1
|
Negoita F, Addinsall AB, Hellberg K, Bringas CF, Hafen PS, Sermersheim TJ, Agerholm M, Lewis CTA, Ahwazi D, Ling NXY, Larsen JK, Deshmukh AS, Hossain MA, Oakhill JS, Ochala J, Brault JJ, Sankar U, Drewry DH, Scott JW, Witczak CA, Sakamoto K. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Mol Metab 2023; 75:101761. [PMID: 37380024 PMCID: PMC10362367 DOI: 10.1016/j.molmet.2023.101761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. METHODS A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. RESULTS STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. CONCLUSIONS We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.
Collapse
Affiliation(s)
- Florentina Negoita
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alex B Addinsall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kristina Hellberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Conchita Fraguas Bringas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Paul S Hafen
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Science, Indiana University Purdue University Columbus, Columbus, IN 47203, USA
| | - Tyler J Sermersheim
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Naomi X Y Ling
- Metabolic Signalling, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jeppe K Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mohammad A Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan S Oakhill
- Metabolic Signalling, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, VIC 3052, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052, Australia; St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Ahwazi D, Neopane K, Markby GR, Kopietz F, Ovens AJ, Dall M, Hassing AS, Gräsle P, Alshuweishi Y, Treebak JT, Salt IP, Göransson O, Zeqiraj E, Scott JW, Sakamoto K. Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965. Biochem J 2021; 478:2977-2997. [PMID: 34259310 PMCID: PMC8370752 DOI: 10.1042/bcj20210284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
SBI-0206965, originally identified as an inhibitor of the autophagy initiator kinase ULK1, has recently been reported as a more potent and selective AMP-activated protein kinase (AMPK) inhibitor relative to the widely used, but promiscuous inhibitor Compound C/Dorsomorphin. Here, we studied the effects of SBI-0206965 on AMPK signalling and metabolic readouts in multiple cell types, including hepatocytes, skeletal muscle cells and adipocytes. We observed SBI-0206965 dose dependently attenuated AMPK activator (991)-stimulated ACC phosphorylation and inhibition of lipogenesis in hepatocytes. SBI-0206965 (≥25 μM) modestly inhibited AMPK signalling in C2C12 myotubes, but also inhibited insulin signalling, insulin-mediated/AMPK-independent glucose uptake, and AICA-riboside uptake. We performed an extended screen of SBI-0206965 against a panel of 140 human protein kinases in vitro, which showed SBI-0206965 inhibits several kinases, including members of AMPK-related kinases (NUAK1, MARK3/4), equally or more potently than AMPK or ULK1. This screen, together with molecular modelling, revealed that most SBI-0206965-sensitive kinases contain a large gatekeeper residue with a preference for methionine at this position. We observed that mutation of the gatekeeper methionine to a smaller side chain amino acid (threonine) rendered AMPK and ULK1 resistant to SBI-0206965 inhibition. These results demonstrate that although SBI-0206965 has utility for delineating AMPK or ULK1 signalling and cellular functions, the compound potently inhibits several other kinases and critical cellular functions such as glucose and nucleoside uptake. Our study demonstrates a role for the gatekeeper residue as a determinant of the inhibitor sensitivity and inhibitor-resistant mutant forms could be exploited as potential controls to probe specific cellular effects of SBI-0206965.
Collapse
Affiliation(s)
- Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katyayanee Neopane
- Nestlé Institute of Health Sciences, Nestlé Research, Societé Produit de Nestlé S.A
- School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Greg R. Markby
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Franziska Kopietz
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ashley J. Ovens
- St Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna S. Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pamina Gräsle
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Yazeed Alshuweishi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ian P. Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - John W. Scott
- St Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Shahinozzaman M, Basak B, Emran R, Rozario P, Obanda DN. Artepillin C: A comprehensive review of its chemistry, bioavailability, and pharmacological properties. Fitoterapia 2020; 147:104775. [PMID: 33152464 DOI: 10.1016/j.fitote.2020.104775] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Artepillin C (ARC), a prenylated derivative of p-coumaric acid, is one of the major phenolic compounds found in Brazilian green propolis (BGP) and its botanical source Baccharis dracunculifolia. Numerous studies on ARC show that its beneficial health effects correlate with the health effects of both BGP and B. dracunculifolia. Its wide range of pharmacological benefits include antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, neuroprotective, gastroprotective, immunomodulatory, and anti-cancer effects. Most studies have focused on anti-oxidation, inflammation, diabetic, and cancers using both in vitro and in vivo approaches. Mechanisms underlying anti-cancer properties of ARC are apoptosis induction, cell cycle arrest, and the inhibition of p21-activated kinase 1 (PAK1), a protein characterized in many human diseases/disorders including COVID-19 infection. Therefore, further pre-clinical and clinical studies with ARC are necessary to explore its potential as intervention for a wide variety of diseases including the recent pandemic coronaviral infection. This review summarizes the comprehensive data on the pharmacological effects of ARC and could be a guideline for its future study and therapeutic usage.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Department of Agricultural Extension (DAE), Khamarbari, Farmgate, Dhaka 1215, Bangladesh
| | - Patricia Rozario
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Diana N Obanda
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
7
|
Knudsen JR, Madsen AB, Persson KW, Henríquez-Olguín C, Li Z, Jensen TE. The ULK1/2 and AMPK Inhibitor SBI-0206965 Blocks AICAR and Insulin-Stimulated Glucose Transport. Int J Mol Sci 2020; 21:ijms21072344. [PMID: 32231045 PMCID: PMC7177789 DOI: 10.3390/ijms21072344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
The small molecule kinase inhibitor SBI-0206965 was originally described as a specific inhibitor of ULK1/2. More recently, it was reported to effectively inhibit AMPK and several studies now report its use as an AMPK inhibitor. Currently, we investigated the specificity of SBI-0206965 in incubated mouse skeletal muscle, measuring the effect on analog 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated AMPK-dependent glucose transport and insulin-stimulated AMPK-independent glucose uptake. Pre-treatment with 10 µM SBI-0206965 for 50 min potently suppressed AICAR-stimulated glucose transport in both the extensor digitorum longus (EDL) and soleus muscle. This was despite only a modest lowering of AICAR-stimulated AMPK activation measured as ACC2 Ser212, while ULK1/2 Ser555 phosphorylation was prevented. Insulin-stimulated glucose transport was also potently inhibited by SBI-0206965 in soleus. No major changes were observed on insulin-stimulated cell signaling. No general effect of SBI-0206965 on intracellular membrane morphology was observed by transmission electron microscopy. As insulin is known to neither activate AMPK nor require AMPK to stimulate glucose transport, and insulin inhibits ULK1/2 activity, these data strongly suggest that SBI-0206965 has a non-specific off-target inhibitory effect on muscle glucose transport. Thus, SBI-0206965 is not a specific inhibitor of the AMPK/ULK-signaling axis in skeletal muscle, and data generated with this inhibitor must be interpreted with caution.
Collapse
Affiliation(s)
- Jonas R. Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark; (J.R.K.); (A.B.M.); (K.W.P.); (C.H.-O.); (Z.L.)
- Laboratory of Microsystems 2, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Agnete B. Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark; (J.R.K.); (A.B.M.); (K.W.P.); (C.H.-O.); (Z.L.)
| | - Kaspar W. Persson
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark; (J.R.K.); (A.B.M.); (K.W.P.); (C.H.-O.); (Z.L.)
| | - Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark; (J.R.K.); (A.B.M.); (K.W.P.); (C.H.-O.); (Z.L.)
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark; (J.R.K.); (A.B.M.); (K.W.P.); (C.H.-O.); (Z.L.)
| | - Thomas E. Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark; (J.R.K.); (A.B.M.); (K.W.P.); (C.H.-O.); (Z.L.)
- Correspondence:
| |
Collapse
|
8
|
Nualkaew N, Phadannok P, Naladta A, Noipha K. Enhancing glucose uptake by Astraeus odoratus and Astraeus asiaticus extracts in L6 myotubes. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_323_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Jung S, Koh J, Kim S, Kim K. Effect of Lithium on the Mechanism of Glucose Transport in Skeletal Muscles. J Nutr Sci Vitaminol (Tokyo) 2018; 63:365-371. [PMID: 29332897 DOI: 10.3177/jnsv.63.365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While lithium is known to stimulate glucose transport into skeletal muscle, the mechanisms of the increased glucose transport by lithium in skeletal muscle are not well defined yet. We excised epitrochlearis muscles from male Wistar rats and measured the transport rates of a glucose analog into lithium-, insulin-, and muscular contraction-stimulated skeletal muscle tissue and we also analyzed the levels of cell surface glucose transport 4 using a photolabeling and multicolor immunofluorescence method. In addition, we generated a cell line that stably expresses myc-tagged GLUT4 to measure the rates of GLUT4 internalization and externalization. Lithium significantly increased 2-DG glucose transport rate in skeletal muscles; however, it was significantly lower than the stimulation induced by the maximum concentration of insulin or tetanic contraction. But co-treatment of lithium with insulin or tetanic contraction increased glucose transport rate by ∼200% more than lithium alone. When skeletal muscle tissues were treated with lithium, insulin, and muscular contraction, the levels of cell surface GLUT4 protein contents were increased similarly by ∼6-fold compared with the basal levels. When insulin or lithium stimuli were maintained, the rate of GLUT4myc internalization was significantly lower, and lithium was found to suppress the internalization of GLUT4myc more strongly. The lithium-induced increase in glucose uptake of skeletal muscles appears to increase in cell surface GLUT4 levels caused by decreased internalization of GLUT4. It is concluded that co-treatment of lithium with insulin and muscular contraction had a synergistic effect on glucose transport rate in skeletal muscle.
Collapse
Affiliation(s)
- Suryun Jung
- Keimyung University Sports Science Research Institute
| | - Jinho Koh
- Keimyung University Sports Science Research Institute
| | - Sanghyun Kim
- Department of Sports Science, Chonbuk National University
| | - Kijin Kim
- Keimyung University Sports Science Research Institute
| |
Collapse
|
10
|
Matesanz N, Nikolic I, Leiva M, Pulgarín-Alfaro M, Santamans AM, Bernardo E, Mora A, Herrera-Melle L, Rodríguez E, Beiroa D, Caballero A, Martín-García E, Acín-Pérez R, Hernández-Cosido L, Leiva-Vega L, Torres JL, Centeno F, Nebreda AR, Enríquez JA, Nogueiras R, Marcos M, Sabio G. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol 2018; 16:e2004455. [PMID: 29979672 PMCID: PMC6051667 DOI: 10.1371/journal.pbio.2004455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 07/18/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue has emerged as an important regulator of whole-body metabolism, and its capacity to dissipate energy in the form of heat has acquired a special relevance in recent years as potential treatment for obesity. In this context, the p38MAPK pathway has arisen as a key player in the thermogenic program because it is required for the activation of brown adipose tissue (BAT) thermogenesis and participates also in the transformation of white adipose tissue (WAT) into BAT-like depot called beige/brite tissue. Here, using mice that are deficient in p38α specifically in adipose tissue (p38αFab-KO), we unexpectedly found that lack of p38α protected against high-fat diet (HFD)-induced obesity. We also showed that p38αFab-KO mice presented higher energy expenditure due to increased BAT thermogenesis. Mechanistically, we found that lack of p38α resulted in the activation of the related protein kinase family member p38δ. Our results showed that p38δ is activated in BAT by cold exposure, and lack of this kinase specifically in adipose tissue (p38δ Fab-KO) resulted in overweight together with reduced energy expenditure and lower body and skin surface temperature in the BAT region. These observations indicate that p38α probably blocks BAT thermogenesis through p38δ inhibition. Consistent with the results obtained in animals, p38α was reduced in visceral and subcutaneous adipose tissue of subjects with obesity and was inversely correlated with body mass index (BMI). Altogether, we have elucidated a mechanism implicated in physiological BAT activation that has potential clinical implications for the treatment of obesity and related diseases such as diabetes.
Collapse
Affiliation(s)
- Nuria Matesanz
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ivana Nikolic
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Magdalena Leiva
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ayelén M. Santamans
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Edgar Bernardo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alfonso Mora
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Leticia Herrera-Melle
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Rodríguez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Ainoa Caballero
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Martín-García
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Rebeca Acín-Pérez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Salamanca, Spain
| | - Luis Leiva-Vega
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jorge L. Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Francisco Centeno
- Facultad de Ciencias, University of Extremadura, Grupo GIEN (Grupo de Investigación en Enfermedades Neurodegenerativas), Badajoz, Spain
| | - Angel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - José Antonio Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Delos Santos RC, Bautista S, Lucarelli S, Bone LN, Dayam RM, Abousawan J, Botelho RJ, Antonescu CN. Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium. Mol Biol Cell 2017; 28:2802-2818. [PMID: 28814502 PMCID: PMC5638584 DOI: 10.1091/mbc.e16-12-0871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes.
Collapse
Affiliation(s)
- Ralph Christian Delos Santos
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Stephen Bautista
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Leslie N Bone
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
12
|
Pentassuglia L, Heim P, Lebboukh S, Morandi C, Xu L, Brink M. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes. Am J Physiol Endocrinol Metab 2016; 310:E782-94. [PMID: 26979522 DOI: 10.1152/ajpendo.00259.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022]
Abstract
Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Gene Knockdown Techniques
- Glucose/metabolism
- Heart Ventricles/cytology
- Hypoglycemic Agents/pharmacology
- Immunoprecipitation
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Mechanistic Target of Rapamycin Complex 2
- Mice
- Mice, Inbred C57BL
- Multiprotein Complexes/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Neuregulin-1/pharmacology
- Phosphatidylinositol 3-Kinases/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering
- Rats
- Receptor, ErbB-2/drug effects
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-4/drug effects
- Receptor, ErbB-4/genetics
- Receptor, ErbB-4/metabolism
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Laura Pentassuglia
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Philippe Heim
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sonia Lebboukh
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christian Morandi
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Garay C, Judge G, Lucarelli S, Bautista S, Pandey R, Singh T, Antonescu CN. Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis. Mol Biol Cell 2015; 26:3504-19. [PMID: 26246598 PMCID: PMC4591694 DOI: 10.1091/mbc.e14-09-1412] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Upon ligand binding, the epidermal growth factor receptor (EGFR) activates signaling and undergoes endocytosis. EGFR signaling leading to Akt activation is impaired by perturbation of clathrin but not by inhibition of internalization through perturbation of dynamin. Clathrin may thus directly regulate receptor signaling at the cell surface. Epidermal growth factor (EGF) binding to its receptor (EGFR) activates several signaling intermediates, including Akt, leading to control of cell survival and metabolism. Concomitantly, ligand-bound EGFR is incorporated into clathrin-coated pits—membrane structures containing clathrin and other proteins—eventually leading to receptor internalization. Whether clathrin might regulate EGFR signaling at the plasma membrane before vesicle scission is poorly understood. We compared the effect of clathrin perturbation (preventing formation of, or receptor recruitment to, clathrin structures) to that of dynamin2 (allowing formation of clathrin structures but preventing EGFR internalization) under conditions in which EGFR endocytosis is clathrin dependent. Clathrin perturbation by siRNA gene silencing, with the clathrin inhibitor pitstop2, or knocksideways silencing inhibited EGF-simulated Gab1 and Akt phosphorylation in ARPE-19 cells. In contrast, perturbation of dynamin2 with inhibitors or by siRNA gene silencing did not affect EGF-stimulated Gab1 or Akt phosphorylation. EGF stimulation enriched Gab1 and phospho-Gab1 within clathrin structures. ARPE-19 cells have low ErbB2 expression, and overexpression and knockdown experiments revealed that robust ErbB2 expression bypassed the requirement for clathrin for EGF-stimulated Akt phosphorylation. Thus clathrin scaffolds may represent unique plasma membrane signaling microdomains required for signaling by certain receptors, a function that can be separated from vesicle formation.
Collapse
Affiliation(s)
- Camilo Garay
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Gurjeet Judge
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Stephen Bautista
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Rohan Pandey
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Tanveer Singh
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
14
|
Lee JO, Kim N, Lee HJ, Lee YW, Kim JK, Kim HI, Lee SK, Kim SJ, Park SH, Kim HS. Visfatin, a novel adipokine, stimulates glucose uptake through the Ca2 +-dependent AMPK-p38 MAPK pathway in C2C12 skeletal muscle cells. J Mol Endocrinol 2015; 54:251-62. [PMID: 26019302 DOI: 10.1530/jme-14-0274] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Visfatin is a novel adipocytokine produced by visceral fat. In the present study, visfatin increased AMP-activated protein kinase (AMPK) phosphorylation in mouse C2C12 skeletal muscle cells. It also increased phosphorylation of the insulin receptor, whose knockdown blocked visfatin-induced AMPK phosphorylation and glucose uptake. Visfatin stimulated glucose uptake in differentiated skeletal muscle cells. However, inhibition of AMPKα2 with an inhibitor or with knockdown of AMPKα2 using siRNA blocked visfatin-induced glucose uptake, which indicates that visfatin stimulates glucose uptake through the AMPKα2 pathway. Visfatin increased the intracellular Ca(2) (+) concentration. STO-609, a calmodulin-dependent protein kinase kinase inhibitor, blocked visfatin-induced AMPK phosphorylation and glucose uptake. Visfatin-mediated activation of p38 MAPK was AMPKα2-dependent. Furthermore, both inhibition and knockdown of p38 MAPK blocked visfatin-induced glucose uptake. Visfatin increased glucose transporter type 4 (GLUT4) mRNA and protein levels. In addition, visfatin stimulated the translocation of GLUT4 to the plasma membrane, and this effect was suppressed by AMPKα2 inhibition. The present results indicate that visfatin plays an important role in glucose metabolism via the Ca(2) (+)-mediated AMPK-p38 MAPK pathway.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Nami Kim
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Hye Jeong Lee
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Yong Woo Lee
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Joong Kwan Kim
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Hyung Ip Kim
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Soo Kyung Lee
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Su Jin Kim
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Sun Hwa Park
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| | - Hyeon Soo Kim
- Department of Anatomy Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul, Korea
| |
Collapse
|
15
|
Activation of p38 in C2C12 myotubes following ATP depletion depends on extracellular glucose. J Physiol Biochem 2015; 71:253-65. [PMID: 25835326 DOI: 10.1007/s13105-015-0406-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Muscle cells adjust their glucose metabolism in response to myriad stimuli, and particular attention has been paid to glucose metabolism after contraction, ATP depletion, and insulin stimulation. Each of these requires translocation of GLUT4 to the cell membrane, and may require activation of glucose transporters by p38. In contrast, AICAR stimulates glucose transport without activation of p38, suggesting that p38 activation may be an indirect consequence of accelerated glucose transport or metabolism. This study was designed to investigate the contribution of AMPK and p38 to ATP homeostasis and glucose metabolism to test the hypothesis that p38 reflects glycolytic activity rather than controls glucose uptake. Treating mature myotubes with rotenone caused transient ATP depletion in 15 min with recovery by 120 min, associated with increased lactate production. Both ACC and p38 were rapidly phosphorylated, but ACC remained phosphorylated while p38 phosphorylation declined as ATP recovered. AMPK inhibition blocked ATP recovery, lactate production, and phosphorylation of p38 and ACC. Inhibition of p38 had little effect. AICAR induced ACC phosphorylation, but not lactate production or p38 phosphorylation. Finally, removing extracellular glucose potentiated rotenone-induced AMPK activation, but reduced lactate generation, ATP recovery and p38 activation. Thus, glucose metabolism is highly sensitive to ATP homeostasis via AMPK activity, but p38 activity is dispensable. Although p38 is strongly phosphorylated during ATP depletion, this appears to be an indirect consequence of accelerated glycolysis.
Collapse
|
16
|
Talbot NA, Wheeler-Jones CP, Cleasby ME. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance. Mol Cell Endocrinol 2014; 393:129-42. [PMID: 24973767 PMCID: PMC4148479 DOI: 10.1016/j.mce.2014.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022]
Abstract
Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.
Collapse
Affiliation(s)
- Nicola A Talbot
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Caroline P Wheeler-Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Mark E Cleasby
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
17
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
18
|
Ueda M, Hayashibara K, Ashida H. Propolis extract promotes translocation of glucose transporter 4 and glucose uptake through both PI3K- and AMPK-dependent pathways in skeletal muscle. Biofactors 2013; 39:457-66. [PMID: 23355380 DOI: 10.1002/biof.1085] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022]
Abstract
It is well known that propolis has the ability to prevent hyperglycemia. However, the underlying mechanism is not yet fully understood. We therefore investigated whether a Brazilian propolis ethanol extract affects glucose uptake and translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle cells. In L6 myotubes, the extract at 1 μg/mL significantly promoted GLUT4 translocation and glucose uptake activity. Regarding the mechanism of GLUT4 translocation, propolis extract induced both PI3K and AMPK phosphorylation in a dose-dependent manner in L6 myotubes. However, we could not define which pathway was preferentially associated with GLUT4 translocation, because both PI3K and AMPK inhibitors revealed off-target effects to each other. The main polyphenols found in the propolis extract, artepillin C, coumaric acid, and kaempferide, promoted GLUT4 translocation in L6 myotubes. Additionally, these compounds activated both PI3K- and AMPK-dependent dual-signaling pathways. However, only kaempferide increased glucose uptake activity under our experimental conditions. Single oral administrations of propolis extract, at 250 mg/kg body weight, lowered postprandial blood glucose levels in ICR mice. The extract promoted GLUT4 translocation in skeletal muscle of rats and mice, but did not inhibit α-glucosidase activity in the small intestine under our experimental conditions. It was confirmed that propolis extract promoted phosphorylation of both PI3K and AMPK in rat skeletal muscle. In conclusion, we show that Brazilian propolis has the potential to prevent hyperglycemia through the promotion of GLUT4 translocation in skeletal muscle and that kaempferide is one of the candidates for active compound in propolis.
Collapse
Affiliation(s)
- Manabu Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | | | | |
Collapse
|
19
|
Zhu Y, Pereira RO, O'Neill BT, Riehle C, Ilkun O, Wende AR, Rawlings TA, Zhang YC, Zhang Q, Klip A, Shiojima I, Walsh K, Abel ED. Cardiac PI3K-Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation. Mol Endocrinol 2012. [PMID: 23204326 DOI: 10.1210/me.2012-1210] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Impaired insulin-mediated glucose uptake characterizes cardiac muscle in humans and animals with insulin resistance and diabetes, despite preserved or enhanced phosphatidylinositol 3-kinase (PI3K) and the serine-threonine kinase, Akt-signaling, via mechanisms that are incompletely understood. One potential mechanism is PI3K- and Akt-mediated activation of mechanistic target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K), which may impair insulin-mediated activation of insulin receptor substrate (IRS)1/2 via inhibitory serine phosphorylation or proteasomal degradation. To gain mechanistic insights by which constitutive activation of PI3K or Akt may desensitize insulin-mediated glucose uptake in cardiomyocytes, we examined mice with cardiomyocyte-restricted, constitutive or inducible overexpression of a constitutively activated PI3K or a myristoylated Akt1 (myrAkt1) transgene that also expressed a myc-epitope-tagged glucose transporter type 4 protein (GLUT4). Although short-term activation of PI3K and myrAkt1 increased mTOR and S6 signaling, there was no impairment in insulin-mediated activation of IRS1/2. However, insulin-mediated glucose uptake was reduced by 50-80%. Although longer-term activation of Akt reduced IRS2 protein content via an mTORC1-mediated mechanism, treatment of transgenic mice with rapamycin failed to restore insulin-mediated glucose uptake, despite restoring IRS2. Transgenic activation of Akt and insulin-stimulation of myrAkt1 transgenic cardiomyocytes increased sarcolemmal insertion of myc-GLUT4 to levels equivalent to that observed in insulin-stimulated wild-type controls. Despite preserved GLUT4 translocation, glucose uptake was not elevated by the presence of constitutive activation of PI3K and Akt. Hexokinase II activity was preserved in myrAkt1 hearts. Thus, constitutive activation of PI3K and Akt in cardiomyocytes impairs GLUT4-mediated glucose uptake via mechanisms that impair the function of GLUT4 after its plasma-membrane insertion.
Collapse
Affiliation(s)
- Yi Zhu
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang H, Chen GG, Zhang Z, Chun S, Leung BCS, Lai PBS. Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Apoptosis 2012; 17:325-34. [PMID: 22170404 DOI: 10.1007/s10495-011-0685-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SB203580 is a well-known inhibitor of p38 mitogen-activated protein kinase (MAPK). However, it can suppress cell proliferation in a p38 MAPK independent manner. The inhibitory mechanism remains unknown. Here, we showed that SB203580 induced autophagy in human hepatocellular carcinoma (HCC) cells. SB203580 increased GFP-LC3-positive cells with GFP-LC3 dots, induced accumulation of autophagosomes, and elevated the levels of microtubule-associated protein light chain 3 and Beclin 1. It stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and p53, but inhibited the phosphorylation of death-associated protein kinase (DAPK). Inhibition of AMPK, p53, or DAPK attenuated SB203580-induced autophagy. AMPK activation appeared to predate the DAPK signal. The activation of both AMPK and DAPK prompted the phosphorylation of p53 and enhanced Beclin 1 expression. Neither the downregulation of p38 MAPK by its siRNA or chemical inhibitor nor the upregulation of p38 MAPK by p38 MAPK DNA transfection affected B203580-induced autophagy. Collectively, the findings demonstrate a novel function of SB203580 to induce autophagy via activating AMPK and DAPK but independent of p38 MAPK. The induction of autophagy can thus account for the antiproliferative effect of SB203580 in HCC cells.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, China
| | | | | | | | | | | |
Collapse
|
21
|
De Solís AJ, Fernández-Agulló T, García-SanFrutos M, Pérez-Pardo P, Bogónez E, Andrés A, Ros M, Carrascosa JM. Impairment of skeletal muscle insulin action with aging in Wistar rats: Role of leptin and caloric restriction. Mech Ageing Dev 2012; 133:306-16. [DOI: 10.1016/j.mad.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/13/2012] [Accepted: 03/06/2012] [Indexed: 01/04/2023]
|
22
|
Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol 2011; 590:1069-76. [PMID: 22199166 DOI: 10.1113/jphysiol.2011.224972] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation).
Collapse
Affiliation(s)
- Thomas E Jensen
- Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
23
|
Kim JH, Lee JO, Lee SK, Moon JW, You GY, Kim SJ, Park SH, Park JM, Lim SY, Suh PG, Uhm KO, Song MS, Kim HS. The glutamate agonist homocysteine sulfinic acid stimulates glucose uptake through the calcium-dependent AMPK-p38 MAPK-protein kinase C zeta pathway in skeletal muscle cells. J Biol Chem 2010; 286:7567-76. [PMID: 21193401 DOI: 10.1074/jbc.m110.149328] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homocysteine sulfinic acid (HCSA) is a homologue of the amino acid cysteine and a selective metabotropic glutamate receptor (mGluR) agonist. However, the metabolic role of HCSA is poorly understood. In this study, we showed that HCSA and glutamate stimulated glucose uptake in C2C12 mouse myoblast cells and increased AMP-activated protein kinase (AMPK) phosphorylation. RT-PCR and Western blot analysis revealed that C2C12 expresses mGluR5. HCSA transiently increased the intracellular calcium concentration. Although α-methyl-4-carboxyphenylglycine, a metabotropic glutamate receptor antagonist, blocked the action of HCSA in intracellular calcium response and AMPK phosphorylation, 6-cyano-7-nitroquinoxaline-2,3-dione, an AMPA antagonist, did not exhibit such effects. Knockdown of mGluR5 with siRNA blocked HCSA-induced AMPK phosphorylation. Pretreatment of cells with STO-609, a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, blocked HCSA-induced AMPK phosphorylation, and knockdown of CaMKK blocked HCSA-induced AMPK phosphorylation. In addition, HCSA activated p38 mitogen-activated protein kinase (MAPK). Expression of dominant-negative AMPK suppressed HCSA-mediated phosphorylation of p38 MAPK, and inhibition of AMPK and p38 MAPK blocked HCSA-induced glucose uptake. Phosphorylation of protein kinase C ζ (PKCζ) was also increased by HCSA. Pharmacologic inhibition or knockdown of p38 MAPK blocked HCSA-induced PKCζ phosphorylation, and knockdown of PKCζ suppressed the HCSA-induced increase of cell surface GLUT4. The stimulatory effect of HCSA on cell surface GLUT4 was impaired in FITC-conjugated PKCζ siRNA-transfected cells. Together, the above results suggest that HCSA may have a beneficial role in glucose metabolism in skeletal muscle cells via stimulation of AMPK.
Collapse
Affiliation(s)
- Ji Hae Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wan Z, Thrush AB, Legare M, Frier BC, Sutherland LN, Williams DB, Wright DC. Epinephrine-mediated regulation of PDK4 mRNA in rat adipose tissue. Am J Physiol Cell Physiol 2010; 299:C1162-70. [DOI: 10.1152/ajpcell.00188.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid reesterification in adipose tissue is dependent on the generation of glycerol 3-phosphate, and, at least in rodent adipose tissue, this appears to occur primarily through glyceroneogenesis. A key enzyme in this process is pyruvate dehydrogenase kinase 4 (PDK4). PDK4 is induced in white adipose tissue by thiazolidinediones (TZDs) and the inhibition or knockdown of PDK4 inhibits TZD-induced increases in glyceroneogenesis. Since TZDs have many unwanted side effects, we were interested in identifying alternative mechanisms that could regulate PDK4 mRNA expression in white adipose tissue. In this regard we hypothesized that exercise, fasting, and epinephrine would increase PDK4 mRNA levels in rat epididymal adipose tissue. We further postulated that the p38 mitogen-activated protein kinase (MAPK) and 5′-AMP-activated protein kinase (AMPK) signaling pathways would control PDK4 mRNA expression in cultured adipose tissue. Exercise, fasting, and in or ex vivo epinephrine treatment increased PDK4 mRNA levels. These perturbations did not increase the expression of PDK1, -2, or -3. Pyruvate dehydrogenase phosphorylation was increased after an overnight fast and 4 h after the cessation of exercise. In cultured adipose tissue, epinephrine increased p38 and AMPK signaling; however, the direct activation of AMPK by AICAR or metformin led to reductions in PDK4 mRNA levels. The p38 inhibitor SB202190 reduced epinephrine-mediated increases in p38 MAPK activation without altering hormone-sensitive lipase or AMPK phosphorylation or attenuating epinephrine-induced increases in lipolysis. Reductions in p38 MAPK signaling were associated with decreases in PDK4 mRNA expression. The inhibition of peroxisome proliferator-activated receptor-γ (PPARγ) also attenuated the induction of PDK4. Our results are the very first to demonstrate an epinephrine-mediated regulation of PDK4 mRNA levels in white adipose tissue and suggest that p38 MAPK and PPARγ could be involved in this pathway.
Collapse
Affiliation(s)
- Zhongxiao Wan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A. Brianne Thrush
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Legare
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce C. Frier
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Deon B. Williams
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David C. Wright
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Gehart H, Kumpf S, Ittner A, Ricci R. MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep 2010; 11:834-40. [PMID: 20930846 DOI: 10.1038/embor.2010.160] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/13/2010] [Indexed: 12/24/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signalling occurs in response to almost any change in the extracellular or intracellular milieu that affects the metabolism of the cell, organ or the entire organism. MAPK-dependent signal transduction is required for physiological metabolic adaptation, but inappropriate MAPK signalling contributes to the development of several interdependent pathological traits, collectively known as metabolic syndrome. Metabolic syndrome leads to life-threatening clinical consequences, such as type 2 diabetes. This Review provides an overview of the MAPK-signalling mechanisms that underly basic cellular metabolism, discussing their link to disease.
Collapse
Affiliation(s)
- Helmuth Gehart
- Department of Biology, Institute of Cell Biology, ETH Zurich, Hönggerberg Campus, Switzerland
| | | | | | | |
Collapse
|
26
|
Ishikura S, Antonescu CN, Klip A. Documenting GLUT4 exocytosis and endocytosis in muscle cell monolayers. ACTA ACUST UNITED AC 2010; Chapter 15:Unit 15.15. [PMID: 20235101 DOI: 10.1002/0471143030.cb1515s46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The elevated blood glucose following a meal is cleared by insulin-stimulated glucose entry into muscle and fat cells. The hormone increases the amount of the glucose transporter GLUT4 at the plasma membrane in these tissues at the expense of preformed intracellular pools. In addition, muscle contraction also increases glucose uptake via a gain in GLUT4 at the plasma membrane. Regulation of GLUT4 levels at the cell surface could arise from alterations in the rate of its exocytosis, endocytosis, or both. Hence, methods that can independently measure these traffic parameters for GLUT4 are essential to understanding the mechanism of regulation of membrane traffic of the transporter. Here, we describe cell population-based assays to measure the steady-state levels of GLUT4 at the cell surface, as well as to separately measure the rates of GLUT4 endocytosis and endocytosis.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Program in Cell Biology, The Hospital for Sick Children, Ontario, Canada
| | | | | |
Collapse
|
27
|
Kim JH, Park JM, Kim EK, Lee JO, Lee SK, Jung JH, You GY, Park SH, Suh PG, Kim HS. Curcumin stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 myotube cells. J Cell Physiol 2010; 223:771-8. [PMID: 20205235 DOI: 10.1002/jcp.22093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Curcumin has been shown to exert a variety of beneficial human health effects. However, mechanisms by which curcumin acts are poorly understood. In this study, we report that curcumin activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. In addition, curcumin activated the mitogen-activated protein kinase kinase (MEK)3/6-p38 mitogen-activated protein kinase (MAPK) signaling pathways in the downstream of the AMPK cascade. Moreover, inhibition of either AMPK or p38 MAPK resulted in blockage of curcumin-induced glucose uptake. Furthermore, the administration of curcumin to mice increased AMPK phosphorylation in the skeletal muscles. Taken together, these results indicate that the beneficial health effect of curcumin can be explained by its ability to activate AMPK-p38 MAPK pathways in skeletal muscles.
Collapse
Affiliation(s)
- Ji Hae Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shiryaev A, Moens U. Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: ménage à trois or ménage à quatre? Cell Signal 2010; 22:1185-92. [PMID: 20227494 DOI: 10.1016/j.cellsig.2010.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/01/2010] [Indexed: 12/11/2022]
Abstract
The mitogen-activated protein kinase (MAPK) signalling pathways play pivotal roles in cellular processes such as proliferation, apoptosis, gene regulation, differentiation, and cell motility. The typical mammalian MAPK pathways ERK1/2, JNK, p38(MAPK), and ERK5 operate through a concatenation of three successive phosphorylation events mediated by a MAPK kinase kinase, a MAPK kinase, and a MAPK. MAPKs phosphorylate substrates with distinct functions, including other protein kinases referred to as MAPK-activated protein kinases. One family of related MAPK-activated protein kinases includes MK2, MK3, and MK5. While it is generally accepted that MK2 and MK3 are bona fide substrates for p38(MAPK), the genuineness of MK5 as a p38(MAPK) substrate is disputed. This review summarizes the findings pro and contra an authentic p38(MAPK)-MK5 relationship, discusses possible explanations for these discrepancies, and proposes experiments that may help to unequivocally clarify whether MK5 is indeed a substrate for p38(MAPK).
Collapse
Affiliation(s)
- Alexey Shiryaev
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, N-9037 Tromsø, Norway
| | | |
Collapse
|
29
|
Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions. Metabolism 2009; 58:1694-702. [PMID: 19767038 DOI: 10.1016/j.metabol.2009.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/15/2009] [Accepted: 06/15/2009] [Indexed: 11/16/2022]
Abstract
The plant alkaloid berberine (BBR) has been reported to have antidiabetic effect in humans and animals. However, the mechanism of action is not well understood. The present study was conducted to determine the effect and mechanism of action of BBR on the free-fatty-acid (FFA)-induced insulin resistance in muscle cells. The FFA-induced insulin-resistant cell model was established in L6 myotubes by treating them with 250 mumol/L of palmitic acid. The inclusion of FFA in the medium increased peroxisome proliferator-activated receptor gamma (PPARgamma) and fatty acid transferase (FAT/CD36) expressions by 26% and 50% and decreased glucose consumption by 43% and insulin-mediated glucose uptake by 63%, respectively. Berberine treatment increased the glucose consumption and insulin-stimulated glucose uptake in normal cells and improved glucose uptake in the FFA-induced insulin-resistant cells. The improved glucose uptake by BBR was accompanied with a dose-dependent decrease in PPARgamma and FAT/CD36 protein expressions. In insulin-resistant myotubes, BBR (5 micromol/L) decreased PPARgamma and FAT/CD36 proteins by 31% and 24%, whereas PPARgamma antagonist GW9662 reduced both proteins by 56% and 46%, respectively. In contrast, PPARgamma agonist rosiglitazone increased the expression of PPARgamma and FAT/CD36 by 34% and 21%, respectively. Our results suggest that BBR improves the FFA-induced insulin resistance in myotubes through inhibiting fatty acid uptake at least in part by reducing PPARgamma and FAT/CD36 expressions.
Collapse
Affiliation(s)
- Yanfeng Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | | | | | | | | |
Collapse
|
30
|
Differential regulation of NHE1 phosphorylation and glucose uptake by inhibitors of the ERK pathway and p90RSK in 3T3-L1 adipocytes. Cell Signal 2009; 21:1984-93. [PMID: 19765648 DOI: 10.1016/j.cellsig.2009.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 09/09/2009] [Indexed: 01/12/2023]
Abstract
Insulin stimulates trafficking of GLUT4 to the cell surface for glucose uptake into target cells, and phosphorylation of Ser703 of the Na+/H+ exchanger NHE1, which activates proton efflux. The latter has been proposed to facilitate optimal glucose uptake into cardiomyocytes. We found that the insulin-stimulated phosphorylation of Ser703 of NHE1 is mediated by p90RSK but not directly coupled to glucose uptake in 3T3-L1 adipocytes in the short-term. Inhibiting Erk1/2 activation prevented NHE1 phosphorylation but not glucose uptake in 3T3-L1 adipocytes. In contrast, both NHE1 phosphorylation and insulin-stimulated uptake of glucose into 3T3-L1 adipocytes were blocked by inhibitors of the N-terminal kinase domain of p90RSK, namely BI-D1870 and SL0101, but not the FMK inhibitor of the C-terminal kinase domain of p90RSK, though in our hands FMK did not inhibit p90RSK in 3T3-L1 adipocytes. Further experiments were consistent with phosphorylation of AS160 by PKB/Akt mediating insulin-stimulated trafficking of GLUT4 to the plasma membrane. BI-D1870 and SL0101 however, inhibited glucose uptake without blocking GLUT4 translocation. While BI-D1870 partially inhibited insulin-stimulated PKB activation in these cells, this only partially inhibited AS160 phosphorylation and did not block GLUT4 trafficking, suggesting that p90RSK might regulate glucose transport after GLUT4 translocation. Moreover, BI-D1870 also prevented PMA-induced glucose transport in 3T3-L1 adipocytes further suggesting a role for p90RSK in regulating uptake of glucose into the cells. Kinetic experiments are consistent with SL0101 being a direct competitor of 2-deoxyglucose entry into cells, and this compound might also inhibit uptake of glucose into cells via inhibiting p90RSK, as revealed by comparison with the inactive form of the inhibitor. Taken together, we propose that BI-D1870 and SL0101 might exert their inhibitory effects on glucose uptake in 3T3-L1 adipocytes at least partially through a p90RSK dependent step after GLUT4 becomes associated with the plasma membrane.
Collapse
|
31
|
Klip A. The many ways to regulate glucose transporter 4. Appl Physiol Nutr Metab 2009; 34:481-7. [PMID: 19448718 DOI: 10.1139/h09-047] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glucose uptake into skeletal muscle is primarily mediated by glucose transporter 4 (GLUT4). The number of GLUT4 polypeptides at the surface of muscle cells rises rapidly in response to insulin, contraction, depolarization, or energy deprivation. However, distinct mechanisms underlie the gain in surface GLUT4 in each case. Insulin promotes its exocytosis to the membrane, regulating vesicle movement, tethering, docking, and fusion. In contrast, muscle contraction, depolarization, and energy demand reduce GLUT4 endocytosis. The signals involved in each case also differ. Insulin utilizes Akt, Rabs, and selective actin remodelling, whereas depolarization and energy deprivation engage AMP-activated protein kinase and Ca2+-dependent signals. GLUT4 internalizes via 2 major routes that involve dynamin, but only one requires clathrin. The clathrin-independent route is slowed down by energy deprivation, and is regulated by AMP-activated protein kinase. In addition to regulation of the exocytic and endocytic movement of GLUT4, glucose uptake is also modulated through changes in the transporter's intrinsic activity. The glycolytic enzymes glyceraldehyde-3-dehydrogenase and hexokinase II contribute to such regulation, through differential binding to GLUT4.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
32
|
GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem J 2009; 419:475-84. [PMID: 19140804 DOI: 10.1042/bj20081319] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dietary glucose is taken up by skeletal muscle through GLUT4 (glucose transporter 4). We recently identified by MS proteins displaying insulin-dependent co-precipitation with Myc-tagged GLUT4 from L6 myotubes, including GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HKII (hexokinase-II). In the present paper we explored whether GAPDH and HKII interact directly with cytoplasmic regions of GLUT4 and their possible inter-relationship. Endogenous and recombinant GAPDH and HKII bound to a chimeric protein linearly encoding all three cytosolic domains of GLUT4 [GST (glutathione-transferase)-GLUT4-cyto]. Both proteins bound to a lesser extent the middle cytosolic loop but not individual N- or C-terminal domains of GLUT4. Purified GAPDH and HKII competed for binding to GST-GLUT4-cyto; ATP increased GAPDH binding and decreased HKII binding to this construct. The physiological significance of the GAPDH-GLUT4 interaction was explored by siRNA (small interfering RNA)-mediated GAPDH knockdown. Reducing GAPDH expression by 70% increased HKII co-precipitation with GLUT4-Myc from L6 cell lysates. GAPDH knockdown had no effect on surface-exposed GLUT4-Myc in basal or insulin-stimulated cells, but markedly and selectively diminished insulin-stimulated 3-O-methyl glucose uptake and GLUT4-Myc photolabelling with ATB-BMPA {2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-yloxy)-2-propylamine}, suggesting that the exofacial glucose-binding site was inaccessible. The results show that GAPDH and HKII reciprocally interact with GLUT4 and suggest that these interactions regulate GLUT4 intrinsic activity in response to insulin.
Collapse
|
33
|
Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol Biol Rep 2008; 36:2075-85. [PMID: 19048389 DOI: 10.1007/s11033-008-9419-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
The Gadd45 family of proteins, which includes alpha, beta, and gamma isoforms, has recently been shown to play a role in the G2/M cell cycle checkpoint in response to DNA damage; however, the mechanisms by which Gadd45 proteins inhibit cell cycle control are not fully understood. Using immunohistochemical analysis, we found that protein expression of Gadd45gamma, but not Gadd45alpha, was down-regulated in hepatocellular carcinoma. We thus investigated possible mechanisms by which Gadd45alpha and Gadd45gamma might differentially induce G2/M arrest in the human hepatoma Hep-G2 cell line. Flow cytometric analysis revealed significant G2/M arrest in cells transfected with either Gadd45alpha or Gadd45gamma. Importantly, we found that expression of either Gadd45alpha or Gadd45gamma activated the P38 and JNK kinase pathways to induce G2/M arrest. Taken together, these findings suggest that the induction of G2/M arrest by Gadd45alpha or Gadd45gamma involves activation of two distinct signaling pathways in Hep-G2 hepatoma cell lines.
Collapse
|
34
|
Macko AR, Beneze AN, Teachey MK, Henriksen EJ. Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Arch Physiol Biochem 2008; 114:331-9. [PMID: 19023684 PMCID: PMC2633930 DOI: 10.1080/13813450802536067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have demonstrated previously in insulin-sensitive skeletal muscle that lithium, an alkali metal and non-selective inhibitor of glycogen synthase kinase-3 (GSK-3), activates glucose transport by engaging the stress-activated p38 mitogen-activated protein kinase (p38 MAPK). However, it is presently unknown whether this same mechanism underlies lithium action on the glucose transport system in insulin-resistant skeletal muscle. We therefore assessed the effects of lithium on basal and insulin-stimulated glucose transport, glycogen synthesis, insulin signalling (insulin receptor (IR), Akt, and GSK-3), and p38 MAPK in soleus muscle from female obese Zucker rats. Lithium (10 mM LiCl) increased basal glucose transport by 49% (p < 0.05) and net glycogen synthesis by 2.4-fold (p < 0.05). In the absence of insulin, lithium did not induce IR tyrosine phosphorylation, but did enhance (p < 0.05) Akt ser(473) phosphorylation (40%) and GSK-3beta ser(9) phosphorylation (88%). Lithium potentiated (p < 0.05) the stimulatory effects of insulin on glucose transport (74%), glycogen synthesis (2.4-fold), Akt ser(473) phosphorylation (39%), and GSK-3beta ser(9) phosphorylation (36%), and elicited robust increases (p < 0.05) in p38 MAPK phosphorylation both in the absence (100%) or presence (88%) of insulin. The selective p38 MAPK inhibitor A304000 (10 muM) completely blocked basal activation of glucose transport by lithium, and significantly reduced (42%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport in insulin-resistant muscle. These results indicate that lithium enhances both basal and insulin-stimulated glucose transport and glycogen synthesis in insulin-resistant skeletal muscle of female obese Zucker rats, and that these lithium-dependent effects are associated with enhanced Akt and GSK-3beta serine phosphorylation. As in insulin-sensitive muscle, the lithium-induced activation of glucose transport in insulin-resistant skeletal muscle is dependent on the engagement of p38 MAPK.
Collapse
Affiliation(s)
- Antoni R Macko
- Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
35
|
Nedachi T, Fujita H, Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab 2008; 295:E1191-204. [PMID: 18780777 DOI: 10.1152/ajpendo.90280.2008] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C(2)C(12) myotubes by manipulating intracellular Ca(2+) transients with electric pulse stimulation (EPS) that is endowed with properties similar to those of in vivo skeletal muscle in terms of 1) excitation-induced contractile activity as a result of de novo sarcomere formation, 2) activation of both the AMP kinase and stress-activated MAP kinase cascades, and 3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser(231) after EPS-induced contraction. In addition, a switch in myosin heavy-chain (MHC) expression from "fast type" to "slow type" was observed in the C(2)C(12) myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C(2)C(12) myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction, including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be upregulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses, and angiogenesis induced by exercise.
Collapse
Affiliation(s)
- Taku Nedachi
- Center for Research Strategy and Support, Tohoku University Biomedical Engineering Research Organization, Sendai, Japan
| | | | | |
Collapse
|
36
|
Jing M, Cheruvu VK, Ismail-Beigi F. Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways. Am J Physiol Cell Physiol 2008; 295:C1071-82. [PMID: 18701654 DOI: 10.1152/ajpcell.00040.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AMP-activated protein kinase (AMPK) plays a critical role in the stimulation of glucose transport in response to hypoxia and inhibition of oxidative phosphorylation. In the present study, we examined the signaling pathway(s) mediating the glucose transport response following activation of AMPK. Using mouse fibroblasts of AMPK wild type and AMPK knockout, we documented that the expression of AMPK is essential for the glucose transport response to both azide and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). In Clone 9 cells, the stimulation of glucose transport by a combination of azide and AICAR was not additive, whereas there was an additive increase in the abundance of phosphorylated AMPK (p-AMPK). In Clone 9 cells, AMPK wild-type fibroblasts, and H9c2 heart cells, azide or hypoxia selectively increased p-ERK1/2, whereas, in contrast, AICAR selectively stimulated p-p38; phosphorylation of JNK was unaffected. Azide's effect on p-ERK1/2 abundance and glucose transport in Clone 9 cells was partially abolished by the MEK1/2 inhibitor U0126. SB 203580, an inhibitor of p38, prevented the phosphorylation of p38 and the glucose transport response to AICAR and, unexpectedly, to azide. Hypoxia, azide, and AICAR all led to increased phosphorylation of Akt substrate of 160 kDa (AS160) in Clone 9 cells. Employing small interference RNA directed against AS160 did not inhibit the glucose transport response to azide or AICAR, whereas the content of P-AS160 was reduced by approximately 80%. Finally, we found no evidence for coimmunoprecipitation of Glut1 and p-AS160. We conclude that although azide, hypoxia, and AICAR all activate AMPK, the downstream signaling pathways are distinct, with azide and hypoxia stimulating ERK1/2 and AICAR stimulating the p38 pathway.
Collapse
Affiliation(s)
- Ming Jing
- Dept. of Medicine, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106-4951, USA
| | | | | |
Collapse
|
37
|
Diabetes alters contraction-induced mitogen activated protein kinase activation in the rat soleus and plantaris. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:738101. [PMID: 18551177 PMCID: PMC2409431 DOI: 10.1155/2008/738101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/01/2007] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The prescription of anaerobic exercise has recently been advocated for the management of diabetes; however exercise-induced signaling in diabetic muscle remains largely unexplored. Evidence from exercise studies in nondiabetics suggests that the extracellular-signal-regulated kinases (Erk1/2), p38, and c-JUN NH2-terminal kinase (Jnk) mitogen-activated protein kinases (MAPKs) are important regulators of muscle adaptation. Here, we compare the basal and the in situ contraction-induced phosphorylation of Erk1/2- p38- and Jnk-MAPK and their downstream targets (p90rsk and MAPKAP-K2) in the plantaris and soleus muscles of normal and obese (fa/fa) Zucker rats. Compared to lean animals, the time course and magnitude of Erk1/2, p90rsk and p38 phosphorylation to a single bout of contractile stimuli were greater in the plantaris of obese animals. Jnk phosphorylation in response to contractile stimuli was muscle-type dependent with greater increases in the plantaris than the soleus. These results suggest that diabetes alters intramuscular signaling processes in response to a contractile stimulus.
Collapse
|
38
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|
39
|
Codina M, García de la serrana D, Sánchez-Gurmaches J, Montserrat N, Chistyakova O, Navarro I, Gutiérrez J. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. Gen Comp Endocrinol 2008; 157:116-24. [PMID: 18504044 DOI: 10.1016/j.ygcen.2008.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 01/28/2023]
Abstract
Primary cultures of rainbow trout skeletal muscle cells were used to examine the role of insulin-like growth factor II (IGF-II) in fish muscle metabolism and growth, and to compare its main signal transduction pathways with those of IGF-I. IGF-II stimulated 2-deoxy-d-glucose (2-DG) uptake in trout myocytes at concentrations of between 5 and 100 nM, with similar maximal effects and temporal pattern to IGF-I (100 nM). The results of incubation with inhibitors (Wortmannin and CKB) indicated that IGF-II stimulates glucose uptake through the same mechanisms as IGF-I. In addition, IGF-II stimulated myoblast DNA synthesis (measured by thymidine incorporation) at relatively low concentrations (0.1-10 nM), with the maximum increase at 1 nM (167+/-17% with respect to control values). The cells were immunoreactive against ERK 1/2 MAPK and Akt/PKB, components of the two main signal transduction pathways for the IGF-I receptor. IGF-II stimulated the phosphorylation of the protein MAPK, especially at the proliferation stage (increases of up to 125.7+/-16.9% and 125.3+/-3.3% with respect to control in IGF-II- and IGF-I-treated cells, respectively). In contrast, the effects of both IGFs on the activation of the PI3K/Akt pathway were stronger in fully differentiated myocytes and in early-formed fibres (up to 359+/-18.5% in IGF-II-treated cells with respect to control). These results indicate that IGF-II has both mitogenic and metabolic effects in trout muscle cells, which are equivalent to those found in response to IGF-I. Both IGFs exert these effects though the same signalling pathways (MAPK and PI3K/Akt).
Collapse
Affiliation(s)
- Marta Codina
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, España. Av. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Antonescu CN, Díaz M, Femia G, Planas JV, Klip A. Clathrin-dependent and independent endocytosis of glucose transporter 4 (GLUT4) in myoblasts: regulation by mitochondrial uncoupling. Traffic 2008; 9:1173-90. [PMID: 18435821 DOI: 10.1111/j.1600-0854.2008.00755.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In myocytes and adipocytes, insulin increases glucose transporter 4 (GLUT4) exocytosis by promoting GLUT4 vesicle docking/fusion with the membrane. Less is known about the mechanism and regulation of GLUT4 endocytosis, particularly in myocytes. Here, we show that GLUT4 internalization in L6 myoblasts was inhibited in part by hypertonicity or clathrin heavy chain knockdown and in part by cholesterol depletion. Both strategies had additive effects, abolishing GLUT4 endocytosis. GLUT4 internalization was abrogated by expressing dominant-negative dynamin-2 but unaffected by inhibiting caveolar-dependent endocytosis through syntaxin-6 knockdown or caveolin mutants (which reduced lactosylceramide endocytosis). Insulin did not affect GLUT4 internalization rate or sensitivity to clathrin or cholesterol depletion. In contrast, the mitochondrial uncoupler dinitrophenol (DNP), which like insulin increases surface GLUT4, reduced GLUT4 (but not transferrin) internalization, an effect additive to that of depleting clathrin but not cholesterol. Trout GLUT4 (a natural variant of GLUT4 bearing different endocytic motifs) exogenously expressed in mammalian L6 cells internalized only through the cholesterol-dependent route that also included the non-clathrin-dependent cargo interleukin-2 receptor beta, and DNP reduced internalization of both proteins. These results suggest that in muscle cells, GLUT4 internalizes simultaneously through clathrin-mediated endocytosis and a caveolae-independent but cholesterol- and dynamin-dependent route. Manipulating GLUT4 endocytosis to maintain surface GLUT4 may bypass insulin resistance.
Collapse
Affiliation(s)
- Costin N Antonescu
- Program in Cell Biology, The Hospital For Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
41
|
Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci U S A 2008; 105:3545-50. [PMID: 18296638 DOI: 10.1073/pnas.0712275105] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin resistance, a hallmark of type 2 diabetes and obesity, is associated with increased activity of MAP and stress-activated protein (SAP) kinases, which results in decreased insulin signaling. Our goal was to investigate the role of MAP kinase phosphatase-4 (MKP-4) in modulating this process. We found that MKP-4 expression is up-regulated during adipocyte and myocyte differentiation in vitro and up-regulated during fasting in white adipose tissue in vivo. Overexpression of MKP-4 in 3T3-L1 cells inhibited ERK and JNK phosphorylation and, to a lesser extent, p38MAPK phosphorylation. As a result, the phosphorylation of IRS-1 serine 307 induced by anisomycin was abolished, leading to a sensitization of insulin signaling with recovery of insulin-stimulated IRS-1 tyrosine phosphorylation, IRS-1 docking with phosphatidylinositol 3-kinase, and Akt phosphorylation. MKP-4 also reversed the effect of TNF-alpha to inhibit insulin signaling; alter IL-6, Glut1 and Glut4 expression; and inhibit insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Overexpression of MKP-4 in the liver of ob/ob mice decreased ERK and JNK phosphorylation, leading to a reduction in fed and fasted glycemia, improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin resistance, such as ERK and JNK, and increasing MKP-4 activity might provide a therapy for insulin-resistant disorders.
Collapse
|
42
|
Díaz M, Antonescu CN, Capilla E, Klip A, Planas JV. Fish glucose transporter (GLUT)-4 differs from rat GLUT4 in its traffic characteristics but can translocate to the cell surface in response to insulin in skeletal muscle cells. Endocrinology 2007; 148:5248-57. [PMID: 17702851 DOI: 10.1210/en.2007-0265] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.
Collapse
Affiliation(s)
- Mònica Díaz
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Lorenzo M, Fernández-Veledo S, Vila-Bedmar R, Garcia-Guerra L, De Alvaro C, Nieto-Vazquez I. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J Anim Sci 2007; 86:E94-104. [PMID: 17940160 DOI: 10.2527/jas.2007-0462] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insulin resistance is an important contributor to the pathogenesis of type 2 diabetes, and obesity is a risk factor for its development, in part because adipose tissue secretes proteins, called adipokines, that may influence insulin sensitivity. Among these molecules, tumor necrosis factor (TNF)-alpha has been proposed as a link between obesity and insulin resistance because TNF-alpha is overexpressed in adipose tissues of obese animals and humans, and obese mice lacking either TNF-alpha or its receptor show protection against developing insulin resistance. Direct exposure to TNF-alpha induces a state of insulin resistance in terms of glucose uptake in myocytes and brown adipocytes because of the activation of proinflammatory pathways that impair insulin signaling at the level of the insulin receptor substrate (IRS) proteins. In this regard, the Ser(307) residue in IRS-1 has been identified as a site for the inhibitory effects of TNF-alpha in myotubes, with p38 mitogen-activated protein kinase and inhibitor kB kinase being involved in the phosphorylation of this residue. Conversely, Ser phosphorylation of IRS-2 mediated by TNF-alpha activation of mitogen-activated protein kinase was the mechanism found in brown adipocytes. Protein-Tyr phosphatase (PTP)1B acts as a physiological, negative regulator of insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor and IRS-1, and PTP1B expression is increased in muscle and white adipose tissue of obese and diabetic humans and rodents. Moreover, up-regulation of PTP1B expression was recently found in cells treated with TNF-alpha Accordingly, myocytes and primary brown adipocytes deficient in PTP1B are protected against insulin resistance induced by this cytokine. Furthermore, down-regulation of PTP1B activity is possible by the use of pharmacological agonists of nuclear receptors that restore insulin sensitivity in the presence of TNF-alpha. In conclusion, the lack of PTP1B in muscle and brown adipocytes increases insulin sensitivity and glucose uptake and could confer protection against insulin resistance induced by adipokines.
Collapse
Affiliation(s)
- M Lorenzo
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Harrell NB, Teachey MK, Gifford NJ, Henriksen EJ. Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium. Arch Physiol Biochem 2007; 113:221-7. [PMID: 18158645 DOI: 10.1080/13813450701783158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.
Collapse
Affiliation(s)
- Nicholas B Harrell
- Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
45
|
Alkhateeb H, Chabowski A, Glatz JFC, Luiken JFP, Bonen A. Two phases of palmitate-induced insulin resistance in skeletal muscle: impaired GLUT4 translocation is followed by a reduced GLUT4 intrinsic activity. Am J Physiol Endocrinol Metab 2007; 293:E783-93. [PMID: 17550999 DOI: 10.1152/ajpendo.00685.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined, in soleus muscle, the effects of prolonged palmitate exposure (0, 6, 12, 18 h) on insulin-stimulated glucose transport, intramuscular lipid accumulation and oxidation, activation of selected insulin-signaling proteins, and the insulin-stimulated translocation of GLUT4. Insulin-stimulated glucose transport was progressively reduced after 6 h (-33%), 12 h (-66%), and 18 h (-89%) of palmitate exposure. These decrements were closely associated with concurrent reductions in palmitate oxidation at 6 h (-40%), 12 h (-60%), and 18 h (-67%). In contrast, intramuscular ceramide (+24%) and diacylglycerol (+32%) concentrations, insulin-stimulated AS160 (-36%) and PRAS40 (-33%) phosphorylations, and Akt (-40%), PKCtheta (-50%), and GLUT4 translocation (-40%) to the plasma membrane were all maximally altered within the first 6 h of palmitate treatment. No further changes were observed in any of these parameters after 12 and 18 h of palmitate exposure. Thus, the intrinsic activity of GLUT4 was markedly reduced after 12 and 18 h of palmitate treatment. During this reduced GLUT4 intrinsic activity phase at 12 and 18 h, the reduction in glucose transport was twofold greater compared with the early phase (< or =6 h), when only GLUT4 translocation was impaired. Our study indicates that palmitate-induced insulin resistance is provoked by two distinct mechanisms: 1) an early phase (< or =6 h), during which lipid-mediated impairments in insulin signaling and GLUT4 translocation reduce insulin-stimulated glucose transport, followed by 2) a later phase (12 and 18 h), during which the intrinsic activity of GLUT4 is markedly reduced independently of any further alterations in intramuscular lipid accumulation, insulin signaling and GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
46
|
Ho RC, Fujii N, Witters LA, Hirshman MF, Goodyear LJ. Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle. Biochem Biophys Res Commun 2007; 362:354-9. [PMID: 17709097 PMCID: PMC2040310 DOI: 10.1016/j.bbrc.2007.07.154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/30/2007] [Indexed: 12/27/2022]
Abstract
AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle. The p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. Here we used several different models of altered AMPK activity to determine whether p38 MAPK is a downstream intermediate of AMPK-mediated signaling in skeletal muscle. First, L6 myoblasts and myotubes were treated with AICAR, an AMPK stimulator. AMPK phosphorylation was significantly increased, but there was no change in p38 MAPK phosphorylation. Similarly, AICAR incubation of isolated rat extensor digitorum longus (EDL) muscles did not increase p38 phosphorylation. Next, we used transgenic mice expressing an inactive form of the AMPKalpha2 catalytic subunit in skeletal muscle (AMPKalpha2i TG mice). AMPKalpha2i TG mice did not exhibit any defect in basal or contraction-induced p38 MAPK phosphorylation. We also used transgenic mice expressing an activating mutation in the AMPKgamma1 subunit (gamma1R70Q TG mice). Despite activated AMPK, basal p38 MAPK phosphorylation was not different between wild type and gamma1R70Q TG mice. In addition, muscle contraction-induced p38 MAPK phosphorylation was significantly blunted in the gamma1R70Q TG mice. In conclusion, increasing AMPK activity by AICAR and AMPKgamma1 mutation does not increase p38 MAPK phosphorylation in skeletal muscle. Furthermore, AMPKalpha2i TG mice lacking contraction-stimulated AMPK activity have normal p38 MAPK phosphorylation. These results suggest that p38 MAPK is not a downstream component of AMPK-mediated signaling in skeletal muscle.
Collapse
Affiliation(s)
- Richard C Ho
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Mitogen-activated protein kinases (MAPKs) and NF-κB are two major regulators of gene transcription and metabolism in response to oxidative, energetic, and mechanical stress in skeletal muscle. Chronic activation of these signaling pathways has been implicated in the development and perpetuation of various pathologies, such as diabetes and cachexia. However, both MAPK and NF-κB are also stimulated by exercise, which promotes improvements in fuel homeostasis and can prevent skeletal muscle atrophy. This review will first discuss the major MAPK signaling modules in skeletal muscle, their differential activation by exercise, and speculated functions on acute substrate metabolism and exercise-induced gene expression. Focus will then shift to examination of the NF-κB pathway, including its mechanism of activation by cellular stress and its putative mediation of exercise-stimulated adaptations in antioxidant status, tissue regeneration, and metabolism. Although limited, there is additional evidence to suggest cross talk between MAPK and NF-κB signals with exercise. The objectives herein are twofold: 1) to determine how and why exercise activates MAPK and NF-κB; and 2) to resolve their paradoxical activation during diseased and healthy conditions.
Collapse
Affiliation(s)
- Henning F Kramer
- Metabolism, Research Division, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | | |
Collapse
|
48
|
Konstantopoulos N, Marcuccio S, Kyi S, Stoichevska V, Castelli LA, Ward CW, Macaulay SL. A purine analog kinase inhibitor, calcium/calmodulin-dependent protein kinase II inhibitor 59, reveals a role for calcium/calmodulin-dependent protein kinase II in insulin-stimulated glucose transport. Endocrinology 2007; 148:374-85. [PMID: 17008397 DOI: 10.1210/en.2006-0446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Olomoucine is known as a cyclin-dependent kinase inhibitor. We found that olomoucine blocked insulin's ability to stimulate glucose transport. It did so without affecting the activity of known insulin signaling proteins. To identify the olomoucine-sensitive kinase(s), we prepared analogs that could be immobilized to an affinity resin to isolate binding proteins. One of the generated analogs inhibited insulin-stimulated glucose uptake with increased sensitivity compared with olomoucine. The IC(50) for inhibition of insulin-stimulated glucose uptake occurred at analog concentrations as low as 0.1 microM. To identify proteins binding to the analog, [(35)S]-labeled cell lysates prepared from 3T3-L1 adipocytes were incubated with analog chemically cross-linked to a resin support and binding proteins analyzed by SDS-PAGE. The major binding species was a doublet at 50-60 kDa, which was identified as calcium/calmodulin-dependent protein kinase II (CaMKII) by N-terminal peptide analysis and confirmed by matrix-assisted laser desorption ionization-mass spectrometry as the delta- and beta-like isoforms. To investigate CaMKII involvement in insulin-stimulated glucose uptake, 3T3-L1 adipocytes were infected with retrovirus encoding green fluorescent protein (GFP)-hemagluttinin tag (HA)-tagged CaMKII wild-type or the ATP binding mutant, K42M. GFP-HA-CaMKII K42M cells had less kinase activity than cells expressing wild-type GFP-HA-CaMKII. Insulin-stimulated glucose transport was significantly decreased (approximately 80%) in GFP-HA-CaMKII K42M cells, compared with nontransfected cells, and cells expressing either GFP-HA-CaMKII or GFP-HA. There was not a concomitant decrease in insulin-stimulated GLUT4 translocation in GFP-HA-CaMKII K42M cells when compared with GFP-HA alone. However, insulin-stimulated GLUT4 translocation in GFP-HA-CaMKII cells was significantly higher, compared with either GFP-HA or GFP-HA-CaMKII K42M cells. Our results implicate the involvement of CaMKII in glucose transport in a permissive role.
Collapse
Affiliation(s)
- Nicky Konstantopoulos
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Fujii N, Jessen N, Goodyear LJ. AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab 2006; 291:E867-77. [PMID: 16822958 DOI: 10.1152/ajpendo.00207.2006] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by acute increases in the cellular [AMP]/[ATP] ratio. In skeletal and/or cardiac muscle, AMPK activity is increased by stimuli such as exercise, hypoxia, ischemia, and osmotic stress. There are many lines of evidence that increasing AMPK activity in skeletal muscle results in increased rates of glucose transport. Although similar to the effects of insulin to increase glucose transport in muscle, it is clear that the underlying mechanisms for AMPK-mediated glucose transport involve proximal signals that are distinct from that of insulin. Here, we discuss the evidence for AMPK regulation of glucose transport in skeletal and cardiac muscle and describe research investigating putative signaling mechanisms mediating this effect. We also discuss evidence that AMPK may play a role in enhancing muscle and whole body insulin sensitivity for glucose transport under conditions such as exercise, as well as the use of the AMPK activator AICAR to reverse insulin-resistant conditions. The identification of AMPK as a novel glucose transport mediator in skeletal muscle is providing important insights for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Nobuharu Fujii
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
50
|
He A, Liu X, Liu L, Chang Y, Fang F. How many signals impinge on GLUT4 activation by insulin? Cell Signal 2006; 19:1-7. [PMID: 16919913 DOI: 10.1016/j.cellsig.2006.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 05/23/2006] [Indexed: 01/26/2023]
Abstract
GLUT4 is the main glucose transporter activated by insulin in skeletal muscle cells and adipocytes. GLUT4 storage vesicles (GSVs) traffic in endocytic and exocytic compartments. In the basal state, GLUT4 compartments are preferentially sequestered in perinuclear deposits wherein stimuli including insulin and non-insulin factors can increase GLUT4 vesicle formation, its exocytosis, and fusion to plasma membrane. In addition to well-established effectors of insulin signaling pathway, such as PKCzeta and Akt, the cytoskeletal network is implicated in GLUT4 translocation. This review will discuss the mechanisms and activation of GLUT4 trafficking and incorporating to PM from three aspects: known molecules of the insulin signaling pathway; Rho and Rab family proteins and cytoskeletal molecules.
Collapse
Affiliation(s)
- Aibin He
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | |
Collapse
|