1
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
2
|
Non-genomic Effect of Estradiol on the Neurovascular Unit and Possible Involvement in the Cerebral Vascular Accident. Mol Neurobiol 2023; 60:1964-1985. [PMID: 36596967 DOI: 10.1007/s12035-022-03178-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Cerebrovascular diseases, such as ischemic cerebral vascular accident (CVA), are responsible for causing high rates of morbidity, mortality, and disability in the population. The neurovascular unit (NVU) during and after ischemic CVA plays crucial roles in cell regulation and preservation, the immune and inflammatory response, and cell and/or tissue survival and repair. Cellular responses to 17β-estradiol (E2) can be triggered by two mechanisms: one called classical or genomic, which is due to the activation of the "classical" nuclear estrogen receptors α (ERα) and β (ERβ), and the non-genomic or rapid mechanism, which is due to the activation of the G protein-coupled estrogen receptor 1 (GPER) that is located in the plasma membrane and some in intracellular membranes, such as in the Golgi apparatus and endoplasmic reticulum. Nuclear receptors can regulate gene expression and cellular functions. On the contrary, activating the GPER by E2 and/or its G-1 agonist triggers several rapid cell signaling pathways. Therefore, E2 or its G-1 agonist, by mediating GPER activation and/or expression, can influence several NVU cell types. Most studies argue that the activation of the GPER may be used as a potential therapeutic target in various pathologies, such as CVA. Thus, with this review, we aimed to summarize the existing literature on the role of GPER mediated by E2 and/or its agonist G-1 in the physiology and pathophysiology of NVU.
Collapse
|
3
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
4
|
Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer's Disease? Int J Mol Sci 2023; 24:ijms24043205. [PMID: 36834617 PMCID: PMC9964432 DOI: 10.3390/ijms24043205] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis. The focus of this review is to evaluate clinical and observational studies in women, which have investigated the impact of estrogens on cognition or attempted to answer the prevailing question regarding the use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. The articles were retrieved through a systematic review of the databases: OVID, SCOPUS, and PubMed (keywords "memory", "dementia," "cognition," "Alzheimer's disease", "estrogen", "estradiol", "hormone therapy" and "hormone replacement therapy" and by searching reference sections from identified studies and review articles). This review presents the relevant literature available on the topic and discusses the mechanisms, effects, and hypotheses that contribute to the conflicting findings of HRT in the prevention and treatment of age-related cognitive deficits and AD. The literature suggests that estrogens have a clear role in modulating dementia risk, with reliable evidence showing that HRT can have both a beneficial and a deleterious effect. Importantly, recommendation for the use of HRT should consider the age of initiation and baseline characteristics, such as genotype and cardiovascular health, as well as the dosage, formulation, and duration of treatment until the risk factors that modulate the effects of HRT can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
|
5
|
Means JC, Lopez AA, Koulen P. Estrogen Protects Optic Nerve Head Astrocytes Against Oxidative Stress by Preventing Caspase-3 Activation, Tau Dephosphorylation at Ser 422 and the Formation of Tau Protein Aggregates. Cell Mol Neurobiol 2021; 41:449-458. [PMID: 32385548 PMCID: PMC7648721 DOI: 10.1007/s10571-020-00859-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Glaucoma is a neurodegenerative disorder that leads to the slow degeneration of retinal ganglion cells, and results in damage to the optic nerve and concomitant vision loss. As in other disorders affecting the viability of central nervous system neurons, neurons affected by glaucoma do not have the ability to regenerate after injury. Recent studies indicate a critical role for optic nerve head astrocytes (ONHAs) in this process of retinal ganglion cell degeneration. Cleavage of tau, a microtubule stabilizing protein and constituent of neurofibrillary tangles (NFT), plays a major part in the mechanisms that lead to toxicity in CNS neurons and astrocytes. Here, we tested the hypothesis that estrogen, a pleiotropic neuro- and cytoprotectant with high efficacy in the CNS, prevents tau cleavage, and hence, protects ONHAs against cell damage caused by oxidative stress. Our results indicate that estrogen prevents caspase-3 mediated tau cleavage, and thereby decreases the levels of the resulting form of proteolytically cleaved tau protein, which leads to a decrease in NFT formation, which requires proteolytically cleaved tau protein. Overall, our data propose that by stopping the reduction of estrogen levels involved with aging the sensitivity of the optic nerve to glaucomatous damage might be reduced. Furthermore, our data suggest that therapeutic use of estrogen may be beneficial in slowing or preventing the onset or severity of neurodegenerative diseases such as glaucoma and potentially also other degenerative diseases of the CNS through direct control of posttranslational modifications of tau protein.
Collapse
Affiliation(s)
- John C Means
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Adam A Lopez
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA.
- Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, USA.
| |
Collapse
|
6
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
7
|
Wang H, Shen Y, Chuang H, Chiu C, Ye Y, Zhao L. Neuroinflammation in Alzheimer's Disease: Microglia, Molecular Participants and Therapeutic Choices. Curr Alzheimer Res 2020; 16:659-674. [PMID: 31580243 DOI: 10.2174/1567205016666190503151648] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/21/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is the world's most common dementing illness. It is pathologically characterized by β-amyloid accumulation, extracellular senile plaques and intracellular neurofibrillary tangles formation, and neuronal necrosis and apoptosis. Neuroinflammation has been widely recognized as a crucial process that participates in AD pathogenesis. In this review, we briefly summarized the involvement of microglia in the neuroinflammatory process of Alzheimer's disease. Its roles in the AD onset and progression are also discussed. Numerous molecules, including interleukins, tumor necrosis factor alpha, chemokines, inflammasomes, participate in the complex process of AD-related neuroinflammation and they are selectively discussed in this review. In the end of this paper from an inflammation- related perspective, we discussed some potential therapeutic choices.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Shen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haoyu Chuang
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital, Tainan, Taiwan.,Department of Neurosurgery, China Medical University Bei-Gang Hospital, Yun-Lin, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chengdi Chiu
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Front Cell Neurosci 2020; 14:129. [PMID: 32508595 PMCID: PMC7248249 DOI: 10.3389/fncel.2020.00129] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Due to their postmitotic status, the potential for neurons to undergo senescence has historically received little attention. This lack of attention has extended to some non-postmitotic cells as well. Recently, the study of senescence within the central nervous system (CNS) has begun to emerge as a new etiological framework for neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The presence of senescent cells is known to be deleterious to non-senescent neighboring cells via development of a senescence-associated secretory phenotype (SASP) which includes the release of inflammatory, oxidative, mitogenic, and matrix-degrading factors. Senescence and the SASP have recently been hailed as an alternative to the amyloid cascade hypothesis and the selective killing of senescence cells by senolytic drugs as a substitute for amyloid beta (Aß) targeting antibodies. Here we call for caution in rejecting the amyloid cascade hypothesis and to the dismissal of Aß antibody intervention at least in early disease stages, as Aß oligomers (AßO), and cellular senescence may be inextricably linked. We will review literature that portrays AßO as a stressor capable of inducing senescence. We will discuss research on the potential role of secondary senescence, a process by which senescent cells induce senescence in neighboring cells, in disease progression. Once this seed of senescent cells is present, the elimination of senescence-inducing stressors like Aß would likely be ineffective in abrogating the spread of senescence. This has potential implications for when and why AßO clearance may or may not be effective as a therapeutic for AD. The selective killing of senescent cells by the immune system via immune surveillance naturally curtails the SASP and secondary senescence outside the CNS. Immune privilege restricts the access of peripheral immune cells to the brain parenchyma, making the brain a safe harbor for the spread of senescence and the SASP. However, an increasingly leaky blood brain barrier (BBB) compromises immune privilege in aging AD patients, potentially enabling immune infiltration that could have detrimental consequences in later AD stages. Rather than an alternative etiology, senescence itself may constitute an essential component of the cascade in the amyloid cascade hypothesis.
Collapse
|
9
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
10
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
11
|
Merlo S, Spampinato SF, Sortino MA. Estrogen and Alzheimer's disease: Still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 2017; 817:51-58. [DOI: 10.1016/j.ejphar.2017.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/13/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
|
12
|
Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 2017; 113:652-660. [DOI: 10.1016/j.neuropharm.2016.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
|
13
|
Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafò A, Leggio GM, Nicoletti F, Brunello N, Drago F, Sortino MA, Copani A. Fluoxetine Prevents Aβ 1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front Pharmacol 2016; 7:389. [PMID: 27826242 PMCID: PMC5078904 DOI: 10.3389/fphar.2016.00389] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Selective reuptake inhibitors (SSRIs), such as fluoxetine and sertraline, increase circulating Transforming-Growth-Factor-β1 (TGF-β1) levels in depressed patients, and are currently studied for their neuroprotective properties in Alzheimer’s disease. TGF-β1 is an anti-inflammatory cytokine that exerts neuroprotective effects against β-amyloid (Aβ)-induced neurodegeneration. In the present work, the SSRI, fluoxetine, was tested for the ability to protect cortical neurons against 1 μM oligomeric Aβ1-42-induced toxicity. At therapeutic concentrations (100 nM–1 μM), fluoxetine significantly prevented Aβ-induced toxicity in mixed glia-neuronal cultures, but not in pure neuronal cultures. Though to a lesser extent, also sertraline was neuroprotective in mixed cultures, whereas serotonin (10 nM–10 μM) did not mimick fluoxetine effects. Glia-conditioned medium collected from astrocytes challenged with fluoxetine protected pure cortical neurons against Aβ toxicity. The effect was lost in the presence of a neutralizing antibody against TGF-β1 in the conditioned medium, or when the specific inhibitor of type-1 TGF-β1 receptor, SB431542, was added to pure neuronal cultures. Accordingly, a 24 h treatment of cortical astrocytes with fluoxetine promoted the release of active TGF-β1 in the culture media through the conversion of latent TGF-β1 to mature TGF-β1. Unlike fluoxetine, both serotonin and sertraline did not stimulate the astrocyte release of active TGF-β1. We conclude that fluoxetine is neuroprotective against Aβ toxicity via a paracrine signaling mediated by TGF-β1, which does not result from a simplistic SERT blockade.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of CataniaCatania, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria SantissimaTroina, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Antonio Munafò
- Department of Drug Sciences, University of Catania Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico NeuromedPozzilli, Italy; Department of Physiology and Pharmacology, University of Rome SapienzaRome, Italy
| | - Nicoletta Brunello
- Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria Santissima Troina, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Agata Copani
- Department of Drug Sciences, University of CataniaCatania, Italy; Institute of Biostructure and Bioimaging, National Research CouncilCatania, Italy
| |
Collapse
|
14
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
15
|
Doke M, Matsuwaki T, Yamanouchi K, Nishihara M. Lack of estrogen receptor α in astrocytes of progranulin-deficient mice. J Reprod Dev 2016; 62:547-551. [PMID: 27440553 PMCID: PMC5177971 DOI: 10.1262/jrd.2016-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Progranulin (PGRN) is a multifunctional growth factor with functions in neuroprotection, anti-inflammation, and neural progenitor cell proliferation. These
functions largely overlap with the actions of estrogen in the brain. Indeed, we have previously shown that PGRN mediates the functions of estrogen, such as
masculinizing the rodent brain and promoting adult neurogenesis. To evaluate the underlying mechanism of PGRN in mediating the actions of estrogen, the
localization of estrogen receptor α (ERα) in the brains of wild-type (WT) and PGRN-deficient (KO) mice was investigated. First, double-labeling
immunofluorescence was performed for ERα with neuronal nuclei (NeuN), ionized calcium-binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein
(GFAP), as markers for neurons, microglia, and astrocytes, respectively, in female mice in diestrous and estrous stages. ERα-immunoreactive (IR) cells were
widespread and co-localized with NeuN in brain sections analyzed (bregma –1.06 to –3.16 mm) of both WT and KO mice. In contrast, expression of ERα was not
observed in Iba1-IR cells from both genotypes. Interestingly, although ERα was co-localized with GFAP in WT mice, virtually no ERα expression was discernible in
GFAP-IR cells in KO mice. Next, the brains of ovariectomized adult female, adult male, and immature female mice were subjected to immunostaining for ERα and
GFAP. Again, co-localization of ERα with GFAP was observed in WT mice, whereas this co-localization was not detected in KO mice. These results suggest that PGRN
plays a crucial role in the expression of ERα in astrocytes regardless of the estrous cycle stage, sex, and maturity.
Collapse
Affiliation(s)
- Mio Doke
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
16
|
Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, Firoz CK, Tabrez S. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS Neurosci Ther 2016; 22:342-50. [PMID: 27012165 PMCID: PMC6492877 DOI: 10.1111/cns.12538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
Progesterone, estrogens, and testosterone are the well-known steroidal sex hormones, which have been reported to have "nonreproductive "effects in the brain, specifically in the neuroprotection and neurotrophy. In the last one decade, there has been a surge in the research on the role of these hormones in neuroprotection and their positive impact on different brain injuries. The said interest has been sparked by a desire to understand the action and mechanisms of these steroidal sex hormones throughout the body. The aim of this article was to highlight the potential outcome of the steroidal hormones, viz. progesterone, estrogens, and testosterone in terms of their role in neuroprotection and other brain injuries. Their possible mechanism of action at both genomic and nongenomic level will be also discussed. As far as our knowledge goes, we are for the first time reporting neuroprotective effect and possible mechanism of action of these hormones in a single article.
Collapse
Affiliation(s)
- Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nahida Siddiqui
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Rashid Ali Khan
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW, Australia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Bains M, Roberts JL. Estrogen protects against dopamine neuron toxicity in primary mesencephalic cultures through an indirect P13K/Akt mediated astrocyte pathway. Neurosci Lett 2015; 610:79-85. [PMID: 26520464 DOI: 10.1016/j.neulet.2015.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
Abstract
Astrocytes regulate neuronal homeostasis and have been implicated in affecting the viability and functioning of surrounding neurons under stressed and injured conditions. Previous data from our lab suggests indirect actions of estrogen through ERα in neighboring astroglia to protect dopamine neurons against 1-methyl-4-phenylpyridinium (MPP(+)) toxicity in mouse mesencephalic cultures. We further evaluate estrogen signaling in astrocytes and the mechanism of estrogen's indirect neuroprotective effects on dopamine neurons. Primary mesencephalic cultures pre-treated with 17β-estradiol and the membrane impermeable estrogen, E2-BSA, were both neuroprotective against MPP(+) -induced dopamine neuron toxicity, suggesting membrane-initiated neuroprotection. ERα was found in the plasma membrane of astrocyte cultures and colocalized with the lipid raft marker, flotillin-1. A 17β-estradiol time course revealed a significant increase in Akt, which was inhibited by the PI3 kinase inhibitor, LY294004. Estrogen conditioned media collected from pure astrocyte cultures rescued glial deficient mesencephalic cultures from MPP(+). This indirect estrogen-mediated neuroprotective effect in mesencephalic cultures was significantly reduced when PI3 kinase signaling in astrocytes was blocked prior to collecting estrogen-conditioned media using the irreversible PI3 kinase inhibitor, Wortmannin. Estrogen signaling via astrocytes is rapidly initiated at the membrane level and requires PI3 kinase signaling in order to protect primary mesencephalic dopamine neurons from MPP(+) neurotoxicity.
Collapse
Affiliation(s)
- Mona Bains
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United states.
| | - James L Roberts
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United states
| |
Collapse
|
18
|
G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci 2015; 35:2384-97. [PMID: 25673833 DOI: 10.1523/jneurosci.1298-14.2015] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and interspersed interneurons, especially those in the hilus of the dentate gyrus. Diffuse GPER1-IR was found in all lamina but was most dense in stratum lucidum of CA3. Ultrastructural analysis revealed discrete extranuclear GPER1-IR affiliated with the plasma membrane and endoplasmic reticulum of neuronal perikarya and dendritic shafts, synaptic specializations in dendritic spines, and clusters of vesicles in axon terminals. Moreover, GPER1-IR was found in unmyelinated axons and glial profiles. Overall, the types and amounts of GPER1-labeled profiles were similar between males and females; however, in females elevated estrogen levels generally increased axonal labeling. Some estradiol-induced changes observed in previous studies were replicated by the GPER agonist G1: G1 increased PSD95-IR in strata oriens, lucidum, and radiatum of CA3 in ovariectomized mice 6 h after administration. In contrast, estradiol but not G1 increased Akt phosphorylation levels. Instead, GPER1 actions in the synapse may be due to interactions with synaptic scaffolding proteins, such as SAP97. These results suggest that although estrogen's actions via GPER1 may converge on the same synaptic elements, different pathways are used to achieve these actions.
Collapse
|
19
|
Prakash A, Kalra J, Mani V, Ramasamy K, Majeed ABA. Pharmacological approaches for Alzheimer’s disease: neurotransmitter as drug targets. Expert Rev Neurother 2014; 15:53-71. [DOI: 10.1586/14737175.2015.988709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2014; 16:17-29. [PMID: 25423896 DOI: 10.1038/nrn3856] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17β-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, E-28040 Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| |
Collapse
|
21
|
Humphreys GI, Ziegler YS, Nardulli AM. 17β-estradiol modulates gene expression in the female mouse cerebral cortex. PLoS One 2014; 9:e111975. [PMID: 25372139 PMCID: PMC4221195 DOI: 10.1371/journal.pone.0111975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/10/2014] [Indexed: 01/13/2023] Open
Abstract
17β-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination, phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic hormonal environment.
Collapse
Affiliation(s)
- Gwendolyn I. Humphreys
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yvonne S. Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ann M. Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Karki P, Smith K, Johnson J, Lee E. Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-α in estrogen-induced upregulation of glutamate transporters in astrocytes. Mol Cell Endocrinol 2014; 389:58-64. [PMID: 24447465 PMCID: PMC4040305 DOI: 10.1016/j.mce.2014.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/31/2023]
Abstract
Extensive studies from the past decade have completely revolutionized our understanding about the role of astrocytes in the brain from merely supportive cells to an active role in various physiological functions including synaptic transmission via cross-talk with neurons and neuroprotection via releasing neurotrophic factors. Particularly, numerous studies have reported that astrocytes mediate the neuroprotective effects of 17β-estradiol (E2) and selective estrogen receptor modulators (SERMs) in various clinical and experimental models of neuronal injury. Astrocytes contain two main glutamate transporters, glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1), that play a key role in preventing excitotoxic neuronal death, a process associated with most neurodegenerative diseases. E2 has been shown to increase expression of both GLAST and GLT-1 mRNA and protein and glutamate uptake in astrocytes. Growth factors such as transforming growth factor-α (TGF-α) appear to mediate E2-induced enhancement of these transporters. These findings suggest that E2 exerts neuroprotection against excitotoxic neuronal injuries, at least in part, by enhancing astrocytic glutamate transporter levels and function. Therefore, the present review will discuss proposed mechanisms involved in astrocyte-mediated E2 neuroprotection, with a focus on glutamate transporters.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Keisha Smith
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - James Johnson
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Eunsook Lee
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
23
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
24
|
Liu MH, Lin YS, Sheu SY, Sun JS. Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutr Neurosci 2013; 12:123-34. [DOI: 10.1179/147683009x423274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
26
|
Spampinato SF, Merlo S, Molinaro G, Battaglia G, Bruno V, Nicoletti F, Sortino MA. Dual effect of 17β-estradiol on NMDA-induced neuronal death: involvement of metabotropic glutamate receptor 1. Endocrinology 2012; 153:5940-8. [PMID: 23077075 DOI: 10.1210/en.2012-1799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pretreatment with 10 nm 17β-estradiol (17βE2) or 100 μm of the metabotropic glutamate 1 receptor (mGlu1R) agonist, dihydroxyphenylglycine (DHPG), protected neurons against N-methyl-d-aspartate (NMDA) toxicity. This effect was sensitive to blockade of both estrogen receptors and mGlu1R by their respective antagonists. In contrast, 17βE2 and/or DHPG, added after a low-concentration NMDA pulse (45 μm), produced an opposite effect, i.e. an exacerbation of NMDA toxicity. Again this effect was prevented by both receptor antagonists. In support of an interaction of estrogen receptors and mGlu1R in mediating a neurotoxic response, exacerbation of NMDA toxicity by 17βE2 disappeared when cultures were treated with DHPG prior to NMDA challenge, and conversely, potentiation of NMDA-induced cell death by DHPG was prevented by pretreatment with 17βE2. Addition of calpain III inhibitor (10 μm), 2 h before NMDA, prevented the increased damage induced by the two agonists, an affect that can be secondary to cleavage of mGlu1R by calpain. Accordingly, NMDA stimulation reduced expression of the full-length (140 kDa) mGluR1, an effect partially reversed by calpain inhibitor. Finally, in the presence of NMDA, the ability of 17βE2 to stimulate phosphorylation of AKT and ERK was impaired. Pretreatment with calpain inhibitor prevented the reduction of phosphorylated ERK but had no significant effect on phosphorylated AKT. Accordingly, the inhibition of ERK signaling by U0126 (1 μm) counteracted the effect of calpain inhibition on 17βE2-induced exacerbation of NMDA toxicity. The present data confirm the dual role of estrogens in neurotoxicity/neuroprotection and highlight the role of the timing of exposure to estrogens.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee E, Sidoryk-Wegrzynowicz M, Farina M, Rocha JBT, Aschner M. Estrogen attenuates manganese-induced glutamate transporter impairment in rat primary astrocytes. Neurotox Res 2012; 23:124-30. [PMID: 22878846 DOI: 10.1007/s12640-012-9347-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
The astrocytic glutamate transporters (GLT-1, GLAST) are critical for removing excess glutamate from synaptic sites, thereby maintaining glutamate homeostasis within the brain. 17β-Estradiol (E2) is one of the most active estrogen hormones possessing neuroprotective effects both in in vivo and in vitro models, and it has been shown to enhance astrocytic glutamate transporter function (Liang et al. in J Neurochem 80:807-814, 2002; Pawlak et al. in Brain Res Mol Brain Res 138:1-7, 2005). However, E2 is not clinically optimal for neuroprotection given its peripheral feminizing and proliferative effects; therefore, brain selective estrogen receptor modulators (neuro SERMs) (Zhao et al. in Neuroscience 132:299-311, 2005) that specifically target estrogenic mechanisms, but lack the systemic estrogen side effects offer more promising therapeutic modality for the treatment of conditions associated with excessive synaptic glutamate levels. This review highlights recent studies from our laboratory showing that E2 and SERMs effectively reverse glutamate transport inhibition in a manganese (Mn)-induced model of glutamatergic deregulation. Specifically, we discuss mechanisms by which E2 restores the expression and activity of glutamate uptake. We advance the hypothesis that E2 and related compounds, such as tamoxifen may offer a potential therapeutic modality in neurodegenerative disorders, which are characterized by altered glutamate homeostasis.
Collapse
Affiliation(s)
- Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
28
|
The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 2012; 13:8219-8258. [PMID: 22942700 PMCID: PMC3430231 DOI: 10.3390/ijms13078219] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/24/2012] [Accepted: 06/19/2012] [Indexed: 12/26/2022] Open
Abstract
Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.
Collapse
|
29
|
Guo J, Duckles SP, Weiss JH, Li X, Krause DN. 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic Biol Med 2012; 52:2151-60. [PMID: 22554613 PMCID: PMC3377773 DOI: 10.1016/j.freeradbiomed.2012.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/16/2022]
Abstract
17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effects of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis, and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI-182,780) and were mimicked by an ER agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondrial dysfunction as manifested by an increase in cellular reactive oxygen species production, loss of mitochondrial membrane potential, and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI-182,780. Therefore, we conclude that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondrial dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration.
Collapse
Affiliation(s)
- Jiabin Guo
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medicine, Peking University, Beijing 100191, China
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Sue P. Duckles
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| | - John H. Weiss
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| | - Xuejun Li
- State Key Laboratory of Natural Biomimetic Drugs, Department of Pharmacology, School of Basic Medicine, Peking University, Beijing 100191, China
| | - Diana N. Krause
- Department of Pharmacology (J.G., S.P.D., D.N.K), Department of Neurology (J.H.W.), School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Spampinato SF, Molinaro G, Merlo S, Iacovelli L, Caraci F, Battaglia G, Nicoletti F, Bruno V, Sortino MA. Estrogen receptors and type 1 metabotropic glutamate receptors are interdependent in protecting cortical neurons against β-amyloid toxicity. Mol Pharmacol 2012; 81:12-20. [PMID: 21984253 DOI: 10.1124/mol.111.074021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
We examined the interaction between estrogen receptors (ERs) and type 1 metabotropic glutamate receptors (mGlu1 receptors) in mechanisms of neurodegeneration/neuroprotection using mixed cultures of cortical cells challenged with β-amyloid peptide. Both receptors were present in neurons, whereas only ERα but not mGlu1 receptors were found in astrocytes. Addition of 17β-estradiol (17βE2) protected cultured neurons against amyloid toxicity, and its action was mimicked by the selective ERα agonist, 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) as well as by a cell-impermeable bovine serum albumin conjugate of 17βE2. The selective ERβ agonist, diarylpropionitrile (DPN), was only slightly neuroprotective. The mGlu1/5 receptor agonist, 3,5-dihydroxyphenylglycine (DHPG), was also neuroprotective against amyloid toxicity, and its action was abolished by the mGlu1 receptor antagonist, (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone (JNJ 16259685). Neuroprotection by 17βΕ2 or PPT (but not DPN) and DHPG was less than additive, suggesting that ERα and mGlu1 receptors activate the same pathway of cell survival. More important, neuroprotection by 17βΕ2 was abolished not only by the ER antagonist fulvestrant (ICI 182,780) but also by JNJ 16259685, and neuroprotection by DHPG was abolished by ICI 182,780. ERα and mGlu1 receptors were also interdependent in activating the phosphatidylinositol-3-kinase pathway, and pharmacological blockade of this pathway abolished neuroprotection by 17βE2, DHPG, or their combination. These data provide the first evidence that ERα and mGlu1 receptors critically interact in promoting neuroprotection, information that should be taken into account when the impact of estrogen on neurodegeneration associated with central nervous system disorders is examined.
Collapse
|
31
|
Simpkins JW, Perez E, Wang X, Yang S, Wen Y, Singh M. The potential for estrogens in preventing Alzheimer's disease and vascular dementia. Ther Adv Neurol Disord 2011; 2:31-49. [PMID: 19890493 DOI: 10.1177/1756285608100427] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Estrogens are the best-studied class of drugs for potential use in the prevention of Alzheimer's disease (AD). These steroids have been shown to be potent neuroprotectants both in vitro and in vivo, and to exert effects that are consistent with their potential use in prevention of AD. These include the prevention of the processing of amyloid precursor protein (APP) into beta-amyloid (Aß), the reduction in tau hyperphosphorylation, and the elimination of catastrophic attempts at neuronal mitosis. Further, epidemiological data support the efficacy of early postmenopausal use of estrogens for the delay or prevention of AD. Collectively, this evidence supports the further development of estrogen-like compounds for prevention of AD. Several approaches to enhance brain specificity of estrogen action are now underway in an attempt to reduce the side effects of chronic estrogen therapy in AD.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, Center FOR HER (Focused On Resources for her Health, Education and Research), University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | | | | |
Collapse
|
32
|
Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A. Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell Tissue Res 2011; 347:291-301. [PMID: 21879289 DOI: 10.1007/s00441-011-1230-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/07/2011] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage. J Neurosci 2011; 31:6780-90. [PMID: 21543608 DOI: 10.1523/jneurosci.0910-11.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tropomyosin-related kinase B receptor (TrkB) is a neurotrophin receptor important for the synaptic plasticity underlying hippocampal-dependent learning and memory. Because this receptor is widely expressed in hippocampal neurons, the precise location of TrkB activation is likely important for its specific actions. The goal of this study was to identify the precise sites of TrkB activation in the mouse hippocampal formation and to determine any changes in the distribution of activated TrkB under conditions of enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal excitability. Using electron microscopy, we localized TrkB phosphorylated at tyrosine 816 (pTrkB) in the hippocampal formation of male and female mice under conditions of naturally low circulating estradiol and naturally high circulating estradiol, when BDNF expression, TrkB signaling, and synaptic plasticity are enhanced. To compare relative amounts of pTrkB in each group, we counted profiles containing pTrkB-immunoreactivity (pTrkB-ir) in all hippocampal subregions. pTrkB-ir was in axons, axon terminals, dendrites, and dendritic spines of neurons in the hippocampal formation, but the majority of pTrkB-ir localized to presynaptic profiles. pTrkB-ir also was abundant in glial profiles, which were further identified as microglia using immunofluorescence and confocal microscopy. Axonal and glial pTrkB-ir and pTrkB-ir in the CA1 stratum radiatum were more abundant in high-estradiol states (proestrus females) than low-estradiol states (estrus and diestrus females and males). These findings suggest that presynaptic TrkB is positioned to modulate estradiol-mediated and BDNF-dependent synaptic plasticity. Furthermore, they suggest a novel role for TrkB in microglial function in the neuroimmune system.
Collapse
|
34
|
Battaglia G, Cannella M, Riozzi B, Orobello S, Maat-Schieman ML, Aronica E, Busceti CL, Ciarmiello A, Alberti S, Amico E, Sassone J, Sipione S, Bruno V, Frati L, Nicoletti F, Squitieri F. Early defect of transforming growth factor β1 formation in Huntington's disease. J Cell Mol Med 2011; 15:555-71. [PMID: 20082658 PMCID: PMC3922377 DOI: 10.1111/j.1582-4934.2010.01011.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A defective expression or activity of neurotrophic factors, such as brain- and glial-derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor-β (TGF-β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF-β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post-mortem brain tissues showed that TGF-β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF-β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF-β1 formation in asymptomatic R6/2 mice, where blood TGF-β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF-β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF-β1 production is associated with HD. Accordingly, reduced TGF-β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock-in cell lines expressing full-length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF-β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF-β1 levels in the brain may influence the progression of HD.
Collapse
|
35
|
Azcoitia I, Santos-Galindo M, Arevalo MA, Garcia-Segura LM. Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. Eur J Neurosci 2010; 32:1995-2002. [DOI: 10.1111/j.1460-9568.2010.07516.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Actions of estrogens on glial cells: Implications for neuroprotection. Biochim Biophys Acta Gen Subj 2010; 1800:1106-12. [DOI: 10.1016/j.bbagen.2009.10.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/21/2023]
|
37
|
Mitterling KL, Spencer JL, Dziedzic N, Shenoy S, McCarthy K, Waters EM, McEwen BS, Milner TA. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus. J Comp Neurol 2010; 518:2729-43. [PMID: 20506473 PMCID: PMC2879091 DOI: 10.1002/cne.22361] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estrogen receptor-alpha (ERalpha), estrogen receptor-beta (ERbeta), and progestin receptor (PR) immunoreactivities are localized to extranuclear sites in the rat hippocampal formation. Because rats and mice respond differently to estradiol treatment at a cellular level, the present study examined the distribution of ovarian hormone receptors in the dorsal hippocampal formation of mice. For this, antibodies to ERalpha, ERbeta, and PR were localized by light and electron immunomicroscopy in male and female mice across the estrous cycle. Light microscopic examination of the mouse hippocampal formation showed sparse nuclear ERalpha and PR immunoreactivity (-ir) most prominently in the CA1 region and diffuse ERbeta-ir primarily in the CA1 pyramidal cell layer as well as in a few interneurons. Ultrastructural analysis additionally revealed discrete extranuclear ERalpha-, ERbeta-, and PR-ir in neuronal and glial profiles throughout the hippocampal formation. Although extranuclear profiles were detected in all animal groups examined, the amount and types of profiles varied with sex and estrous cycle phase. ERalpha-ir was highest in diestrus females, particularly in dendritic spines, axons, and glia. Similarly, ERbeta-ir was highest in estrus and diestrus females, mainly in dendritic spines and glia. Conversely, PR-ir was highest during proestrus, mostly in axons. Except for very low levels of extranuclear ERbeta-ir in mossy fiber terminals in mice, the labeling patterns in the mice for all three antibodies were similar to the ultrastructural labeling found previously in rats, suggesting that regulation of these receptors is well conserved across the two species.
Collapse
Affiliation(s)
- Katherine L. Mitterling
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Joanna L. Spencer
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Noelle Dziedzic
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Sushila Shenoy
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Katharine McCarthy
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
38
|
Sarafian TA, Montes C, Imura T, Qi J, Coppola G, Geschwind DH, Sofroniew MV. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One 2010; 5:e9532. [PMID: 20224768 PMCID: PMC2835741 DOI: 10.1371/journal.pone.0009532] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 02/08/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Astrocytes exert a wide variety of functions in health and disease and respond to a wide range of signaling pathways, including members of the Janus-kinase signal transducers and activators of transcription (Jak-STAT) family. We have recently shown that STAT3 is an important regulator of astrocyte reactivity after spinal cord injury in vivo[1]. METHODOLOGY/PRINCIPAL FINDINGS Here, we used both a conditional gene deletion strategy that targets the deletion of STAT3 selectively to astrocytes (STAT3-CKO), and a pharmacological inhibitor of JAK-2, AG490, in cultured astrocytes in vitro, to investigate potential functions and molecules influenced by STAT3 signaling in relation to mitochondrial function and oxidative stress. Our findings show that the absence of STAT3 signaling in astrocytes leads to (i) increased production of superoxide anion and other reactive oxygen species and decreased level of glutathione, (ii) decreased mitochondrial membrane potential and decreased ATP production, and (iii) decreased rate of cell proliferation. Many of the differences observed in STAT3-CKO astrocytes were distinctly altered by exposure to rotenone, suggesting a role for complex I of the mitochondrial electron transport chain. Gene expression microarray studies identified numerous changes in STAT3-CKO cells that may have contributed to the identified deficits in cell function. CONCLUSIONS/SIGNIFICANCE Taken together, these STAT3-dependent alterations in cell function and gene expression have relevance to both reactive gliosis and to the support and protection of surrounding cells in neural tissue.
Collapse
Affiliation(s)
- Theodore A Sarafian
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
39
|
DonCarlos LL, Azcoitia I, Garcia-Segura LM. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 2009; 34 Suppl 1:S113-22. [PMID: 19447561 PMCID: PMC2794899 DOI: 10.1016/j.psyneuen.2009.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 12/13/2022]
Abstract
Decreasing levels of sex hormones with aging may have a negative impact on brain function, since this decrease is associated with the progression of neurodegenerative disorders, increased depressive symptoms and other psychological disturbances. Extensive evidence from animal studies indicates that sex steroids, in particular estradiol, are neuroprotective. However, the potential benefits of estradiol therapy for the brain are counterbalanced by negative, life-threatening risks in the periphery. A potential therapeutic alternative to promote neuroprotection is the use of selective estrogen receptor modulators (SERMs), which may be designed to act with tissue selectivity as estrogen receptor agonists in the brain and not in other organs. Currently available SERMs act not only with tissue selectivity, but also with cellular selectivity within the brain and differentially modulate the activation of microglia, astroglia and neurons. Finally, SERMs may promote the interaction of estrogen receptors with the neuroprotective signaling of growth factors, such as the phosphatidylinositol 3-kinase/glycogen synthase kinase 3 pathway.
Collapse
Affiliation(s)
- Lydia L. DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA. Tel: +1-7082164975; Fax: +1-7082163913; e-mail:
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861, Fax: +34-913944981 e-mail:
| | - Luis M. Garcia-Segura
- Instituto Cajal, CSIC, E-28002 Madrid, Spain. Tel:+34-915854729; Fax: +34-915854754; e-mail:
| |
Collapse
|
40
|
Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A. TGF-β1 pathway as a new target for neuroprotection in Alzheimer's disease. CNS Neurosci Ther 2009; 17:237-49. [PMID: 19925479 DOI: 10.1111/j.1755-5949.2009.00115.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 37 million people worldwide. Current drugs for AD are only symptomatic, but do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of ß-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. The identification of the molecular determinants underlying AD pathogenesis is a fundamental step to design new disease-modifying drugs. Recently, a specific impairment of transforming-growth-factor-β1 (TGF-β1) signaling pathway has been demonstrated in AD brain. The deficiency of TGF-β1 signaling has been shown to increase both Aβ accumulation and Aβ-induced neurodegeneration in AD models. The loss of function of TGF-ß1 pathway seems also to contribute to tau pathology and neurofibrillary tangle formation. Growing evidence suggests a neuroprotective role for TGF-β1 against Aβ toxicity both in vitro and in vivo models of AD. Different drugs, such as lithium or group II mGlu receptor agonists are able to increase TGF-β1 levels in the central nervous system (CNS), and might be considered as new neuroprotective tools against Aβ-induced neurodegeneration. In the present review, we examine the evidence for a neuroprotective role of TGF-β1 in AD, and discuss the TGF-β1 signaling pathway as a new pharmacological target for the treatment of AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bian MJ, Li LM, Yu M, Fei J, Huang F. Elevated interleukin-1β induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine aggravating dopaminergic neurodegeneration in old male mice. Brain Res 2009; 1302:256-64. [DOI: 10.1016/j.brainres.2009.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022]
|
42
|
Lee ESY, Sidoryk M, Jiang H, Yin Z, Aschner M. Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J Neurochem 2009; 110:530-44. [PMID: 19453300 DOI: 10.1111/j.1471-4159.2009.06105.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic exposure to manganese (Mn) can cause manganism, a neurodegenerative disorder similar to Parkinson's disease. The toxicity of Mn includes impairment of astrocytic glutamate transporters. 17beta-Estradiol (E2) has been shown to be neuroprotective in various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease, and some selective estrogen receptor modulators, including tamoxifen (TX), also possess neuroprotective properties. We have tested our hypothesis that E2 and TX reverse Mn-induced glutamate transporter impairment in astrocytes. The results established that E2 and TX increased glutamate transporter function and reversed Mn-induced glutamate uptake inhibition, primarily via the up-regulation of glutamate/aspartate transporter (GLAST). E2 and TX also increased astrocytic GLAST mRNA levels and attenuated the Mn-induced inhibition of GLAST mRNA expression. In addition, E2 and TX effectively increased the expression of transforming growth factor beta1, a potential modulator of the stimulatory effects of E2/TX on glutamate transporter function. This effect was mediated by the activation of MAPK/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. These novel findings suggest, for the first time, that E2 and TX enhance astrocytic glutamate transporter expression via increased transforming growth factor beta1 expression. Furthermore, the present study is the first to show that both E2 and TX effectively reverse Mn-induced glutamate transport inhibition by restoring its expression and activity, thus offering a potential therapeutic modality in neurodegenerative disorders characterized by altered glutamate homeostasis.
Collapse
Affiliation(s)
- Eun-Sook Y Lee
- Department of Neurology, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | |
Collapse
|
43
|
Enhanced expression of ERα in astrocytes modifies the response of cortical neurons to β-amyloid toxicity. Neurobiol Dis 2009; 33:415-21. [DOI: 10.1016/j.nbd.2008.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 11/21/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
|
44
|
Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 2008; 29:219-37. [PMID: 18078984 PMCID: PMC2440702 DOI: 10.1016/j.yfrne.2007.08.006] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
Abstract
Estrogens have direct effects on the brain areas controlling cognition. One of the most studied of these regions is the dorsal hippocampal formation, which governs the formation of spatial and episodic memories. In laboratory animals, most investigators report that estrogen enhances synaptic plasticity and improves performance on hippocampal-dependent cognitive behaviors. This review summarizes work conducted in our laboratory and others toward identifying estrogen's actions in the hippocampal formation, and the mechanisms for these actions. Physiologic and pharmacologic estrogen affects cognitive behavior in mammals, which may be applicable to human health and disease. The effects of estrogen in the hippocampal formation that lead to modulation of hippocampal function include effects on cell morphology, synapse formation, signaling, and excitability that have been studied in laboratory mice, rats, and primates. Finally, estrogen may signal through both nuclear and extranuclear hippocampal estrogen receptors to achieve its downstream effects.
Collapse
Affiliation(s)
- Joanna L Spencer
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Alzheimer disease (AD) is a major cause of dementia. Several mechanisms have been postulated to explain its pathogenesis, beta-amyloid (A beta toxicity, cholinergic dysfunction, Tau hyper-phosphorylation, oxidative damage, synaptic dysfunction and inflammation secondary to senile plaques, among others. Glial cells are the major producers of inflammatory mediators, and cytotoxic activation of glial cells is linked to several neurodegenerative diseases; however, whether inflammation is a consequence or the cause of neurodegeneration is still unclear. I propose that inflammation and cellular stress associated with aging are key events in the development of AD through the induction of glial dysfunction. Dysregulated inflammatory response can elicit glial cell activation by compounds which are normally poorly reactive. Inflammation can also be the major cause of defective handling of A beta and the amyloid precursor protein (APP). Here I review evidence that support the proposal that dysfunctional glia and the resulting neuroinflammation can explain many features of AD. Evidence supports the notion that damage caused by inflammation is not only a primary cause of neurodegeneration but also an inducer for the accumulation of A beta in AD. Dysfunctional glia can result in impaired neuronal function in AD, as well as in many progressive neurodegenerative disorders. We show that microglial cell activation is enhanced under pro-inflammatory conditions, indicating that glial cell responses to A beta related proteins can be critically dependent on the priming of glial cells by pro-inflammatory factors.
Collapse
|
46
|
Estrogen enhances the number of nigral dopaminergic neurons of adult male mice without affecting nigral neuroglial number and morphology. Neurosci Lett 2008; 435:210-4. [DOI: 10.1016/j.neulet.2008.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 11/21/2022]
|
47
|
Shieh PC, Tsao CW, Li JS, Wu HT, Wen YJ, Kou DH, Cheng JT. Role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the action of ginsenoside Rh2 against beta-amyloid-induced inhibition of rat brain astrocytes. Neurosci Lett 2008; 434:1-5. [PMID: 18313848 DOI: 10.1016/j.neulet.2007.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/10/2007] [Accepted: 12/18/2007] [Indexed: 12/30/2022]
|
48
|
Caraci F, Battaglia G, Busceti C, Biagioni F, Mastroiacovo F, Bosco P, Drago F, Nicoletti F, Sortino MA, Copani A. TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis 2008; 30:234-42. [PMID: 18356065 DOI: 10.1016/j.nbd.2008.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/10/2008] [Accepted: 01/26/2008] [Indexed: 11/17/2022] Open
Abstract
beta-Amyloid (A beta) injection into the rat dorsal hippocampus had a small neurotoxic effect that was amplified by i.c.v. injection of SB431542, a selective inhibitor of transforming growth factor-beta (TGF-beta) receptor. This suggested that TGF-beta acts as a factor limiting A beta toxicity. We examined the neuroprotective activity of TGF-beta1 in pure cultures of rat cortical neurons challenged with A beta. Neuronal death triggered by A beta is known to proceed along an aberrant re-activation of the cell cycle, and involves late beta-catenin degradation and tau hyperphosphorylation. TGF-beta1 was equally protective when added either in combination with, or 6 h after A beta. Co-added TGF-beta1 prevented A beta-induced cell cycle reactivation, whereas lately added TGF-beta1 had no effect on the cell cycle, but rescued the late beta-catenin degradation and tau hyperphosphorylation. The phosphatidylinositol-3-kinase (PI-3-K) inhibitor, LY294402, abrogated all effects. Thus, TGF-beta1 blocks the whole cascade of events leading to A beta neurotoxicity by activating the PI-3-K pathway.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rao SP, Sikdar SK. Acute treatment with 17beta-estradiol attenuates astrocyte-astrocyte and astrocyte-neuron communication. Glia 2007; 55:1680-9. [PMID: 17886293 DOI: 10.1002/glia.20564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are now recognized as dynamic signaling elements in the brain. Bidirectional communication between neurons and astrocytes involves integration of neuronal inputs by astrocytes and release of gliotransmitters that modulate neuronal excitability and synaptic transmission. The ovarian steroid hormone, 17beta-estradiol, in addition to its rapid actions on neuronal electrical activity can rapidly alter astrocyte intracellular calcium concentration ([Ca2+]i) through a membrane-associated estrogen receptor. Using calcium imaging and electrophysiological techniques, we investigated the functional consequences of acute treatment with estradiol on astrocyte-astrocyte and astrocyte-neuron communication in mixed hippocampal cultures. Mechanical stimulation of an astrocyte evoked a [Ca2+]i rise in the stimulated astrocyte, which propagated to the surrounding astrocytes as a [Ca2+]i wave. Following acute treatment with estradiol, the amplitude of the [Ca2+]i elevation in astrocytes around the stimulated astrocyte was attenuated. Further, estradiol inhibited the [Ca2+]i rise in individual astrocytes in response to the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid. Mechanical stimulation of astrocytes induced [Ca2+]i elevations and electrophysiological responses in adjacent neurons. Estradiol rapidly attenuated the astrocyte-evoked glutamate-mediated [Ca2+]i rise and slow inward current in neurons. Also, the incidence of astrocyte-induced increase in spontaneous postsynaptic current frequency was reduced in the presence of estradiol. The effects of estradiol were stereo-specific and reversible following washout. These findings may indicate that the regulation of neuronal excitability and synaptic transmission by astrocytes is sensitive to rapid estradiol-mediated hormonal control.
Collapse
Affiliation(s)
- Shilpa P Rao
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
50
|
Guzmán CB, Zhao C, Deighton-Collins S, Kleerekoper M, Benjamins JA, Skafar DF. Agonist activity of the 3-hydroxy metabolites of tibolone through the oestrogen receptor in the mouse N20.1 oligodendrocyte cell line and normal human astrocytes. J Neuroendocrinol 2007; 19:958-65. [PMID: 18001325 DOI: 10.1111/j.1365-2826.2007.01611.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17beta-oestradiol (E(2)) may have a beneficial impact on the development of age-related diseases, in part through alpha and beta oestrogen receptors (ER) in glia. Tibolone, a synthetic steroid, could influence glial-mediated neuroprotection if agonist oestrogenic activity is demonstrable. We used the N20.1 mouse oligodendrocyte cell line as a glial cell model to evaluate the response of ERalpha and ERbeta through oestrogen-response element (ERE) and AP-1-driven reporters to E(2), 4-hydroxytamoxifen (4OHT) and to two tibolone metabolites, 3alpha-hydroxytibolone (3alpha-OH-Tib) and 3beta-hydroxytibolone (3beta-OH-Tib). In addition, we tested the activity of these same ligands through the endogenous ERalpha in human normal astrocytes. Because endogenous ER was not detected in the N20.1 cells, we tested the ability of exogenous ER to activate transcription in response to ligands (100 nM) using a transient cotransfection assay with an ERalpha expression vector. To test the antagonist activity of 3alpha-OH-Tib and 3beta-OH-Tib, we used them in combination with E(2) (10(-8) M), at concentrations of 10(-7) M and 10(-6) M. The human normal astrocytes were treated similarly, with the exception that no ER-encoding DNA was used. Specific ER ligand mediated activity was shown using the E(2) antagonist ICI 182 780 and the pSG5 empty vector. E(2), 3alpha-OH-Tib, and 3beta-OH-Tib stimulated ERalpha on an ERE-promoter at each concentration (P < 0.001) but not at an AP-1-driven promoter. 4OHT was an effective antagonist, but did not exhibit agonist activity on the ERE-driven promoter. 4OHT was an effective agonist through ERalpha on an AP-1-driven promoter. 3alpha-OH-Tib and 3beta-OH-Tib were not effective antagonists of E(2). Both metabolites acted through the ER because the addition of an E(2) antagonist blocked their activity. These results show that 3alpha-OH-Tib and 3beta-OH-Tib exert agonist activity, yet lack antagonist or additive activity, through the ERalpha and ERbeta on an ERE-driven but not on an AP-1-driven promoter in a glial cell model and in normal human astrocytes. This contrasts with the effects of 4OHT, which exerted little or no agonist activity, but reduced E(2)-stimulated activity through ERalpha on the ERE, in the same cells.
Collapse
Affiliation(s)
- C B Guzmán
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|