1
|
White CA, Serrat MA. Dysregulation of insulin-like growth factor-1 signaling in postnatal bone elongation. Biochem Cell Biol 2023; 101:388-393. [PMID: 37246759 DOI: 10.1139/bcb-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a critical modulator of cell growth and survival, making it a central part of maintaining essentially every biological system in the body. Knowledge of the intricate mechanisms involved in activating IGF-1 signaling is not only key to understanding basic processes of growth and development, but also for addressing diseases, such as cancer and diabetes. This brief review explores how dysregulation of normal IGF-1 signaling can impact growth by examining its role in postnatal bone elongation. IGF-1 actions are dysregulated in autoimmune diseases, such as juvenile idiopathic arthritis and chronic kidney disease, which results in growth stunting. Conversely, childhood obesity results in growth acceleration, premature growth cessation, and ultimately, diminished bone quality, while systemic IGF-1 levels remain normal. Understanding the role of IGF-1 signaling in normal and dysregulated growth can add to other studies that address how this system regulates chronic diseases.
Collapse
Affiliation(s)
- Cassaundra A White
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
2
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Plotkin LI, Bruzzaniti A. Molecular signaling in bone cells: Regulation of cell differentiation and survival. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:237-281. [PMID: 31036293 PMCID: PMC7416488 DOI: 10.1016/bs.apcsb.2019.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The achievement of proper bone mass and architecture, and their maintenance throughout life requires the concerted actions of osteoblasts, the bone forming cells, and osteoclasts, the bone resorbing cells. The differentiation and activity of osteoblasts and osteoclasts are regulated by molecules produced by matrix-embedded osteocytes, as well as by cross talk between osteoblasts and osteoclasts through secreted factors. In addition, it is likely that direct contact between osteoblast and osteoclast precursors, and the contact of these cells with osteocytes and cells in the bone marrow, also modulates bone cell differentiation and function. With the advancement of molecular and genetic tools, our comprehension of the intracellular signals activated in bone cells has evolved significantly, from early suggestions that osteoblasts and osteoclasts have common precursors and that osteocytes are inert cells in the bone matrix, to the very sophisticated understanding of a network of receptors, ligands, intracellular kinases/phosphatases, transcription factors, and cell-specific genes that are known today. These advances have allowed the design and FDA-approval of new therapies to preserve and increase bone mass and strength in a wide variety of pathological conditions, improving bone health from early childhood to the elderly. We have summarized here the current knowledge on selected intracellular signal pathways activated in osteoblasts, osteocytes, and osteoclasts.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States.
| | - Angela Bruzzaniti
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States; Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, United States
| |
Collapse
|
5
|
Smith YE, Toomey S, Napoletano S, Kirwan G, Schadow C, Chubb AJ, Mikkelsen JH, Oxvig C, Harmey JH. Recombinant PAPP-A resistant insulin-like growth factor binding protein 4 (dBP4) inhibits angiogenesis and metastasis in a murine model of breast cancer. BMC Cancer 2018; 18:1016. [PMID: 30348128 PMCID: PMC6196427 DOI: 10.1186/s12885-018-4950-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Insulin-like growth factor (IGF) pathway plays a role in tumour development and progression. In vivo, IGF1 activity is regulated by the IGF binding proteins (IGFBPs). IGFBP4 inhibits the activity of IGF1 but proteolytic cleavage by pregnancy-associated plasma protein-A (PAPP-A) releases active IGF1. A modified IGFBP4, dBP4, which was resistant to PAPP-A cleavage but retained IGF1 binding capacity, was engineered, expressed in Human Embryonic Kidney (HEK) 293 cells and purified. This study examined the effects of dBP4 on IGF1-induced cell migration, invasion and angiogenesis in vitro. The effect of intra-tumour injections of dBP4 on tumour angiogenesis and metastasis was examined using the 4T1.2luc orthotopic model of breast cancer. METHODS PAPP-A resistance and IGF binding capacity of dBP4 were characterized by Western blot and surface plasmon resonance, respectively. 4T1.2luc are mouse mammary adenocarcinoma cells transfected with luciferase to allow in vivo imaging. The effect of dBP4 on IGF1-induced Akt activation in 4T1.2luc cells was assessed by Western blot. Cell migration and invasion assays were performed using 4T1.2luc cells. Angiokit™ assays and Matrigel® implants were used to assess the effects of dBP4 on angiogenesis in vitro and in vivo, respectively. An orthotopic breast cancer model - 4T1.2luc cells implanted in the mammary fat pad of BALB/c mice - was used to assess the effect of intra tumour injection of purified dBP4 on tumour angiogenesis and metastasis. Tumour growth and lung metastasis were examined by in vivo imaging and tumour angiogenesis was evaluated by CD31 immunohistochemistry. RESULTS Our engineered, PAPP-A resistant IGFBP4 (dBP4) retained IGF1 binding capacity and inhibited IGF1 activation of Akt as well as IGF1-induced migration and invasion by 4T1.2 mammary adenocarcinoma cells. dBP4 inhibited IGF1-induced angiogenesis in vitro and in Matrigel implants in vivo. Direct intra-tumour injection of soluble dBP4 reduced angiogenesis in 4T1.2 luc mammary tumours tumour and reduced lung metastasis. CONCLUSION A PAPP-A resistant IGFBP4, dBP4, inhibits angiogenesis and metastasis in 4T1.2 mammary fat pad tumours. This study highlights the therapeutic potential of dBP4 as an approach to block the tumour-promoting actions of IGF1.
Collapse
Affiliation(s)
- Y E Smith
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - S Toomey
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - S Napoletano
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - G Kirwan
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - C Schadow
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - A J Chubb
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - J H Mikkelsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - C Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - J H Harmey
- Angiogenesis and Metastasis Research, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
6
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
7
|
Mancarella C, Scotlandi K. IGF system in sarcomas: a crucial pathway with many unknowns to exploit for therapy. J Mol Endocrinol 2018; 61:T45-T60. [PMID: 29273680 DOI: 10.1530/jme-17-0250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) system has gained substantial interest due to its involvement in regulating cell proliferation, differentiation and survival during anoikis and after conventional and targeted therapies. However, results from clinical trials have been largely disappointing, with only a few but notable exceptions, such as trials targeting sarcomas, especially Ewing sarcoma. This review highlights key studies focusing on IGF signaling in sarcomas, specifically studies underscoring the properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. This review discusses the potential roles of IGF2 mRNA-binding proteins (IGF2BPs), discoidin domain receptors (DDRs) and metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) in regulating the IGF system. Deeper investigation of these novel regulators of the IGF system may help us to further elucidate the spatial and temporal control of the IGF axis, as understanding the control of this axis is essential for future clinical studies.
Collapse
Affiliation(s)
- Caterina Mancarella
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, Bologna, Italy
| |
Collapse
|
8
|
Sharma AN, Tan M, Amsterdam EA, Singh GD. Acromegalic cardiomyopathy: Epidemiology, diagnosis, and management. Clin Cardiol 2018; 41:419-425. [PMID: 29574794 PMCID: PMC6489905 DOI: 10.1002/clc.22867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 11/11/2022] Open
Abstract
Acromegalic cardiomyopathy is the leading cause of morbidity and all-cause mortality in patients with acromegaly. Though acromegaly is a rare condition, the associated derangements are vast and severe. Stemming from an increase in circulating growth hormone (GH) and insulin-like growth factor-1 levels (IGF-1), acromegalic cardiomyopathy results in pathological changes in myocyte growth and structure, cardiac contractility, and vascular function. These molecular changes manifest commonly as biventricular hypertrophy, diastolic and systolic dysfunction, and valvular regurgitation. Early recognition of the condition is paramount, though the insidious progression of the disease commonly results in a late diagnosis. Biochemical testing, based on IGF-1 measurements, is the gold standard of diagnosis. Management should be centered on normalizing serum levels of both IGF-1 and GH. Transsphenoidal resection remains the most cost-effective and permanent treatment for acromegaly, though medical therapy possesses benefit for those who are not surgical candidates. Ultimately, achieving control of hormone levels results in a severe reduction in mortality rate, underscoring the importance of early recognition and treatment.
Collapse
Affiliation(s)
- Ajay N. Sharma
- School of MedicineUniversity of California IrvineIrvineCalifornia
| | - Marilyn Tan
- Department of Medicine, Division of EndocrinologyStanford University School of MedicineStanfordCalifornia
| | - Ezra A. Amsterdam
- Divison of Cardiovascular MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Gagan D. Singh
- Divison of Cardiovascular MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| |
Collapse
|
9
|
IGF-II induced by hepatitis B virus X protein regulates EMT via SUMO mediated loss of E-cadherin in mice. Oncotarget 2018; 7:56944-56957. [PMID: 27486970 PMCID: PMC5302964 DOI: 10.18632/oncotarget.10922] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of cancer mortality. Prognosis of this disease largely depends on its stage. An Enlarged liver, due to dysplasia, may be a critical point in the multi-step progression to HCC. The mechanism underlying hepatomegaly in human and mouse models are poorly understood. We previously reported we observed enlarged liver in hepatitis B virus X protein (HBx) expressing mice (HBx mice). Here we identify the critical role of HBx induced IGF-II in hepatomegaly in mice and abnormal cell growth in human hepatoma cells. We found that HBx induced IGF-II is essential to induce epithelial-mesenchymal transition (EMT) through loss of E-cadherin. In mouse liver, loss of E-cadherin was mediated by post-translational regulation, at least in part, by protease and SUMOylation not by transcriptional regulation. In contrast, in hepatoma cell line (HepG2 cells) Akt signal pathway controls the mRNA expression level of EMT-related transcription factors, especially Twist, in addition to post- translational modification through SUMOylation. Thus, IGF-II-mediated loss of E-cadherin is central in developing hepatomegaly in mice and abnormal cell growth in the hepatoma cell line. HBx induced IGF-II represents a potential biomarker, which is also a therapeutic target in HCC.
Collapse
|
10
|
Canalis E. MANAGEMENT OF ENDOCRINE DISEASE: Novel anabolic treatments for osteoporosis. Eur J Endocrinol 2018; 178:R33-R44. [PMID: 29113980 PMCID: PMC5819362 DOI: 10.1530/eje-17-0920] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
Skeletal anabolic agents enhance bone formation, which is determined by the number and function of osteoblasts. Signals that influence the differentiation and function of cells of the osteoblast lineage play a role in the mechanism of action of anabolic agents in the skeleton. Wnts induce the differentiation of mesenchymal stem cells toward osteoblasts, and insulin-like growth factor I (IGF-I) enhances the function of mature osteoblasts. The activity of Wnt and IGF-I is controlled by proteins that bind to the growth factor or to its receptors. Sclerostin is a Wnt antagonist that binds to Wnt co-receptors and prevents Wnt signal activation. Teriparatide, a 1-34 amino terminal fragment of parathyroid hormone (PTH), and abaloparatide, a modified 1-34 amino terminal fragment of PTH-related peptide (PTHrp), induce IGF-I, increase bone mineral density (BMD), reduce the incidence of vertebral and non-vertebral fractures and are approved for the treatment of postmenopausal osteoporosis. Romosozumab, a humanized anti-sclerostin antibody, increases bone formation, decreases bone resorption, increases BMD and reduces the incidence of vertebral fractures. An increased incidence of cardiovascular events has been associated with romosozumab, which is yet to be approved for the treatment of osteoporosis. In conclusion, cell and molecular studies have formed the foundation for the development of new anabolic therapies for osteoporosis with proven efficacy on the incidence of new fractures.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Mancarella C, Pasello M, Manara MC, Toracchio L, Sciandra EF, Picci P, Scotlandi K. Insulin-Like Growth Factor 2 mRNA-Binding Protein 3 Influences Sensitivity to Anti-IGF System Agents Through the Translational Regulation of IGF1R. Front Endocrinol (Lausanne) 2018; 9:178. [PMID: 29731738 PMCID: PMC5919949 DOI: 10.3389/fendo.2018.00178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 01/25/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA-binding protein 3 (IGF2BP3) is an oncofetal protein that binds RNA, thereby influencing the fate of target transcripts. IGF2BP3 is synthesized de novo in cancer, where it promotes proliferation, drug resistance, and metastasis via both IGF2-dependent and IGF2-independent mechanisms. Ewing sarcoma (ES) is a rare bone and soft tissue tumor in which the IGF system plays a pivotal role. This study aimed to investigate the effect of IGF2BP3 on the regulation of the IGF system in ES. Among the components of the IGF axis, a direct significant correlation was identified between IGF2BP3 and IGF1R at mRNA and protein levels in two independent series of clinical specimens from patients with localized ES. After the formal demonstration of a direct association between IGF2BP3 and IGF1R mRNA using ribo-immunoprecipitation assay, we performed in vitro studies using A673 and TC-71 ES cell lines to demonstrate that IGF2BP3 loss promotes the downregulation of IGF1R and a decreased biological response to IGF1, represented by reduced migration and cell growth. Additionally, the compensatory activation of insulin receptor (IR) and its mitogenic ligand IGF2 is triggered in some but not all cell lines in response to IGF2BP3-mediated IGF1R loss. These findings have therapeutic implications because cells with a decreased expression of IGF2BP3/IGF1R axis but an increased expression of the IR/IGF2 loop display higher sensitivity to the dual inhibitor OSI-906 than do control cells. Therefore, studies on IGF2BP3, which was confirmed as a post-transcriptional regulator of IGF1R, provide a step forward in the identification of new mechanisms regulating the IGF system. In addition, our results demonstrate that the detection of IGF2BP3 expression should be combined with the assessment of the IGF1R/IR ratio to predict cell responses to anti-IGF1R/IR agents.
Collapse
Affiliation(s)
- Caterina Mancarella
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
- *Correspondence: Caterina Mancarella, ; Katia Scotlandi,
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
| | - Lisa Toracchio
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
| | - Evelina Fiorenza Sciandra
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
| | - Piero Picci
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
- Pathology Section, Orthopedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Orthopedic Rizzoli Institute, Bologna, Italy
- *Correspondence: Caterina Mancarella, ; Katia Scotlandi,
| |
Collapse
|
13
|
Yin Y, Chen C, Chen J, Zhan R, Zhang Q, Xu X, Li D, Li M. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell Signal 2017; 35:154-162. [DOI: 10.1016/j.cellsig.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
|
14
|
Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, Hiasa M, Bolarinwa SA, Yoneda T, Ivan M, Bruzzaniti A, Bellido T, Plotkin LI. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 2017; 16:551-563. [PMID: 28317237 PMCID: PMC5418188 DOI: 10.1111/acel.12586] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43‐silenced MLO‐Y4 osteocytic (Cx43def) cells undergo spontaneous cell death in culture through caspase‐3 activation and exhibit increased levels of apoptosis‐related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43def cell death. Cx43def cells and bones from old mice exhibit reduced levels of the pro‐survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43‐expressing cells and miR21 deletion in miR21fl/fl bones increases apoptosis‐related gene expression, whereas a miR21 mimic prevents Cx43def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high‐mobility group box‐1 (HMGB1)], and caspase‐3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43def cells, which is blocked by antagonizing HMGB1‐RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging.
Collapse
Affiliation(s)
- Hannah M. Davis
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Emily G. Atkinson
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Lucas R. Brun
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Arancha R. Gortazar
- Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo-CEU; Madrid Spain
| | - Julia Harris
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Masahiro Hiasa
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Surajudeen A. Bolarinwa
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Toshiyuki Yoneda
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Mircea Ivan
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Angela Bruzzaniti
- Department of Oral Biology; Indiana University School of Dentistry; Indianapolis IN USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
- Division of Endocrinology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
- Roudebush Veterans Administration Medical Center; Indianapolis IN USA
| | - Lilian I. Plotkin
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
- Roudebush Veterans Administration Medical Center; Indianapolis IN USA
| |
Collapse
|
15
|
RhoA inhibits the hypoxia-induced apoptosis and mitochondrial dysfunction in chondrocytes via positively regulating the CREB phosphorylation. Biosci Rep 2017; 37:BSR20160622. [PMID: 28254846 PMCID: PMC5398256 DOI: 10.1042/bsr20160622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Chondrocytes that are embedded within the growth plate or the intervertebral disc are sensitive to environmental stresses, such as inflammation and hypoxia. However, little is known about the molecular signalling pathways underlining the hypoxia-induced mitochondrial dysfunction and apoptosis in chondrocytes. In the present study, we firstly examined the hypoxia-induced apoptosis, mitochondrial dysfunction and the activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signalling in human chondrocyte cell line, C28/I2 and then investigated the regulatory role of RhoA, a well-recognized apoptosis suppressor, in such process, with gain-of-function strategy. Our results indicated that hypoxia induced apoptosis and inhibited CREB phosphprylation in chondrocytes, meanwhile, the dysfunctional mitochondria with up-regulated mitochondrial superoxide and reactive oxygen species (ROS) levels, whereas with a reduced mitochondrial membrane potential (MMP) and Complex IV activity were observed in the hypoxia-treated C28/I2 cells. However, the overexpressed RhoA blocked the hypoxia-mediated reduction in CREB phosphprylation and inhibited the apoptosis induction, along with an ameliorated mitochondrial function in the hypoxia-treated C28/I2 cells. In conclusion, the present study confirmed the reduced CREB phosphorylation, along with the apoptosis induction and mitochondrial dysfunction in the hypoxia-treated chondrocyte cells. And the overexpression of RhoA ameliorated the hypoxia-induced mitochondrial dysfunction and apoptosis via blocking the hypoxia-mediated reduction in CREB phosphorylation.
Collapse
|
16
|
Schmid C, Ghirlanda C, Niessen M. Prevention of tumour cell apoptosis associated with sustained protein kinase B phosphorylation is more sensitive to regulation by insulin signalling than stimulation of proliferation and extracellular signal-regulated kinase. Mol Cell Biochem 2017; 432:41-54. [PMID: 28316059 PMCID: PMC5532423 DOI: 10.1007/s11010-017-2996-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/04/2017] [Indexed: 01/14/2023]
Abstract
Insulin controls blood glucose while insulin-like growth factor (IGF) 1 is an important growth factor. Interestingly, both hormones have overlapping bioactivities and can activate the same intracellular signal transduction cascades. Growth control (mainly by IGF1) and metabolic function (predominantly by insulin) are believed to depend on activation of extracellular signal-regulated kinases (ERKs) 1/2 and protein kinase B (Akt/PKB), respectively. Therefore, insulin analogues that are used to normalize blood glucose are tested for their ability to preferentially activate Akt/PKB but not ERK1/2 and mitogenesis. Growth hormone, IGF1, and hyperinsulinemia are associated with increased risk of growth progression of some cancer types. To test if continuous exposure to insulin can favour tumour growth, we studied insulin/IGF1-dependent activation of ERK1/2 and Akt/PKB by Western blotting, inhibition of apoptosis by ELISA, and induction of proliferation by [3H]-thymidine incorporation in Saos-2/B10 osteosarcoma cells. IGF1 and insulin both induced proliferation and prevented apoptosis effectively. Regulation of apoptosis was far more sensitive than regulation of proliferation. IGF1 and insulin activated PKB (Akt/PKB) rapidly and consistently maintained its phosphorylation. Activation of ERK1/2 was only observed in response to IGF1. Loss of p-Akt/PKB (but not of p-ERK1/2) was associated with increased apoptosis, and protection from apoptosis was lost when activation of Akt/PKB was inhibited. These findings in Saos-2/B10 cells were also replicated in the A549 cell line, originally derived from a human lung carcinoma. Therefore, IGF1 and insulin more likely (at lower concentrations) enhance tumour cell survival than proliferation, via activation and maintenance of phosphatidylinositol 3-kinase activity and p-Akt/PKB.
Collapse
Affiliation(s)
- Christoph Schmid
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Claudia Ghirlanda
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Markus Niessen
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.,Competence Centre for Systems Physiology and Metabolic Diseases, Swiss Federal Institute of Technology (ETH) Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
17
|
Scanlon V, Walia B, Yu J, Hansen M, Drissi H, Maye P, Sanjay A. Loss of Cbl-PI3K interaction modulates the periosteal response to fracture by enhancing osteogenic commitment and differentiation. Bone 2017; 95:124-135. [PMID: 27884787 PMCID: PMC5819877 DOI: 10.1016/j.bone.2016.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/07/2016] [Accepted: 11/20/2016] [Indexed: 01/13/2023]
Abstract
The periosteum contains multipotent skeletal progenitors that contribute to bone repair. The signaling pathways regulating the response of periosteal cells to fracture are largely unknown. Phosphatidylinositol-3 Kinase (PI3K), a prominent lipid kinase, is a major signaling protein downstream of several factors that regulate osteoblast differentiation. Cbl is an E3 ubiquitin ligase and a major adaptor protein that binds to the p85 regulatory subunit and modulates PI3K activity. Substitution of tyrosine 737 to phenylalanine (Y737F) in Cbl abolishes the interaction between Cbl and p85 subunit without affecting the Cbl's ubiquitin ligase function. Here, we investigated the role of PI3K signaling during the very early stages of fracture healing using OsterixRFP reporter mice. We found that the absence of PI3K regulation by Cbl resulted in robust periosteal thickening, with increased proliferation of periosteal cells. While the multipotent properties of periosteal progenitors to differentiate into chondrocytes and adipocytes did not change, osteogenic differentiation in the absence of Cbl-PI3K interaction was highly augmented. The increased stability and nuclear localization of Osterix observed in periosteal cells lacking Cbl-PI3K interaction may explain this enhanced osteogenic differentiation since the expression of Osterix transcriptional target genes including osteocalcin and BSP are increased in YF cells. Overall, our findings highlight a hitherto unexplored and novel role for Cbl and PI3K in modulating the osteogenic response of periosteal cells during the early stages of fracture repair.
Collapse
Affiliation(s)
| | - Bhavita Walia
- Department of Orthopaedic Surgery, United States; Department of Genetics and Genome Sciences, United States
| | - Jungeun Yu
- Department of Orthopaedic Surgery, United States
| | - Marc Hansen
- Department of Genetics and Genome Sciences, United States; Center for Molecular Medicine, United States
| | - Hicham Drissi
- Department of Orthopaedic Surgery, United States; Department of Genetics and Genome Sciences, United States
| | - Peter Maye
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, United States
| | - Archana Sanjay
- Department of Orthopaedic Surgery, United States; Department of Genetics and Genome Sciences, United States.
| |
Collapse
|
18
|
Wang Z, Odagaki N, Tanaka T, Hashimoto M, Nakamura M, Hayano S, Ishihara Y, Kawanabe N, Kamioka H. Alternation in the gap-junctional intercellular communication capacity during the maturation of osteocytes in the embryonic chick calvaria. Bone 2016; 91:20-9. [PMID: 27373501 DOI: 10.1016/j.bone.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The intercellular network of cell-cell communication among osteocytes is mediated by gap junctions. Gap junctional intercellular communication (GJIC) is thought to play an important role in the integration and synchronization of bone remodeling. To further understand the mechanism of bone development it is important to quantify the difference in the GJIC capacity of young and developmentally mature osteocytes. MATERIALS AND METHODS We first established an embryonic chick calvaria growth model to show the growth of the calvaria in embryos at 13 to 21days of age. We then applied a fluorescence recovery after photobleaching (FRAP) technique to compare the difference in the GJIC capacity of young osteocytes with that of developmentally mature osteocytes. Finally, we quantified the dye (Calcein) diffusion from the FRAP data using a mathematic model of simple diffusion which was also used to identify simple diffusion GJIC pattern cells (fitted model) and accelerated diffusion GJIC pattern cells (non-fitted model). RESULTS The relationship between the longest medial-lateral length of the calvaria (frontal bone) and the embryonic age fit a logarithmic growth model: length=5.144×ln(day)-11.340. The morphometric data during osteocyte differentiation showed that the cellular body becomes more spindle-shaped and that the cell body volume decreased by approximately 22% with an increase in the length of the processes between the cells. However, there were no significant differences in the cellular body surface area or in the distance between the mass centres of the cells. The dye-displacement rate in young osteocytes was significantly higher than that in developmentally mature osteocytes: dye displacement only occurred in 26.88% of the developmentally mature osteocytes, while it occurred in 64.38% of the young osteocytes. Additionally, in all recovered osteocytes, 36% of the developmentally mature osteocytes comprised non-fitted model cells while 53.19% of the young osteocytes were the non-fitted model, which indicates the active transduction of dye molecules. However, there were no statistically significant differences between the young and developmentally mature osteocytes with regard to the diffusion coefficient, permeability coefficient, or permeance of the osteocyte processes, which were 3.93±3.77 (×10(-8)cm(2)/s), 5.12±4.56 (×10(-5)cm(2)/s) and 2.99±2.47 (×10(-13)cm(2)/s) (mean±SD), respectively. CONCLUSIONS These experiments comprehensively quantified the GJIC capacity in the embryonic chick calvaria and indicated that the cell-cell communication capacity of the osteocytes in the embryonic chick calvaria was related to their development.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyo Tanaka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mana Hashimoto
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nakamura
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihito Ishihara
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Noriaki Kawanabe
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
19
|
Scanlon V, Soung DY, Adapala NS, Morgan E, Hansen MF, Drissi H, Sanjay A. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair. PLoS One 2015; 10:e0138194. [PMID: 26393915 PMCID: PMC4578922 DOI: 10.1371/journal.pone.0138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.
Collapse
Affiliation(s)
- Vanessa Scanlon
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Do Yu Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Elise Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
| | - Marc F. Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| | - Archana Sanjay
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| |
Collapse
|
20
|
Saeed H, Qiu W, Li C, Flyvbjerg A, Abdallah BM, Kassem M. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway. Biogerontology 2015; 16:733-45. [PMID: 26260615 PMCID: PMC4602053 DOI: 10.1007/s10522-015-9596-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
Abstract
The contribution of deficient telomerase activity to age-related decline in osteoblast functions and bone formation is poorly studied. We have previously demonstrated that telomerase over-expression led to enhanced osteoblast differentiation of human bone marrow skeletal (stromal) stem cells (hMSC) in vitro and in vivo. Here, we investigated the signaling pathways underlying the regulatory functions of telomerase in osteoblastic cells. Comparative microarray analysis and Western blot analysis of telomerase-over expressing hMSC (hMSC-TERT) versus primary hMSC revealed significant up-regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin. In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc(-/-)). The low bone mass exhibited by Terc(-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc(-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase deficient osteoblastic cells.
Collapse
Affiliation(s)
- Hamid Saeed
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology and Metabolism, Medical Biotechnology Center, Odense University Hospital & University of Southern Denmark, SDU, 5000, Odense C, Denmark. .,University College of Pharmacy, Punjab University, Allama Iqbal Campus, Lahore, 54000, Pakistan.
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology and Metabolism, Medical Biotechnology Center, Odense University Hospital & University of Southern Denmark, SDU, 5000, Odense C, Denmark.
| | - Chen Li
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology and Metabolism, Medical Biotechnology Center, Odense University Hospital & University of Southern Denmark, SDU, 5000, Odense C, Denmark.
| | - Allan Flyvbjerg
- Department of Endcrinology, University Hosptial of Aarhus, 8000, Aarhus C, Denmark.
| | - Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology and Metabolism, Medical Biotechnology Center, Odense University Hospital & University of Southern Denmark, SDU, 5000, Odense C, Denmark. .,Faculty of Scince, Helwan University, Cairo, Egypt.
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology and Metabolism, Medical Biotechnology Center, Odense University Hospital & University of Southern Denmark, SDU, 5000, Odense C, Denmark. .,Stem Cell Unit, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
21
|
Patil S, Paul S. A comprehensive review on the role of various materials in the osteogenic differentiation of mesenchymal stem cells with a special focus on the association of heat shock proteins and nanoparticles. Cells Tissues Organs 2014; 199:81-102. [PMID: 25401759 DOI: 10.1159/000362226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have important roles in the area of regenerative medicine and clinical applications due to their pluripotent nature. Osteogenic differentiation of MSCs has been studied extensively using various stimulants to develop models of bone repair. There are several factors that enhance the differentiation of MSCs into bone tissues. This review focuses on the effects of various inducers on the osteoblast differentiation of MSCs at different stages of cellular development. We discuss the various growth factors, hormones, vitamins, cytokines, chemical stimulants, and mechanical forces applied in bioreactors that play an essential role in the proliferation, differentiation, and matrix mineralization of stem cells during osteogenesis. Various nanoparticles have also been used recently for the same purpose and the results are promising. Moreover, we review the role of various stresses, including thermal stress, and the subsequent involvement of heat shock proteins as inducers of the proliferation and differentiation of osteoblasts. We also report how various proteasome inhibitors have been shown to induce proliferation and osteogenic differentiation of MSCs in a number of cases. In this communication, the role of peptide-based scaffolds in osteoblast proliferation and differentiation is also reviewed. Based on the reviewed information, this article proposes novel possibilities for the enhancement of proliferation, differentiation, and migration of osteoblasts from MSCs. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Supriya Patil
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | |
Collapse
|
22
|
Weber DR, Stanescu DE, Semple R, Holland C, Magge SN. Continuous subcutaneous IGF-1 therapy via insulin pump in a patient with Donohue syndrome. J Pediatr Endocrinol Metab 2014; 27:1237-41. [PMID: 25153212 PMCID: PMC4535795 DOI: 10.1515/jpem-2013-0402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/21/2014] [Indexed: 01/27/2023]
Abstract
Donohue syndrome (DS) is a severe form of congenital insulin resistance due to mutation(s) in the insulin receptor (INSR) gene. Given the similarities between insulin and insulin-like growth factor 1 (IGF-1) receptors, recombinant human IGF-1 (rhIGF-1) has been used to treat severe insulin resistance due to INSR mutation(s). Traditional subcutaneous therapy may be limited by the shortened IGF-1 half-life in these patients. We report the case of a female with molecularly confirmed DS treated with continuous rhIGF-1 therapy via an insulin pump. With treatment, the patient's hemoglobin A1c decreased from 9.8% to 8.8%, and her weight increased by 0.8 kg. Development of an ovarian tumor complicated her course, but it was unclear whether this was related to rhIGF-1 therapy. Limited treatment options exist for patients with DS. The use of continuous rhIGF-1 via an insulin pump may be a viable option, although further experience is needed to establish safety and efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Sheela N. Magge
- Corresponding author: Sheela N. Magge, M.D., M.S.C.E., Children’s National Health System, CTS Suite, M7659, CRI-6, 6th Floor Main, 111 Michigan Ave, N.W., Washington, DC, 20010, USA, Phone: +202-476-7031, Fax: +202-476-3425,
| |
Collapse
|
23
|
RETRACTED ARTICLE: Lactoferrin promote primary rat osteoblast proliferation and differentiation via up-regulation of insulin-like growth factor-1 expression. Mol Biol Rep 2014; 41:5019-30. [DOI: 10.1007/s11033-014-3368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/04/2014] [Indexed: 12/27/2022]
|
24
|
Abstract
Insulin and its downstream signaling pathway are indispensable for postnatal bone growth and turnover by having influence on both osteoblast and osteoclast development. Insulin signaling regulates both bone formation by osteoblasts and bone resorption by osteoclasts; however, the regulation occurs mainly through the insulin signaling pathway within osteoblasts. An impairment of osteoblastic insulin signaling leads to an impaired bone quality by affecting osteoblast proliferation, differentiation and survival. The insulin signaling pathway and MAPK and PI3K/Akt pathways play pivotal roles in the differentiation, function and survival of bone cells. Current evidence suggests that osteoblastic insulin signaling not only modulates bone growth and turnover but is also required for energy metabolism. Several mice models with impaired insulin signaling exhibited both bone and metabolic phenotypes, including symptoms of low bone mass, obesity, glucose intolerance and insulin resistance. In this review, we discuss the key findings that suggest a pivotal role of osteoblastic insulin signaling in both bone and energy metabolism.
Collapse
|
25
|
|
26
|
Lost miRNA surveillance of Notch, IGFR pathway—road to sarcomagenesis. Tumour Biol 2013; 35:483-92. [DOI: 10.1007/s13277-013-1068-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022] Open
|
27
|
Plotkin LI, Bellido T. Beyond gap junctions: Connexin43 and bone cell signaling. Bone 2013; 52:157-66. [PMID: 23041511 PMCID: PMC3513515 DOI: 10.1016/j.bone.2012.09.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein expressed in bone cells and plays a central role in cell-to-cell communication in the skeleton. Findings of the last decade uncovered functions of Cx43 hemichannels expressed on unopposed plasma cell membranes as mediators of the communication between bone cells and their extracellular milieu. Additionally, through its cytoplasmic C-terminus domain, Cx43 serves as a scaffolding protein that associates with structural and signaling molecules leading to regulation of intracellular signaling, independent of channel activity. This perspective discusses the evidence demonstrating that via these diverse mechanisms Cx43 is a key component of the intracellular machinery responsible for signal transduction in bone in response to pharmacologic, hormonal and mechanical stimuli. This advance in the knowledge of the role of connexins increases our understanding of the pathophysiological mechanisms that regulate bone cell function and provides new opportunities to treat bone diseases.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
28
|
Kawai M, Rosen CJ. The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin North Am 2012; 41:323-33, vi. [PMID: 22682633 PMCID: PMC3576021 DOI: 10.1016/j.ecl.2012.04.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The insulin-like growth factor (IGF) regulatory system is critical for skeletal growth and maintenance. Initially there was great hope that the recombinant IGFs might be used clinically for disorders ranging from short stature to fracture repair and osteoporosis. Although this potential was not realized, basic and translational studies have continued, providing significant insights into the role of this family of growth factors in skeletal homeostasis and the pathophysiology of several bone disorders. This article reviews the importance of the IGF regulatory system in skeletal growth and maintenance.
Collapse
Affiliation(s)
- Masanobu Kawai
- Department of Bone and Mineral Research, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan 594-1101
| | - Clifford J. Rosen
- Center for Translational Research, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| |
Collapse
|
29
|
Kiepe D, Tönshoff B. Insulin-like growth factors in normal and diseased kidney. Endocrinol Metab Clin North Am 2012; 41:351-74, vii. [PMID: 22682635 DOI: 10.1016/j.ecl.2012.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article reviews the physiology of the insulin-like growth factor (IGF) system in the kidney and the changes and potential role of this system in selected renal diseases. The potential therapeutic uses of recombinant human IGF-I for the treatment of acute and chronic kidney failure are briefly discussed.
Collapse
Affiliation(s)
- Daniela Kiepe
- Department of Pediatrics I, University Children's Hospital Heidelberg, INF 430, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, Zhang G. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 2012; 8:346-56. [PMID: 22286010 DOI: 10.1016/j.scr.2011.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kumar S, Ponnazhagan S. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone 2012; 50:1012-8. [PMID: 22342795 PMCID: PMC3339043 DOI: 10.1016/j.bone.2012.01.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/15/2023]
Abstract
Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing.
Collapse
Affiliation(s)
| | - Selvarangan Ponnazhagan
- Corresponding author Selvarangan Ponnazhagan, Ph.D., Department of Pathology, LHRB 513, 701, 19 Street South, University of Alabama at Birmingham, Birmingham, AL 35294-0007, Phone: (205) 934-6731, Fax: (205) 975-9927,
| |
Collapse
|
32
|
Chen Y, Ke J, Long X, Meng Q, Deng M, Fang W, Li J, Cai H, Chen S. Insulin-like growth factor-1 boosts the developing process of condylar hyperplasia by stimulating chondrocytes proliferation. Osteoarthritis Cartilage 2012; 20:279-87. [PMID: 22281262 DOI: 10.1016/j.joca.2011.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The etiology of Condylar hyperplasia (CH) of human temporomandibular joint (TMJ) remains largely unknown. Our previous study has demonstrated that enriched insulin-like growth factor-1(IGF-1) was expressed in the proliferation and hypertrophic layers of CH cartilage. Accordingly, this study was aimed to investigate whether IGF-1 regulates CH chondrocytes proliferation in condylar cartilage overgrowth and explore the molecular mechanism of IGF-1 involved in. METHODS Chondrocytes were isolated from 6 CH and 3 normal cartilage (NC) specimens and cultured in alginate beads or monolayer, treated with IGF-1 or specific inhibitors such as 7-[trans-3-[(azetidin-1-yl)methyl]cyclobutyl]-5-(3-benzyloxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (NVP-AEW541), U0126, and LY294002. Thereafter, cellular proliferation capacity was evaluated by Cell Viability Analyzer (alginate beads culture) or 3-(4,5-dimethylthiazo(-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (monolayer culture). Gene expression levels of IGF-1, IGF-1 receptor (IGF-1R), collagen type II, type X and those genes associated with proliferation were evaluated by realtime PCR. Protein levels of IGF-1 and IGF-1R synthesized by CH chondrocytes were accessed by enzyme-linked immunosorbent assay (ELISA) and western blotting. RESULTS CH chondrocytes enhanced cellular proliferation capacity and expressed significantly higher levels of messenger RNA (mRNA) and protein expressions of IGF-1 and IGF-1R, as compared with NC chondrocytes. Furthermore, enriched IGF-1 enhanced CH chondrocytes proliferation, up-regulated the expressions of specific genes associated with cellular proliferation and elevated the gene expression of collagen type II A1 (COL2A1). Besides, IGF-1-mediated CH chondrocytes proliferation mainly depended on the mitogen-activated protein kinase (MAPK)-ERK pathway. CONCLUSIONS IGF-1 promotes human TMJ cartilage overgrowth in the developing process of CH by enhancing chondrocytes proliferation via MAPK-ERK pathway.
Collapse
Affiliation(s)
- Y Chen
- Laboratory of Oral Biomedicine, School of Stomatology, Wuhan University, Wuhan, Hubei province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Baregamian N, Song J, Chung DH. Effects of oxidative stress on intestinal type I insulin-like growth factor receptor expression. Eur J Pediatr Surg 2012; 22:97-104. [PMID: 22434232 PMCID: PMC4313734 DOI: 10.1055/s-0032-1306261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Oxidative stress activates multiple signaling transduction pathways, including the phosphatidylinositol 3-kinase (PI3-K), in an injured intestine as occurs in necrotizing enterocolitis (NEC). We have previously shown that hydrogen peroxide (H2O2)-induced PI3-K activation is significantly enhanced with exogenous insulin-like growth factor (IGF)-1 in intestinal epithelial cells. However, the effects of oxidative stress on IGF receptor type I (IGF-IR) activation and expression in the neonatal intestine during NEC are unknown. MATERIAL AND METHODS Intestinal sections from neonates undergoing bowel resections (control = 3, NEC = 20) were analyzed for IGF-IR expression. NEC was induced in newborn mouse pups using hypoxia and hyperosmolar feeds, and distal small bowel segments were analyzed for IGF-IR expression (control = 3, NEC = 7). H2O2 was used to induce oxidative stress in rat (RIE-1) and fetal human (FHs74 Int) intestinal epithelial cells. Phosphorylation of IGF-IR, Akt, a downstream effector of PI3-K, and IGF-IR levels were determined by Western blotting. Flow cytometry, immunofluorescence, immunohistochemistry, IGF-IR tyrosine phosphorylation array, cell death enzyme-linked immunosorbent assay, and Western blotting were used to determine the IGF-IR expression. RESULTS An increased IGF-IR expression was noted in intestinal sections from NEC as well as murine model of NEC. H2O2 treatment rapidly activated IGF-IR and increased the expression in RIE-1 and FHs74 Int cells. Inhibition of IGF-IR resulted in significant RIE-1 cell apoptosis during oxidative stress. IGF-IR tyrosine phosphorylation array showed the recruitment of several key SH2 domain-containing proteins and oncogenes to the IGF-IR tyrosine kinase domain in H2O2-treated RIE-1 cells. CONCLUSION IGF-IR-mediated activation of intracellular signaling may play a critical role during oxidative stress-induced apoptosis in NEC.
Collapse
Affiliation(s)
- Naira Baregamian
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jun Song
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - Dai H. Chung
- Departments of Pediatric Surgery and Cancer Biology Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
34
|
Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol 2012; 137:513-25. [PMID: 22227802 DOI: 10.1007/s00418-011-0908-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2011] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a potent mitogenic protein which can enhance the osteogenic differentiation of periodontal ligament (PDL) fibroblasts. However, it remains unclear whether IGF-1 can stimulate the osteogenic differentiation and osteogenesis of human periodontal ligament stem cells (PDLSCs). In this study, STRO-1(+) PDLSCs were isolated from human PDL tissues, treated with IGF-1, and their osteogenic capacity was investigated in vitro and in vivo. Dimethyl-thiazol-diphenyl tetrazolium bromide assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 can stimulate the proliferation ability of PDLSCs and 100 ng/mL is the optimal concentration. Exogenous IGF-1 can modify the ultrastructure, enhance the alkaline phosphatase activity, the mineralization ability of PDLSCs, and increase the expression of osteogenic markers (runt-related transcription factor 2, osterix, and osteocalcin) at mRNA and protein levels. In vivo transplantation illustrated that IGF-1 treated implants generated more mineralized tissues, and presented stronger expression of RUNX2, OSX, and OCN than control group. Moreover, the expression of phosphor-ERK and phosphor-JNK in these stem cells was upregulated by IGF-1, indicating that MAPK signaling pathway was activated during the osteogenic differentiation of PDLSCs mediated by IGF-1. Together, the results showed that IGF-1 can promote the osteogenic differentiation and osteogenesis of STRO-1(+) PDLSCs via ERK and JNK MAPK pathway, suggesting that IGF-1 is a potent agent for stem cell-based periodontal tissue regeneration.
Collapse
|
35
|
King ER, Wong KK. Insulin-like growth factor: current concepts and new developments in cancer therapy. Recent Pat Anticancer Drug Discov 2012; 7:14-30. [PMID: 21875414 PMCID: PMC3724215 DOI: 10.2174/157489212798357930] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/20/2011] [Accepted: 01/05/2011] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factor (IGF) family and the IGF-1 receptor (IGF-1R) play an important role in cancer. This intricate and complex signaling pathway provides many opportunities for therapeutic intervention, and several novel therapeutics aimed at the IGF-1R, particularly monoclonal antibodies and small molecule tyrosine kinase inhibitors, are under clinical investigation. This article provides a patent overview of the IGF signaling pathway and its complexity, addresses the justification for the use of IGF-1R-targeted therapy, and reviews the results of in vivo and in vitro novel therapeutics. Over the past year, the completion of several phase I, II, and III trials have provided interesting new information about the clinical activity of these novel compounds, particularly CP-751,871, IMC-A12, R1507, AMG-479, AVE-1642, MK-0646, XL-228, OSI-906, and BMS-754807. We review the important preliminary results from clinical trials with these compounds and conclude with a discussion about future therapeutic efforts.
Collapse
Affiliation(s)
- Erin R King
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
36
|
Aslan D, Andersen MD, Gede LB, de Franca TK, Jørgensen SR, Schwarz P, Jørgensen NR. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans. Scandinavian Journal of Clinical and Laboratory Investigation 2011; 72:14-22. [PMID: 22085136 DOI: 10.3109/00365513.2011.624631] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intermittent low-dose treatment with parathyroid hormone (PTH) analogues has become widely used in the treatment of severe osteoporosis. During normal physiological conditions, PTH stimulates both bone formation and resorption, and in patients with primary hyperparathyroidism, bone loss is frequent. However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called 'anabolic window', which means that during PTH treatment, bone formation is in excess over bone resorption during the first 6-18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5) PTH has a direct antiapoptotic effect on osteoblasts and (6) when PTH interferes with remodelling, the osteoblasts over-compensate, and (7) PTH also decreases sclerostin levels, thereby removing inhibition of Wnt signalling which is required for PTH's anabolic actions. Thus, the net formative effect of PTH given in intermittent treatment emerges through a complex network of pathways. In summary, the effects of PTH on bone turnover are dependent on the mode and dose of administration and studies investigating the mechanisms underlying this effect are reviewed in this article.
Collapse
|
37
|
Zeng X, He H, Zhang L, Wu Y, Wang Y, Gong P. A potential therapeutic approach to overload-induced bone loss around implant: Parathyroid hormone (PTH). Med Hypotheses 2011; 77:701-4. [DOI: 10.1016/j.mehy.2011.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/04/2011] [Accepted: 06/03/2011] [Indexed: 01/01/2023]
|
38
|
O'Sullivan S, Lin JM, Watson M, Callon K, Tong PC, Naot D, Horne A, Aati O, Porteous F, Gamble G, Cornish J, Browett P, Grey A. The skeletal effects of the tyrosine kinase inhibitor nilotinib. Bone 2011; 49:281-9. [PMID: 21550432 DOI: 10.1016/j.bone.2011.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/13/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
Nilotinib is a tyrosine kinase inhibitor (TKI) developed to manage imatinib-resistance in patients with chronic myeloid leukemia (CML). It inhibits similar molecular targets to imatinib, but is a significantly more potent inhibitor of Bcr-Abl. Nilotinib exhibits off-target effects in other tissues, and of relevance to bone metabolism, hypophosphataemia has been reported in up to 30% of patients receiving nilotinib. We have assessed the effects of nilotinib on bone cells in vitro and on bone metabolism in patients receiving nilotinib for treatment of CML. We firstly investigated the effects of nilotinib on proliferating and differentiating osteoblastic cells, and on osteoclastogenesis in murine bone marrow cultures and RAW264.7 cells. Nilotinib potently inhibited osteoblast proliferation (0.01-1uM), through inhibition of the platelet-derived growth factor (PDGFR). There was a biphasic effect on osteoblast differentiation such that it was reduced by lower concentrations of nilotinib (0.1-0.5uM), with no effect at higher concentrations (1uM). Nilotinib also potently inhibited osteoclastogenesis, predominantly by stromal-cell dependent mechanisms. Thus, nilotinib decreased osteoclast development in murine bone marrow cultures, but did not affect osteoclastogenesis in RAW264.7 cells. Nilotinib treatment of osteoblastic cells increased expression and secretion of OPG and decreased expression of RANKL. In 10 patients receiving nilotinib, levels of bone turnover markers were in the low-normal range, despite secondary hyperparathyroidism, findings that are similar to those in patients treated with imatinib. Bone density tended to be higher than age and gender-matched normal values. These data suggest that nilotinib may have important effects on bone metabolism. Prospective studies should be conducted to determine the long-term effects of nilotinib on bone density and calcium metabolism.
Collapse
Affiliation(s)
- Susannah O'Sullivan
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tiago DM, Cancela ML, Laizé V. Proliferative and mineralogenic effects of insulin, IGF-1, and vanadate in fish osteoblast-like cells. J Bone Miner Metab 2011; 29:377-82. [PMID: 21181214 DOI: 10.1007/s00774-010-0243-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/24/2010] [Indexed: 01/24/2023]
Abstract
Fish have recently been recognized as a suitable model and a promising alternative to mammalian systems to study skeletogenesis. In this regard, several fish bone-derived cell lines have been developed and are being used to investigate mechanisms associated with insulin-like action of vanadium on extracellular matrix (ECM) mineralization. Although proliferative and mineralogenic effects of vanadate, insulin-like growth factor 1 (IGF-1), and insulin have recently been evaluated in a fish prechondrocyte cell line, no data are available in fish bone-forming cells, the osteoblasts. Using fish preosteoblast cells, we showed that IGF-1, but not insulin or vanadate, stimulated cell proliferation through the mitogen-activated protein kinase (MAPK) pathway, while both IGF-1 and vanadate inhibited cell differentiation/ECM mineralization through the same mechanism. Our data also indicated that the phosphatidyl inositol-3 kinase (PI-3K) pathway stimulates differentiation/ECM mineralization in osteoblasts and could represent a way to balance MAPK pathway action. The comparison of these new data obtained in fish with those available in mammals clearly evidenced a conservation of regulatory mechanisms among vertebrate bone-derived systems, although different players are involved.
Collapse
Affiliation(s)
- Daniel M Tiago
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
40
|
Kumar A, Yamauchi J, Girgenrath T, Girgenrath M. Muscle-specific expression of insulin-like growth factor 1 improves outcome in Lama2Dy-w mice, a model for congenital muscular dystrophy type 1A. Hum Mol Genet 2011; 20:2333-43. [PMID: 21441569 DOI: 10.1093/hmg/ddr126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MDC1A, the second most prevalent form of congenital muscular dystrophy, results from laminin-α2 chain deficiency. This disease is characterized by extensive muscle wasting that results in extremely weak skeletal muscles. A large percentage of children with MDC1A are faced with respiratory as well as ambulatory difficulties. We investigated the effects of overexpressing insulin-like growth factor-1 (IGF-1) as a potential therapeutic target for the disease in the Lama2(Dy-w) mouse, a model that closely resembles human MDC1A. IGF-1 transgenic Lama2(Dy-w) mice showed increased survivability, body weight and muscle weight. In addition, these mice showed better ability to stand up on their hind limbs: a typical exploratory behavior seen in healthy mice. Histology and immunohistochemistry analyses revealed increased regenerative capacity and proliferation in IGF-1 transgenic Lama2(Dy-w) muscles. Western blot analysis showed increased phosphorylation of Akt and ERK1/2, both known to enhance myogenesis. Additionally, we saw increases in the expression of the regeneration markers MyoD, myogenin and embryonic myosin (myosin heavy chain 3, MYH3). We conclude that overexpression of IGF-1 in Lama2(Dy-w) mice increases lifespan and improves their overall wellbeing mainly through the restoration of impaired muscle regeneration, as fibrosis or inflammation was not impacted by IGF-1 in this disease model. Our results demonstrate that IGF-1 has a promising therapeutic potential in the treatment of MDC1A.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
41
|
Li M, Yin Y, Hua H, Sun X, Luo T, Wang J, Jiang Y. The reciprocal regulation of gamma-synuclein and IGF-I receptor expression creates a circuit that modulates IGF-I signaling. J Biol Chem 2010; 285:30480-8. [PMID: 20670935 PMCID: PMC2945541 DOI: 10.1074/jbc.m110.131698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/21/2010] [Indexed: 02/05/2023] Open
Abstract
Insulin-like growth factor (IGF) system plays important roles in carcinogenesis and maintenance of the malignant phenotype. Signaling through the IGF-I receptor (IGF-IR) has been shown to stimulate the growth and motility of a wide range of cancer cells. γ-synuclein (SNCG) is primarily expressed in peripheral neurons but also overexpressed in various cancer cells. Overexpression of SNCG correlates with tumor progression. In the present study we demonstrated a reciprocal regulation of IGF-I signaling and SNCG expression. IGF-I induced SNCG expression in various cancer cells. IGF-IR knockdown or IGF-IR inhibitor repressed SNCG expression. Both phosphatidylinositol 3-kinase and mitogen-activated protein kinase were involved in IGF-I induction of SNCG expression. Interestingly, SNCG knockdown led to proteasomal degradation of IGF-IR, thereby decreasing the steady-state levels of IGF-IR. Silencing of SNCG resulted in a decrease in ligand-induced phosphorylation of IGF-IR and its downstream signaling components, including insulin receptor substrate (IRS), Akt, and ERK1/2. Strikingly, SNCG physically interacted with IGF-IR and IRS-2. Silencing of IRS-2 impaired the interaction between SNCG and IGF-IR. Finally, SNCG knockdown suppressed IGF-I-induced cell proliferation and migration. These data reveal that SNCG and IGF-IR are mutually regulated by each other. SNCG blockade may suppress IGF-I-induced cell proliferation and migration. Conversely, IGF-IR inhibitors may be of utility in suppressing the aberrant expression of SNCG in cancer cells and thereby block its pro-tumor effects.
Collapse
Affiliation(s)
- Minjing Li
- From the State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, and
| | - Yancun Yin
- From the State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, and
| | - Hui Hua
- From the State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, and
| | - Xiangming Sun
- From the State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, and
| | - Ting Luo
- Cancer Center, West China Hospital, Sichuan University and
| | - Jiao Wang
- the School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, China
| | - Yangfu Jiang
- From the State Key Laboratory of Biotherapy, Section of Signal Transduction and Molecular Targeted Therapy, and
| |
Collapse
|
42
|
Yang J, Zhang X, Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 2010; 28:334-41. [PMID: 20517899 DOI: 10.1002/cbf.1668] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin has been proposed to be an anabolic agent in bone, but the mechanisms underlying insulin effects on osteoblast differentiation are still not clear. To explore the mechanisms of action of insulin on osteoblast growth and differentiation, human osteoblastic cell line-MG-63 was used and stimulated by insulin in the presence or absence of ERK inhibitor PD98059, PI3-K inhibitor LY294002, or inhibitor PD98059 + LY294002. The results showed that insulin positively regulated the expression of its receptor. Insulin stimulated the proliferation of MG-63 cells in a time- and dose-dependent manner and blockade of both MAPK and PI3K pathways could inhibit the cell proliferation. In addition, ALP activity, the secretion of type I collagen, OC gene expression, and mineralized nodule formation were increased in the insulin treated group, whereas these indicators were decreased after treatment with blocking agents. However, treatment with PI3-K inhibitor LY294002 significantly reversed the down-regulation of Runx2 expression and treatment with ERK inhibitor PD98059 remarkably decreased up-regulation of Osx and IGF-1 expression after insulin treatment. Therefore, the data obtained from this study suggested that insulin promoted osteoblast proliferation and differentiation through MAPK and PI3K pathway in MG-63 cells.
Collapse
Affiliation(s)
- Jianhong Yang
- University of Science and Technology of China, Hefei, China
| | | | | | | |
Collapse
|
43
|
ZHANG BB, WANG YL, YANG L, PAN CJ, FU Y, DENG MY, LI YX. The Effects of MGF and E Peptide on The Differentiation of Osteoblasts*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab 2010; 95:1496-504. [PMID: 20375217 PMCID: PMC2853988 DOI: 10.1210/jc.2009-2677] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
Skeletal anabolic agents enhance bone formation, which is determined by the number and function of osteoblasts. Cell number is controlled by factors that regulate the replication, differentiation, and death of cells of the osteoblastic lineage, whereas cell function is controlled by signals acting on the mature osteoblast. Bone morphogenetic proteins (BMP) and Wnt induce the differentiation of mesenchymal cells toward osteoblasts, and IGF-I enhances the function of mature osteoblasts. The activity of BMP, Wnt, and IGF-I is controlled by proteins that, by binding to the growth factor or to its receptors, can antagonize its effects. Changes in the expression or binding affinity of these extracellular antagonists can be associated with increased or decreased bone formation and bone mass. Novel approaches to anabolic therapies for osteoporosis may include the use of factors with anabolic properties, or the neutralization of a growth factor antagonist. Selected approaches include the use of neutralizing antibodies to Wnt antagonists, the enhancement of BMP signaling by proteasome inhibitors, or the use of activin soluble receptors, IGF-I, or PTH analogs. An anabolic agent needs to be targeted specifically to the skeleton to avoid unwanted nonskeletal effects and ensure safety. Clinical trials are being conducted to test the long-term effectiveness and safety of novel bone anabolic agents.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA.
| |
Collapse
|
45
|
Grey A, Chaussade C, Empson V, Lin JM, Watson M, O’Sullivan S, Rewcastle G, Naot D, Cornish J, Shepherd P. Evidence for a role for the p110-α isoform of PI3K in skeletal function. Biochem Biophys Res Commun 2010; 391:564-9. [DOI: 10.1016/j.bbrc.2009.11.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/17/2009] [Indexed: 11/16/2022]
|
46
|
Laizé V, Tiago DM, Aureliano M, Cancela ML. New insights into mineralogenic effects of vanadate. Cell Mol Life Sci 2009; 66:3831-3836. [PMID: 19760363 PMCID: PMC11115574 DOI: 10.1007/s00018-009-0137-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/04/2009] [Accepted: 08/18/2009] [Indexed: 02/07/2023]
Affiliation(s)
- Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
47
|
CHANG MYUNGHEE, LEE JEEYUN, HAN JOUNGHO, PARK YEONHEE, AHN JINSEOK, PARK KEUNCHIL, AHN MYUNGJU. Prognostic role of insulin-like growth factor receptor-1 expression in small cell lung cancer. APMIS 2009; 117:861-9. [DOI: 10.1111/j.1600-0463.2009.02545.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Park SJ, Kim SH, Choi HS, Rhee Y, Lim SK. Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone 2009; 45:994-1003. [PMID: 19631775 DOI: 10.1016/j.bone.2009.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/16/2009] [Accepted: 07/14/2009] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor 2 (FGF2), the potent bone anabolic agent, regulates the bone development, as well as the growth, remodeling and healing of the fracture. The intracellular signaling of FGF2 leads to activation of genes involved in cell proliferation, migration, differentiation and survival. However, little is known about FGF2-regulated proteins in the osteoblasts. Therefore, in this study, protein profiling in FGF2-treated MC3T3-E1 preosteoblast cells was evaluated using proteomic technologies. Six proteins including asparaginyl-tRNA synthetase (NARS), eukaryotic translation termination factor 1 (ETF1), GDP-forming succinyl-CoA synthetase (SUCLG2), heat shock protein 84 (HSP 84), sorting nexin 9 (SNX9) and alpha glucosidase 2alpha neutral subunit (GANAB) were increased more than 3-fold after the FGF2 treatment. Also, two proteins including beta-tropomyosin and tropomyosin 2 were decreased to 2-folds. Among these proteins, asparaginyl-tRNA synthetase (NARS), a member of aminoacyl-tRNA synthetases (AARS), was strikingly up-regulated more than 900-fold. The overexpression of NARS significantly increased the proliferation of both the MC3T3-E1 and the primary mouse calvarial cells. In contrast, significant reduction of the basal expression of NARS by siNARS remarkably suppressed the proliferation and induced the death of cell. After the siNARS treatment, the resistance to apoptosis induced by serum deprivation was also significantly reduced. The level of p-Akt was also reduced and the activity of caspase 3 significantly enhanced. In addition, NARS-induced protection against apoptosis was abolished by the treatment of PI3K inhibitors, wortmannin and LY294002. In conclusion, we suggest that NARS is one of the important mediators of FGF2 induced survival signaling in osteoblasts through the activation of PI3K/Akt survival pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Aspartate-tRNA Ligase/biosynthesis
- Aspartate-tRNA Ligase/genetics
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Cytoplasm/drug effects
- Cytoplasm/enzymology
- Electrophoresis, Gel, Two-Dimensional
- Enzyme Induction/drug effects
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Mice
- Osteoblasts/cytology
- Osteoblasts/drug effects
- Osteoblasts/enzymology
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Transfer, Amino Acyl/biosynthesis
- RNA, Transfer, Amino Acyl/genetics
- Signal Transduction/drug effects
- Skull/cytology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Su Jin Park
- Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Isakoff MS, Marina N. Anti-insulin growth factor receptor therapy in Ewing sarcoma. F1000 MEDICINE REPORTS 2009; 1. [PMID: 20948718 PMCID: PMC2948310 DOI: 10.3410/m1-62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The insulin-like growth factor (IGF) signal transduction pathway appears to play a key role in the development and proliferation of the Ewing sarcoma family of tumors. Integration of anti-IGF-1 receptor therapy into the standard treatment for these patients is a novel approach that will likely be incorporated into future treatment to determine whether such agents will improve the outcome for patients with this malignancy.
Collapse
Affiliation(s)
- Michael S Isakoff
- Division of Hematology-Oncology, Connecticut Children's Medical Center282 Washington Street, Hartford, CT 06092USA
| | - Neyssa Marina
- Division of Hematology-Oncology, Stanford University and Lucile Packard Children's HospitalMail Code 5798, 1000 Welch Road, Suite 300, Palo Alto, CA 94304-1812USA
| |
Collapse
|
50
|
Abstract
The striking clinical benefit of PTH in osteoporosis began a new era of skeletal anabolic agents. Several studies have been performed, new studies are emerging out and yet controversies remain on PTH anabolic action in bone. This review focuses on the molecular aspects of PTH and PTHrP signaling in light of old players and recent advances in understanding the control of osteoblast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division Endocrinology, Department Internal Medicine, Wayne State University School of Medicine, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | |
Collapse
|