1
|
Elattar S, Chand S, Salem A, Abdulfattah AY, Bassiony M, Frishman WH, Aronow WS. Obesity and Hypertension: Etiology and the Effects of Diet, Bariatric Surgery, and Antiobesity Drugs. Cardiol Rev 2025:00045415-990000000-00477. [PMID: 40265912 DOI: 10.1097/crd.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Obesity-related hypertension (HTN) is a growing global health concern, being a significant contributor to cardiovascular morbidity and mortality. The article reviews the complex pathophysiological mechanisms involved in the link between obesity and HTN, including neurohormonal activation, inflammation, insulin resistance, and endothelial dysfunction. The role of adipokines, specifically leptin and adiponectin, in blood pressure regulation is highlighted, along with the impact of advanced glycation end-products on vascular function. We discuss the effectiveness of lifestyle therapies, including weight loss, and diet for the management of obesity HTN. We also discuss the utilization of pharmacologic agents, including GLP-1 receptor agonists, and the impact of bariatric surgery on long-term blood pressure control. Despite enhanced treatment, significant barriers to treatment exist, including obesity stigma, limited access to health care, and adherence problems. Future research must focus on personalized approaches, like pharmacogenomics, to optimize hypertension treatment in the obese.
Collapse
Affiliation(s)
- Sara Elattar
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Swati Chand
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Amr Salem
- Department of Neurology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Ammar Y Abdulfattah
- Department of Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Mohamed Bassiony
- Department of Medicine, Mount Sina Medical Center at Elmhurst, NY
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
2
|
Evans AJ, Tu H, Li Y, Shabaltiy B, Whitney L, Carpenter K, Li YL. Altered leptin signaling and attenuated cardiac vagal activity in rats with type 2 diabetes. Front Physiol 2025; 16:1547901. [PMID: 40078371 PMCID: PMC11897569 DOI: 10.3389/fphys.2025.1547901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The leading cause of death in type 2 diabetes mellitus (T2DM) patients is cardiovascular-related events, including myocardial infraction-induced ventricular arrhythmia. Previous studies have shown that T2DM-induced functional remodeling of cardiac vagal postganglionic (CVP) neurons contributes to ventricular arrhythmogenesis. As leptin resistance is common in T2DM patients, and CVP neurons are located in epicardial adipose pads, a tissue that secretes leptin, in this study we aimed to elucidate a correlation between leptin resistance and CVP neuronal dysfunction in T2DM. Methods A high fat-diet/low dose streptozotocin-induced T2DM rat model was used in this study to characterize T2DM-induced alterations in cardiac parasympathetic tone, determined by changes in baroreflex sensitivity and CVP neuronal excitability. The impact of leptin resistance on CVP neurons was also studied by examining the expression of leptin in epicardial adipose pads, and leptin receptors and uncoupling protein 2 (UCP2) in CVP neurons. Results T2DM rats exhibited diminished baroreflex sensitivity, and decreased CVP neuronal excitability, demonstrated by a reduced frequency of action potentials, diminished nAChR currents, and an attenuated response to nicotine stimulation. Additionally, compared to sham animals, the expression of leptin receptors and UCP2 in CVP neurons was reduced as early as 4 weeks post-T2DM although the leptin levels in epicardial adipose pads was increased during the progression of T2DM, which demonstrated the occurrence of leptin resistance in T2DM CVP neurons. Conclusion Cardiac parasympathetic dysfunction in T2DM rats is due, in part, to functional remodeling of CVP neurons. As leptin resistance develops as early as 4 weeks post-T2DM induction, diminished leptin receptors-UCP2 signaling may contribute to CVP neuronal dysregulation.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Boris Shabaltiy
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lauren Whitney
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kassidy Carpenter
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Blaszkiewicz M, Caron L, Villinski B, Passarelli J, Towne JM, Story NM, Merchant E, Khan FS, Emanetoglu N, Kass L, Smith RL, Townsend KL. Transdermal electrophysiological recordings of diet-induced small fiber peripheral neuropathy using a needle electrode array in mice and man. Front Bioeng Biotechnol 2025; 12:1511383. [PMID: 39867474 PMCID: PMC11757890 DOI: 10.3389/fbioe.2024.1511383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Proactive treatment options remain limited, which is exacerbated by a lack of sensitive and convenient diagnostics, especially early in disease progression or specifically to assess small fiber neuropathy (SFN), the loss of distal small diameter axons that innervate tissues and organs. Methods We designed, fabricated, tested, and validated a first-of-its-kind medical diagnostic device for the functional assessment of transdermal small fiber nerve activity. This device, the Detecting Early Neuropathy (DEN), is an electrically conductive needle array designed to record nerve electrical activity in the skin and subdermal tissues, as a feature of a broader theragnostic platform. Results DEN recordings were validated across a time course of diet-induced PN in mice, using statistical and computational analyses and compared to other SFN measures. Based on these preclinical mouse data, the device design was adapted to obtain recordings in human with a flexible printed circuit board to mold to the leg or other skin regions. The DEN successfully recorded various types of neural activity in mouse and human, with or without stimulation, including validated action potentials and electromyography signals. Conclusion New functional diagnostic tools like DEN offer a promising outlook for patients needing an earlier or more sensitive diagnosis of DPN/SFN, to allow for earlier and more effective treatment options, especially as more become available in the clinic in future years.
Collapse
Affiliation(s)
- Magdalena Blaszkiewicz
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Lydia Caron
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Brooke Villinski
- College of Engineering, University of Maine, Orono, ME, United States
| | - Joshua Passarelli
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Julia M. Towne
- College of Engineering, University of Maine, Orono, ME, United States
| | - Naeemah M. Story
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States
| | - Erin Merchant
- College of Engineering, University of Maine, Orono, ME, United States
| | - Furrukh S. Khan
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States
| | - Nuri Emanetoglu
- College of Engineering, University of Maine, Orono, ME, United States
| | - Leonard Kass
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Rosemary L. Smith
- College of Engineering, University of Maine, Orono, ME, United States
| | - Kristy L. Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, United States
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| |
Collapse
|
4
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
5
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
6
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
7
|
Lei M, Li Y, Li J, Liu J, Dai Z, Chen R, Zhu H. Low Testosterone and High Leptin Activate PPAR Signaling to Induce Adipogenesis and Promote Fat Deposition in Caponized Ganders. Int J Mol Sci 2024; 25:8686. [PMID: 39201373 PMCID: PMC11354323 DOI: 10.3390/ijms25168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Low or insufficient testosterone levels caused by caponization promote fat deposition in animals. However, the molecular mechanism of fat deposition in caponized animals remains unclear. This study aimed to investigate the metabolomics and transcriptomic profiles of adipose tissues and study the effect of testosterone and leptin on the proliferation of adipocytes. We observed a significant enlargement in the areas of adipocytes in the abdominal fat tissues in capon, as well as increased luciferase activity of the serum leptin and a sharp decrease in the serum testosterone in caponized gander. Metabolomics and transcriptomic results revealed differentially expressed genes and differentially expressed metabolites with enhanced PARR signal pathway. The mRNA levels of peroxisome proliferators-activated receptor γ, fatty acid synthase, and suppressor of cytokine signaling 3 in goose primary pre-adipocytes were significantly upregulated with high leptin treatment and decreased significantly with increasing testosterone dose. Hence, reduced testosterone and increased leptin levels after caponization possibly promoted adipocytes proliferation and abdominal fat deposition by altering the expression of PPAR pathway related genes in caponized ganders. This study provides a new direction for the mechanism through which testosterone regulates the biological function of leptin and fat deposition in male animals.
Collapse
Affiliation(s)
- Mingming Lei
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Yaxin Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Jiaying Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Rong Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| | - Huanxi Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (Y.L.); (J.L.); (J.L.); (Z.D.); (R.C.)
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
| |
Collapse
|
8
|
Basu R, Flak JN. Hypothalamic neural circuits regulating energy expenditure. VITAMINS AND HORMONES 2024; 127:79-124. [PMID: 39864947 PMCID: PMC12007011 DOI: 10.1016/bs.vh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization. The hypothalamus has evolved to enhance energy storage for survival in famine and scarce environments but contribute to obesity in modern contexts of caloric abundance. It acts as a master regulator of whole-body energy homeostasis, rapidly adapting to ensure energy supplies for cellular functions. Understanding hypothalamic function, pertaining to energy expenditure, is crucial for developing targeted interventions to address metabolic disorders, offering new insights into the neural control of metabolic states and potential therapeutic strategies.
Collapse
Affiliation(s)
- Rashmita Basu
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan N Flak
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
9
|
Khant Aung Z, Ladyman SR, Brown RSE. Transient loss of satiety effects of leptin in middle-aged male mice. J Neuroendocrinol 2024; 36:e13386. [PMID: 38549242 DOI: 10.1111/jne.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18-22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Pena-Leon V, Perez-Lois R, Villalon M, Prida E, Muñoz-Moreno D, Fernø J, Quiñones M, Al-Massadi O, Seoane LM. Novel mechanisms involved in leptin sensitization in obesity. Biochem Pharmacol 2024; 223:116129. [PMID: 38490517 DOI: 10.1016/j.bcp.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria Villalon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eva Prida
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Mar Quiñones
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Omar Al-Massadi
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Buller S, Blouet C. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss. Am J Physiol Endocrinol Metab 2024; 326:E472-E480. [PMID: 38381398 PMCID: PMC11193531 DOI: 10.1152/ajpendo.00250.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.
Collapse
Affiliation(s)
- Sophie Buller
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Roth CL, McCormack SE. Acquired hypothalamic obesity: A clinical overview and update. Diabetes Obes Metab 2024; 26 Suppl 2:34-45. [PMID: 38450938 DOI: 10.1111/dom.15530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.
Collapse
Affiliation(s)
- Christian L Roth
- Centre for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, DC, USA
- Department of Paediatrics, University of Washington, School of Medicine, Seattle, Washington, DC, USA
| | - Shana E McCormack
- Neuroendocrine Centre, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Paediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Başer Ö, Yavuz Y, Özen DÖ, Özgün HB, Ağuş S, Civaş CC, Atasoy D, Yılmaz B. Effects of chronic high fat diet on mediobasal hypothalamic satiety neuron function in POMC-Cre mice. Mol Metab 2024; 82:101904. [PMID: 38395148 PMCID: PMC10910127 DOI: 10.1016/j.molmet.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.
Collapse
Affiliation(s)
- Özge Başer
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Öykü Özen
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Hüseyin Buğra Özgün
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Sami Ağuş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Cihan Civan Civaş
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, USA
| | - Bayram Yılmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Türkiye; Izmir Biomedicine and Genome Center, Izmir, Türkiye.
| |
Collapse
|
14
|
Park JW, Park SE, Koh W, Jang WH, Choi JH, Roh E, Kang GM, Kim SJ, Lim HS, Park CB, Jeong SY, Moon SY, Lee CH, Kim SY, Choi HJ, Min SH, Lee CJ, Kim MS. Hypothalamic astrocyte NAD + salvage pathway mediates the coupling of dietary fat overconsumption in a mouse model of obesity. Nat Commun 2024; 15:2102. [PMID: 38453901 PMCID: PMC10920699 DOI: 10.1038/s41467-024-46009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD)+ serves as a crucial coenzyme in numerous essential biological reactions, and its cellular availability relies on the activity of the nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed salvage pathway. Here we show that treatment with saturated fatty acids activates the NAD+ salvage pathway in hypothalamic astrocytes. Furthermore, inhibition of this pathway mitigates hypothalamic inflammation and attenuates the development of obesity in male mice fed a high-fat diet (HFD). Mechanistically, CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. The activation of the astrocytic NAMPT-NAD+-CD38 axis in response to fat overload induces proinflammatory responses in the hypothalamus. It also leads to aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes. Our findings highlight the significant contribution of the hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, to HFD-induced obesity.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science, Daejeon, 34126, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jong Han Choi
- Division of Endocrinology and Metabolism, Konkuk University Medical Center, Seoul, 05030, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 14068, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Seong Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - So Yeon Jeong
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang Yun Moon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, 24252, Korea
| | - Sang Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Se Hee Min
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Asan Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science, Daejeon, 34126, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
- Division of Endocrinology and Metabolism, Asan Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
15
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
16
|
Pagkali A, Makris A, Brofidi K, Agouridis AP, Filippatos TD. Pathophysiological Mechanisms and Clinical Associations of Non-Alcoholic Fatty Pancreas Disease. Diabetes Metab Syndr Obes 2024; 17:283-294. [PMID: 38283640 PMCID: PMC10813232 DOI: 10.2147/dmso.s397643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Non-Alcoholic Fatty Pancreas disease (NAFPD), characterized by fat accumulation in pancreatic tissue, is an emerging clinical entity. However, the clinical associations, the underlying molecular drivers, and the pathophysiological mechanisms of NAFPD have not yet been characterized in detail. The NAFPD spectrum not only includes infiltration and accumulation of fat within and between pancreatic cells but also involves several inflammatory processes, dysregulation of physiological metabolic pathways, and hormonal defects. A deeper understanding of the underlying molecular mechanisms is key to correlate NAFPD with clinical entities including non-alcoholic fatty liver disease, metabolic syndrome, diabetes mellitus, atherosclerosis, as well as pancreatic cancer and pancreatitis. The aim of this review is to examine the pathophysiological mechanisms of NAFPD and to assess the possible causative/predictive risk factors of NAFPD-related clinical syndromes.
Collapse
Affiliation(s)
- Antonia Pagkali
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Makris
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Brofidi
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| | | |
Collapse
|
17
|
Liu S, Song S, Wang S, Cai T, Qin L, Wang X, Zhu G, Wang H, Yang W, Fang C, Wei Y, Zhou F, Yu Y, Lin S, Peng S, Li L. Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression. J Nutr Biochem 2024; 123:109512. [PMID: 37907171 DOI: 10.1016/j.jnutbio.2023.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.
Collapse
Affiliation(s)
- Shujing Liu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Shiyu Song
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Shuan Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Tonghui Cai
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China
| | - Lian Qin
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Xinzhuang Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Guangming Zhu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Haibo Wang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Wenqi Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Chunlu Fang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Fu Zhou
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China
| | - Yang Yu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China
| | - Shaozhang Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, P.R. China.
| | - Shuang Peng
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China.
| | - Liangming Li
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P.R. China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
18
|
Lopes PKF, Costa SDO, Simino LADP, Chaves WF, Silva FA, Costa CL, Milanski M, Ignacio-Souza LM, Torsoni AS, Torsoni MA. Hypothalamic inflammation and the development of an obese phenotype induced by high-fat diet consumption is exacerbated in alpha7 nicotinic cholinergic receptor knockout mice. Food Res Int 2024; 176:113808. [PMID: 38163714 DOI: 10.1016/j.foodres.2023.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypothalamic inflammation and metabolic changes resulting from the consumption of high-fat diets have been linked to low grade inflammation and obesity. Inflammation impairs the hypothalamic expression of α7 nicotinic acetylcholine receptor (α7nAChR). The α7nAChR is described as the main component of the anti-inflammatory cholinergic pathway in different inflammation models. To assess whether the reduction in α7nAChR expression exacerbates hypothalamic inflammation induced by a high-fat diet (HFD), were used male and female global α7nAChR knockout mouse line in normal or high-fat diet for 4 weeks. Body weight gain, adiposity, glucose homeostasis, hypothalamic inflammation, food intake, and energy expenditure were evaluated. Insulin sensitivity was evaluated in neuronal cell culture. Consumption of an HFD for 4 weeks resulted in body weight gain and adiposity in male Chrna7-/- mice and the hypothalamus of male Chrna7-/- mice showed neuroinflammatory markers, with increased gene expression of pro-inflammatory cytokines and dysregulation in the nuclear factor kappa B pathway. Moreover, male Chrna7-/- mice consuming an HFD showed alterations in glucose homeostasis and serum of Chrna7-/- mice that consumed an HFD impaired insulin signalling in neuronal cell culture experiments. In general, female Chrna7-/- mice that consumed an HFD did not show the phenotypic and molecular changes found in male mice, indicating that there is sexual dimorphism in the analysed parameters. Thus, receptor deletion resulted in increased susceptibility to hypothalamic inflammation and metabolic damage associated with HFD consumption in male mice.
Collapse
Affiliation(s)
| | - Suleyma de Oliveira Costa
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Laís A de Paula Simino
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Franciely Alves Silva
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Caroline Lobo Costa
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Leticia Martins Ignacio-Souza
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
19
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
20
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
21
|
Amorim MR, Wang X, Aung O, Bevans-Fonti S, Anokye-Danso F, Ribeiro C, Escobar J, Freire C, Pho H, Dergacheva O, Branco LGS, Ahima RS, Mendelowitz D, Polotsky VY. Leptin signaling in the dorsomedial hypothalamus couples breathing and metabolism in obesity. Cell Rep 2023; 42:113512. [PMID: 38039129 PMCID: PMC10804286 DOI: 10.1016/j.celrep.2023.113512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA.
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - O Aung
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shannon Bevans-Fonti
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Carla Freire
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Huy Pho
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Luiz G S Branco
- University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA; Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
22
|
Ivić V, Zjalić M, Blažetić S, Fenrich M, Labak I, Scitovski R, Szűcs KF, Ducza E, Tábi T, Bagamery F, Szökő É, Vuković R, Rončević A, Mandić D, Debeljak Ž, Berecki M, Balog M, Seres-Bokor A, Sztojkov-Ivanov A, Hajagos-Tóth J, Gajović S, Imširović A, Bakula M, Mahiiovych S, Gaspar R, Vari SG, Heffer M. Elderly rats fed with a high-fat high-sucrose diet developed sex-dependent metabolic syndrome regardless of long-term metformin and liraglutide treatment. Front Endocrinol (Lausanne) 2023; 14:1181064. [PMID: 37929025 PMCID: PMC10623428 DOI: 10.3389/fendo.2023.1181064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Aim/Introduction The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.
Collapse
Affiliation(s)
- Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matija Fenrich
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Rudolf Scitovski
- School of Applied Mathematics and Computer Science, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Fruzsina Bagamery
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Alen Rončević
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Neurosurgery, Osijek University Hospital, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Berecki
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Adrienn Seres-Bokor
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Judit Hajagos-Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Srećko Gajović
- Croatian Institute for Brain Research, and BIMIS - Biomedical Research Institute Šalata, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alen Imširović
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Bakula
- Department of Clinical Pathology and Forensic Medicine, Osijek University Hospital, Osijek, Croatia
| | - Solomiia Mahiiovych
- Department of Therapy № 1 and Medical Diagnostics, Hematology and Transfusiology, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G. Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, United States
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
23
|
Rupp AC, Tomlinson AJ, Affinati AH, Yacawych WT, Duensing AM, True C, Lindsley SR, Kirigiti MA, MacKenzie A, Polex-Wolf J, Li C, Knudsen LB, Seeley RJ, Olson DP, Kievit P, Myers MG. Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models. J Clin Invest 2023; 133:e157515. [PMID: 37581939 PMCID: PMC10541203 DOI: 10.1172/jci157515] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
Collapse
Affiliation(s)
| | | | | | - Warren T. Yacawych
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison M. Duensing
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cadence True
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | | | | | - Chien Li
- Novo Nordisk, Copenhagen, Denmark
| | | | | | - David P. Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Martin G. Myers
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Szanda G, Jourdan T, Wisniewski É, Cinar R, Godlewski G, Rajki A, Liu J, Chedester L, Szalai B, Tóth AD, Soltész-Katona E, Hunyady L, Inoue A, Horváth VB, Spät A, Tam J, Kunos G. Cannabinoid receptor type 1 (CB 1R) inhibits hypothalamic leptin signaling via β-arrestin1 in complex with TC-PTP and STAT3. iScience 2023; 26:107207. [PMID: 37534180 PMCID: PMC10392084 DOI: 10.1016/j.isci.2023.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/20/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
Molecular interactions between anorexigenic leptin and orexigenic endocannabinoids, although of great metabolic significance, are not well understood. We report here that hypothalamic STAT3 signaling in mice, initiated by physiological elevations of leptin, is diminished by agonists of the cannabinoid receptor 1 (CB1R). Measurement of STAT3 activation by semi-automated confocal microscopy in cultured neurons revealed that this CB1R-mediated inhibition requires both T cell protein tyrosine phosphatase (TC-PTP) and β-arrestin1 but is independent of changes in cAMP. Moreover, β-arrestin1 translocates to the nucleus upon CB1R activation and binds both STAT3 and TC-PTP. Consistently, CB1R activation failed to suppress leptin signaling in β-arrestin1 knockout mice in vivo, and in neural cells deficient in CB1R, β-arrestin1 or TC-PTP. Altogether, CB1R activation engages β-arrestin1 to coordinate the TC-PTP-mediated inhibition of the leptin-evoked neuronal STAT3 response. This mechanism may restrict the anorexigenic effects of leptin when hypothalamic endocannabinoid levels rise, as during fasting or in diet-induced obesity.
Collapse
Affiliation(s)
- Gergő Szanda
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology Research Group, Eötvös Loránd Research Network, 1094 Budapest, Hungary
| | - Tony Jourdan
- INSERM Center Lipids, Nutrition, Cancer LNC U1231, 21000 Dijon, France
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anikó Rajki
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology Research Group, Eötvös Loránd Research Network, 1094 Budapest, Hungary
| | - Jie Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee Chedester
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bence Szalai
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Centre of Excellence of the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Viktória Bea Horváth
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - András Spät
- Department of Physiology, Semmelweis University Medical School, 1094 Budapest, Hungary
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Li H, Xu Y, Jiang Y, Jiang Z, Otiz-Guzman J, Morrill JC, Cai J, Mao Z, Xu Y, Arenkiel BR, Huang C, Tong Q. The melanocortin action is biased toward protection from weight loss in mice. Nat Commun 2023; 14:2200. [PMID: 37069175 PMCID: PMC10110624 DOI: 10.1038/s41467-023-37912-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.
Collapse
Affiliation(s)
- Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA
| | - Zhengmei Mao
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, 77030, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Li Z, Zhang B, Wang N, Zuo Z, Wei H, Zhao F. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut 2023; 72:686-698. [PMID: 35803703 PMCID: PMC10086289 DOI: 10.1136/gutjnl-2022-328035] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE The obesity epidemic and its metabolic complications continue to be a major global public health threat with limited effective treatments, especially drugs that can be taken orally. Peptides are a promising class of molecules that have gained increased interest for their applications in medicine and biotechnology. In this study, we focused on looking for peptides that can be administrated orally to treat obesity and exploring its mechanisms. DESIGN Here, a 9-amino-acid peptide named D3 was designed and administered orally to germ-free (GF) mice and wild-type (WT) mice, rats and macaques. The effects of D3 on body weight and other basal metabolic parameters were evaluated. The effects of D3 on gut microbiota were evaluated using 16S rRNA amplicon sequencing. To identify and confirm the mechanisms of D3, transcriptome analysis of ileum and molecular approaches on three animal models were performed. RESULTS A significant body weight reduction was observed both in WT (12%) and GF (9%) mice treated with D3. D3 ameliorated leptin resistance and upregulated the expression of uroguanylin (UGN), which suppresses appetite via the UGN-GUCY2C endocrine axis. Similar effects were also found in diet-induced obese rat and macaque models. Furthermore, the abundance of intestinal Akkermansia muciniphila increased about 100 times through the IFNγ-Irgm1 axis after D3 treatment, which may further inhibit fat absorption by downregulating Cd36. CONCLUSION Our results indicated that D3 is a novel drug candidate for counteracting diet-induced obesity as a non-toxic and bioactive peptide. Targeting the UGN-GUCY2C endocrine axis may represent a therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Zhanzhan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hong Wei
- Laboratory Animal Department, College of Basic Medicine Army Medical University, Chongqing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
27
|
Sharma Y, Galvão AM. Maternal obesity and ovarian failure: is leptin the culprit? Anim Reprod 2023; 19:e20230007. [PMID: 36855701 PMCID: PMC9968511 DOI: 10.1590/1984-3143-ar2023-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
At the time of its discovery and characterization in 1994, leptin was mostly considered a metabolic hormone able to regulate body weight and energy homeostasis. However, in recent years, a great deal of literature has revealed leptin's pleiotropic nature, through its involvement in numerous physiological contexts including the regulation of the female reproductive tract and ovarian function. Obesity has been largely associated with infertility, and leptin signalling is known to be dysregulated in the ovaries of obese females. Hence, the disruption of ovarian leptin signalling was shown to contribute to the pathophysiology of ovarian failure in obese females, affecting transcriptional programmes in the gamete and somatic cells. This review attempts to uncover the underlying mechanisms contributing to female infertility associated with obesity, as well as to shed light on the role of leptin in the metabolic dysregulation within the follicle, the effects on the oocyte epigenome, and the potential long-term consequence to embryo programming.
Collapse
Affiliation(s)
- Yashaswi Sharma
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Miguel Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland,Babraham Institute, Epigenetics Programme, Cambridge, United Kingdom UK,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom UK,Corresponding author: ;
| |
Collapse
|
28
|
Frick JM, Eller OC, Foright RM, Levasseur BM, Yang X, Wang R, Winter MK, O'Neil MF, Morris EM, Thyfault JP, Christianson JA. High-fat/high-sucrose diet worsens metabolic outcomes and widespread hypersensitivity following early-life stress exposure in female mice. Am J Physiol Regul Integr Comp Physiol 2023; 324:R353-R367. [PMID: 36693166 PMCID: PMC9970659 DOI: 10.1152/ajpregu.00216.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.
Collapse
Affiliation(s)
- Jenna M Frick
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Olivia C Eller
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Rebecca M Foright
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Brittni M Levasseur
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Xiaofang Yang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Ruipeng Wang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Association, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Maura F O'Neil
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas, United States
| | - Julie A Christianson
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
29
|
Korgan AC, Oliveira-Abreu K, Wei W, Martin SLA, Bridges ZJD, Leal-Cardoso JH, Kaczorowski CC, O'Connell KMS. High sucrose consumption decouples intrinsic and synaptic excitability of AgRP neurons without altering body weight. Int J Obes (Lond) 2023; 47:224-235. [PMID: 36725979 PMCID: PMC10023568 DOI: 10.1038/s41366-023-01265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVE As the obesity epidemic continues, the understanding of macronutrient influence on central nervous system function is critical for understanding diet-induced obesity and potential therapeutics, particularly in light of the increased sugar content in processed foods. Previous research showed mixed effects of sucrose feeding on body weight gain but has yet to reveal insight into the impact of sucrose on hypothalamic functioning. Here, we explore the impact of liquid sucrose feeding for 12 weeks on body weight, body composition, caloric intake, and hypothalamic AgRP neuronal function and synaptic plasticity. METHODS Patch-clamp electrophysiology of hypothalamic AgRP neurons, metabolic phenotyping and food intake were performed on C57BL/6J mice. RESULTS While mice given sugar-sweetened water do not gain significant weight, they do show subtle differences in body composition and caloric intake. When given sugar-sweetened water, mice show similar alterations to AgRP neuronal excitability as in high-fat diet obese models. Increased sugar consumption also primes mice for increased caloric intake and weight gain when given access to a HFD. CONCLUSIONS Our results show that elevated sucrose consumption increased activity of AgRP neurons and altered synaptic excitability. This may contribute to obesity in mice and humans with access to more palatable (HFD) diets.
Collapse
Affiliation(s)
- Austin C Korgan
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Klausen Oliveira-Abreu
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Wei Wei
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Georgia State University, Atlanta, GA, USA
| | | | - Zoey J D Bridges
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | - Catherine C Kaczorowski
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Neuroscience Program, Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
- Neuroscience Program, Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Fernández-Felipe J, López LL, Cano V, Sánchez-Hita E, Belén Sanz A, Chowen JA, Del Olmo N, Ruiz-Gayo M, Merino B. Regional specific effect of saturated vs unsaturated fat on leptin receptor signalling in mice brain areas regulating feeding. Neurosci Lett 2023; 793:136996. [PMID: 36481371 DOI: 10.1016/j.neulet.2022.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Leptin receptors (LepR) are expressed in brain areas controlling food intake homeostasis, such as the hypothalamus, the hippocampus and the prefrontal cortex. In a previous study we reported that long-term intake of saturated and monounsaturated fat alters hypothalamic LepR signalling. The current study aims at investigating the effect of foods high in either saturated (SOLF) or monounsaturated fat (UOLF) on LepR functionality in the hippocampus and the prefrontal cortex. Male mice were placed on SOLF/UOLF (eight weeks), then treated with recombinant murine leptin (1 mg/kg). After 60 min, brain regions were dissected and processed for western blot of phosphorylated STAT3 (pSTAT3), Akt (pAkt) and AMPK (pAMPK). Levels of SOCS3 were also quantified. SOLF itself increased basal levels of pSTAT3, while UOLF impaired leptin-induced phosphorylation of both Akt and AMPK. SOCS3 levels were specifically increased by UOLF within the prefrontal cortex. Our results show that SOLF and UOLF differently affect LepR signalling within the hippocampus and the prefrontal cortex, which points to the complex effect of saturated and unsaturated fat on brain function, particularly in areas regulating food intake.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Lucía L López
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Victoria Cano
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Enrique Sánchez-Hita
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - A Belén Sanz
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, 28009 Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (CIBEROBN, ISCIII), 28029, Madrid, Spain; IMDEA Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Nuria Del Olmo
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Mariano Ruiz-Gayo
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Beatriz Merino
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain.
| |
Collapse
|
31
|
Abend Bardagi A, Dos Santos Paschoal C, Favero GG, Riccetto L, Alexandrino Dias ML, Guerra Junior G, Degasperi G. Leptin's Immune Action: A Review Beyond Satiety. Immunol Invest 2023; 52:117-133. [PMID: 36278927 DOI: 10.1080/08820139.2022.2129381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue is an endocrine organ that secretes adipokines such as leptin, which is one of the most important hormones for controlling satiety, metabolism, and energy homeostasis. This hormone acts in the regulation of innate and adaptive immune responses since immune cells have leptin receptors from which this hormone initiates its biological action. These receptors have been identified in hematopoietic stem cells in the bone marrow and mature immune cells, inducing signaling pathways mediated by JAK/STAT, PI3K, and ERK 1/2. It is known that the bone marrow also contains leptin-producing adipocytes, which are crucial for regulating hematopoiesis through largely unknown mechanisms. Therefore, we have reviewed the roles of leptin inside and outside the bone marrow, going beyond its action in the control of satiety.
Collapse
Affiliation(s)
- Alice Abend Bardagi
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Clarissa Dos Santos Paschoal
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Giovanna Ganem Favero
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Luisa Riccetto
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Maria Luisa Alexandrino Dias
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Gil Guerra Junior
- Center for Investigation in Pediatrics (CIPED), School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Giovanna Degasperi
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| |
Collapse
|
32
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
33
|
Homocysteine causes neuronal leptin resistance and endoplasmic reticulum stress. PLoS One 2022; 17:e0278965. [PMID: 36512575 PMCID: PMC9746958 DOI: 10.1371/journal.pone.0278965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormally high serum homocysteine levels have been associated with several disorders, including obesity, cardiovascular diseases or neurological diseases. Leptin is an anti-obesity protein and its action is mainly mediated by the activation of its Ob-R receptor in neuronal cells. The inability of leptin to induce activation of its specific signaling pathways, especially under endoplasmic reticulum stress, leads to the leptin resistance observed in obesity. The present study examined the effect of homocysteine on leptin signaling in SH-SY5Y neuroblastoma cells expressing the leptin receptor Ob-Rb. Phosphorylation of the signal transducer and activator of transcription (STAT3) and leptin-induced STAT3 transcriptional activity were significantly inhibited by homocysteine treatment. These effects may be specific to homocysteine and to the leptin pathway, as other homocysteine-related compounds, namely methionine and cysteine, have weak effect on leptin-induced inhibition of STAT3 phosphorylation, and homocysteine has no impact on IL-6-induced activation of STAT3. The direct effect of homocysteine on leptin-induced Ob-R activation, analyzed by Ob-R BRET biosensor to monitor Ob-R oligomerization and conformational change, suggested that homocysteine treatment does not affect early events of leptin-induced Ob-R activation. Instead, we found that, unlike methionine or cysteine, homocysteine increases the expression of the endoplasmic reticulum (ER) stress response gene, a homocysteine-sensitive ER resident protein. These results suggest that homocysteine may induce neuronal resistance to leptin by suppressing STAT3 phosphorylation downstream of the leptin receptor via ER stress.
Collapse
|
34
|
Wee NKY, de Lima TFC, McGregor NE, Walker EC, Poulton IJ, Blank M, Sims NA. Leptin receptor in osteocytes promotes cortical bone consolidation in female mice. J Endocrinol 2022; 255:25-37. [PMID: 35938692 DOI: 10.1530/joe-22-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
Bone strength is partially determined during cortical bone consolidation, a process comprising coalescence of peripheral trabecular bone and its progressive mineralisation. Mice with genetic deletion of suppressor of cytokine signalling 3 (Socs3), an inhibitor of STAT3 signalling, exhibit delayed cortical bone consolidation, indicated by high cortical porosity, low mineral content, and low bone strength. Since leptin receptor (LepR) is expressed in the osteoblast lineage and is suppressed by SOCS3, we evaluated whether LepR deletion in osteocytes would rectify the Dmp1cre.Socs3fl/fl bone defect. First, we tested LepR deletion in osteocytes by generating Dmp1cre.LepRfl/fl mice and detected no significant bone phenotype. We then generated Dmp1cre.Socs3fl/fl.LepRfl/fl mice and compared them to Dmp1cre.Socs3fl/fl controls. Between 6 and 12 weeks of age, both Dmp1cre.Socs3fl/fl.LepRfl/fl and control (Dmp1cre.Socs3fl/fl) mice showed an increasing proportion of more heavily mineralised bone, indicating some cortical consolidation with time. However, at 12 weeks of age, rather than resolving the phenotype, delayed consolidation was extended in female Dmp1cre.Socs3fl/fl.LepRfl/fl mice. This was indicated in both metaphysis and diaphysis by greater proportions of low-density bone, lower proportions of high-density bone, and greater cortical porosity than Dmp1cre.Socs3fl/fl controls. There was also no change in the proportion of osteocytes staining positive for phospho-STAT3, suggesting the effect of LepR deletion in Dmp1cre.Socs3fl/fl mice is STAT3-independent. This identifies a new role for leptin signalling in bone which opposes our original hypothesis. Although LepR in osteocytes has no irreplaceable physiological role in normal bone maturation, when STAT3 is hyperactive, LepR in Dmp1Cre-expressing cells supports cortical consolidation.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Thaísa F C de Lima
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Genetics and Molecular Biology, University of Campinas, São Paulo, Brazil
| | - Narelle E McGregor
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Emma C Walker
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Ingrid J Poulton
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Martha Blank
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
35
|
Farhadi Z, Azizian H, Haji-Seyed-Javadi R, Khaksari M. A review: Effects of estrogen and estrogen receptor modulators on leptin resistance: Mechanisms and pathway. OBESITY MEDICINE 2022; 34:100446. [DOI: 10.1016/j.obmed.2022.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
36
|
da Silva RKB, de Vasconcelos DAA, da Silva AVE, da Silva RPB, de Oliveira Neto OB, Galindo LCM. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sci 2022; 307:120880. [PMID: 35963301 DOI: 10.1016/j.lfs.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Maternal exposure to a high-fat diet (HFD) during pregnancy and lactation has been related to changes in the hypothalamic circuits involved in the regulation of food intake. Furthermore, maternal HFD during the critical period of development can alter the offspring's metabolic programming with long-term repercussions. This study systematically reviewed the effects of HFD consumption during pre-pregnancy, pregnancy and/or lactation. The main outcomes evaluated were food intake; body weight; cellular or molecular aspects of peptides and hypothalamic receptors involved in the regulation of energy balance in mice. Two independent authors performed a search in the electronic databases Medline/PubMed, LILACS, Web of Science, EMBASE, SCOPUS and Sigle via Open Gray. Included were experimental studies of mice exposed to HFD during pregnancy and/or lactation that evaluated body composition, food intake, energy expenditure and hypothalamic components related to energy balance. Internal validity was assessed using the SYRCLE risk of bias. The Kappa index was measured to analyze the agreement between reviewers. The PRISMA statement was used to report this systematic review. Most studies demonstrated that there was a higher body weight, body fat deposits and food intake, as well as alterations in the expression of hypothalamic neuropeptides in offspring that consumed HFD. Therefore, the maternal diet can affect the phenotype and metabolism of the offspring, in addition to harming the hypothalamic circuits and favoring the orexigenic pathways.
Collapse
Affiliation(s)
- Regina Katiuska Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Diogo Antonio Alves de Vasconcelos
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Roxana Patrícia Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | | | - Lígia Cristina Monteiro Galindo
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Anatomy, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
37
|
Fernández-Felipe J, Plaza A, Domínguez G, Pérez-Castells J, Cano V, Cioni F, Del Olmo N, Ruiz-Gayo M, Merino B. Effect of Lauric vs. Oleic Acid-Enriched Diets on Leptin Autoparacrine Signalling in Male Mice. Biomedicines 2022; 10:biomedicines10081864. [PMID: 36009410 PMCID: PMC9405789 DOI: 10.3390/biomedicines10081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diets enriched with lauric acid (SOLF) do not enhance leptin production despite expanding white adipose tissue (WAT). Our study aimed at identifying the influence of SOLF vs. oleic acid-enriched diets (UOLF) on the autoparacrine effect of leptin and was carried out on eight-week-old mice consuming control chow, UOLF or SOLF. Phosphorylation of kinases integral to leptin receptor (LepR) signalling pathways (705Tyr-STAT3, 473Ser-Akt, 172Thr-AMPK), adipocyte-size distribution, fatty acid content, and gene expression were analyzed in WAT. SOLF enhanced basal levels of phosphorylated proteins but reduced the ability of leptin to enhance kinase phosphorylation. In contrast, UOLF failed to increase basal levels of phosphorylated proteins and did not modify the effect of leptin. Both SOLF and UOLF similarly affected adipocyte-size distribution, and the expression of genes related with adipogenesis and inflammation. WAT composition was different between groups, with SOLF samples mostly containing palmitic, myristic and lauric acids (>48% w/w) and UOLF WAT containing more than 80% (w/w) of oleic acid. In conclusion, SOLF appears to be more detrimental than UOLF to the autoparacrine leptin actions, which may have an impact on WAT inflammation. The effect of SOLF and UOLF on WAT composition may affect WAT biophysical properties, which are able to condition LepR signaling.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Laboratory of Bioactive Products and Metabolic Syndrome (BIOPROMET), IMDEA Food Institute, 28049 Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Francesco Cioni
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Nuria Del Olmo
- Departament of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| |
Collapse
|
38
|
Palus-Chramiec K, Sanetra AM, Lewandowski MH. Day/night Changes in the Dorsomedial Hypothalamus Firing Responses to Ghrelin are Modulated by High-fat Diet. Neuroscience 2022; 494:167-177. [PMID: 35569641 DOI: 10.1016/j.neuroscience.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Dorsomedial hypothalamus (DMH) is a part of the feeding center involved in food intake and regulation of the metabolism. DMH neurons express many receptors for different metabolic cues which can modulate its network and influence animals' behaviour. One of the metabolic peptides deliveredto this structure is ghrelin, the only well-known hunger signal, produced mainly in the stomach. Diet-induced obesity is a physiological model of obesity widely used in research. Here we investigated how time-of-day and high-fat diet (HFD) affect neuronal networks and the sensitivity to the metabolic information received by the DMH. Our results indicate that even a short period of HFD (2-3 weeks) consumption can cause dysregulation of the DMH neuronal network, manifested as a disruption of the day/night pattern of basal activity and altered sensitivity to incoming information. We showed for the first time a day/night pattern of sensitivity to ghrelin in the DMH, with a higher level during the behaviorally active phase of animals. This day/night rhythm of sensitivity to ghrelin was reversed in HFD group, causing a stronger effect during the non-active phase. After prolongation of the HFD consumption to 7-8 weeks we observed an increase in the responsiveness to ghrelin, than during the short-term diet.
Collapse
Affiliation(s)
- K Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - A M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - M H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| |
Collapse
|
39
|
SOCS3 Ablation in Leptin Receptor-Expressing Cells Causes Autonomic and Cardiac Dysfunctions in Middle-Aged Mice despite Improving Energy and Glucose Metabolism. Int J Mol Sci 2022; 23:ijms23126484. [PMID: 35742928 PMCID: PMC9223472 DOI: 10.3390/ijms23126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Leptin resistance is a hallmark of obesity. Treatments aiming to improve leptin sensitivity are considered a promising therapeutical approach against obesity. However, leptin receptor (LepR) signaling also modulates several neurovegetative aspects, such as the cardiovascular system and hepatic gluconeogenesis. Thus, we investigated the long-term consequences of increased leptin sensitivity, considering the potential beneficial and deleterious effects. To generate a mouse model with increased leptin sensitivity, the suppressor of cytokine signaling 3 (SOCS3) was ablated in LepR-expressing cells (LepR∆SOCS3 mice). LepR∆SOCS3 mice displayed reduced food intake, body adiposity and weight gain, as well as improved glucose tolerance and insulin sensitivity, and were protected against aging-induced leptin resistance. Surprisingly, a very high mortality rate was observed in aging LepR∆SOCS3 mice. LepR∆SOCS3 mice showed cardiomyocyte hypertrophy, increased myocardial fibrosis and reduced cardiovascular capacity. LepR∆SOCS3 mice exhibited impaired post-ischemic cardiac functional recovery and middle-aged LepR∆SOCS3 mice showed substantial arhythmic events during the post-ischemic reperfusion period. Finally, LepR∆SOCS3 mice exhibited fasting-induced hypoglycemia and impaired counterregulatory response to glucopenia associated with reduced gluconeogenesis. In conclusion, although increased sensitivity to leptin improved the energy and glucose homeostasis of aging LepR∆SOCS3 mice, major autonomic/neurovegetative dysfunctions compromised the health and longevity of these animals. Consequently, these potentially negative aspects need to be considered in the therapies that increase leptin sensitivity chronically.
Collapse
|
40
|
Ruiz S, Vázquez F, Pellitero S, Puig-Domingo M. ENDOCRINE OBESITY: Pituitary dysfunction in obesity. Eur J Endocrinol 2022; 186:R79-R92. [PMID: 35333754 DOI: 10.1530/eje-21-0899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Obesity, the growing pandemic of the 21st century, is associated with multiple organ dysfunction, either by a direct increase in fatty organ content or by indirect modifications related to general metabolic changes driven by a specific increase in biologic products. The pituitary gland is not protected against such a situation. Different hypothalamic-pituitary axes experience functional modifications initially oriented to an adaptive situation that, with years of obesity, turn to maladaptive dynamics that contribute to perpetuating obesity and specific symptoms of their hormonal nature. This paper reviews the recent knowledge on obesity-related pituitary dysfunction and its pathogenic mechanisms and discusses potential therapeutic actions aimed at contributing to ameliorating the complex treatment of severe cases of obesity.
Collapse
Affiliation(s)
- Sabina Ruiz
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Federico Vázquez
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Silvia Pellitero
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Catalonia, Spain
| |
Collapse
|
41
|
Bhat MH, Kokab N, Bhat JA, Shah PA. Serum leptin levels in acute ischemic stroke patients: Data from a tertiary care institution from Kashmir Valley of Northern India. TURKISH JOURNAL OF NEUROLOGY 2022. [DOI: 10.4274/tnd.2022.33254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
42
|
Oliveira LDC, Morais GP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, de Freitas EC, Rorato R, da Silva ASR. Using Intermittent Fasting as a Non-pharmacological Strategy to Alleviate Obesity-Induced Hypothalamic Molecular Pathway Disruption. Front Nutr 2022; 9:858320. [PMID: 35445066 PMCID: PMC9014844 DOI: 10.3389/fnut.2022.858320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Intermittent fasting (IF) is a popular intervention used to fight overweight/obesity. This condition is accompanied by hypothalamic inflammation, limiting the proper signaling of molecular pathways, with consequent dysregulation of food intake and energy homeostasis. This mini-review explored the therapeutic modulation potential of IF regarding the disruption of these molecular pathways. IF seems to modulate inflammatory pathways in the brain, which may also be correlated with the brain-microbiota axis, improving hypothalamic signaling of leptin and insulin, and inducing the autophagic pathway in hypothalamic neurons, contributing to weight loss in obesity. Evidence also suggests that when an IF protocol is performed without respecting the circadian cycle, it can lead to dysregulation in the expression of circadian cycle regulatory genes, with potential health damage. In conclusion, IF may have the potential to be an adjuvant treatment to improve the reestablishment of hypothalamic responses in obesity.
Collapse
Affiliation(s)
- Luciana da Costa Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Gustavo Paroschi Morais
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, São Paulo, Brazil
| | - Ellen C. de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Postgraduate Program in Molecular Biology, Laboratory of Stress Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
- Rodrigo Rorato,
| | - Adelino Sanchez R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
- *Correspondence: Adelino Sanchez R. da Silva,
| |
Collapse
|
43
|
Obesity and Leptin Resistance in the Regulation of the Type I Interferon Early Response and the Increased Risk for Severe COVID-19. Nutrients 2022; 14:nu14071388. [PMID: 35406000 PMCID: PMC9002648 DOI: 10.3390/nu14071388] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the “Suppressor Of Cytokine Signaling 1 and 3” (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the “typical western” conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.
Collapse
|
44
|
Farhadi Z, Khaksari M, Azizian H, Dabiri S. The brain neuropeptides and STAT3 mediate the inhibitory effect of 17-β Estradiol on central leptin resistance in young but not aged female high-fat diet mice. Metab Brain Dis 2022; 37:625-637. [PMID: 35031929 DOI: 10.1007/s11011-021-00884-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022]
Abstract
Aging and menopause effect on body composition and energy balance. Estrogen (E2) plays an important role in body's metabolism. The aim of the present study was to determine changes in leptin function in young intact and ovariectomized (OVX) animals in comparison to the aged animals treated with E2. Young (Intact and OVX 4 months) and aged (19-21 months) female mice were fed High-fat diet (HFD) for 12 weeks and, then they were divided into eight groups including: Intact + OIL, Intact + E2, Intact + Pair body weight (PBW), OVX + OIL, OVX + E2, OVX + PBW, Aged + OIL, and Aged + E2. E2 was administered subcutaneously every four days for four weeks. Responsiveness to leptin was assessed by measuring energy balance components. Results showed that eating HFD increased weight and calorie consumption in young mice, and chronic treatment with E2 decreased both these variables in young animals. E2 only improved the sensitivity to leptin in young animals. Treatment with E2 resulted in increased α-MSH neuropeptide, reduced NPY and AgRP neuropeptides in the brain, and decreased serum leptin in the young animals. Also, treatment with E2 increased the expression of p-STAT3 molecular level in the hypothalamic arcuate nucleus (ARC) in the young animals. Our results indicated that response to E2 depended on age and E2 protects young HFD fed mice from obesity and improves leptin sensitivity.
Collapse
Affiliation(s)
- Zeinab Farhadi
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hossein Azizian
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
45
|
Ciriello J, Moreau JM, Caverson MM, Moranis R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front Physiol 2022; 12:767318. [PMID: 35153807 PMCID: PMC8829507 DOI: 10.3389/fphys.2021.767318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), a pathophysiological manifestation of obstructive sleep apnea (OSA), is strongly correlated with obesity, as patients with the disease experience weight gain while exhibiting elevated plasma levels of leptin. This study was done to determine whether a relationship may exist between CIH and obesity, and body energy balance and leptin signaling during CIH. Sprague-Dawley rats were exposed to 96 days of CIH or normoxic control conditions, and were assessed for measures of body weight, food and water intake, and food conversion efficiency. At the completion of the study leptin sensitivity, locomotor activity, fat pad mass and plasma leptin levels were determined within each group. Additionally, the hypothalamic arcuate nucleus (ARC) was isolated and assessed for changes in the expression of proteins associated with leptin receptor signaling. CIH animals were found to have reduced locomotor activity and food conversion efficiency. Additionally, the CIH group had increased food and water intake over the study period and had a higher body weight compared to normoxic controls at the end of the study. Basal plasma concentrations of leptin were significantly elevated in CIH exposed animals. To test whether a resistance to leptin may have occurred in the CIH animals due to the elevated plasma levels of leptin, an acute exogenous (ip) leptin (0.04 mg/kg carrier-free recombinant rat leptin) injection was administered to the normoxic and CIH exposed animals. Leptin injections into the normoxic controls reduced their food intake, whereas CIH animals did not alter their food intake compared to vehicle injected CIH animals. Within ARC, CIH animals had reduced protein expression of the short form of the obese (leptin) receptor (isoform OBR100) and showed a trend toward an elevated protein expression of the long form of obese (leptin) receptor (OBRb). In addition, pro-opiomelanocortin (POMC) protein expression was reduced, but increased expression of the phosphorylated extracellular-signal-regulated kinase 1/2 (pERK1/2) and of the suppressor of cytokine signaling 3 (SOCS3) proteins was observed in the CIH group, with little change in phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Taken together, these data suggest that long-term exposure to CIH, as seen in obstructive sleep apnea, may contribute to a state of leptin resistance promoting an increase in body weight.
Collapse
|
46
|
Nomura H, Son C, Aotani D, Shimizu Y, Katsuura G, Noguchi M, Kusakabe T, Tanaka T, Miyazawa T, Hosoda K, Nakao K. Impaired leptin responsiveness in the nucleus accumbens of leptin-overexpressing transgenic mice with dysregulated sucrose and lipid preference independent of obesity. Neurosci Res 2021; 177:94-102. [PMID: 34971637 DOI: 10.1016/j.neures.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022]
Abstract
While hypothalamic leptin resistance can occur prior to establishment of obesity, clarification is needed as to whether the impaired response to leptin in the reward-related nuclei occurs independently of obesity. To answer this question, we attempted to dissociate the normally coexisting leptin resistance from obesity. We investigated phenotypes of leptin-overexpressing transgenic mice fed for 1 week with 60 % high-fat diet (HFD) (LepTg-HFD1W mice). After 1 week, we observed that LepTg-HFD1W mice weighed as same as wild type (WT) mice fed standard chow diet (CD) for 1 week (WT-CD1W mice). However, compared to WT-CD1W mice, LepTg-HFD1W mice exhibited attenuated leptin-induced anorexia, decreased leptin-induced c-fos immunostaining in nucleus accumbens (NAc), one of important site of reward system, decreased leptin-stimulated pSTAT3 immunostaining in hypothalamus. Furthermore, neither sucrose nor lipid preference was suppressed by leptin in LepTg-HFD1W mice. On the contrary, leptin significantly suppressed both preferences in WT mice fed HFD (WT-HFD1 W mice). These results indicate that leptin responsiveness decreases in NAc independently of obesity. Additionally, in this situation, suppressive effect of leptin on the hedonic feeding results in impaired regulation. Such findings suggest the impaired leptin responsiveness in NAc partially contributes to dysregulated hedonic feeding behavior independently of obesity.
Collapse
Affiliation(s)
- Hidenari Nomura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Cheol Son
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiyuki Shimizu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Social and Behavioral Medicine, Division of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michio Noguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Tanaka
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Miyazawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
47
|
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov Today 2021; 27:822-830. [PMID: 34767960 DOI: 10.1016/j.drudis.2021.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity is a major cause of many chronic metabolic disorders, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. Insulin resistance is often associated with metabolic unhealthy obesity (MUO). Therapeutic approaches aiming to improve insulin sensitivity are believed to be central for the prevention and treatment of MUO. However, current antiobesity drugs are reported as multitargeted and their insulin-sensitizing effects remain unclear. In this review, we discuss current understanding of the mechanisms of insulin resistance from the aspects of endocrine disturbance, inflammation, oxidative, and endoplasmic reticulum stress (ERS). We then summarize the antiobesity drugs, focusing on their effects on insulin sensitivity. Finally, we discuss strategies for obesity treatment.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
48
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
49
|
Abstract
Leptin for over 25 years has been a central theme in the study of appetite, obesity, and starvation. As the major site of leptin production is peripheral, and the site of action of greatest interest is the hypothalamus, how leptin accesses the central nervous system (CNS) and crosses the blood-brain barrier (BBB) has been of great interest. We review here the ongoing research that addresses fundamental questions such as the sites of leptin resistances in obesity and other conditions, the causes of resistances and their relations to one another, the three barrier sites of entry into the CNS, why recent studies using suprapharmacological doses cannot address these questions but give insight into nonsaturable entry of leptin into the CNS, and how that might be useful in using leptin therapeutically. The current status of the controversy of whether the short form of the leptin receptor acts as the BBB leptin transporter and how obesity may transform leptin transport is reviewed. Review of these and other topics summarizes in a new appreciation of what leptin may have actually evolved to do and what physiological role leptin resistance may play. © 2021 American Physiological Society. Compr Physiol 11:1-19, 2021.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
50
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|