1
|
Karimian A, Shokri K, Mohammadi A, Frishman WH, Aronow WS. Treatment of Cardiovascular Manifestations in Transgender Individuals. Cardiol Rev 2025:00045415-990000000-00459. [PMID: 40167304 DOI: 10.1097/crd.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The transgender population has been steadily increasing, with more individuals seeking gender-affirming care to align their physical characteristics with their gender identity. Despite advances in healthcare, transgender individuals face significant barriers to accessing culturally competent care, resulting in heightened cardiovascular risks and disparities. Cardiovascular disease prevalence among transgender individuals is influenced by a combination of physiological, psychological, and social factors, including the impacts of gender-affirming hormone therapy, surgical interventions, and minority stress. This review examines the cardiovascular risks associated with estrogen therapy in transfeminine individuals and testosterone therapy in transmasculine individuals, highlighting their effects on lipid profiles, thromboembolic risks, and metabolic parameters. Furthermore, it explores the implications of gender-affirming surgeries and the role of psychosocial stress in cardiovascular outcomes. Current evidence underscores the need for tailored risk assessment, proactive management strategies, and lifestyle interventions to optimize cardiovascular health in this population. Significant research gaps remain regarding the long-term cardiovascular effects of gender-affirming care. Large-scale, prospective studies and the development of transgender-specific cardiovascular care guidelines are crucial to address these gaps. This review advocates for a multidisciplinary, patient-centered approach to mitigate cardiovascular risks and improve outcomes for transgender individuals.
Collapse
Affiliation(s)
- Azin Karimian
- From the Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Shokri
- From the Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Mohammadi
- Internal Medicine Department, Valley Health System, Las Vegas, NV
| | | | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Ghaffari S, Naderi Nabi F, Sugiyama MG, Lee WL. Estrogen Inhibits LDL (Low-Density Lipoprotein) Transcytosis by Human Coronary Artery Endothelial Cells via GPER (G-Protein-Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1). Arterioscler Thromb Vasc Biol 2019; 38:2283-2294. [PMID: 30354216 DOI: 10.1161/atvbaha.118.310792] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective- The atheroprotective effects of estrogen are independent of circulating lipid levels. Whether estrogen regulates transcytosis of LDL (low-density lipoprotein) across the coronary endothelium is unknown. Approach and Results- Using total internal reflection fluorescence microscopy, we quantified transcytosis of LDL across human coronary artery endothelial cells from multiple donors. LDL transcytosis was significantly higher in cells from men compared with premenopausal women. Estrogen significantly attenuated LDL transcytosis by endothelial cells from male but not female donors; transcytosis of albumin was not affected. Estrogen caused downregulation of endothelial SR-BI (scavenger receptor class B type 1), and overexpression of SR-BI was sufficient to restore LDL transcytosis. Similarly, depletion of SR-BI by siRNA attenuated endothelial LDL transcytosis and prevented any further effect of estrogen. In contrast, treatment with estrogen had no effect on SR-BI expression by liver cells. Inhibition of estrogen receptors α and β had no effect on estrogen-mediated attenuation of LDL transcytosis. However, estrogen's effect on LDL transcytosis was blocked by depletion of the GPER (G-protein-coupled estrogen receptor). GPER was found to be enriched in endothelial cells compared with hepatocytes and is reported to signal via transactivation of the EGFR (epidermal growth factor receptor); inhibition of EGFR prevented the effect of estrogen on LDL transcytosis and SR-BI mRNA. Last, SR-BI expression was significantly higher in human coronary artery endothelial cells from male compared with premenopausal female donors. Conclusions- Estrogen significantly inhibits LDL transcytosis by downregulating endothelial SR-BI; this effect requires GPER.
Collapse
Affiliation(s)
- Siavash Ghaffari
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.)
| | - Farnoosh Naderi Nabi
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.).,Department of Laboratory Medicine and Pathobiology (F.N.N., M.G.S., W.L.L.), University of Toronto, Canada
| | - Michael G Sugiyama
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.).,Department of Laboratory Medicine and Pathobiology (F.N.N., M.G.S., W.L.L.), University of Toronto, Canada
| | - Warren L Lee
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.).,Department of Laboratory Medicine and Pathobiology (F.N.N., M.G.S., W.L.L.), University of Toronto, Canada.,Division of Critical Care, Department of Medicine (W.L.L.), University of Toronto, Canada.,Department of Biochemistry (W.L.L.), University of Toronto, Canada.,Institute of Medical Science (W.L.L.), University of Toronto, Canada
| |
Collapse
|
4
|
Stroes E, Robinson JG, Raal FJ, Dufour R, Sullivan D, Kassahun H, Ma Y, Wasserman SM, Koren MJ. Consistent LDL-C response with evolocumab among patient subgroups in PROFICIO: A pooled analysis of 3146 patients from phase 3 studies. Clin Cardiol 2018; 41:1328-1335. [PMID: 30120772 PMCID: PMC6489970 DOI: 10.1002/clc.23049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Evolocumab significantly lowers low-density lipoprotein cholesterol (LDL-C) when dosed 140 mg every 2 weeks (Q2W) or 420 mg monthly (QM) subcutaneously. HYPOTHESIS LDL-C changes are comparable among different patient subgroups in a pooled analysis of data from phase 3 trials. METHODS A total of 3146 patients received ≥1 dose of evolocumab or control in four 12-week phase 3 studies. Percent change from baseline in LDL-C for evolocumab 140 mg Q2W or 420 mg QM vs control was reported as the average of week 10 and 12 values. Quantitative and qualitative interactions between treatment group and subgroup by dose regimen were tested. RESULTS In the pooled analysis, treatment differences vs placebo or ezetimibe were similar for both 140 mg Q2W and 420 mg QM doses across ages (<65 years, ≥65 years); gender; race (Asian, black, white, other); ethnicity (Hispanic, non-Hispanic); region (Europe, North America, Asia Pacific); glucose tolerance status (type 2 diabetes mellitus, metabolic syndrome, neither); National Cholesterol Education Program risk categories (high, moderately high, moderate, low); and European Society of Cardiology/European Atherosclerosis Society risk categories (very high, high, moderate, or low). Certain low-magnitude variations in LDL-C lowering among subgroups led to significant quantitative interaction P values that, when tested by qualitative interaction, were not significant. The incidences of adverse events were similar across groups treated with each evolocumab dosing regimen or control. CONCLUSIONS Consistent reductions in LDL-C were observed in the evolocumab group regardless of demographic and disease characteristics.
Collapse
Affiliation(s)
- Erik Stroes
- Department of Vascular Medicine, Academic Medical Center of Amsterdam, Amsterdam, Netherlands
| | - Jennifer G Robinson
- Departments of Epidemiology and Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick J Raal
- Department of Medicine, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Robert Dufour
- Institut de recherches cliniques de Montréal, Université de Montréal, Montreal, Canada
| | - David Sullivan
- Department of Clinical Biochemistry, Prince Alfred Hospital, Camperdown, Australia
| | | | - Yuhui Ma
- Amgen Inc., Thousand Oaks, California
| | | | - Michael J Koren
- Jacksonville Center for Clinical Research, Jacksonville, Florida
| |
Collapse
|
5
|
Zhang N, Zhang Y, Lin J, Qiu X, Chen L, Pan X, Lu Y, Zhang J, Wang Y, Li D, Wang L. Low-density lipoprotein receptor deficiency impaired mice osteoblastogenesis in vitro. Biosci Trends 2017; 11:658-666. [PMID: 29269714 DOI: 10.5582/bst.2017.01267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postmenopausal osteoporosis affected most elderly women with co-existence of lipid and bone metabolism disorders. However, the cellular and molecular mechanisms underlying the parallel progression and cross-talk of these systems remained unclear. In the present study, low-density lipoprotein receptor knockout (LDLR-/-) mice were chosen to elucidate the effect of LDLR in regulating the differentiation of osteoblasts, which were responsible for bone formation and modulation of osteoclastogenesis. Primary osteoblasts were isolated from the calvarium of newborn LDLR-/- or wild-type mice followed by osteoblastic differentiation culture in vitro. Alkaline phosphatase activity was significantly decreased in LDLR-/- osteoblasts compared to wild-type controls, combined with calcium deposit formation delay, implying impaired osteoblastogenesis in vitro. Consistent with these findings, the expression of runt-related transcription factor 2 (Runx2) was decreased 3 days after differentiation in LDLR-/- osteoblasts compared to wild-type controls. Moreover, the expression of Osterix was decreased 7 days after differentiation in LDLR-/- osteoblasts compared to wild-type controls, later than Runx2.However, the osteoclastogenesis modulation role of osteoblasts was unaffected by the LDLR deficiency, evidenced by the same level of osteoprotegerin (OPG)/receptor activator of nuclear factor-κ B ligand (RANKL) axis between LDLR-/- and wild-type control osteoblasts. Our results provide a novel insight into the role of LDLR during osteoblastic differentiation and improve understanding of cross-talk between bone and lipid metabolisms.
Collapse
Affiliation(s)
- Na Zhang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yang Zhang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine
| | - Jing Lin
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Lanting Chen
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xinyao Pan
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Youhui Lu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Jiali Zhang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Dajin Li
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Ling Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
6
|
Mailleux J, Timmermans S, Nelissen K, Vanmol J, Vanmierlo T, van Horssen J, Bogie JFJ, Hendriks JJA. Low-Density Lipoprotein Receptor Deficiency Attenuates Neuroinflammation through the Induction of Apolipoprotein E. Front Immunol 2017; 8:1701. [PMID: 29276512 PMCID: PMC5727422 DOI: 10.3389/fimmu.2017.01701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Objective We aimed to determine the role of the low-density lipoprotein receptor (LDLr) in neuroinflammation by inducing experimental autoimmune encephalomyelitis (EAE) in ldlr knock out mice. Methods MOG35-55 induced EAE in male and female ldlr-/- mice was assessed clinically and histopathologically. Expression of inflammatory mediators and apolipoprotein E (apoE) was investigated by qPCR. Changes in protein levels of apoE and tumor necrosis factor alpha (TNFα) were validated by western blot and ELISA, respectively. Results Ldlr-/--attenuated EAE disease severity in female, but not in male, EAE mice marked by a reduced proinflammatory cytokine production in the central nervous system of female ldlr-/- mice. Macrophages from female ldlr-/- mice showed a similar decrease in proinflammatory mediators, an impaired capacity to phagocytose myelin and enhanced secretion of the anti-inflammatory apoE. Interestingly, apoE/ldlr double knock out abrogated the beneficial effect of ldlr depletion in EAE. Conclusion Collectively, we show that ldlr-/- reduces EAE disease severity in female but not in male EAE mice, and that this can be explained by increased levels of apoE in female ldlr-/- mice. Although the reason for the observed sexual dimorphism remains unclear, our findings show that LDLr and associated apoE levels are involved in neuroinflammatory processes.
Collapse
Affiliation(s)
- Jo Mailleux
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Silke Timmermans
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Jasmine Vanmol
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
7
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Needham D, Arslanagic A, Glud K, Hervella P, Karimi L, Høeilund-Carlsen PF, Kinoshita K, Mollenhauer J, Parra E, Utoft A, Walke P. Bottom up design of nanoparticles for anti-cancer diapeutics: “put the drug in the cancer’s food”. J Drug Target 2016; 24:836-856. [DOI: 10.1080/1061186x.2016.1238092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Amina Arslanagic
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Kasper Glud
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Pablo Hervella
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Leena Karimi
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | | | - Koji Kinoshita
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Jan Mollenhauer
- NanoCAN, Institute for Molecular Medicine (IMM), SUND, University of Southern Denmark, Odense, Denmark
| | - Elisa Parra
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Anders Utoft
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| | - Prasad Walke
- Center for Single Particle Science and Engineering (SPSE), University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Engelbert AK, Soukup ST, Roth A, Hoffmann N, Graf D, Watzl B, Kulling SE, Bub A. Isoflavone supplementation in postmenopausal women does not affect leukocyte LDL receptor and scavenger receptor CD36 expression: A double-blind, randomized, placebo-controlled trial. Mol Nutr Food Res 2016; 60:2008-19. [PMID: 27004411 DOI: 10.1002/mnfr.201600019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
SCOPE Isoflavones are discussed to improve serum lipoproteins and body composition and to reduce cardiovascular disease risk in postmenopausal women (PMW). LDL receptors (LDLR) and scavenger receptor CD36 (CD36) play a pivotal role in the regulation of plasma LDL-cholesterol concentrations (LDL-chol). We investigated the impact of isoflavones on the receptor expression of both receptors in leukocytes of PMW. METHODS AND RESULTS A randomized, double-blind, placebo-controlled trial in parallel design was conducted to assess the effects of an isoflavone-enriched soy extract (117.4 mg/day isoflavone aglycone equivalents) for 12 weeks on serum LDL-chol, LDLR, and CD36 expression on leukocytes in 170 healthy PMW. Baseline and after 12 weeks, blood lipid concentrations, anthropometric data and body composition were determined. Receptor expression on leukocytes was measured by means of flow cytometry. After the intervention, no significant differences were found for LDLR and CD36 expression on leukocytes. A significant increase of serum LDL-chol was shown for the isoflavone group (p = 0.03) after 12 weeks. Body fat content and VAT were not affected. CONCLUSION Isoflavone supplementation for 12 weeks did not change LDLR and CD36 expression on leukocytes of PMW and did not affect body fat content and visceral adipose tissue (VAT), but slightly increased serum LDL-chol.
Collapse
Affiliation(s)
- Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alexander Roth
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Nadine Hoffmann
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Daniela Graf
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
10
|
Furuhashi M, Omori A, Matsumoto M, Kataoka Y, Tanaka M, Moniwa N, Ohnishi H, Yoshida H, Saitoh S, Shimamoto K, Miura T. Independent Link Between Levels of Proprotein Convertase Subtilisin/Kexin Type 9 and FABP4 in a General Population Without Medication. Am J Cardiol 2016; 118:198-203. [PMID: 27241838 DOI: 10.1016/j.amjcard.2016.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 01/26/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to and degrades the low-density lipoprotein (LDL) receptor, leading to hypercholesterolemia and cardiovascular risk. Fatty acid binding protein 4 (FABP4/adipocyte FABP/aP2) is secreted from adipocytes in association with lipolysis, and circulating FABP4 has been reported to act as an adipokine for the development of insulin resistance and atherosclerosis. Elevated serum FABP4 level is associated with obesity, insulin resistance, dyslipidemia, and atherosclerosis. In this study, we examined the association between circulating levels of FABP4 and PCSK9 in a general population. A total of 265 subjects (male/female: 98/167) who were not on medication were recruited from subjects of the Tanno-Sobetsu Study, and concentrations of FABP4 and PCSK9 were measured. The level of FABP4, but not that of PCSK9, showed a gender difference, being higher in women than in men. FABP4 level was independently associated with gender, adiposity, renal dysfunction, and levels of cholesterol and PCSK9. There was a significant and gender-different correlation between PCSK9 level and age: negatively in men (r = -0.250, p = 0.013) and positively in women (r = 0.183, p = 0.018). After adjustment of age, gender, and LDL cholesterol level, PCSK9 level was positively and independently correlated with FABP4 concentration. In conclusion, PCSK9 level is differentially regulated by gender during aging. Circulating FABP4 is independently associated with the PCSK9 level, suggesting that elevation of FABP4 level as an adipokine leads to dyslipidemia through increased PCSK9 level and subsequent degradation of the LDL receptor.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Akina Omori
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideaki Yoshida
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Medical and Behavioral Subjects, Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Starr AE, Lemieux V, Noad J, Moore JI, Dewpura T, Raymond A, Chrétien M, Figeys D, Mayne J. β-Estradiol results in a proprotein convertase subtilisin/kexin type 9-dependent increase in low-density lipoprotein receptor levels in human hepatic HuH7 cells. FEBS J 2015; 282:2682-96. [PMID: 25913303 PMCID: PMC5008176 DOI: 10.1111/febs.13309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/28/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022]
Abstract
The lower risk of coronary artery disease in premenopausal women than in men and postmenopausal women implicates sex steroids in cardioprotective processes. β-Estradiol upregulates liver low-density lipoprotein receptor (LDLR), which, in turn, decreases circulating levels of low-density lipoprotein, which is a risk factor for coronary artery disease. Conversely, LDLR protein is negatively regulated by proprotein convertase subtilisin/kexin type 9 (PCSK9). Herein, we investigated PCSK9 regulation by β-estradiol and its impact on LDLR in human hepatocarcinoma HuH7 cells grown in the presence or absence of β-estradiol. Immunoblot analysis showed upregulation of LDLR at 3 μm β-estradiol (140%), and the upregulation reached 220% at 10 μm β-estradiol; only at the latter dose was an increase in LDLR mRNA detected by qPCR, suggesting post-translational regulation of LDLR. No changes in PCSK9 mRNA or secreted protein levels were detected by qPCR or ELISA, respectively. β-estradiol-conditioned medium devoid of PCSK9 failed to upregulate LDLR. Similarly, PCSK9 knockdown cells showed no upregulation of LDLR by β-estradiol. Together, these results indicate a requirement for PCSK9 in the β-estradiol-induced upregulation of LDLR. A radiolabeling assay showed a significant, dose-dependent decrease in the ratio of secreted phosphoPCSK9 to total secreted PCSK9 with increasing β-estradiol levels, suggesting a change in the functional state of PCSK9 in the presence of β-estradiol. Our results indicate that the protein upregulation of LDLR at subtranscriptionally effective doses of β-estradiol, and its supratranscriptional upregulation at 10 μm β-estradiol, occur through an extracellular PCSK9-dependent mechanism.
Collapse
Affiliation(s)
- Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Valérie Lemieux
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Jenny Noad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Thilina Dewpura
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Angela Raymond
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Michel Chrétien
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ontario, Canada.,Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Quebec, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | - Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| |
Collapse
|
12
|
The rs13064411 polymorphism in the WDR52 gene, associated with PCSK9 levels, modifies statin-induced changes in serum total and LDL cholesterol levels. Pharmacogenet Genomics 2015; 25:134-42. [DOI: 10.1097/fpc.0000000000000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Xu RX, Li S, Zhang Y, Li XL, Guo YL, Zhu CG, Li JJ. Relation of plasma PCSK9 levels to lipoprotein subfractions in patients with stable coronary artery disease. Lipids Health Dis 2014; 13:188. [PMID: 25496400 PMCID: PMC4292809 DOI: 10.1186/1476-511x-13-188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/01/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plasma PCSK9 levels was positively associated with low-density lipoprotein (LDL) cholesterol (LDL-C) and atherosclerosis, while PCSK9 may also be implicated in the metabolism of lipoprotein subfractions. The study was to examine the association of plasma PCSK9 with lipoprotein subfractions in patients with stable coronary artery disease (CAD). METHODS A total of 281 consecutive, stable CAD patients who were not treated with lipid-lowering drugs were enrolled. The baseline clinical characteristics were collected, the plasma PCSK9 levels were determined using ELISA, and the LDL and high-density lipoprotein (HDL) subfractions were analyzed by Lipoprint System. The association of plasma PCSK9 levels with the lipoprotein subfractions was investigated. RESULTS In the overall population, plasma PCSK9 levels were positively associated with the concentration of LDL-C, intermediate LDL-C, small LDL-C, and LDL score, while negatively correlated with mean LDL particle size. PCSK9 levels were positively associated with the concentration of HDL-C, intermediate HDL-C and small HDL-C. Multivariable regression analysis revealed that the plasma PCSK9 levels were significantly and independently associated with the concentration of intermediate LDL-C (β=0.152, p=0.013), small LDL-C (β=0.179, p=0.004), LDL score (β=0.121, p=0.043), and mean LDL particle size (β=-0.130, p=0.035), while not HDL subfractions. Interestingly, when investigated in male and female patients separately, these relationships were only found in male but not in female, and the small HDL-C exhibited an association with PCSK9 levels in male patients (β=0.149, p=0.045). CONCLUSIONS PCSK9 levels were independently associated with the changes of lipoprotein subfractions, suggesting a potential interaction between PCSK9 and lipoprotein subfractions in CAD.
Collapse
Affiliation(s)
- Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Yan Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Xiao-Lin Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| |
Collapse
|
14
|
Lane RM, He Y. Butyrylcholinesterase genotype and gender influence Alzheimer's disease phenotype. Alzheimers Dement 2012; 9:e1-73. [PMID: 22402324 DOI: 10.1016/j.jalz.2010.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/04/2010] [Accepted: 12/02/2010] [Indexed: 10/28/2022]
Abstract
Retrospective data are presented to support a spectrum of early Alzheimer's disease (AD) along a continuum defined by gender and genotype. The putative neurodegenerative mechanisms driving distinct phenotypes at each end of the spectrum are glial hypoactivity associated with early failure of synaptic cholinergic neurotransmission and glial overactivation associated with loss of neural network connectivity due to accelerated age-related breakdown of myelin. In early AD, male butyrylcholinesterase K-variant carriers with one or two apolipoprotein ɛ4 alleles have prominent medial temporal atrophy, synaptic failure, cognitive decline, and accumulation of aggregated beta-amyloid peptide. Increasing synaptic acetylcholine in damaged but still functional cholinergic synapses improves cognitive symptoms, whereas increasing the ability of glia to support synapses and to clear beta-amyloid peptide might be disease-modifying. Conversely, chronic glial overactivation can also drive degenerative processes and in butyrylcholinesterase K-variant negative females generalized glial overactivation may be the main driver from mild cognitive impairment to AD. Females are more likely than males to have accelerated age-related myelin breakdown, more widespread white matter loss, loss of neural network connectivity, whole brain atrophy, and functional decline. Increasing extracellular acetylcholine levels blocks glial activation, reduces myelin loss and damage to neural network connectivity, and is disease-modifying. Between extremes characterized by gender, genotype, and age, pathophysiology may be mixed and this spectrum may explain much of the heterogeneity of amnestic mild cognitive impairment. Preservation of the functional integrity of the neural network may be an important component of strengthening cognitive reserve and significantly delaying the onset and progression of dementia, particularly in females. Prospective confirmation of these hypotheses is required. Implications for future research and therapeutic opportunities are discussed.
Collapse
Affiliation(s)
- Roger M Lane
- Bristol-Myers Squibb Global Clinical Research, Wallingford, CT, USA.
| | | |
Collapse
|
15
|
Cariou B, Ouguerram K, Zaïr Y, Guerois R, Langhi C, Kourimate S, Benoit I, Le May C, Gayet C, Belabbas K, Dufernez F, Chétiveaux M, Tarugi P, Krempf M, Benlian P, Costet P. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2009; 29:2191-7. [PMID: 19762784 DOI: 10.1161/atvbaha.109.194191] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a central player in the regulation of cholesterol homeostasis, increasing the low-density lipoprotein (LDL) receptor degradation. Our study aimed at exploring the pathogenic consequences in vivo and in vitro of a PCSK9 prodomain mutation found in a family with hypobetalipoproteinemia (FHBL). METHODS AND RESULTS A white 49-year-old diabetic man had profound FBHL (LDLC: 16 mg/dL) whereas his daughter and sister displayed a milder phenotype (LDLC 44 mg/dL and 57 mg/dL, respectively), all otherwise healthy with a normal liver function. A monoallelic PCSK9 double-mutant R104C/V114A cosegregated with FBHL, with no mutation found at other FHBL-causing loci. A dose-effect was also found in FBHL relatives for plasma APOB and PCSK9 (very-low to undetectable in proband, approximately 50% decreased in sister and daughter) and LDL catabolic rate (256% and 88% increased in proband and daughter). Transient transfection in hepatocytes showed severely impaired processing and secretion of the double mutant which acted as a dominant negative over secretion of wild-type PCSK9. CONCLUSIONS These results show that heterozygous PCSK9 missense mutations may associate with profound hypobetalipoproteinemia and constitute the first direct evidence in human that decrease of plasma LDLC concentrations associated to PCSK9 LOF mutations are attributable to an increased clearance rate of LDL.
Collapse
|
16
|
Loeper S, Asa SL, Ezzat S. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008; 68:3715-23. [PMID: 18483254 DOI: 10.1158/0008-5472.can-08-0103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ikaros is a transcription factor that directs lymphoid lineage commitment and pituitary neuroendocrine cell expansion and function. Here, we show that Ikaros regulates the low-density lipoprotein receptor (LDL-R) to alter metabolism in pituitary corticotroph cells. The DNA-binding Ikaros isoform Ik1 binds and enhances activity of the LDL-R promoter. Ik1 decreases methylation and increases acetylation of histone H3 (Lys(9)) at the LDL-R promoter. Confocal microscopy and quantitative fluorometry show enhanced LDL endocytosis in Ik1-transfected cells that exhibit abundant endoplasmic reticulum, large Golgi complexes, and prominent secretory granule formation, consistent with more robust cholesterol incorporation into functionally relevant membrane-rich organelles. Consistent with these data, LDL-R(-/-) mice, like Ik(-/-) mice, have decreased circulating levels of adrenocorticotropic hormone. These findings expand the repertoire of Ikaros actions to include regulation of the cholesterol uptake metabolic pathway with therapeutic implications for lipid-modifying drugs in Ikaros-associated cancers.
Collapse
Affiliation(s)
- Siobhan Loeper
- Departments of Medicine and Pathology, University Health Network, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Mayne J, Raymond A, Chaplin A, Cousins M, Kaefer N, Gyamera-Acheampong C, Seidah NG, Mbikay M, Chrétien M, Ooi TC. Plasma PCSK9 levels correlate with cholesterol in men but not in women. Biochem Biophys Res Commun 2007; 361:451-6. [PMID: 17645871 DOI: 10.1016/j.bbrc.2007.07.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Proprotein convertase subtilisin kexin-like 9 (PCSK9) is a secreted glycoprotein that negatively regulates low density lipoprotein receptor (LDLR) levels. Several single nucleotide polymorphisms (SNPs) in PCSK9 have been linked to autosomal dominant hypercholesterolemia (ADH). Conversely, hypocholesterolemia associates with both 'loss of function' nonsense and missense SNPs in PCSK9. We examined the association of plasma PCSK9 with lipoprotein parameters in 182 normolipidemics. For men (n=98) plasma PCSK9 averaged 6.08+/-1.96 microg/ml and Spearman analysis revealed significant correlation between it and total cholesterol (TC), LDLC, and TC/high density lipoprotein (HDLC) (r=0.276, 0.282, and 0.228, respectively). For women (n=84) plasma PCSK9 averaged 6.46+/-1.99 microg/ml having no correlation with TC, LDLC or TC/HDLC. The ratio of plasma PCSK9/LDLC increased in men carrying 'loss of function' PCSK9 variations. Our results suggest a gender difference in PCSK9 regulation and function with PCSK9 correlated to TC and LDLC in men but not women.
Collapse
Affiliation(s)
- Janice Mayne
- Hormones, Growth and Development Program, Ottawa Health Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, Ont., Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoffmann JL, Torontali SP, Thomason RG, Lee DM, Brill JL, Price BB, Carr GJ, Versteeg DJ. Hepatic gene expression profiling using Genechips in zebrafish exposed to 17alpha-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 79:233-46. [PMID: 16872691 DOI: 10.1016/j.aquatox.2006.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 05/11/2023]
Abstract
Genomic, proteomic, and metabolomic technologies continue to receive increasing interest from environmental toxicologists. This interest is due to the great potential of these technologies to identify detailed modes of action and to provide assistance in the evaluation of a contaminant's risk to aquatic organisms. Our experimental model is the zebrafish (Danio rerio) exposed to reference endocrine disrupting compounds in order to investigate compound-induced changes in gene transcript profiles. Adult, female zebrafish were exposed to 0, 15, 40, and 100ng/L of 17alpha-ethynylestradiol (EE2) and concentration and time-dependent changes in hepatic gene expression were examined using Affymetrix GeneChip Zebrafish Genome Microarrays. At 24, 48, and 168h, fish were sacrificed and liver mRNA was extracted for gene expression analysis (24 and 168h only). In an effort to link gene expression changes to effects on higher levels of biological organization, body and ovary weights were measured and blood was collected for measurement of plasma steroid hormones (17beta-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. EE2 exposure significantly affected gene expression, GSI, E2, T, and VTG. We observed 1622 genes that were significantly affected (p< or =0.001) in a concentration-dependent manner by EE2 exposure at either 24 or 168h. Gene ontology (GO) analysis revealed that EE2 exposure affected genes involved in hormone metabolism, vitamin A metabolism, steroid binding, sterol metabolism, and cell growth. Plasma VTG was significantly increased at 24, 48, and 168h (p< or =0.05) at 40 and 100ng/L and at 15ng/L at 168h. E2 and T were significantly reduced following EE2 exposure at 48 and 168h. GSI was decreased in a concentration-dependent manner at 168h. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to estrogenic substances. Future work will evaluate the use of these genes in zebrafish exposed to weak estrogens to determine if these genes are indicative of exposure to estrogens with varying potencies.
Collapse
Affiliation(s)
- J L Hoffmann
- Miami Valley Innovation Center, The Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jackson TA, Koterwas DM, Bradford AP. Differential regulation of cell growth and gene expression by FGF-2 and FGF-4 in pituitary lactotroph GH4 cells. Mol Cell Endocrinol 2006; 247:183-91. [PMID: 16469431 DOI: 10.1016/j.mce.2006.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 01/03/2006] [Accepted: 01/05/2006] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors, FGF-2 and FGF-4, are reported to play divergent roles in pituitary differentiation and tumor formation, stimulating cell differentiation or proliferation, respectively. However, mitogenic responses to FGFs have not been extensively characterized and little is known about the molecular mechanisms by which specific FGF isoforms may mediate distinct biological responses. Here we show that FGF-4 but not FGF-2 stimulated DNA synthesis and cell proliferation in GH4 cells. Microarray analyses revealed that FGF-4 induced expression of several oncogenes, growth factor receptors and cell cycle control proteins (e.g. cyclin D3/cdk4, N-myc, c-Raf, insulin and thyroid hormone receptors) while FGF-2 had no effect or down regulated these same genes. These transcriptional responses are consistent with a proliferative and/or tumorigenic role for FGF-4 versus a growth inhibitory effect of FGF-2. FGF-2 and FGF-4 also differentially regulated MAP kinase phosphorylation, which may underlie their isoform-specific effects on cell growth and gene expression.
Collapse
Affiliation(s)
- Twila A Jackson
- Program in Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | |
Collapse
|
20
|
Nashiki K, Taketani Y, Takeichi T, Sawada N, Yamamoto H, Ichikawa M, Arai H, Miyamoto KI, Takeda E. Role of membrane microdomains in PTH-mediated down-regulation of NaPi-IIa in opossum kidney cells. Kidney Int 2005; 68:1137-47. [PMID: 16105044 DOI: 10.1111/j.1523-1755.2005.00505.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH) rapidly down-regulates type IIa sodium-dependent phosphate transporter (NaPi-IIa) via an endocytic pathway. Since the relationship between PTH signaling and NaPi-IIa endocytosis has not been explored, we investigated the role of membrane microdomains in this process. METHODS We examined the submembrane localization of NaPi-IIa in opossum kidney (OK-N2) cells that stably expressed human NaPi-IIa, and searched for a PTH-induced specific phosphorylating substrate on their membrane microdomains by immunoblotting with specific antibody against phospho substrates of protein kinases. RESULTS We found that NaPi-IIa was primarily localized in low-density membrane (LDM) domains of the plasma membrane; PTH reduced the levels of immunoreactive NaPi-IIa in these domains. Furthermore, PTH activated both protein kinase A (PKA) and protein kinase Calpha (PKCa) and increased the phosphorylation of 250 kD and 80 kD substrates; this latter substrate was identified as ezrin, which a member of the ezrin-radixin-moesin (ERM) protein family. In response to PTH, ezrin was phosphorylated by both PKA and PKC. Dominant negative ezrin blocked the reduction in NaPi-IIa expression in the LDM domains that was induced by PTH. CONCLUSION These data suggest that NaPi-IIa and PTH-induced phosphorylated proteins that include ezrin are compartmentalized in LDM microdomains. This compartmentalization may play an important role in the down-regulation of NaPi-IIa via endocytosis.
Collapse
Affiliation(s)
- Kunitaka Nashiki
- Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cant SH, Pitcher JA. G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 2005; 16:3088-99. [PMID: 15843435 PMCID: PMC1165394 DOI: 10.1091/mbc.e04-10-0877] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals.
Collapse
Affiliation(s)
- Sarah H Cant
- MRC Laboratory for Molecular and Cellular Biology and Department of Pharmacology, University College London, London, WC1E 6BT United Kingdom
| | | |
Collapse
|
22
|
Sowers JR. Estrogen-inducible cytoskeletal linker protein ezrin interaction with the low-density lipoprotein receptor. Endocrinology 2004; 145:3074. [PMID: 15198970 DOI: 10.1210/en.2004-0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|