1
|
Harikumar KG, Zhao P, Cary BP, Xu X, Desai AJ, Dong M, Mobbs JI, Toufaily C, Furness SGB, Christopoulos A, Belousoff MJ, Wootten D, Sexton PM, Miller LJ. Cholesterol-dependent dynamic changes in the conformation of the type 1 cholecystokinin receptor affect ligand binding and G protein coupling. PLoS Biol 2024; 22:e3002673. [PMID: 39083706 PMCID: PMC11290853 DOI: 10.1371/journal.pbio.3002673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 08/02/2024] Open
Abstract
Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms. Static, low energy, high-resolution structures of the mutant CCK1R constructs, stabilized in complex with G protein, were not substantially different, suggesting that alterations to receptor dynamics were key to altered function. We reveal that cholesterol-dependent dynamic changes in the conformation of the helical bundle of CCK receptors affects both ligand binding at the extracellular surface and G protein coupling at the cytosolic surface, as well as their interrelationships involved in stimulus-response coupling. This provides an ideal setting for potential allosteric modulators to correct the negative impact of membrane cholesterol on CCK1R.
Collapse
Affiliation(s)
- Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian P. Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jesse I. Mobbs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Chirine Toufaily
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- School of Biomedical Sciences, University Queensland, Queensland, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| |
Collapse
|
2
|
Anderson RC, Hanyroup S, Song YB, Mohamed-Moosa Z, van den Bout I, Schwulst AC, Kaiser UB, Millar RP, Newton CL. Functional Rescue of Inactivating Mutations of the Human Neurokinin 3 Receptor Using Pharmacological Chaperones. Int J Mol Sci 2022; 23:ijms23094587. [PMID: 35562976 PMCID: PMC9100388 DOI: 10.3390/ijms23094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic–pituitary–gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention.
Collapse
Affiliation(s)
- Ross C. Anderson
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Correspondence:
| | - Sharika Hanyroup
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.B.S.); (U.B.K.)
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea
| | - Zulfiah Mohamed-Moosa
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Department of Anatomy and Physiology, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Pretoria 0110, South Africa
| | - Iman van den Bout
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Alexis C. Schwulst
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.B.S.); (U.B.K.)
| | - Robert P. Millar
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, St Andrews KY16 9TF, UK
| | - Claire L. Newton
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
3
|
Schulze A, Kleinau G, Neumann S, Scheerer P, Schöneberg T, Brüser A. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J 2020; 34:11243-11256. [PMID: 32648604 DOI: 10.1096/fj.202000100r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023]
Abstract
In contrast to most rhodopsin-like G protein-coupled receptors, the glycoprotein hormone receptors (GPHR) have a large extracellular N-terminus for hormone binding. The hormones do not directly activate the transmembrane domain but mediate their action via a, thus, far only partially known Tethered Agonistic LIgand (TALI). The existence of such an intramolecular agonist was initially indicated by site-directed mutation studies and activating peptides derived from the extracellular hinge region. It is still unknown precisely how TALI is involved in intramolecular signal transmission. We combined systematic mutagenesis studies at the luteinizing hormone receptor and the thyroid-stimulating hormone receptor (TSHR), stimulation with a drug-like agonist (E2) of the TSHR, and structural homology modeling to unravel the functional and structural properties defining the TALI region. Here, we report that TALI (a) is predisposed to constitutively activate GPHR, (b) can by itself rearrange GPHR into a fully active conformation, (c) stabilizes active GPHR conformation, and (d) is not involved in activation of the TSHR by E2. In the active state conformation, TALI forms specific interactions between the N-terminus and the transmembrane domain. We show that stabilization of an active state is dependent on TALI, including activation by hormones and constitutively activating mutations.
Collapse
Affiliation(s)
- Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Latif R, Morshed SA, Ma R, Tokat B, Mezei M, Davies TF. A Gq Biased Small Molecule Active at the TSH Receptor. Front Endocrinol (Lausanne) 2020; 11:372. [PMID: 32676053 PMCID: PMC7333667 DOI: 10.3389/fendo.2020.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
G protein coupled receptors (GPCRs) can lead to G protein and non-G protein initiated signals. By virtue of its structural property, the TSH receptor (TSHR) has a unique ability to engage different G proteins making it highly amenable to selective signaling. In this study, we describe the identification and characterization of a novel small molecule agonist to the TSHR which induces primary engagement with Gαq/11. To identify allosteric modulators inducing selective signaling of the TSHR we used a transcriptional-based luciferase assay system with CHO-TSHR cells stably expressing response elements (CRE, NFAT, SRF, or SRE) that were capable of measuring signals emanating from the coupling of Gαs , Gαq/11, Gβγ, and Gα12/13, respectively. Using this system, TSH activated Gαs , Gαq/11, and Gα12/13 but not Gβγ. On screening a library of 50K molecules at 0.1,1.0 and 10 μM, we identified a novel Gq/11 agonist (named MSq1) which activated Gq/11 mediated NFAT-luciferase >4 fold above baseline and had an EC50= 8.3 × 10-9 M with only minor induction of Gαs and cAMP. Furthermore, MSq1 is chemically and structurally distinct from any of the previously reported TSHR agonist molecules. Docking studies using a TSHR transmembrane domain (TMD) model indicated that MSq1 had contact points on helices H1, H2, H3, and H7 in the hydrophobic pocket of the TMD and also with the extracellular loops. On co-treatment with TSH, MSq1 suppressed TSH-induced proliferation of thyrocytes in a dose-dependent manner but lacked the intrinsic ability to influence basal thyrocyte proliferation. This unexpected inhibitory property of MSq1 could be blocked in the presence of a PKC inhibitor resulting in derepressing TSH induced protein kinase A (PKA) signals and resulting in the induction of proliferation. Thus, the inhibitory effect of MSq1 on proliferation resided in its capacity to overtly activate protein kinase C (PKC) which in turn suppressed the proliferative signal induced by activation of the predomiant cAMP-PKA pathway of the TSHR. Treatment of rat thyroid cells (FRTL5) with MSq1 did not show any upregulation of gene expression of the key thyroid specific markers such as thyroglobulin(Tg), thyroid peroxidase (Tpo), sodium iodide symporter (Nis), and the TSH receptor (Tshr) further suggesting lack of involvement of MSq1 and Gαq/11 activation with cellular differentation. In summary, we identified and characterized a novel Gαq/11 agonist molecule acting at the TSHR and which showed a marked anti-proliferative ability. Hence, Gq biased activation of the TSHR is capable of ameliorating the proliferative signals from its orthosteric ligand and may offer a therapeutic option for thyroid growth modulation.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
- *Correspondence: Rauf Latif
| | - Syed A. Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
| | - Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
| | - Bengu Tokat
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry F. Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Wang J, Miao Y. Recent advances in computational studies of GPCR-G protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:397-419. [PMID: 31036298 PMCID: PMC6986689 DOI: 10.1016/bs.apcsb.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions are key in cellular signaling. G protein-coupled receptors (GPCRs), the largest superfamily of human membrane proteins, are able to transduce extracellular signals (e.g., hormones and neurotransmitters) to intracellular proteins, in particular the G proteins. Since GPCRs serve as primary targets of ~1/3 of currently marketed drugs, it is important to understand mechanisms of GPCR signaling in order to design selective and potent drug molecules. This chapter focuses on recent advances in computational studies of the GPCR-G protein interactions using bioinformatics, protein-protein docking and molecular dynamics simulation approaches.
Collapse
Affiliation(s)
- Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
6
|
Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front Endocrinol (Lausanne) 2017; 8:86. [PMID: 28484426 PMCID: PMC5401882 DOI: 10.3389/fendo.2017.00086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to understand the molecular activation mechanisms of this receptor comprehensively. Finally, limitations of current knowledge and lack of information are discussed highlighting the need for intensified efforts toward TSHR structure elucidation.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
- Group Protein X-Ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Annika Kreuchwig
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Patrick Scheerer
- Group Protein X-Ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- *Correspondence: Gerd Krause,
| |
Collapse
|
7
|
Press O, Zvagelsky T, Vyazmensky M, Kleinau G, Engel S. Construction of Structural Mimetics of the Thyrotropin Receptor Intracellular Domain. Biophys J 2016; 111:2620-2628. [PMID: 28002738 PMCID: PMC5192603 DOI: 10.1016/j.bpj.2016.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022] Open
Abstract
The signaling of a G protein-coupled receptor (GPCR) is dictated by the complementary responsiveness of interacting intracellular effectors such as G proteins. Many GPCRs are known to couple to more than one G protein subtype and induce a multitude of signaling pathways, although the in vivo relevance of particular pathways is mostly unrecognized. Dissecting GPCR signaling in terms of the pathways that are activated will boost our understanding of the molecular fundamentals of hormone action. The structural determinants governing the selectivity of GPCR/G protein coupling, however, remain obscure. Here, we describe the design of soluble GPCR mimetics to study the details of the interplay between G-proteins and activators. We constructed functional mimetics of the intracellular domain of a model GPCR, the thyrotropin receptor. We based the construction on a unique scaffold, 6-Helix, an artificial protein that was derived from the elements of the trimer-of-hairpins structure of HIV gp41 and represents a bundle of six α-helices. The 6-Helix scaffold, which endowed the substituted thyrotropin receptor intracellular domain elements with spatial constraints analogous to those found in native receptors, enabled the reconstitution of a microdomain that consists of intracellular loops 2 and 3, and is capable of binding and activating Gα-(s). The 6-Helix-based mimetics could be used as a platform to study the molecular basis of GPCR/G protein recognition. Such knowledge could help investigators develop novel therapeutic strategies for GPCR-related disorders by targeting the GPCR/G protein interfaces and counteracting cellular dysfunctions via focused tuning of GPCR signaling.
Collapse
Affiliation(s)
- Olga Press
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tatiana Zvagelsky
- Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria Vyazmensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Chantreau V, Taddese B, Munier M, Gourdin L, Henrion D, Rodien P, Chabbert M. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor. PLoS One 2015; 10:e0142250. [PMID: 26545118 PMCID: PMC4636318 DOI: 10.1371/journal.pone.0142250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Computational Biology
- Cyclic AMP/metabolism
- Evolution, Molecular
- Glycosylation
- HEK293 Cells
- Humans
- Models, Molecular
- Molecular Dynamics Simulation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Vanessa Chantreau
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Bruck Taddese
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Mathilde Munier
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Louis Gourdin
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference Centre for the pathologies of hormonal receptivity, Department of Endocrinology, Centre Hospitalier Universitaire of Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Patrice Rodien
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference Centre for the pathologies of hormonal receptivity, Department of Endocrinology, Centre Hospitalier Universitaire of Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| |
Collapse
|
9
|
Li XF, Lytton J. An essential role for the K+-dependent Na+/Ca2+-exchanger, NCKX4, in melanocortin-4-receptor-dependent satiety. J Biol Chem 2014; 289:25445-59. [PMID: 25096581 DOI: 10.1074/jbc.m114.564450] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K(+)-dependent Na(+)/Ca(2+)-exchangers are broadly expressed in various tissues, and particularly enriched in neurons of the brain. The distinct physiological roles for the different members of this Ca(2+) transporter family are, however, not well described. Here we show that gene-targeted mice lacking the K(+)-dependent Na(+)/Ca(2+)-exchanger, NCKX4 (gene slc24a4 or Nckx4), display a remarkable anorexia with severe hypophagia and weight loss. Feeding and satiety are coordinated centrally by melanocortin-4 receptors (MC4R) in neurons of the hypothalamic paraventricular nucleus (PVN). The hypophagic response of Nckx4 knock-out mice is accompanied by hyperactivation of neurons in the PVN, evidenced by high levels of c-Fos expression. The activation of PVN neurons in both fasted Nckx4 knock-out and glucose-injected wild-type animals is blocked by Ca(2+) removal and MC4R antagonists. In cultured hypothalamic neurons, melanocyte stimulating hormone induces an MC4R-dependent and sustained Ca(2+) signal, which requires phospholipase C activity and plasma membrane Ca(2+) entry. The Ca(2+) signal is enhanced in hypothalamic neurons from Nckx4 knock-out animals, and is depressed in cells in which NCKX4 is overexpressed. Finally, MC4R-dependent oxytocin expression in the PVN, a key essential step in satiety, is prevented by blocking phospholipase C activation or Ca(2+) entry. These findings highlight an essential, and to our knowledge previously unknown, role for Ca(2+) signaling in the MC4R pathway that leads to satiety, and a novel non-redundant role for NCKX4-mediated Ca(2+) extrusion in controlling MC4R signaling and feeding behavior. Together, these findings highlight a novel pathway that potentially could be exploited to develop much needed new therapeutics to tackle eating disorders and obesity.
Collapse
Affiliation(s)
- Xiao-Fang Li
- From the Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Jonathan Lytton
- From the Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
10
|
Kleinau G, Biebermann H. Constitutive activities in the thyrotropin receptor: regulation and significance. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:81-119. [PMID: 24931193 DOI: 10.1016/b978-0-12-417197-8.00003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thyroid-stimulating hormone receptor (TSHR, or thyrotropin receptor) is a family A G protein-coupled receptor. It not only binds thyroid-stimulating hormone (TSH, or thyrotropin) but also interacts with autoantibodies under pathological conditions. The TSHR and TSH are essential for thyroid growth and function and thus for all thyroid hormone-associated physiological superordinated processes, including metabolism and development of the central nervous system. In vitro studies have found that the TSHR permanently stimulates ligand-independent (constitutive) activation of Gs, which ultimately leads to intracellular cAMP accumulation. Furthermore, a vast variety of constitutively activating mutations of TSHR-at more than 50 different amino acid positions-have been reported to enhance basal signaling. These lead in vivo to a "gain-of-function" phenotype of nonautoimmune hyperthyroidism or toxic adenomas. Moreover, many naturally occurring inactivating mutations are known to cause a "loss-of-function" phenotype, resulting in resistance to thyroid hormone or hyperthyrotropinemia. Several of these mutations are also characterized by impaired basal signaling, and these are designated here as "constitutively inactivating mutations" (CIMs). More than 30 amino acid positions with CIMs have been identified so far. Moreover, the permanent TSHR signaling capacity can also be blocked by inverse agonistic antibodies or small drug-like molecules, which both have a potential for clinical usage. In this chapter, information on constitutive activity in the TSHR is described, including up- and downregulation, linked protein conformations, physiological and pathophysiological conditions, and related intracellular signaling.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
12
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
13
|
Cheng KC, Huang HH, Hung CT, Chen CC, Wu WC, Suen JL, Chen KJ, Wu YJ, Chang CH. Proteomic analysis of the differences in orbital protein expression in thyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol 2013; 251:2777-87. [DOI: 10.1007/s00417-013-2446-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022] Open
|
14
|
Cassio A, Nicoletti A, Rizzello A, Zazzetta E, Bal M, Baldazzi L. Current loss-of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment. J Clin Res Pediatr Endocrinol 2013; 5 Suppl 1:29-39. [PMID: 23154162 PMCID: PMC3608004 DOI: 10.4274/jcrpe.864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Thyroid-stimulating hormone receptor (TSHR) loss-of-function (LOF) mutations lead to a wide spectrum of phenotypes, ranging from severe congenital hypothyroidism (CH) to mild euthyroid hyperthyrotropinemia. The degree of TSH resistance depends on the severity of the impairment of the receptor function caused by the mutation and on the number of mutated alleles In this review data about genotype-phenotype correlation and criteria for clinical work-up will be presented and discussed. Complete TSH resistance due to biallelic LOF TSHR mutations must be suspected in all patients with severe not syndromic CH and severe thyroid hypoplasia diagnosed at birth by neonatal screening. Partial forms of TSH resistance show a more heterogeneous hormonal and clinical pattern . In these cases TSH serum levels are above the upper limit of normal range for the age but with a very variable pattern, free thyroxine (T4) concentrations are within the normal range and thyroid size can be normal or hypoplastic at ultrasound scan. An early substitutive treatment with L-T4 must be mandatory in all patients with severe CH due to complete uncompensated TSH resistance diagnosed at birth by neonatal screening. The usefulness of substitutive treatment appears much more controversial inpatients with subclinical hypothyroidism due to partial TSH resistance in whom the increased TSH concentration should be able to compensate the mild functional impairment of the mutant receptor. Together with standard criteria we recommend also an accurate clinical work-up to select patients who are candidates for a LOF TSHR mutation.
Collapse
Affiliation(s)
- Alessandra Cassio
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Annalisa Nicoletti
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Angela Rizzello
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Emanuela Zazzetta
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Milva Bal
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Lilia Baldazzi
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Abstract
INTRODUCTION The thyrotropin receptor (TSHR) is essential for thyroid growth and for the production of thyroid hormones. It is unique among the glycoprotein hormone receptors, in that some of the TSHRs undergo cleavage and shedding of the alpha subunit. AREAS COVERED This review discusses the structure and function of the TSHR, followed by an evaluation of its role in thyroid disease. Possible limitations of the TSHR as a therapeutic target are also discussed. EXPERT OPINION The TSHR is involved in a number of hereditary and acquired disorders of the thyroid making it of potential importance as a therapeutic target in thyroid disease. Expression of the TSHR in several non-thyroidal tissues and the development of systemic manifestations of thyroid disease suggest that the TSHR is also of interest as a therapeutic target outside the thyroid.
Collapse
Affiliation(s)
- Samer El-Kaissi
- Specialized Diabetes and Endocrine Centre, King Fahad Medical City, Dabab Street, P.O. Box 59046, Riyadh 11525, Saudi Arabia.
| | | |
Collapse
|
16
|
Hai MTV, Radu A, Ghinea N. The cleavage of thyroid-stimulating hormone receptor is dependent on cell-cell contacts and regulates the hormonal stimulation of phospholipase c. J Cell Mol Med 2010; 13:2253-2260. [PMID: 18627427 DOI: 10.1111/j.1582-4934.2008.00422.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Thyroid-stimulating hormone receptor (TSHR) consists of a hormone-binding extracellular subunit and a seven-transmembrane spanning subunit that interacts with the G proteins G(alphas) and G(alphaq). The two subunits, generated by proteolytic cleavage of a single polypeptide chain, are held together by disulphide bridges. The receptor is completely cleaved in thyroid tissue, while in cultured cells (thyrocytes and non-thyroid cells) the cleaved and uncleaved forms coexist. The reasons for these divergent data are not understood. Here we provide an explanation by showing that cleavage depends on cell-cell contacts. An almost complete cleavage was observed in confluent cells, while in sparse cells most of the receptor was in the uncleaved form. We also show that coupling of TSHR to G(alphaq) (as measured by inositolphosphate generation) is markedly reduced when the receptor is not cleaved. In contrast, coupling to G(alphas) [as measured by cyclic adenosine 3',5'-monophosphate (cAMP) synthesis] is unaffected by cleavage of the receptor. These results suggest that the cell-cell contacts are necessary for cleavage of the receptor, which acts as a regulatory step in inositolphosphate production via phospholipase C activation. The latter observation was confirmed using cells that express the uncleavable mutant TSHR-delta50-NET, for which the TSH-stimulated inositolphosphate production was completely abolished.
Collapse
Affiliation(s)
- Mai-Thu Vu Hai
- INSERM U841-Eq07, UniversitéParis, Faculté de Médicine, Créteil, France
| | - Aurelian Radu
- Mount Sinai School of Medicine, Department of Developmental and Regenerative Biology, New York, NY, USA
| | - Nicolae Ghinea
- INSERM U841-Eq07, UniversitéParis, Faculté de Médicine, Créteil, France
| |
Collapse
|
17
|
Kleinau G, Jaeschke H, Worth CL, Mueller S, Gonzalez J, Paschke R, Krause G. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One 2010; 5:e9745. [PMID: 20305779 PMCID: PMC2841179 DOI: 10.1371/journal.pone.0009745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/19/2010] [Indexed: 11/23/2022] Open
Abstract
In this study we wanted to gain insights into selectivity mechanisms between G-protein-coupled receptors (GPCR) and different subtypes of G-proteins. The thyrotropin receptor (TSHR) binds G-proteins promiscuously and activates both Gs (cAMP) and Gq (IP). Our goal was to dissect selectivity patterns for both pathways in the intracellular region of this receptor. We were particularly interested in the participation of poorly investigated receptor parts. We systematically investigated the amino acids of intracellular loop (ICL) 1 and helix 8 using site-directed mutagenesis alongside characterization of cAMP and IP accumulation. This approach was guided by a homology model of activated TSHR in complex with heterotrimeric Gq, using the X-ray structure of opsin with a bound G-protein peptide as a structural template. We provide evidence that ICL1 is significantly involved in G-protein activation and our model suggests potential interactions with subunits Gα as well as Gβγ. Several amino acid substitutions impaired both IP and cAMP accumulation. Moreover, we found a few residues in ICL1 (L440, T441, H443) and helix 8 (R687) that are sensitive for Gq but not for Gs activation. Conversely, not even one residue was found that selectively affects cAMP accumulation only. Together with our previous mutagenesis data on ICL2 and ICL3 we provide here the first systematically completed map of potential interfaces between TSHR and heterotrimeric G-protein. The TSHR/Gq-heterotrimer complex is characterized by more selective interactions than the TSHR/Gs complex. In fact the receptor interface for binding Gs is a subset of that for Gq and we postulate that this may be true for other GPCRs coupling these G-proteins. Our findings support that G-protein coupling and preference is dominated by specific structural features at the intracellular region of the activated GPCR but is completed by additional complementary recognition patterns between receptor and G-protein subtypes.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Holger Jaeschke
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | | | - Sandra Mueller
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Jorge Gonzalez
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Ralf Paschke
- Department for Internal Medicine, Neurology and Dermatology, University of Leipzig, Leipzig, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- * E-mail:
| |
Collapse
|
18
|
Tikhonova IG, Costanzi S. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr Pharm Des 2010; 15:4003-16. [PMID: 20028318 DOI: 10.2174/138161209789824803] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | |
Collapse
|
19
|
Mueller S, Jaeschke H, Paschke R. Current standards, variations, and pitfalls for the determination of constitutive TSHR activity in vitro. Methods Enzymol 2010; 485:421-36. [PMID: 21050930 DOI: 10.1016/b978-0-12-381296-4.00023-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Constitutively activating mutations of the TSHR are the major cause for nonautoimmune hyperthyroidism, which is based on ligand independent, permanent receptor activation. Several reports have highlighted the difficulties to determine whether a TSHR mutation is constitutively active or not especially for borderline cases with only a slight increase of the basal cAMP activity. Current methods to precisely classify such mutants as constitutively active or not, are limited. In some cases, in vitro characterization of TSHR mutants has led to false positive conclusions regarding constitutive TSHR activity and subsequently the molecular origin of hyperthyroidism. For characterization of constitutive TSHR activity, a particular point to consider is that basal receptor activity tightly correlates with the receptor number expressed on the cell surface. Therefore, a comparison of the receptors basal activity in relation to the wild type is only possible with determination of the receptor cell surface expression. Thus, the experimental approaches to determine constitutive TSHR activity should consider the receptor's cell surface expression. We here provide a description of three methods for the determination of constitutive TSHR activity: (A) the evaluation of constitutive TSHR activity under conditions of equal receptor expression; (B) computation of the specific constitutive activity; and (C) the linear regression analysis (LRA). To date, LRA is the best experimental approach to characterize the mutant's basal activity as a function of TSHR cell surface expression. This approach utilizes a parallel measurement of basal cAMP values and receptor cell surface expression and therefore provides a more reliable decision with respect to the presence or absence of constitutive activity.
Collapse
Affiliation(s)
- Sandra Mueller
- Department for Internal Medicine, Neurology and Dermatology, Clinic for Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
20
|
Nicoletti A, Bal M, De Marco G, Baldazzi L, Agretti P, Menabò S, Ballarini E, Cicognani A, Tonacchera M, Cassio A. Thyrotropin-stimulating hormone receptor gene analysis in pediatric patients with non-autoimmune subclinical hypothyroidism. J Clin Endocrinol Metab 2009; 94:4187-94. [PMID: 19820021 DOI: 10.1210/jc.2009-0618] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in TSH receptor (TSHR) are notoriously associated with congenital hypothyroidism as well as with non-autoimmune subclinical hypothyroidism, a mild form of TSH resistance that is not as well characterized by diagnostic procedures. OBJECTIVE The genetic analysis of the TSHR gene was performed to determine the prevalence of TSHR gene mutations in non-autoimmune subclinical hypothyroidism during the pediatric age. The new mutations were studied for genotypic-phenotypic correlation. PATIENTS Thirty-eight children (ages 0.5-18.0 yr) affected by non-autoimmune subclinical hypothyroidism diagnosed in our center (follow-up from 1 to 11.5 yr) and normal at neonatal screening were enrolled in the genetic study. In 11 cases, the relatives were included in the genetic analysis. RESULTS Eleven different mutations of the TSHR gene were identified in 11 of the 38 patients. Two are new: the nonsense mutation C31X and the missense mutation P68S, which shows a decrease in TSH binding capacity but not in biological activity. In all cases the carrier parent was identified. CONCLUSIONS To date, this study demonstrates the highest prevalence (29%) of TSHR gene mutations in children and adolescents with non-autoimmune subclinical hypothyroidism not selected by neonatal screening. Functional studies show that some mutations cause a slight inactivation of the TSHR. This reveals a possible limit of the in vitro study or of the knowledge of mechanisms involving TSHR, or that other candidate genes must be considered.
Collapse
Affiliation(s)
- Annalisa Nicoletti
- Department of Gynaecologic, Obstetric, and Paediatric Sciences, S Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin North Am 2009; 38:319-41, viii. [PMID: 19328414 DOI: 10.1016/j.ecl.2009.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) has a central role in thyrocyte function and is also one of the major autoantigens for the autoimmune thyroid diseases. We review the post-translational processing, multimerization, and intramolecular cleavage of TSHR, all of which may modulate its signal transduction. The recent characterization of monoclonal antibodies to the TSHR, including stimulating, blocking, and neutral antibodies, have also revealed unique biologic insights into receptor activation and the variety of these TSHR antibodies may help explain the multiple clinical phenotypes seen in autoimmune thyroid diseases. Knowledge of the structure/function relationship of the TSHR is beginning to provide a greater understanding of thyroid physiology and thyroid autoimmunity.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Mount Sinai School of Medicine and the James J. Peters VA Medical Center, New York, NY 10468, USA.
| | | | | | | |
Collapse
|
22
|
García-Jiménez C, Santisteban P. TSH signalling and cancer. ACTA ACUST UNITED AC 2008; 51:654-71. [PMID: 17891229 DOI: 10.1590/s0004-27302007000500003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 12/20/2022]
Abstract
Thyroid cancers are the most frequent endocrine neoplasms and mutations in the thyrotropin receptor (TSHR) are unusually frequent. Here we present the state-of-the-art concerning the role of TSHR in thyroid cancer and discuss it in light of the cancer stem cell theory or the classical view. We briefly review the gene and protein structure updating the cancer related TSHR mutations database. Intriguingly, hyperfunctioning TSHR mutants characterise differentiated cancers in contrast to undifferentiated thyroid cancers which very often bear silenced TSHR. It remains unclear whether TSHR alterations in thyroid cancers play a role in the onset or they appear as a consequence of genetic instability during evolution, but the presence of functional TSHR is exploited in therapy. We outline the signalling network build up in the thyrocyte between TSHR/PKA and other proliferative pathways such as Wnt, PI3K and MAPK. This networks integrity surely plays a role in the onset/evolution of thyroid cancer and needs further research. Lastly, future investigation of epigenetic events occurring at the TSHR and other loci may give better clues for molecular based therapy of undifferentiated thyroid carcinomas. Targeted demethylating agents, histone deacetylase inhibitors combined with retinoids and specific RNAis may help treatment in the future.
Collapse
|
23
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|
24
|
Feng X, Müller T, Mizrachi D, Fanelli F, Segaloff DL. An intracellular loop (IL2) residue confers different basal constitutive activities to the human lutropin receptor and human thyrotropin receptor through structural communication between IL2 and helix 6, via helix 3. Endocrinology 2008; 149:1705-17. [PMID: 18162522 PMCID: PMC2276707 DOI: 10.1210/en.2007-1341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human lutropin receptor (hLHR) and human TSH receptor (hTSHR) are G protein-coupled receptors that play key roles in reproductive and thyroid physiology, respectively. We show using a quantitative assessment of cAMP production as a function of cell surface receptor expression that the hTSHR possesses greater basal constitutive activity than the hLHR. Further studies were undertaken to test the hypothesis that different potential Gs-coupling motifs identified in IL2 of the hTSHR and hLHR contribute to their different basal constitutive activities. Although mutating the receptors to interchange their potential Gs-coupling motifs reversed their relative activities, we show this to be due to the swapping of one IL2 residue (Q476 in the hLHR; R531 in the hTSHR). Molecular dynamics simulations show that the effect of the hLHR(Q476R) mutation, switching the structural features of the hLHR toward those of the hTSHR, is greater than the switching effect of the hTSHR(R531Q) mutant toward the hLHR. The structural model of the hLHR(Q476R) mutant can be considered as a hybrid of wild-type (wt) hTSHR and constitutively active mutant hLHR forms. In this hLHR(Q476R) mutant, IL2 adopts a structure similar to IL2 of the wt hTSHR, but it shares with the hLHR constitutively active mutant the solvent exposure and the reciprocal arrangement of helices 3, 5, and 6, including the weakening of the wt native R3.50-D6.30 interaction. Our results suggest a H3-mediated structural connection between IL2 and the cytosolic extension of H6. Thus, IL2 contributes significantly to the inactive and active state ensembles of these G protein-coupled receptors.
Collapse
Affiliation(s)
- Xiuyan Feng
- Department of Molecular Physiology and Biophysics, The Roy J. and Lucille R. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
25
|
Kleinau G, Claus M, Jaeschke H, Mueller S, Neumann S, Paschke R, Krause G. Contacts between Extracellular Loop Two and Transmembrane Helix Six Determine Basal Activity of the Thyroid-stimulating Hormone Receptor. J Biol Chem 2007; 282:518-25. [PMID: 17079233 DOI: 10.1074/jbc.m606176200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of alanine mutations in extracellular loop two (ECL2) of the thyroid-stimulating hormone receptor (TSHR) were found to increase or decrease basal activity when compared with the wild type receptor. K565A was identified as a mutant with decreased basal activity, and strongly impaired hormone induced signaling activity. To gain insights into how ECL2 mutants affect basal activity, we focused on constitutively activating pathogenic mutant I568V in ECL2, which exhibits elevated basal activity. Because our molecular model suggests that Ile-568 is embedded in an environment of hydrophobic residues provided by transmembrane helix bundle, we tested mutants in this region to identify potential interaction partner(s) for Ile-568. Indeed, the double mutant I568V/I640L (ECL2/TMH6) suppresses the increased basal activity exhibited by I568V alone. We suggest a spatial and functional relationship between ECL2 and TMH6 in which side chain interaction between Ile-568 and Ile-640 constrains the receptor in a conformation with low basal activity. Although the single mutant I640L exhibits basal activity lower than wild type, its differently branched and bulkier side chain complements the reduced side chain bulk in I568V, restoring wild type basal activity to the double mutant. This scenario is confirmed by the reciprocal double mutant I640V/I568L. The combination of basally increased activity of I640V and basally decreased activity of mutant I568L also restores basal activity of wild type TSHR. These and other mutant phenotypes reported here support a dynamic interface between TMH6 and ECL2. Disruption of this critical interface for signaling by introduction of mutations in TSHR can either increase or decrease basal activity.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Kleinau G, Brehm M, Wiedemann U, Labudde D, Leser U, Krause G. Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure-function analysis resource. Mol Endocrinol 2006; 21:574-80. [PMID: 17110401 DOI: 10.1210/me.2006-0309] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Comparison between wild-type and mutated glycoprotein hormone receptors (GPHRs), TSH receptor, FSH receptor, and LH-chorionic gonadotropin receptor is established to identify determinants involved in molecular activation mechanism. The basic aims of the current work are 1) the discrimination of receptor phenotypes according to the differences between activity states they represent, 2) the assignment of classified phenotypes to three-dimensional structural positions to reveal 3) functional-structural hot spots and 4) interrelations between determinants that are responsible for corresponding activity states. Because it is hard to survey the vast amount of pathogenic and site-directed mutations at GPHRs and to improve an almost isolated consideration of individual point mutations, we present a system for systematic and diversified sequence-structure-function analysis (http://www.fmp-berlin.de/ssfa). To combine all mutagenesis data into one set, we converted the functional data into unified scaled values. This at least enables their comparison in a rough classification manner. In this study we describe the compiled data set and a wide spectrum of functions for user-driven searches and classification of receptor functionalities such as cell surface expression, maximum of hormone binding capability, and basal as well as hormone-induced Galphas/Galphaq mediated cAMP/inositol phosphate accumulation. Complementary to known databases, our data set and bioinformatics tools allow functional and biochemical specificities to be linked with spatial features to reveal concealed structure-function relationships by a semiquantitative analysis. A comprehensive discrimination of specificities of pathogenic mutations and in vitro mutant phenotypes and their relation to signaling mechanisms of GPHRs demonstrates the utility of sequence-structure-function analysis. Moreover, new interrelations of determinants important for selective G protein-mediated activation of GPHRs are resumed.
Collapse
MESH Headings
- Animals
- Databases, Protein
- Humans
- Models, Molecular
- Mutation
- Protein Conformation
- Receptors, FSH/chemistry
- Receptors, FSH/genetics
- Receptors, FSH/physiology
- Receptors, LH/chemistry
- Receptors, LH/genetics
- Receptors, LH/physiology
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/physiology
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Claus M, Neumann S, Kleinau G, Krause G, Paschke R. Structural determinants for G-protein activation and specificity in the third intracellular loop of the thyroid-stimulating hormone receptor. J Mol Med (Berl) 2006; 84:943-54. [PMID: 16955277 DOI: 10.1007/s00109-006-0087-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/12/2006] [Indexed: 11/24/2022]
Abstract
The selectivity of G-protein recognition is determined by the intracellular loops (ICLs) of seven-transmembrane-spanning receptors. In a previous study, we have shown that the N-terminal and central portions of ICL2 from F525 to D530 participate in dual Galphas-/Galphaq-protein activation by the thyroid-stimulating hormone receptor (TSHR). ICL3 is another major determinant for G-protein activation. Therefore, the aim of our study was to identify important amino acids within ICL3 of the TSHR to gain insight in more detail about its specific function for Galphas- and Galphaq-protein activation and selectivity. Single-alanine substitutions of residues in the N-terminal, middle, and C-terminal region of ICL3 were generated. N-terminal residues Y605 and V608 and C-terminal positions K618, K621, and I622 were identified as selectively important for Galphaq activation, whereas mutations in the center of ICL3 had no effect on TSHR signaling. Our findings provide evidence for an amino acid pattern in the N- and C-terminal part of ICL3, which is involved in Galphaq-mediated signaling. Furthermore, molecular modeling of interaction of TSHR ICL2 and 3 with Galphaq suggests three potential contact sites: TSHR C-terminal ICL3 with beta5-6 loop of Galphaq, TSHR ICL2 residues I523-R531 with beta2-3 loop and N-terminal helix of Galphaq, and TSHR ICL2/transmembrane helix (TMH) 3+ICL3/TMH6 with C-terminal tail of Galphaq.
Collapse
MESH Headings
- Alanine
- Amino Acid Sequence
- Animals
- Binding Sites
- COS Cells
- Chlorocebus aethiops
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Thyrotropin/agonists
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/metabolism
- Signal Transduction/drug effects
- Thyrotropin/metabolism
- Thyrotropin/pharmacology
- Transfection
Collapse
Affiliation(s)
- Maren Claus
- III. Medical Department, University of Leipzig, Philipp-Rosenthal-Str. 27, 04103, Leipzig, Germany
| | | | | | | | | |
Collapse
|
28
|
Eilers M, Hornak V, Smith SO, Konopka JB. Comparison of class A and D G protein-coupled receptors: common features in structure and activation. Biochemistry 2005; 44:8959-75. [PMID: 15966721 PMCID: PMC1382269 DOI: 10.1021/bi047316u] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All G protein-coupled receptors (GPCRs) share a common seven TM helix architecture and the ability to activate heterotrimeric G proteins. Nevertheless, these receptors have widely divergent sequences with no significant homology. We present a detailed structure-function comparison of the very divergent Class A and D receptors to address whether there is a common activation mechanism across the GPCR superfamily. The Class A and D receptors are represented by the vertebrate visual pigment rhodopsin and the yeast alpha-factor pheromone receptor Ste2, respectively. Conserved amino acids within each specific receptor class and amino acids where mutation alters receptor function were located in the structures of rhodopsin and Ste2 to assess whether there are functionally equivalent positions or regions within these receptors. We find several general similarities that are quite striking. First, strongly polar amino acids mediate helix interactions. Their mutation generally leads to loss of function or constitutive activity. Second, small and weakly polar amino acids facilitate tight helix packing. Third, proline is essential at similar positions in transmembrane helices 6 and 7 of both receptors. Mapping the specific location of the conserved amino acids and sites of constitutively active mutations identified conserved microdomains on transmembrane helices H3, H6, and H7, suggesting that there are underlying similarities in the mechanism of the widely divergent Class A and Class D receptors.
Collapse
Affiliation(s)
| | | | - Steven O. Smith
- * To whom correspondence should be addressed. Steven O. Smith, Center for Structural Biology Z = 5115, Stony Brook University, Stony Brook, NY 11794-5222. Tel., 631-632-1210; fax, 631-632-8575; e-mail,. James B. Konopka, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222. Tel., 631-632-8715; fax, 631-632-8873; e-mail,
| | - James B. Konopka
- * To whom correspondence should be addressed. Steven O. Smith, Center for Structural Biology Z = 5115, Stony Brook University, Stony Brook, NY 11794-5222. Tel., 631-632-1210; fax, 631-632-8575; e-mail,. James B. Konopka, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222. Tel., 631-632-8715; fax, 631-632-8873; e-mail,
| |
Collapse
|