodinated congeners binding to rat liver membrane AT 1 receptors. Pharmacol Res Perspect 2023; 11:e01053. [PMID: 36639940 PMCID: PMC9840060 DOI: 10.1002/prp2.1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II analogue and β-arrestin biased agonist TRV027 (Sarcosine1 , d-Alanine8 -Angiotensin (Ang) II; SD Ang II), developed by Trevena, Inc. in the early 2010s, brought hopes of a novel treatment for cardiovascular diseases, due to its ability to simultaneously cause signaling through the β-arrestin signaling pathway, while antagonizing the pathophysiological effects of Ang II mediated by the AT1 receptor G protein signaling cascades. However, a phase II clinical trial of this agent revealed no significant benefit compared to placebo treatment. Using 125 I-Sarcosine1 , Isoleucine8 -Ang II (125 I-SI Ang II) radioligand receptor competition binding assays, we assessed the relative affinity of TRV027 compared to SI Ang II for liver AT1 receptors. We also compared radioiodinated TRV027 (125 I-SD Ang II) binding affinity for liver AT1 receptors with 125 I-SI Ang II. We found that despite its anticipated gain in metabolic stability, TRV027 and 125 I-SD Ang II had reduced affinity for the AT1 receptor compared with SI Ang II and 125 I-SI Ang II. Additionally, male-female comparisons showed that females have a higher AT1 receptor density, potentially attributed to tissue-dependent estrogen and progesterone effects. Peptide drugs have become more popular over the years due to their increased bioavailability, fast onset of action, high specificity, and low toxicity. Even though Trevena®'s biased agonist peptide TRV027 offered greater stability and potency compared to earlier AT1 R biased agonists, it failed its phase II clinical trial in 2016. Further refinements to AT1 R biased agonist peptides to improve affinity, as seen with SI Ang II, with better stability and bioavailability, has the potential to achieve the anticipated biased agonism.
Collapse
Affiliation(s)
- Natalia M Noto
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yazmin M Restrepo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hong W Pang
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Filipe Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,University of Miami, Miami, Florida, USA
| | - Crystal A West
- Department of Biology, Appalachian State University, Kannapolis, North Carolina, USA
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Garrido-Gil P, Rodriguez-Perez AI, Lage L, Labandeira-Garcia JL. Estrogen Deficiency and Colonic Function: Surgical Menopause and Sex Differences in Angiotensin and Dopamine Receptor Interaction. J Gerontol A Biol Sci Med Sci 2021; 76:1533-1541. [PMID: 32991714 DOI: 10.1093/gerona/glaa244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 01/02/2025] Open
Abstract
The physiopathological mechanisms that regulate menopausal and sex differences in colonic transit, inflammatory processes, and efficacy of treatments have not been clarified. The dopaminergic system and renin-angiotensin system coexist in the gut and regulate different processes such as motility, absorption/secretion, and inflammation. We investigated the changes in expression of major angiotensin and dopamine receptors in the colon of male, female, and ovariectomized female mice. Possible interaction between both systems was investigated using male and female mice deficient (ko) for major angiotensin and dopamine receptors. In wild-type mice, colonic tissue from females showed lower angiotensin type 1/angiotensin type 2 ratio (an index of pro-inflammatory/anti-inflammatory renin-angiotensin system balance), lower dopamine D1 and D2 receptor expression, and lower levels of pro-inflammatory and pro-oxidative markers relative to males. Interestingly, ovariectomy increased the expression of pro-inflammatory angiotensin type 1 receptor expression and decreased anti-inflammatory angiotensin type 2 receptor expression, increased D1 and D2 receptor expression, and increased the levels of pro-inflammatory and pro-oxidative markers. Ovariectomy-induced changes were blocked by estrogen replacement. The present results suggest a mutual regulation between colonic angiotensin and dopamine receptors and sex differences in this mutual regulation. Estrogen regulates changes in both angiotensin and dopamine receptor expression, which may be involved in sex- and surgical menopause-related effects on gut motility, permeability, and vulnerability to inflammatory processes.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lucia Lage
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Affiliation(s)
- Biykem Bozkurt
- Baylor College of Medicine, DeBakey VA Medical Center, Winters Center for Heart Failure Research, Cardiovascular Research Institute, Houston, TX (B.B.)
| | - Justin Ezekowitz
- Department of Medicine, Division of Cardiology, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Canada (J.E.)
| |
Collapse
|
6
|
Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl Psychiatry 2019; 9:36. [PMID: 30696810 PMCID: PMC6351608 DOI: 10.1038/s41398-019-0374-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 01/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin-angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females.
Collapse
|
7
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
8
|
Ogola B, Zhang Y, Iyer L, Thekkumkara T. 2-Methoxyestradiol causes matrix metalloproteinase 9-mediated transactivation of epidermal growth factor receptor and angiotensin type 1 receptor downregulation in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C554-C568. [DOI: 10.1152/ajpcell.00152.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have demonstrated the therapeutic potential of estrogen metabolite 2-methoxyestradiol (2ME2) in several cardiovascular disorders, including hypertension. However, the exact mechanism(s) remains unknown. In this study, primary rat aortic smooth muscle cells (RASMCs) were exposed to 2ME2, and angiotensin type 1 receptor (AT1R) expression, function, and associated signaling pathways were evaluated. In RASMCs, 2ME2 downregulated AT1R expression in a concentration- and time-dependent manner, which was correlated with reduced mRNA expression. The 2ME2 effect was through G protein-coupled receptor 30 (GPR30) that inhibits second messenger cAMP. Moreover, 2ME2 exposure phosphorylated ERK1/2 that was sensitive to MEK inhibitor PD98059. Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 blocked 2ME2-induced EGFR transactivation and attenuated subsequent phosphorylation of ERK1/2 preventing AT1R downregulation. The transactivation was dependent on 2ME2-induced release of matrix metalloproteinase 9 (MMP9) and epidermal growth factor demonstrated by ELISA. Furthermore, transfection with small interfering (si) RNA targeting MMP9 impeded ERK1/2 activation and AT1R downregulation in response to 2ME2 and G1 stimulation. Interestingly, under similar conditions, stimulation of GPR30 with the selective agonist G1 elicited similar signaling pathways and downregulated the AT1R expression that was reversed by GPR30 antagonist G15. Furthermore, 2ME2 and G1 inhibited angiotensin II (ANG II) induced Ca2+ release, a response consistent with AT1R downregulation. Collectively, our study demonstrates for the first time that 2ME2 binding to GPR30 induces MMP9 specific transactivation of EGFR that mediates ERK1/2-dependent downregulation of AT1R in RASMCs. The study provides critical insights into the newly discovered role and signaling pathways of 2ME2 in the regulation of AT1R in vascular cells and its potential to be developed as a therapeutic agent that ameliorates hypertension.
Collapse
Affiliation(s)
- Benard Ogola
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Laxmi Iyer
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Thomas Thekkumkara
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
9
|
Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging 2014; 36:1194-208. [PMID: 25432430 DOI: 10.1016/j.neurobiolaging.2014.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease have not yet been clarified, and it is not known whether there is a critical period. Estrogen induced significant protection against 6-hydroxydopamine-induced dopaminergic degeneration when administered immediately or 6 weeks, but not 20 weeks after ovariectomy. In the substantia nigra, ovariectomy induced a decrease in levels of estrogen receptor-α and increased angiotensin activity, NADPH-oxidase activity, and expression of neuroinflammatory markers, which were regulated by estrogen administered immediately or 6 weeks but not 20 weeks after ovariectomy. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced a significant level of neuroprotection. In cultures, treatment with 1-methyl-4-phenylpyridinium induced an increase in astrocyte-derived angiotensinogen and dopaminergic neuron death, which were inhibited by estrogen receptor α agonists. In microglial cells, estrogen receptor β agonists inhibited the angiotensin-induced increase in inflammatory markers. The results suggest that there is a critical period for the neuroprotective effect of estrogen against dopaminergic cell death, and local estrogen receptor α and renin-angiotensin system play a major role.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Lanciego
- Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
10
|
Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson's disease. Neurobiol Dis 2013; 58:209-19. [DOI: 10.1016/j.nbd.2013.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022] Open
|
11
|
Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. Brain 2011; 135:124-38. [PMID: 22189567 DOI: 10.1093/brain/awr320] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There is a lack of consensus about the effects of the type of menopause (surgical or natural) and of oestrogen replacement therapy on Parkinson's disease. The effects of the timing of replacement therapy and the female's age may explain the observed differences in such effects. However, the mechanisms involved are poorly understood. The renin-angiotensin system mediates the beneficial effects of oestrogen in several tissues, and we have previously shown that dopaminergic cell loss is enhanced by angiotensin via type 1 receptors, which is activated by ageing. In rats, we compared the effects of oestrogen replacement therapy on 6-hydroxydopamine-induced dopaminergic degeneration, nigral renin-angiotensin system activity, activation of the nicotinamide adenine dinucleotide phosphate oxidase complex and levels of the proinflammatory cytokine interleukin-1β in young (surgical) menopausal rats and aged menopausal rats. In young surgically menopausal rats, the renin-angiotensin system activity was higher (i.e. higher angiotensin converting enzyme activity, higher angiotensin type-1 receptor expression and lower angiotensin type-2 receptor expression) than in surgically menopausal rats treated with oestrogen; the nicotinamide adenine dinucleotide phosphate oxidase activity and interleukin-1β expression were also higher in the first group than in the second group. In aged menopausal rats, the levels of nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity were similar to those observed in surgically menopausal rats. However, oestrogen replacement therapy significantly reduced 6-hydroxydopamine-induced dopaminergic cell loss in young menopausal rats but not in aged rats. Treatment with oestrogen also led to a more marked reduction in nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity in young surgically menopausal rats (treated either immediately or after a period of hypo-oestrogenicity) than in aged menopausal rats. Interestingly, treatment with the angiotensin type-1 receptor antagonist candesartan led to remarkable reduction in renin-angiotensin system activity and dopaminergic neuron loss in both groups of menopausal rats. This suggests that manipulation of the brain renin-angiotensin system may be an efficient approach for the prevention or treatment of Parkinson's disease in oestrogen-deficient females, together with or instead of oestrogen replacement therapy.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
12
|
Villar-Cheda B, Rodríguez-Pallares J, Valenzuela R, Muñoz A, Guerra MJ, Baltatu OC, Labandeira-Garcia JL. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease. Eur J Neurosci 2010; 32:1695-706. [PMID: 20964730 DOI: 10.1111/j.1460-9568.2010.07448.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal ganglia have a local renin-angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of counter-regulatory interactions between dopamine and AII receptors in non-neural cells such as renal proximal tubule cells. However, it is not known if this occurs in the basal ganglia. In the striatum and nigra, depletion of dopamine with reserpine induced a significant increase in the expression of AT1, angiotensin type 2 receptors (AT2) and the NADPH subunit p47(phox) , which decreased as dopamine function was restored. Similarly, 6-hydroxydopamine-induced chronic dopaminergic denervation induced a significant increase in expression of AT1, AT2 and p47(phox) , which decreased with L-dopa administration. A significant reduction in expression of AT1 mRNA was also observed after administration of dopamine to cultures of microglial cells. Transgenic rats with very low levels of brain AII showed increased AT1, decreased p47 (phox) and no changes in AT2 expression, whereas mice deficient in AT1 exhibited a decrease in the expression of p47 (phox) and AT2. The administration of relatively high doses of AII (100 nm) decreased the expression of AT1, and the increased expression of AT2 and p47(phox) in primary mesencephalic cultures. The results reveal an important interaction between the dopaminergic and local renin-angiotensin system in the basal ganglia, which may be a major factor in the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL. Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease. Exp Neurol 2010; 224:517-26. [PMID: 20580712 DOI: 10.1016/j.expneurol.2010.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have reported that the incidence of Parkinson's disease (PD) is higher in postmenopausal than in premenopausal women of similar age. Several laboratory observations have revealed that estrogen has protective effects against dopaminergic toxins. The mechanism by which estrogen protects dopaminergic neurons has not been clarified, although estrogen-induced attenuation of the neuroinflammatory response plays a major role. We have recently shown that activation of the nigral renin-angiotensin system (RAS), via type 1 (AT1) receptors, leads to NADPH complex and microglial activation and induces dopaminergic neuron death. In the present study we investigated the effect of ovariectomy and estrogen replacement on the nigral RAS and on dopaminergic degeneration induced by intrastriatal injection of 6-OHDA. We observed a marked loss of dopaminergic neurons in ovariectomized rats treated with 6-OHDA, which was significantly reduced by estrogen replacement or treatment with the AT1 receptor antagonist candesartan. We also observed that estrogen replacement induces significant downregulation of the activity of the angiotensin converting enzyme as well as downregulation of AT1 receptors, upregulation of AT2 receptors and downregulation of the NADPH complex activity in the substantia nigra in comparison with ovariectomized rats. The present results suggest that estrogen-induced down-regulation of RAS and NADPH activity may be associated with the reduced risk of PD in premenopausal women, and increased risk in conditions causing early reduction in endogenous estrogen, and that manipulation of brain RAS system may be an efficient approach for the prevention or coadjutant treatment of PD in estrogen-deficient women.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Ricchiuti V, Lian CG, Oestreicher EM, Tran L, Stone JR, Yao T, Seely EW, Williams GH, Adler GK. Estradiol increases angiotensin II type 1 receptor in hearts of ovariectomized rats. J Endocrinol 2009; 200:75-84. [PMID: 18931023 PMCID: PMC2927364 DOI: 10.1677/joe-08-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We tested the hypothesis that 17beta-estradiol (E(2)) has dual effects on the heart, increasing levels of proteins thought to have beneficial cardiovascular effects (e.g. endothelial nitric oxide (NO) synthase (eNOS)) as well as those thought to have detrimental cardiovascular effects (e.g. type 1 angiotensin II (AngII) receptor (AT(1)R)). Ovariectomized Wistar rats consuming a high-sodium diet received one of four treatments (n=7 per group): group 1, placebo pellets; group 2, E(2) (0 x 5 mg/pellet, 21-day release); group 3, NOS inhibitor, N(omega)-nitro-L-arginine-methyl-ester (L-NAME; 40 mg/kg per day for 14 days) plus Ang II (0 x 225 mg/kg per day on days 11-14); group 4, E(2) plus L-NAME/Ang II. E(2) increased cardiac levels of estrogen receptors ESR1 and ESR2, an ESR-associated membrane protein caveolin-3, eNOS, and phosphorylated (p)eNOS, thus, exerting potentially beneficial cardiovascular effects on NO. However, E(2) also increased cardiac levels of proteins associated with cardiovascular injury and inflammation including, AT(1)R, protein kinase C delta (PRKCD), phosphorylated PRKC, and phosphorylated extracellular signal regulated kinase (pMAPK)3/1, plasminogen activator inhibitor-1 (PAI-1), osteopontin and ED-1, a monocyte/macrophage-specific protein. E(2) treatment led to similar protein changes in the hearts of L-NAME/Ang II-treated rats except that the increase in peNOS was prevented, and L-NAME/Ang II and E(2) had additive effects in increasing cardiac PRKCD and PAI-1. Thus, the highest levels of cardiac PAI-1 and PRKCD occurred in L-NAME/Ang II-treated rats receiving E(2). In summary, E(2) treatment increased cardiac expression of AT(1)R as well as the expression of pro-inflammatory and prothrombotic factors.
Collapse
Affiliation(s)
- Vincent Ricchiuti
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB, Chappell MC. Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol 2008; 295:H10-20. [PMID: 18456730 PMCID: PMC2494740 DOI: 10.1152/ajpheart.01277.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 04/28/2008] [Indexed: 01/05/2023]
Abstract
Sex differences in blood pressure are evident in experimental models and human subjects, yet the mechanisms underlying this disparity remain equivocal. The current study sought to define the extent of male-female differences in the circulating and tissue renin-angiotensin aldosterone systems (RAASs) of congenic mRen(2). Lewis and control Lewis rats. Male congenics exhibited higher systolic blood pressure than females [200 +/- 4 vs. 146 +/- 7 mmHg, P < 0.01] or Lewis males and females [113 +/- 2 vs. 112 +/- 2 mmHg, P > 0.05]. Plasma ANG II levels were twofold higher in male congenics [47 +/- 3 vs. 19 +/- 3 pM, P < 0.01] and fivefold higher than in male or female Lewis rats [6 +/- 1 vs. 6 +/- 1 pM]. ANG I levels were also highest in the males; however, plasma ANG-(1-7) was higher in female congenics. Male congenics exhibited greater circulating renin and angiotensin-converting enzyme (ACE) activities, as well as angiotensinogen, than female littermates. Renal cortical and medullary ANG II levels were also higher in the male congenics versus all the other groups; ANG I was lower in the males. Cortical ACE2 activity was higher in male congenics, yet neprilysin activity and protein were greater in the females, which may contribute to reduced renal levels of ANG II. These data reveal that sex differences in both the circulating and renal RAAS are apparent primarily in the hypertensive group. The enhanced activity of the RAAS in male congenics may contribute to the higher pressure and tissue injury evident in the strain.
Collapse
Affiliation(s)
- Karl D Pendergrass
- Hypertension & Vascular Disease Ctr., Wake Forest Univ. Health Sciences, Winston-Salem, NC 27157-1095, USA
| | | | | | | | | | | |
Collapse
|
16
|
Shimodaira M, Nakayama T, Sato N, Saito K, Morita A, Sato I, Takahashi T, Soma M, Izumi Y. Association study of aromatase gene (CYP19A1) in essential hypertension. Int J Med Sci 2008; 5:29-35. [PMID: 18274619 PMCID: PMC2238181 DOI: 10.7150/ijms.5.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 02/05/2008] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND As aromatase-deficient mice, which are deficient in estrogens, reportedly have reduced blood pressure, the aromatase gene (CYP19A1) is thought to be a susceptibility gene for essential hypertension (EH). The aim of the present study was to investigate the relationship between CYP19A1 and EH by examining single nucleotide polymorphisms (SNPs). METHODS Five SNPs in the human CYP19A1 gene (rs1870049, rs936306, rs700518, rs10046 and rs4646) were selected, and an association study was performed in 218 Japanese EH patients and 225 age-matched normotensive (NT) individuals. RESULTS There were significant differences between these groups in the distribution of genotypes rs700518 and rs10046 in male subjects, and genotypes rs700518, rs10046 and rs4646 in female subjects. On multiple logistic regression analysis, a significant association between rs700518 (p=0.023) and rs10046 (p=0.036) in male subjects and rs700518 in female subjects (p=0.018) was noted. Interestingly, the risk genotypes of rs700518 and rs10046 showed a sex-dependent inverse relationship. Both SBP and DBP levels were higher in total (cases and controls) male subjects with the G/G genotype with rs700518 or the T/T genotype with rs10046 than in male subjects without the G/G genotype or T/T genotype. SBP levels were lower in female subjects with the G/G genotype with rs700518 than in female subjects without G/G. The A-T haplotype constructed with rs1870049 and rs10046 was a susceptibility marker for EH. CONCLUSIONS We confirmed that rs700518 and rs10046, as well as a haplotype constructed with rs1870049 and rs10046, in the human CYP19A1 gene can be used as genetic markers for gender-specific EH.
Collapse
|
17
|
Zheng W, Ji H, Maric C, Wu X, Sandberg K. Effect of dietary sodium on estrogen regulation of blood pressure in Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 2008; 294:H1508-13. [PMID: 18245561 DOI: 10.1152/ajpheart.01322.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of high-sodium (HS) and normal-sodium (NS) diets on ovarian hormone modulation of mean arterial pressure (MAP) were examined in Dahl salt-resistant (DR) and salt-sensitive (DS) rats. Ovariectomy increased MAP (OVX-Sham) to a greater extent in DS rats maintained for 2 wk on a HS (22 mmHg) compared with a NS (6 mmHg) diet. Ovariectomy had no effect on MAP in DR rats on NS but did increase MAP in rats on HS (10 mmHg) diets. On HS diets, glomerular filtration rate (GFR) was 36% less in the DS-Sham than DR-Sham animals; ovariectomy increased GFR in both strains by 1.4-1.5-fold; glomerular angiotensin II type 1 receptor (AT(1)R) densities were 1.6-fold higher in the DS-Sham than in the DR-Sham group; ovariectomy increased glomerular AT(1)R densities by 1.3-fold in DR rats but had no effect in DS rats; 17beta-estradiol (E(2)) downregulated adrenal AT(1)R densities in both strains on either diet; ovariectomy reduced estrogen receptor-alpha (ER-alpha) protein expression in the renal cortex by 40-50% although renal ER-alpha expression was 34% lower in DS than in DR rats. These observed effects of gonadectomy were prevented by E(2) treatment, suggesting that E(2) deficiency mediates the effects of ovariectomy on MAP, GFR, AT(1)R densities, and renal ER-alpha protein expression. In conclusion, ovariectomy-induced increases in MAP are augmented by HS diet in both strains, and this effect is not mediated by a reduction in GFR. Aberrant renal AT(1)R regulation and reduced renal ER-alpha expression are potential contributors to the hypertensive effects of E(2) deficiency in DS rats. These findings have implications for women with salt-sensitive hypertension and women who are E(2) deficient, such as postmenopausal women.
Collapse
Affiliation(s)
- Wei Zheng
- Georgetown University, NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
18
|
Brosnihan KB, Hodgin JB, Smithies O, Maeda N, Gallagher P. Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice. Exp Physiol 2008; 93:658-64. [PMID: 18192335 DOI: 10.1113/expphysiol.2007.041806] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiotensin-converting enzyme (ACE) and ACE2 and the AT1 and AT2 receptors are pivotal points of regulation in the renin-angiotensin system. ACE and ACE2 are key enzymes in the formation and degradation of angiotensin II (Ang II) and angiotensin-(1-7)(Ang-(1-7)). Ang II acts at either the AT1 or the AT2 receptor to mediate opposing actions of vasoconstriction or vasodilatation respectively. While it is known that oestrogen acts to downregulate ACE and the AT(1) receptor, its regulation of ACE2 and the AT2 receptor and the involvement of a specific oestrogen receptor subtype are unknown. To investigate the role of oestrogen receptor-alpha (ERalpha) in the regulation by oestrogen of ACE/ACE2 and AT1/AT2 mRNAs in lung and kidney, ovariectomized female mice lacking apolipoprotein E (ee) with the ERalpha (AAee) or without the ERalpha (alphaalphaee) were treated with 17beta-oestradiol (6 microg day(-1)) or placebo for 3 months. ACE, ACE2, AT1 receptor and AT2 receptor mRNAs were measured using reverse transcriptase, real-time polymerase chain reaction. In the kidney, 17beta-oestradiol showed 1.7-fold downregulation of ACE mRNA in AAee mice, with 2.1-fold upregulation of ACE mRNA in alphaalphaee mice. 17beta-Oestradiol showed 1.5- and 1.8-fold downregulation of ACE2 and AT1 receptor mRNA in AAee mice; this regulation was lost in alphaalphaee mice. 17beta-Oestradiol showed marked (81-fold) upregulation of the AT(2) receptor mRNA in AAee mice. In the lung, 17beta-oestradiol treatment had no effect on AT1 receptor mRNA in AAee mice, but resulted in a 1.5-fold decreased regulation of AT1 mRNA in alphaalphaee mice. There was no significant interaction of oestrogen with ERalpha in the lung for ACE, ACE2 and AT2 receptor genes. These studies reveal tissue-specific regulation by 17beta-oestradiol of ACE/ACE2 and AT1/AT2 receptor genes, with the ERalpha receptor being primarily responsible for the regulation of kidney ACE2, AT1 receptor and AT2 receptor genes.
Collapse
Affiliation(s)
- K Bridget Brosnihan
- The Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA.
| | | | | | | | | |
Collapse
|
19
|
Ji H, Zheng W, Falconetti C, Roesch DM, Mulroney SE, Sandberg K. 17β-Estradiol deficiency reduces potassium excretion in an angiotensin type 1 receptor-dependent manner. Am J Physiol Heart Circ Physiol 2007; 293:H17-22. [PMID: 17449550 DOI: 10.1152/ajpheart.00950.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of ovariectomy (OVX) and 17β-estradiol (E2) replacement (OVX + E2) on renal function in Sprague-Dawley rats. OVX caused a 40% decrease in the fractional excretion of potassium (FEK+) that was prevented by E2 replacement [Sham, 24.2 ± 2.9%; OVX, 14.5 ± 2.1% ( P < 0.05 vs. OVX + E2); and OVX + E2, 26.2 ± 2.7%; n = 7–11] and that corresponded to significant increases in plasma potassium [(in mmol/l): Sham, 3.15 ± 0.087; OVX, 3.42 ± 0.048 ( P < 0.05 vs. OVX + E2); and OVX + E2, 3.19 ± 0.11; n = 7–11]. No effects of OVX were detected on plasma levels of sodium and aldosterone. Angiotensin II type 1 receptor (AT1R) densities in ovariectomized rats were 1.4-fold and 1.3-fold higher in glomerular [maximum binding capacity (Bmax; in fmol/mg protein): Sham, 482 ± 21; OVX, 666 ± 20 ( P < 0.05 vs. OVX + E2); and OVX + E2, 504 ± 26; n = 7–11] and proximal tubular [Bmax (in fmol/mg protein): Sham, 721 ± 16; OVX, 741 ± 24 ( P < 0.05 vs. OVX + E2); and OVX + E2, 569 ± 23; n = 7–11] membranes compared with E2 replete animals, respectively. Both the angiotensin-converting enzyme inhibitor captopril and the AT1R antagonist losartan prevented the OVX-induced decrease in the FEK+ and the increase in renal AT1R densities, suggesting that E2 deficiency reduces potassium excretion in an ANG II/AT1R-dependent manner. These findings may have implications for renal function in postmenopausal women as well as contribute to the reasons underlying the age-induced increase in susceptibility to hypertension-associated disease in women.
Collapse
Affiliation(s)
- Hong Ji
- Center for the Study of Sex Differences, Georgetown University, 4000 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Zhao D, Vellaichamy E, Somanna NK, Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A gene disruption causes increased adrenal angiotensin II and aldosterone levels. Am J Physiol Renal Physiol 2007; 293:F121-7. [PMID: 17389676 DOI: 10.1152/ajprenal.00478.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of the guanylyl cyclase-A/natriuretic peptide receptor-A (GC-A/NPRA) gene leads to elevated arterial blood pressure and congestive heart failure in mice lacking NPRA. This study was aimed at determining whether Npr1 (coding for GC-A/NPRA) gene copy number affects adrenal ANG II and aldosterone (Aldo) levels in a gene-dose-dependent manner in Npr1 gene-targeted mice. Adrenal ANG II and Aldo levels increased in 1-copy mice compared with 2-copy mice, but decreased in 3-copy and 4-copy mice. In contrast, renal ANG II levels decreased in 1-copy (25%), 3-copy (38%), and 4-copy (39%) mice compared with 2-copy mice. The low-salt diet stimulated adrenal ANG II and Aldo levels in 1-copy (20 and 2,441%), 2-copy (15 and 2,339%), 3-copy (20 and 424%), and 4-copy (31 and 486%) mice, respectively. The high-salt diet suppressed adrenal ANG II and Aldo levels in 1-copy (46 and 29%) and 2-copy (38 and 17%) mice. On the other hand, the low-salt diet stimulated renal ANG II levels in 1-copy (45%), 2-copy (45%), 3-copy (59%), and 4-copy (48%) mice. However, the high-salt diet suppressed renal ANG II levels in 1-copy (28%) and 2-copy (27%) mice. In conclusion, NPRA signaling antagonizes adrenal ANG II and Aldo levels in a gene-dose dependent manner. Increased adrenal ANG II and Aldo levels may play an important role in elevated arterial blood pressure and progressive hypertension, leading to renal and vascular injury in Npr1 gene-disrupted mice.
Collapse
Affiliation(s)
- Di Zhao
- Dept. of Physiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
21
|
Rogers JL, Mitchell AR, Maric C, Sandberg K, Myers A, Mulroney SE. Effect of sex hormones on renal estrogen and angiotensin type 1 receptors in female and male rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R794-9. [PMID: 16990489 DOI: 10.1152/ajpregu.00424.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the mechanisms are not understood, evidence suggests that 17β-estradiol (E2) confers protection from cardiovascular and renal complications in many diseases. We have reported that E2 decreases angiotensin type 1 receptors (AT1Rs) in different tissues and hypothesize that E2 exerts tonic inhibition on AT1Rs, reducing effects of ANG II. This study determined the effects of E2 and dihydrotestosterone (DHT) on cortical estrogen receptors (ERs) and glomerular AT1R binding in rats. Animals underwent sham operation, ovariectomy (Ovx) or orchidectomy (Cas) and were treated (Ovx ± E2; Cas ± DHT) for 3 wk. Cortical ERα protein was 2.5 times greater, and ERβ was 80% less in females vs. males ( P < 0.01). Glomerular AT1R binding was lower in females than males [4,657 ± 838 vs. 7,457 ± 467 counts per minute (cpm), P < 0.01]. Ovx reduced ERα protein by 50%, whereas E2 increased ERα expression after Ovx. The decrease in cortical ERα in Ovx rats was associated with a significant increase in AT1R binding (6,908 ± 609 cpm), and E2 prevented this increase. There was no change in ERα or AT1R binding following Cas ± DHT (25 mg) treatment, although Cas did elevate cortical ERβ (P < 0.01). Interestingly, the high dose DHT (200 mg) elevated ERα 150% above intact levels and profoundly decreased AT1R binding (1,824 ± 705 cpm, P < 0.001 vs. intact male). This indicates that under normal conditions, glomerular AT1R binding is significantly greater in male than female animals, which may be important in development of cardiovascular and renal disease in males. Furthermore, E2 regulates ERα and is inversely associated with glomerular AT1R binding, supporting our hypothesis that E2 tonically suppresses AT1Rs and suggesting a potential mechanism for the protective effects of estrogen.
Collapse
Affiliation(s)
- Jennifer L Rogers
- Department of Physiology and Biophysics, Georgetown University, Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
22
|
Oestreicher EM, Guo C, Seely EW, Kikuchi T, Martinez-Vasquez D, Jonasson L, Yao T, Burr D, Mayoral S, Roubsanthisuk W, Ricchiuti V, Adler GK. Estradiol increases proteinuria and angiotensin II type 1 receptor in kidneys of rats receiving L-NAME and angiotensin II. Kidney Int 2006; 70:1759-68. [PMID: 17021606 DOI: 10.1038/sj.ki.5001897] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prospective, placebo-controlled clinical trials suggest that estrogen may have adverse effects on the vascular system in women. The goal of this study was to determine if 17beta-estradiol (E2) would have adverse effects on the renovasculature in a rat model of renal injury characterized by low nitric oxide (NO) and high angiotensin II (AngII). We studied female Wistar rats that were sham-operated (sham), ovariectomized (OVX), or ovariectomized and replaced with E2 (OVX/E2). All rats were maintained on a high salt diet and renovascular injury was caused by treating rats with an inhibitor of NO synthase, N(omega)-nitro-L-arginine-methyl-ester (L-NAME), for 14 days, plus AngII on days 11 through 14. L-NAME/AngII treatment, as compared to placebo, caused proteinuria, glomerular injury, and fibrinoid necrosis of renal arterioles in sham-operated rats. Ovariectomy reduced L-NAME/AngII-induced renal damage, whereas E2 treatment increased L-NAME/AngII-induced damage in OVX rats. In rats treated with L-NAME/AngII, levels of AngII type 1 receptor (AT(1)R) protein were higher in the renal cortex of sham and OVX/E2 rats than in OVX rats. AT(1)R protein correlated with renal injury. E2 treatment also increased expression of AT(1)R mRNA. Thus, under conditions of low NO and high AngII, E2 exacerbated renal injury. E2-mediated increases in renal cortical AT(1)R expression may represent a novel mechanism for the adverse renovascular effects of estrogen.
Collapse
Affiliation(s)
- E M Oestreicher
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chappell MC, Yamaleyeva LM, Westwood BM. Estrogen and salt sensitivity in the female mRen(2).Lewis rat. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1557-63. [PMID: 16825422 DOI: 10.1152/ajpregu.00051.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study determined whether early loss of estrogen influences salt-sensitive changes in blood pressure, renal injury, and cardiac hypertrophy as well as the effects on the circulating renin-angiotensin-aldosterone system (RAAS) in the hypertensive female mRen( 2 ).Lewis strain. Ovariectomy (OVX) of heterozygous mRen( 2 ).Lewis rats on a normal salt (NS) diet (0.5% sodium) increased systolic blood pressure from 137 ± 3 to 177 ± 5 mmHg ( P < 0.01) by 15 wk but did not show any changes in cardiac-to-body weight index (CI), proteinuria, or creatinine clearance. Maintenance with a high-sodium (HS) diet (4%) increased blood pressure (203 ± 4 mmHg, P < 0.01), proteinuria (3.5 ± 0.3 vs. 6.4 ± 0.7 mg/day, P < 0.05), and CI (4.0 ± 0.1 vs. 5.2 ± 0.1 mg/kg, P < 0.01) but decreased creatinine clearance (0.89 ± 0.15 vs. 0.54 ± 0.06 ml/min, P < 0.05). OVX exacerbated the effects of salt on the degree of hypertension (230 ± 5 mmHg), CI (5.6 ± 0.2 mg/kg), and proteinuria (13 ± 3.0 mg/day). OVX increased the urinary excretion of aldosterone approximately twofold in animals on the NS diet (3.8 ± 0.5 vs. 6.6 ± 0.5 ng·mg creatinine−1·day−1, P < 0.05) and HS diet (1.4 ± 0.2 vs. 4.5 ± 1.0 ng·mg creatinine−1·day−1, P < 0.05). Circulating renin, angiotensin-converting enzyme, and angiotensin II were also significantly increased in the OVX group fed a HS diet. These results reveal that the protective effects of estrogen apart from the increase in blood pressure were only manifested in the setting of a chronic HS diet and suggest that the underlying sodium status may have an important influence on the overall effect of reduced estrogen.
Collapse
Affiliation(s)
- Mark C Chappell
- Hypertension and Vascular Disease Center, Wake Forest Univ. Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157-1095, USA.
| | | | | |
Collapse
|
24
|
Yamaleyeva LM, Gallagher PE, Vinsant S, Chappell MC. Discoordinate regulation of renal nitric oxide synthase isoforms in ovariectomized mRen2. Lewis rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R819-26. [PMID: 17023669 DOI: 10.1152/ajpregu.00389.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen depletion markedly exacerbates hypertension in female congenic mRen2. Lewis rats, a model of tissue renin overexpression. Because estrogen influences nitric oxide synthase (NOS) and NO may exert differential effects on blood pressure, the present study investigated the functional expression of NOS isoforms in the kidney of ovariectomized (OVX) mRen2. Lewis rats. OVX-mRen2. Lewis exhibited an increase in systolic blood pressure (SBP) of 171 +/- 5 vs. 141 +/- 7 mmHg (P < 0.01) for intact littermates. Renal cortical mRNA and protein levels for endothelial NOS (eNOS) were reduced 50-60% (P < 0.05) and negatively correlated with blood pressure. In contrast, cortical neuronal NOS (nNOS) mRNA and protein levels increased 100 to 300% (P < 0.05). In the OVX kidney, nNOS immunostaining was more evident in the macula densa, cortical tubules, and the medullary collecting ducts compared with the intact group. To determine whether the increase in renal nNOS expression constitutes a compensatory response to the reduction in renal eNOS, we treated both intact and OVX mRen2. Lewis rats with the selective nNOS inhibitor L-VNIO from 11 to 15 wk of age. The nNOS inhibitor reduced blood pressure in the OVX group (185 +/- 3 vs. 151 +/- 8 mmHg, P < 0.05), but pressure was not altered in the intact group (146 +/- 4 vs. 151 +/- 4 mmHg). In summary, exacerbation of blood pressure in the OVX mRen2. Lewis rats was associated with the discoordinate regulation of renal NOS isoforms. Estrogen sensitivity in this congenic strain may involve the influence of NO through the regulation of both eNOS and nNOS.
Collapse
Affiliation(s)
- Liliya M Yamaleyeva
- Hypertension and Vascular Disease Center, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157-1095, USA
| | | | | | | |
Collapse
|
25
|
Zheng W, Shi M, You SE, Ji H, Roesch DM. Estrogens contribute to a sex difference in plasma potassium concentration: a mechanism for regulation of adrenal angiotensin receptors. ACTA ACUST UNITED AC 2006; 3:43-53. [PMID: 16638600 DOI: 10.1016/s1550-8579(06)80193-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND The adrenal mineralocorticoid aldosterone promotes sodium (Na(+)) reabsorption and potassium (K(+)) loss from the kidney. Female sex steroids such as estrogen and progesterone are known modulators of the renin-angiotensin-aldosterone system. OBJECTIVE We conducted studies to determine if there is a sex difference in plasma Na(+) concentration ([Na(+)]) and plasma K(+) concentration ([K(+)]), and if interactions between female sex steroids and aldosterone contribute to a sex difference in these electrolytes. METHODS Plasma [Na(+)] and [K(-)] were determined in weight-matched male and female Sprague-Dawley rats using an ion-selective electrode system. To assess the sensitivity of males and females to aldosterone, the mineralocorticoid was infused chronically by osmotic minipump. The role of female sex steroids in the regulation of plasma electrolyte concentrations was determined in bilaterally ovariectomized (OVX) female rats treated daily with SC injections of progesterone, 17beta-estradiol (E(2)), or selective estrogen receptor (ER) modulators. The role of plasma [K(+)] in the regulation of adrenal angiotensin II type 1 receptor (AT(1)R) expression was determined by manipulating plasma [K(+)] by varying dietary K(-). Adrenal AT(1)R expression was assessed using a radioligand binding assay. RESULTS Plasma [Na(-)] was not different between male and female rats, but plasma [K(-)] was reduced in females compared with males (P = 0.003). In aldosterone-infused female rats, plasma [Na(+)] was increased and plasma [K(+)] was reduced further than in male rats infused with aldosterone (both, P = 0.001). In OVX female rats, progesterone reduced plasma [Na(+)] (P = 0.04) but had no effect on plasma [K(+)]. In contrast, E(2) increased plasma [Na(+)] (P = 0.01) and reduced plasma [K(+)] (P = 0.001). Dietary K supplementation in E(2)-treated rats returned plasma [K(+)] and adrenal AT(1)R binding to levels observed in control rats. Both an ERa and ERP agonist decreased plasma [K(+)] and decreased adrenal AT(1)R binding (both, P < 0.01). CONCLUSIONS In these studies, plasma [K(+)] was reduced in female Sprague-Dawley rats compared with males. The effects of aldosterone on plasma electrolytes were enhanced in females compared with males. E(2) treatment reduced plasma [K(+)] and adrenal AT(1)R binding in OVX rats, and the decrease in plasma [K(+)] contributed to the decrease in adrenal AT(1)R binding. Both ERalpha and ERbeta contributed to the estrogen-induced decrease in plasma [K(+)] and adrenal AT(1)R binding.
Collapse
Affiliation(s)
- Wei Zheng
- Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
26
|
Head GA, Obeyesekere VR, Jones ME, Simpson ER, Krozowski ZS. Aromatase-deficient (ArKO) mice have reduced blood pressure and baroreflex sensitivity. Endocrinology 2004; 145:4286-91. [PMID: 15178650 DOI: 10.1210/en.2004-0421] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aromatase-deficient (ArKO) mice are deficient in estrogens due to deletion of the aromatase gene. We hypothesized that there may be changes in the cardiovascular system of ArKO mice because of evidence linking estrogens with improved cardiovascular outcomes and the induction of the glucocorticoid-metabolizing enzyme, 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), gene in the kidney, which is important for the regulation of blood pressure (BP). BP and baroreflex sensitivity (BRS) in female conscious ArKO mice were compared with those in age- and weight-matched wild-type (WT) mice. Power spectral analysis was used to determine cardiovascular variability and BRS. Although systolic BP was similar in the two groups, diastolic and mean BPs were lower in the ArKO mice (-6.3 +/- 1.9 and -4.6 +/- 2.1 mm Hg, respectively). Heart rate (HR) was greater in the ArKO mice (+36 +/- 6 beats/min). The mean BP in WT mice was 105 mm Hg, and the HR was 481 beats/min. In the autonomic frequency range, BP variability was 74% greater, and HR variability was only 26% that in WT mice. The BRS of ArKO mice was 46% of the value observed in WT mice. 11betaHSD2 levels were unaltered in ArKO mice, except in the kidney, where they were only 10% of WT levels. Estradiol administration to ArKO mice restored renal 11betaHSD2 to WT levels. The results show that ArKO mice have lower diastolic BP, but increased BP variability, perhaps due to an impaired BRS. Thus, aromatase activity is critical for normal autonomic control of the heart and, hence, for reducing the deleterious effects of high BP variability.
Collapse
Affiliation(s)
- Geoffrey A Head
- Baker Heart Research Institute, P.O. Box 6492, St. Kilda Road Central, Melbourne, Victoria 8008, Australia.
| | | | | | | | | |
Collapse
|