1
|
Shen X, Ma Y, Luo H, Abdullah R, Pan Y, Zhang Y, Zhong C, Zhang B, Zhang G. Peptide Aptamer-Paclitaxel Conjugates for Tumor Targeted Therapy. Pharmaceutics 2024; 17:40. [PMID: 39861688 PMCID: PMC11768741 DOI: 10.3390/pharmaceutics17010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Traditional paclitaxel therapy often results in significant side effects due to its non-specific targeting of cancer cells. Peptide aptamer-paclitaxel conjugates present a promising alternative by covalently attaching paclitaxel to a versatile peptide aptamer via a linker. Compared to antibody-paclitaxel conjugates, peptide aptamer-paclitaxel conjugates offer several advantages, including a smaller size, lower immunogenicity, improved tissue penetration, and easier engineering. Methods: This review provides an in-depth analysis of the multifunctional peptide aptamers in these conjugates, emphasizing their structural features, therapeutic efficacy, and challenges in clinical applications. Results: This analysis highlights the potential of peptide aptamer-paclitaxel conjugates as a novel and effective approach for targeted cancer therapy. By harnessing the unique properties of peptide aptamers, these conjugates demonstrate significant promise in improving drug delivery efficiency while reducing the adverse effects associated with traditional paclitaxel therapy. Conclusions: The incorporation of peptide aptamers into paclitaxel conjugates offers a promising pathway for developing more efficient and targeted cancer therapies. However, further research and clinical studies are essential to fully unlock the therapeutic potential of these innovative conjugates and enhance patient outcomes.
Collapse
Affiliation(s)
- Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Ma
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (Y.M.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Hang Luo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (Y.M.)
| | - Razack Abdullah
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yufei Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yihao Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (Y.M.)
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; (Y.M.)
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Pepe GJ, Albrecht ED. Microvascular Skeletal-Muscle Crosstalk in Health and Disease. Int J Mol Sci 2023; 24:10425. [PMID: 37445602 DOI: 10.3390/ijms241310425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Pacheco-Velázquez SC, Ortega-Mejía II, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Tapia-Martínez G, Peñalosa-Castro I, Aguilar-Ponce JL, Granados-Rivas JC, Moreno-Sánchez R, Rodríguez-Enríquez S. 17-β Estradiol up-regulates energy metabolic pathways, cellular proliferation and tumor invasiveness in ER+ breast cancer spheroids. Front Oncol 2022; 12:1018137. [PMID: 36419896 PMCID: PMC9676491 DOI: 10.3389/fonc.2022.1018137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
Several biological processes related to cancer malignancy are regulated by 17-β estradiol (E2) in ER+-breast cancer. To establish the role of E2 on the atypical cancer energy metabolism, a systematic study analyzing transcription factors, proteins, and fluxes associated with energy metabolism was undertaken in multicellular tumor spheroids (MCTS) from human ER+ MCF-7 breast cancer cells. At E2 physiological concentrations (10 and 100 nM for 24 h), both ERα and ERβ receptors, and their protein target pS2, increased by 0.6-3.5 times vs. non-treated MCTS, revealing an activated E2/ER axis. E2 also increased by 30-470% the content of several transcription factors associated to mitochondrial biogenesis and oxidative phosphorylation (OxPhos) (p53, PGC1-α) and glycolytic pathways (HIF1-α, c-MYC). Several OxPhos and glycolytic proteins (36-257%) as well as pathway fluxes (48-156%) significantly increased being OxPhos the principal ATP cellular supplier (>75%). As result of energy metabolism stimulation by E2, cancer cell migration and invasion processes and related proteins (SNAIL, FN, MM-9) contents augmented by 24-189% vs. non-treated MCTS. Celecoxib at 10 nM blocked OxPhos (60%) as well as MCTS growth, cell migration and invasiveness (>40%); whereas the glycolytic inhibitor iodoacetate (0.5 µM) and doxorubicin (70 nM) were innocuous. Our results show for the first time using a more physiological tridimensional cancer model, resembling the initial stages of solid tumors, that anti-mitochondrial therapy may be useful to deter hormone-dependent breast carcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ignacio Peñalosa-Castro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | | | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Rafael Moreno-Sánchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México, Mexico
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab, Tlalnepantla, Mexico
| |
Collapse
|
4
|
Salem MG, El-Maaty DMA, El-Deen YIM, Elesawy BH, Askary AE, Saleh A, Saied EM, Behery ME. Novel 1,3-Thiazole Analogues with Potent Activity against Breast Cancer: A Design, Synthesis, In Vitro, and In Silico Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154898. [PMID: 35956848 PMCID: PMC9370021 DOI: 10.3390/molecules27154898] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 01/23/2023]
Abstract
Breast cancer is the most common cancer in women, responsible for over half a million deaths in 2020. Almost 75% of FDA-approved drugs are mainly nitrogen- and sulfur-containing heterocyclic compounds, implying the importance of such compounds in drug discovery. Among heterocycles, thiazole-based heterocyclic compounds have demonstrated a broad range of pharmacological activities. In the present study, a novel set of 1,3-thiazole derivatives was designed and synthesized based on the coupling of acetophenone derivatives, and phenacyl bromide was substituted as a key reaction step. The activity of synthesized compounds was screened against the proliferation of two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all compounds exhibited a considerable antiproliferative activity toward the breast cancer cells as compared to staurosporine, with no significant cytotoxicity toward the epithelial cells. Among the synthesized compounds, compound 4 exhibited the most potent antiproliferative activity, with an IC50 of 5.73 and 12.15 µM toward MCF-7 and MDA-MB-231 cells, respectively, compared to staurosporine (IC50 = 6.77 and 7.03 µM, respectively). Exploring the mechanistic insights responsible for the antiproliferative activity of compound 4 revealed that compound 4 possesses a significant inhibitory activity toward the vascular endothelial growth factor receptor-2 (VEGFR-2) with (IC50 = 0.093 µM) compared to Sorafenib (IC50 = 0.059 µM). Further, compound 4 showed the ability to induce programmed cell death by triggering apoptosis and necrosis in MCF-7 cells and to induce cell cycle arrest on MCF-7 cells at the G1 stage while decreasing the cellular population in the G2/M phase. Finally, detailed in silico molecular docking studies affirmed that this class of compounds possesses a considerable binding affinity toward VEGFR2 proteins. Overall, these results indicate that compound 4 could be a promising lead compound for developing potent anti-breast cancer compounds.
Collapse
Affiliation(s)
- Manar G. Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.G.S.); (Y.I.M.E.-D.)
| | - Dina M. Abu El-Maaty
- Biochemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 415222, Egypt;
| | - Yassmina I. Mohey El-Deen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.G.S.); (Y.I.M.E.-D.)
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
- Correspondence: (E.M.S.); (M.E.B.)
| | - Mohammed El Behery
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
- Correspondence: (E.M.S.); (M.E.B.)
| |
Collapse
|
5
|
Albrecht ED, Aberdeen GW, Babischkin JS, Prior SJ, Lynch TJ, Baranyk IA, Pepe GJ. Estrogen Promotes Microvascularization in the Fetus and Thus Vascular Function and Insulin Sensitivity in Offspring. Endocrinology 2022; 163:6553898. [PMID: 35325097 PMCID: PMC9272192 DOI: 10.1210/endocr/bqac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/19/2022]
Abstract
We have shown that normal weight offspring born to estrogen-deprived baboons exhibited insulin resistance, although liver and adipose function and insulin receptor and glucose transporter expression were unaltered. The blood microvessels have an important role in insulin action by delivering insulin and glucose to target cells. Although little is known about the regulation of microvessel development during fetal life, estrogen promotes capillary proliferation and vascular function in the adult. Therefore, we tested the hypothesis that estrogen promotes fetal microvessel development and thus vascular function and insulin sensitivity in offspring. Capillary/myofiber ratio was decreased 75% (P < 0.05) in skeletal muscle, a major insulin target tissue, of fetal baboons in which estradiol levels were depleted by administration of aromatase inhibitor letrozole. This was sustained after birth, resulting in a 50% reduction (P < 0.01) in microvessel expansion; 65% decrease (P < 0.01) in arterial flow-mediated dilation, indicative of vascular endothelial dysfunction; and 35% increase (P < 0.01) in blood pressure in offspring from estrogen-deprived baboons, changes prevented by letrozole and estradiol administration. Along with vascular dysfunction, peak insulin and glucose levels during a glucose tolerance test were greater (P < 0.05 to P < 0.01) and the homeostasis model of insulin resistance 2-fold higher (P < 0.01) in offspring of letrozole-treated than untreated animals, indicative of insulin resistance. This study makes the novel discovery that estrogen promotes microvascularization in the fetus and thus normal vascular development and function required for eliciting insulin sensitivity in offspring and that placental hormonal secretions, independent from improper fetal growth, are an important determinant of risk of developing insulin resistance.
Collapse
Affiliation(s)
- Eugene D Albrecht
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Correspondence: Eugene Albrecht, PhD, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Bressler Research Laboratories 11-045A, 655 West Baltimore St, Baltimore, MD 21201, USA.
| | - Graham W Aberdeen
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffery S Babischkin
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD, USA
| | - Terrie J Lynch
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Irene A Baranyk
- Departments of Obstetrics, Gynecology, Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
6
|
Dronova TA, Babyshkina NN, Zavyalova MV, Slonimskaya EM, Cherdyntseva NV. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Contributes to Tamoxifen Resistance in Estrogen-Positive Breast Cancer Patients. Mol Biol 2021. [DOI: 10.1134/s0026893321010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zaki I, Ramadan HMM, El-Sayed ESH, Abd El-Moneim M. Design, synthesis, and cytotoxicity screening of new synthesized imidazolidine-2-thiones as VEGFR-2 enzyme inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000121. [PMID: 32757353 DOI: 10.1002/ardp.202000121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
A series of imidazolin-2-thione derivatives was synthesized and structurally confirmed through the use of different spectroscopic techniques such as infrared, nuclear magnetic resonance, and mass spectrometry along with elemental analyses. The breast cancer cell line MCF-7 was utilized in the evaluation of the cytotoxic activity of the prepared molecules. The tested molecules 3 and 7 exhibited the best results on MCF-7 cells, with mean IC50 values of 3.26 and 4.31 µM, respectively. The results of the VEGFR-2 assay indicated that compounds 3 and 7 displayed a good inhibition of the VEGFR-2 kinase enzyme. Additionally, DNA flow cytometry of compounds 3 and 7 showed cell cycle arrest at the G0/G1 phase, cell apoptosis, and marked DNA fragmentation in MCF-7 cells. Finally, compounds 3 and 7 were proved to upregulate the activation of effector caspase-3/7, as presented by the caspase-3/7 green flow cytometry assay.
Collapse
Affiliation(s)
- Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Heba M M Ramadan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | | |
Collapse
|
8
|
Annaratone L, Cascardi E, Vissio E, Sarotto I, Chmielik E, Sapino A, Berrino E, Marchiò C. The Multifaceted Nature of Tumor Microenvironment in Breast Carcinomas. Pathobiology 2020; 87:125-142. [PMID: 32325459 PMCID: PMC7265767 DOI: 10.1159/000507055] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Heterogeneity in breast carcinomas can be appreciated at various levels, from morphology to molecular alterations, and there are well-known genotypic-phenotypic correlations. Clinical decision-making is strictly focused on the evaluation of tumor cells and is based on the assessment of hormone receptors and of the HER2 status, by means of a combination of immunohistochemical and in situ hybridization techniques. The tumor microenvironment (TME) also shows a multifaceted nature stemming from the different actors populating the intratumoral and the peritumoral stroma of breast carcinomas. Of note, we have now evidence that tumor-infiltrating lymphocytes (TILs) are clinically meaningful as their quantification in the intratumoral stroma strongly correlates with good prognosis, in particular in triple-negative and HER2-positive breast cancer patients. Nevertheless, TILs are just one of the many actors orchestrating the complexity of the TME, which is populated by immune and non-immune cells (cancer-associated fibroblasts, cancer-associated adipocytes), as well as non-cellular components such as chemical inflammation mediators. In this review article we will overview the main features of the distinct cell compartments by discussing (i) the potential impact the TME may have on the prognostic stratification of breast cancers and (ii) the possible predictive value of some markers in the context of immunotherapy in light of the recent results of phase III studies in advanced and early triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Laura Annaratone
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Eliano Cascardi
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Vissio
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ivana Sarotto
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Anna Sapino
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrico Berrino
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Caterina Marchiò
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, Candiolo, Italy,
- Department of Medical Sciences, University of Turin, Turin, Italy,
| |
Collapse
|
9
|
Yoon K, Chen CC, Orr AA, Barreto PN, Tamamis P, Safe S. Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells 2019; 8:220. [PMID: 30866413 PMCID: PMC6468570 DOI: 10.3390/cells8030220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3'-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity studies with structurally diverse heteroaromatic C-DIMs showed that the pyridyl substituted compound was active and the 4-pyridyl substituent was more potent than the 2- or 3-pyridyl analogs in transactivation assays in breast cancer cells. The DIM-C-Pyr-4 activated chimeric GAL4-COUP-TFI constructs containing full length, C- or N-terminal deletions, and transactivation was inhibited by phosphatidylinositol-3-kinase and protein kinase A inhibitors. However, DIM-C-Pyr-4 also induced transactivation and interactions of COUP-TFI and steroid receptor coactivators-1 and -2 in mammalian two-hybrid assays, and ligand-induced interactions of the C-terminal region of COUP-TFI were not affected by kinase inhibitors. We also showed that DIM-C-Pyr-4 activated COUP-TFI-dependent early growth response 1 (Egr-1) expression and this response primarily involved COUP-TFI interactions with Sp3 and to a lesser extent Sp1 bound to the proximal region of the Egr-1 promoter. Modeling studies showed interactions of DIM-C-Pyr-4 within the ligand binding domain of COUP-TFI. This report is the first to identify a COUP-TFI agonist and demonstrate activation of COUP-TFI-dependent Egr-1 expression.
Collapse
Affiliation(s)
- Kyungsil Yoon
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Division of Translational Science, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Chien-Cheng Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| | - Asuka A Orr
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Patricia N Barreto
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Phanourios Tamamis
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Srinivas R, Klimovich PV, Larson EC. Implicit-descriptor ligand-based virtual screening by means of collaborative filtering. J Cheminform 2018; 10:56. [PMID: 30467684 PMCID: PMC6755561 DOI: 10.1186/s13321-018-0310-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Current ligand-based machine learning methods in virtual screening rely heavily on molecular fingerprinting for preprocessing, i.e., explicit description of ligands’ structural and physicochemical properties in a vectorized form. Of particular importance to current methods are the extent to which molecular fingerprints describe a particular ligand and what metric sufficiently captures similarity among ligands. In this work, we propose and evaluate methods that do not require explicit feature vectorization through fingerprinting, but, instead, provide implicit descriptors based only on other known assays. Our methods are based upon well known collaborative filtering algorithms used in recommendation systems. Our implicit descriptor method does not require any fingerprint similarity search, which makes the method free of the bias arising from the empirical nature of the fingerprint models. We show that implicit methods significantly outperform traditional machine learning methods, and the main strengths of implicit methods are their resilience to target-ligand sparsity and high potential for spotting promiscuous ligands.
Collapse
Affiliation(s)
- Raghuram Srinivas
- Department of Computer Science and Engineering, Bobby B. Lyle School of Engineering, Southern Methodist University, 3145 Dyer Street, Dallas, TX, 75205, USA. .,DataScience@SMU, Dallas, 75205, TX, USA.
| | - Pavel V Klimovich
- Department of Computer Science and Engineering, Bobby B. Lyle School of Engineering, Southern Methodist University, 3145 Dyer Street, Dallas, TX, 75205, USA.,The Dedman College Interdisciplinary Institute, 3225 Daniel Avenue, Dallas, TX, 75205, USA
| | - Eric C Larson
- Department of Computer Science and Engineering, Bobby B. Lyle School of Engineering, Southern Methodist University, 3145 Dyer Street, Dallas, TX, 75205, USA
| |
Collapse
|
11
|
Kölbl AC, Birk AE, Kuhn C, Jeschke U, Andergassen U. Influence of VEGFR and LHCGR on endometrial adenocarcinoma. Oncol Lett 2016; 12:2092-2098. [PMID: 27625708 DOI: 10.3892/ol.2016.4906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/29/2016] [Indexed: 01/13/2023] Open
Abstract
Endometrial adenocarcinoma is a common gynecological malignancy that is usually treated by surgical resection followed by radiation. However, the frequency of remote metastasis is high. The present study aimed to investigate whether patients with endometrial adenocarcinoma exhibited a positive response to treatment with a gonadotropin-releasing hormone analogue or inhibitors of neoangiogenesis, which are applied for the treatment of other malignancies. Immunohistochemical analyses were performed using 203 paraffin-embedded tissue samples of endometrial adenocarcinomas from patients who had undergone surgery at the Department of Obstetrics and Gynecology of the Ludwig Maximilians University of Munich, Germany. The tissues were incubated with antibodies against luteinizing hormone/choriogonadotropin receptor (LHCGR) and vascular endothelial growth factor receptor 2 (VEGFR2), and evaluated by bright field microscopy. The staining was categorized according to the Immune-Reactive-Score (IRS). The IRS scores were then statistically associated with various tumor traits, including tumor size, lymph node status, metastasis, grade, expression of steroid hormone receptors and patient survival. There was a significant association between VEGFR2 expression and tumor grading and estrogen receptor-α (ERα). For LHCGR, a correlation was observed with ERα and progesterone receptor (PR). No correlations were identified between VEGFR2 or LHCGR expression and the other examined tumor traits or patient survival. The associations between VEGFR2 and ERα, and between LHCGR and ERα or PR, may be explained by the interaction of these signal transduction molecules in the regulation of cellular growth and differentiation. These mechanisms also have an important role in the formation of remote metastases, which is the main cause for tumor-associated mortality. The results of the present study suggested that patients with endometrial adenocarcinoma may benefit from treatment with inhibitors of ERα, PR, VEGFR2 or LHCGR, since it could lead to a better prognosis. However, further studies are required in order to elucidate the roles of these receptors in endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Alexandra C Kölbl
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Amelie E Birk
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Ulrich Andergassen
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| |
Collapse
|
12
|
Ptak A, Gregoraszczuk EL. Effects of bisphenol A and 17β-estradiol on vascular endothelial growth factor A and its receptor expression in the non-cancer and cancer ovarian cell lines. Cell Biol Toxicol 2015; 31:187-97. [DOI: 10.1007/s10565-015-9303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
13
|
Li Y, Wang X, Vural S, Mishra NK, Cowan KH, Guda C. Exome analysis reveals differentially mutated gene signatures of stage, grade and subtype in breast cancers. PLoS One 2015; 10:e0119383. [PMID: 25803781 PMCID: PMC4372331 DOI: 10.1371/journal.pone.0119383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/30/2015] [Indexed: 12/17/2022] Open
Abstract
Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies.
Collapse
Affiliation(s)
- You Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Xiaosheng Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Suleyman Vural
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nitish K. Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kenneth H. Cowan
- Fred and Pamela Buffett Cancer Center, Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Cancer Research, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred and Pamela Buffett Cancer Center, Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Cancer Research, Nebraska Medical Center, Omaha, Nebraska, United States of America
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
14
|
Tang R, Chai WM, Yang GY, Xie H, Chen KM. X-ray phase contrast imaging of cell isolation with super-paramagnetic microbeads. PLoS One 2012; 7:e45597. [PMID: 23029126 PMCID: PMC3454406 DOI: 10.1371/journal.pone.0045597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/23/2012] [Indexed: 11/25/2022] Open
Abstract
Super-paramagnetic microbeads are widely used for cell isolation. Evaluation of the binding affinity of microbeads to cells using optical microscopy has been limited by its small scope. Here, magnetic property of microbeads was first investigated by using synchrotron radiation (SR) in-line x-ray phase contrast imaging (PCI). The cell line mouse LLC (Lewis lung carcinoma) was selected for cell adhesion studies. Targeted microbeads were prepared by attaching anti-VEGFR2 (vascular endothelial growth factor receptor-2) antibody to the shell of the microbeads. The bound microbeads were found to better adhere to LLC cells than unbound ones. PCI dynamically and clearly showed the magnetization and demagnetization of microbeads in PE-50 tube. The cells incubated with different types of microbeads were imaged by PCI, which provided clear and real-time visualization of the cell isolation. Therefore, PCI might be considered as a novel and efficient tool for further cell isolation studies.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Ozcura F, Dündar SO, Cetin ED, Beder N, Dündar M. Effects of estrogen replacement therapy on apoptosis and vascular endothelial growth factor expression in ocular surface epithelial cells: An experimental study. Int J Ophthalmol 2012; 5:64-8. [PMID: 22553757 DOI: 10.3980/j.issn.2222-3959.2012.01.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/10/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the effects of estrogen replacement therapy (ERT) on apoptosis and vascular endothelial growth factor (VEGF) expression in ocular surface in an experimental rat model. METHODS Forty female, Wistar rats were randomized in 4 groups in the study. Subcutaneous ERT (17β-estradiol, 10µg/kg/day) was administered to the first group without ovariectomy and to the second group with ovariectomy for three months. Third group had only ovariectomy and fourth group had sham operation. All rats were sacrificed in estrous cycles determined by vaginal smear test and their right eyes were enucleated at the end of the third month. Enucleated eyes were analyzed by immunohistochemical method for expressions of caspase-3, bcl-2, VEGF and TUNEL assay. RESULTS Caspase-3 expression of conjunctival epithelium was significantly higher in group 3 than group 1 (P=0.005), and group 2 (P=0.007). TUNEL score of conjunctival epithelium was significantly higher in group 3 than group1 (P=0.006). TUNEL score of corneal epithelium was significantly higher in group 3 than group 2 (P=0.012), and group 4 (P=0.002). There was no significant difference between groups in that bcl-2 and VEGF expressions. CONCLUSION We determined increased apoptosis in ocular surface epithelial cells in ovariectomized rats. ERT and endogen estrogen decreased the apoptosis, and did not result in difference in VEGF expression between the groups. Estrogen may be beneficial for the treatment of apoptosis-mediated ocular surface disorders such as dry eye. Further studies are needed on this subject for a better understanding of the role of estrogen and to provide a new insight for treatment and prevention of apoptosis-mediated ocular surface disorders.
Collapse
Affiliation(s)
- Fatih Ozcura
- Department of Ophthalmology, Dumlupinar University School of Medicine, Kutahya, Turkey
| | | | | | | | | |
Collapse
|
16
|
Batarseh A, Barlow KD, Martinez-Arguelles DB, Papadopoulos V. Functional characterization of the human translocator protein (18kDa) gene promoter in human breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:38-56. [PMID: 21958735 DOI: 10.1016/j.bbagrm.2011.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
The translocator protein (18kDa; TSPO) is a mitochondrial drug- and cholesterol-binding protein that has been implicated in several processes, including steroidogenesis, cell proliferation, and apoptosis. Expression of the human TSPO gene is elevated in several cancers. To understand the molecular mechanisms that regulate TSPO expression in human breast cancer cells, the TSPO promoter was identified, cloned, and functionally characterized in poor-in-TSPO hormone-dependent, non-aggressive MCF-7 cells and rich-in-TSPO hormone-independent, aggressive, and metastatic MDA-MB-231 breast cancer cells. RNA ligase-mediated 5'-rapid amplification of cDNA ends analysis indicated transcription initiated at multiple sites downstream of a GC-rich promoter that lacks functional TATA and CCAAT boxes. Deletion analysis indicated that the region from -121 to +66, which contains five putative regulatory sites known as GC boxes, was sufficient to induce reporter activity up to 24-fold in MCF-7 and nearly 120-fold in MDA-MB-231 cells. Electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that Sp1, Sp3 and Sp4 bind to these GC boxes in vitro and to the endogenous TSPO promoter. Silencing of Sp1, Sp3 and Sp4 gene expression reduced TSPO levels. In addition, TSPO expression was epigenetically regulated at one or more of the identified GC boxes. Disruption of the sequence downstream of the main start site of TSPO differentially regulated TSPO promoter activity in MCF-7 and MDA-MB-231 cells, indicating that essential elements contribute to its differential expression in these cells. Taken together, these experiments constitute the first in-depth functional analysis of the human TSPO gene promoter and its transcriptional regulation.
Collapse
Affiliation(s)
- Amani Batarseh
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4.
| | | | | | | |
Collapse
|
17
|
Lushnikova AA, Nasunova IB, Parokonnaya AA, Lyubchenko LN, Kampova-Polevaya EB. VEGFR-2 expression in tumor tissue of breast cancer patients. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2010; 434:363-367. [PMID: 20963665 DOI: 10.1134/s0012496610050194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Indexed: 05/30/2023]
Affiliation(s)
- A A Lushnikova
- Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
18
|
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192:275-83. [PMID: 20810260 DOI: 10.1016/j.aanat.2010.07.010] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Sp1 and Sp3 are transcription factors expressed in all mammalian cells. These factors are involved in regulating the transcriptional activity of genes implicated in most cellular processes. Dysregulation of Sp1 and Sp3 is observed in many cancers and diseases. Due to the amino acid sequence similarity of the DNA binding domains, Sp1 and Sp3 recognize and associate with the same DNA element with similar affinity. However, others and our laboratory demonstrated that these two factors possess different properties and exert different functional roles. Both Sp1 and Sp3 can interact with and recruit a large number of proteins including the transcription initiation complex, histone modifying enzymes and chromatin remodeling complexes, which strongly suggest that Sp1 and Sp3 are important transcription factors in the remodeling chromatin and the regulation of gene expression. In this review, the role of Sp1 and Sp3 in normal and cancer cell biology and the multiple mechanisms deciding the functional roles of Sp1 and Sp3 will be presented.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
19
|
Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR. Vascular endothelial growth factor receptor-2 in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1806:108-21. [PMID: 20462514 PMCID: PMC2885515 DOI: 10.1016/j.bbcan.2010.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 12/31/2022]
Abstract
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Shanchun Guo
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Laronna S. Colbert
- Clinical Medicine, Hematology/Oncology Section, Morehouse School of Medicine, Atlanta, GA 30310
| | - Miles Fuller
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Yuanyuan Zhang
- Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310
| | | |
Collapse
|
20
|
Ogba N, Doughman YQ, Chaplin LJ, Hu Y, Gargesha M, Watanabe M, Montano MM. HEXIM1 modulates vascular endothelial growth factor expression and function in breast epithelial cells and mammary gland. Oncogene 2010; 29:3639-49. [PMID: 20453883 PMCID: PMC2892028 DOI: 10.1038/onc.2010.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/30/2022]
Abstract
Recently, we found that mutation of the C-terminus of transcription factor hexamethylene bisacetamide-inducible protein 1 (HEXIM1) in mice leads to abnormalities in cardiovascular development because of aberrant vascular endothelial growth factor (VEGF) expression. HEXIM1 regulation of some genes has also been shown to be positive transcription elongation factor b (P-TEFb) dependent. However, it is not known whether HEXIM1 regulates VEGF in the mammary gland. We demonstrate that HEXIM1 regulates estrogen-induced VEGF transcription through inhibition of estrogen receptor-alpha recruitment to the VEGF promoter in a P-TEFb-independent manner in MCF-7 cells. Under hypoxic conditions, HEXIM1 inhibits estrogen-induced hypoxia-inducible factor-1 alpha (HIF-1alpha) protein expression and recruitment of HIF-1alpha to the hypoxia-response element in the VEGF promoter. In the mouse mammary gland, increased HEXIM1 expression decreased estrogen-driven VEGF and HIF-1alpha expression. Conversely, a mutation in the C-terminus of HEXIM1 (HEXIM1(1-312)) led to increased VEGF and HIF-1alpha expression and vascularization in mammary glands of heterozygous HEXIM1(1-312) mice when compared with their wild-type littermates. In addition, HEXIM1(1-312) mice have a higher incidence of carcinogen-induced mammary tumors with increased vascularization, suggesting an inhibitory role for HEXIM1 during angiogenesis. Taken together, our data provide evidence to suggest a novel role for HEXIM1 in cancer progression.
Collapse
MESH Headings
- Animals
- Carcinogens/toxicity
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Estradiol/pharmacology
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mammary Glands, Animal/blood supply
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- Mutation
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- Positive Transcriptional Elongation Factor B/metabolism
- Promoter Regions, Genetic/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Response Elements
- Transcription Factors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Ndiya Ogba
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Yong Qiu Doughman
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH 44106
| | - Laura J. Chaplin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Yanduan Hu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Madhusudhana Gargesha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH 44106
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
21
|
Suzuki A, Sanda N, Miyawaki Y, Fujimori Y, Yamada T, Takagi A, Murate T, Saito H, Kojima T. Down-regulation of PROS1 gene expression by 17beta-estradiol via estrogen receptor alpha (ERalpha)-Sp1 interaction recruiting receptor-interacting protein 140 and the corepressor-HDAC3 complex. J Biol Chem 2010; 285:13444-53. [PMID: 20200160 DOI: 10.1074/jbc.m109.062430] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pregnant women show a low level of protein S (PS) in plasma, which is known to be a risk for deep venous thrombosis. 17Beta-estradiol (E(2)), an estrogen that increases in concentration in the late stages of pregnancy, regulates the expression of various genes via the estrogen receptor (ER). Here, we investigated the molecular mechanisms behind the reduction in PS levels caused by E(2) in HepG2-ERalpha cells, which stably express ERalpha, and also the genomic ER signaling pathway, which modulates the ligand-dependent repression of the PSalpha gene (PROS1). We observed that E(2) repressed the production of mRNA and antigen of PS. A luciferase reporter assay revealed that E(2) down-regulated PROS1 promoter activity and that this E(2)-dependent repression disappeared upon the deletion or mutation of two adjacent GC-rich motifs in the promoter. An electrophoretic mobility shift assay and DNA pulldown assay revealed that the GC-rich motifs were associated with Sp1, Sp3, and ERalpha. In a chromatin immunoprecipitation assay, we found ERalpha-Sp protein-promoter interaction involved in the E(2)-dependent repression of PROS1 transcription. Furthermore, we demonstrated that E(2) treatment recruited RIP140 and the NCoR-SMRT-HDAC3 complex to the PROS1 promoter, which hypoacetylated chromatin. Taken together, this suggested that E(2) might repress PROS1 transcription depending upon ERalpha-Sp1 recruiting transcriptional repressors in HepG2-ERalpha cells and, consequently, that high levels of E(2) leading to reduced levels of plasma PS would be a risk for deep venous thrombosis in pregnant women.
Collapse
Affiliation(s)
- Atsuo Suzuki
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kessler T, Bayer M, Schwöppe C, Liersch R, Mesters RM, Berdel WE. Compounds in clinical Phase III and beyond. Recent Results Cancer Res 2010; 180:137-163. [PMID: 20033382 DOI: 10.1007/978-3-540-78281-0_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Targeted therapies against cancer have become more and more important. In particular, the inhibition of tumor angiogenesis and vascular targeting have been the focus of new treatment strategies. Numerous new substances were developed as angiogenesis inhibitors and evaluated in clinical trials for safety, tolerance, and efficacy. With positive study results, some of these molecules have already been approved for clinical use. For example, this is true for the vascular endothelial growth factor neutralizing antibody bevacizumab (BEV) in metastatic colorectal cancer, nonsmall cell lung cancer, renal cancer, and breast cancer. The tyrosine kinase (TK) inhibitors sorafenib and sunitinib have been approved for metastatic renal cancer as well as for hepatocellular carcinoma, and sunitinib has also been approved for gastrointestinal stroma tumors. In this chapter we try to give an overview of the substances currently investigated in Phase III studies and beyond with regard to antiangiogenesis in cancer therapy.
Collapse
Affiliation(s)
- Torsten Kessler
- Department of Medicine, Hematology and Oncology, University of Münster, Albert-Schweitzer-Strasse, 33, 48129, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Wu F, Ivanov I, Xu R, Safe S. Role of SP transcription factors in hormone-dependent modulation of genes in MCF-7 breast cancer cells: microarray and RNA interference studies. J Mol Endocrinol 2009; 42:19-33. [PMID: 18952783 PMCID: PMC2642616 DOI: 10.1677/jme-08-0088] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
17beta-estradiol (E(2)) binds estrogen receptor alpha (ESR1) in MCF-7 cells and increases cell proliferation and survival through induction or repression of multiple genes. ESR1 interactions with DNA-bound specificity protein (SP) transcription factors is a nonclassical genomic estrogenic pathway and the role of SP transcription factors in mediating hormone-dependent activation or repression of genes in MCF-7 cells was investigated by microarrays and RNA interference. MCF-7 cells were transfected with a nonspecific oligonucleotide or a cocktail of small inhibitory RNAs (iSP), which knockdown SP1, SP3, and SP4 proteins, and treated with dimethylsulfoxide or 10 nM E(2) for 6 h. E(2) induced 62 and repressed 134 genes and the induction or repression was reversed in approximately 62% of the genes in cells transfected with iSP (ESR1/SP dependent), whereas hormonal activation or repression of the remaining genes was unaffected by iSP (SP independent). Analysis of the ESR1/SP-dependent and SP-independent genes showed minimal overlap with respect to the GO terms (functional processes) in genes induced or repressed, suggesting that the different genomic pathways may contribute independently to the hormone-induced phenotype in MCF-7 cells.
Collapse
Affiliation(s)
- Fei Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
24
|
Safe S, Kim K, Kim K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 2008; 41:263-75. [PMID: 18772268 PMCID: PMC2582054 DOI: 10.1677/jme-08-0103] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
17beta-estradiol binds to the estrogen receptor (ER) to activate gene expression or repression and this involves both genomic (nuclear) and non-genomic (extranuclear) pathways. Genomic pathways include the classical interactions of ligand-bound ER dimers with estrogen-responsive elements in target gene promoters. ER-dependent activation of gene expression also involves DNA-bound ER that subsequently interacts with other DNA-bound transcriptions factors and direct ER-transcription factor (protein-protein) interactions where ER does not bind promoter DNA. Ligand-induced activation of ER/specificity protein (Sp) and ER/activating protein-1 [(AP-1); consisting of jun/fos] complexes are important pathways for modulating expression of a large number of genes. This review summarizes some of the characteristics of ER/Sp- and ER/AP-1-mediated transactivation, which are dependent on ligand structure, cell context, ER-subtype (ERalpha and ERbeta), and Sp protein (SP1, SP3, and SP4) and demonstrates that this non-classical genomic pathway is also functional in vivo.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | | | |
Collapse
|
25
|
Wu F, Xu R, Kim K, Martin J, Safe S. In vivo profiling of estrogen receptor/specificity protein-dependent transactivation. Endocrinology 2008; 149:5696-5705. [PMID: 18635651 PMCID: PMC2584598 DOI: 10.1210/en.2008-0720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/10/2008] [Indexed: 01/14/2023]
Abstract
17beta-Estradiol (E2) activates the estrogen receptor (ER) through multiple genomic and nongenomic pathways in various tissues/organs. ERalpha/specificity protein-dependent activation of E2-responsive genes containing GC-rich promoters has been identified in breast and other cancer cell lines, and in this study, we describe transgenic animals overexpressing a transgene containing three tandem GC-rich sites linked to a minimal TATA or thymidine kinase promoter and a luciferase gene. Several mouse lines expressing the transgenes were characterized and, in line 15, E2 induced a 9-fold increase in luciferase activity in the female mouse uterus, and the synthetic estrogens bisphenol A and nonylphenol also induced uterine luciferase activity. The pure antiestrogen ICI 182,780 induced luciferase activity in the mouse uterus, and similar results were observed for ICI 182,780 in breast cancer cells transfected with this construct. Differences in the ER agonist and antagonist activities of E2, nonylphenol, bisphenol A, and ICI 182,780 were investigated in the male testis and penis and the male and female stomach in line 15 transgenic mice. All of these tissues were hormone responsive; however, the patterns of induced or repressed luciferase activity were ligand structure, tissue, and sex dependent. These results demonstrate for the first time hormonal activation or repression of a GC-rich promoter in vivo, and the results suggest that the ERalpha/specificity protein pathway may contribute to E2-dependent induction and repression of genes.
Collapse
Affiliation(s)
- Fei Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
26
|
Li L, Davie JR. Association of Sp3 and estrogen receptor α with the transcriptionally active trefoil factor 1 promoter in MCF-7 breast cancer cells. J Cell Biochem 2008; 105:365-9. [DOI: 10.1002/jcb.21832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Wu F, Khan S, Wu Q, Barhoumi R, Burghardt R, Safe S. Ligand structure-dependent activation of estrogen receptor alpha/Sp by estrogens and xenoestrogens. J Steroid Biochem Mol Biol 2008; 110:104-15. [PMID: 18400491 PMCID: PMC2519242 DOI: 10.1016/j.jsbmb.2008.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 12/15/2022]
Abstract
This study investigated the effects of E2, diethylstilbestrol (DES), antiestrogens, the phytoestrogen resveratrol, and the xenoestrogens octylphenol (OP), nonylphenol (NP), endosulfan, kepone, 2,3,4,5-tetrachlorobiphenyl-4-ol (HO-PCB-Cl(4)), bisphenol-A (BPA), and 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on induction of luciferase activity in breast cancer cells transfected with a construct (pSp1(3)) containing three tandem GC-rich Sp binding sites linked to luciferase and wild-type or variant ERalpha. The results showed that induction of luciferase activity was highly structure-dependent in both MCF-7 and MDA-MB-231 cells. Moreover, RNA interference assays using small inhibitory RNAs for Sp1, Sp3 and Sp4 also demonstrated structure-dependent differences in activation of ERalpha/Sp1, ERalpha/Sp3 and ERalpha/Sp4. These results demonstrate for the first time that various structural classes of ER ligands differentially activate wild-type and variant ERalpha/Sp-dependent transactivation, selectively use different Sp proteins, and exhibit selective ER modulator (SERM)-like activity.
Collapse
Affiliation(s)
- Fei Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Shaheen Khan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
| | - Qian Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Robert Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843
- Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030
| |
Collapse
|
28
|
Wagner M, Schmelz K, Dörken B, Tamm I. Transcriptional regulation of human survivin by early growth response (Egr)-1 transcription factor. Int J Cancer 2008; 122:1278-87. [PMID: 18027854 DOI: 10.1002/ijc.23183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Survivin, a member of the inhibitor of apoptosis protein family, is involved in both, inhibition of apoptosis and regulation of cell division. Because of the tumor-specific expression of survivin, the reduction of its expression is an important therapeutic option in the treatment of malignant diseases. Thus, we analyzed the transcriptional regulation of survivin in order to establish survivin as a target gene for new therapeutic approaches. Here, we describe a novel regulatory region within the survivin promoter. After treatment with phorbol 12-myristate-13-acetate, the early growth response (Egr)-1 transcription factor binds to the sequence 5'GAGGGGGCG 3' within the human survivin promoter in vitro and in entire cells. In reporter-gene assays and overexpression experiments, survivin is downregulated following exogenous expression of wildtype Egr-1. Using p53 wildtype and mutated cell lines, we show that Egr-1 negatively regulates survivin expression and sensitizes cell lines to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Mandy Wagner
- Department of Hematology and Oncology, Universitätsmedizin Berlin, Charité, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Hockings JK, Degner SC, Morgan SS, Kemp MQ, Romagnolo DF. Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res 2008; 10:R29. [PMID: 18377656 PMCID: PMC2397528 DOI: 10.1186/bcr1987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 02/28/2008] [Accepted: 03/31/2008] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Increased estrogen level has been regarded to be a risk factor for breast cancer. However, estrogen has also been shown to induce the expression of the tumor suppressor gene, BRCA1. Upregulation of BRCA1 is thought to be a feedback mechanism for controlling DNA repair in proliferating cells. Estrogens enhance transcription of target genes by stimulating the association of the estrogen receptor (ER) and related coactivators to estrogen response elements or to transcription complexes formed at activator protein (AP)-1 or specificity protein (Sp)-binding sites. Interestingly, the BRCA1 gene lacks a consensus estrogen response element. We previously reported that estrogen stimulated BRCA1 transcription through the recruitment of a p300/ER-alpha complex to an AP-1 site harbored in the proximal BRCA1 promoter. The purpose of the study was to analyze the contribution of cis-acting sites flanking the AP-1 element to basal and estrogen-dependent regulation of BRCA1 transcription. METHODS Using transfection studies with wild-type and mutated BRCA1 promoter constructs, electromobility binding and shift assays, and DNA-protein interaction and chromatin immunoprecipitation assays, we investigated the role of Sp-binding sites and cAMP response element (CRE)-binding sites harbored in the proximal BRCA1 promoter. RESULTS We report that in the BRCA1 promoter the AP-1 site is flanked upstream by an element (5'-GGGGCGGAA-3') that recruits Sp1, Sp3, and Sp4 factors, and downstream by a half CRE-binding motif (5'-CGTAA-3') that binds CRE-binding protein. In ER-alpha-positive MCF-7 cells and ER-alpha-negative Hela cells expressing exogenous ER-alpha, mutation of the Sp-binding site interfered with basal and estrogen-induced BRCA1 transcription. Conversely, mutation of the CRE-binding element reduced basal BRCA1 promoter activity but did not prevent estrogen activation. In combination with the AP-1/CRE sites, the Sp-binding domain enhanced the recruitment of nuclear proteins to the BRCA1 promoter. Finally, we report that the MEK1 (mitogen-activated protein kinase kinase-1) inhibitor PD98059 attenuated the recruitment of Sp1 and phosphorylated ER-alpha, respectively, to the Sp and AP-1 binding element. CONCLUSION These cumulative findings suggest that the proximal BRCA1 promoter segment comprises cis-acting elements that are targeted by Sp-binding and CRE-binding proteins that contribute to regulation of BRCA1 transcription.
Collapse
Affiliation(s)
- Jennifer K Hockings
- Cancer Biology Interdisciplinary Graduate Program, Department of Nutritional Sciences, The University of Arizona, E 4th Street, Tucson, Arizona 85721-0038, USA
| | | | | | | | | |
Collapse
|
30
|
Higgins KJ, Liu S, Abdelrahim M, Vanderlaag K, Liu X, Porter W, Metz R, Safe S. Vascular endothelial growth factor receptor-2 expression is down-regulated by 17beta-estradiol in MCF-7 breast cancer cells by estrogen receptor alpha/Sp proteins. Mol Endocrinol 2008; 22:388-402. [PMID: 18006642 PMCID: PMC2234589 DOI: 10.1210/me.2007-0319] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/05/2007] [Indexed: 02/08/2023] Open
Abstract
17beta-Estradiol (E2) induces and represses gene expression in breast cancer cells; however, the mechanisms of gene repression are not well understood. In this study, we show that E2 decreases vascular endothelial growth factor receptor 2 (VEGFR2) mRNA levels in MCF-7 cells, and this gene was used as a model for investigating pathways associated with E2-dependent gene repression. Deletion analysis of the VEGFR2 promoter indicates that the proximal GC-rich motifs at -58 and -44 are critical for the E2-dependent decreased response in MCF-7 cells. Mutation or deletion of these GC-rich elements results in loss of hormone responsiveness and shows that the -60 to -37 region of the VEGFR2 promoter is critical for both basal and hormone-dependent decreased VEGFR2 expression in MCF-7 cells. Western blot, immunofluorescent staining, RNA interference, and EMSAs support a role for Sp proteins in hormone-dependent down-regulation of VEGFR2 in MCF-7 cells, primarily through estrogen receptor (ER)alpha/Sp1 and ERalpha/Sp3 interactions with the VEGFR2 promoter. Using chromatin immuno-precipitation and transient transfection/RNA interference assays we show that the ERalpha/Sp protein-promoter interactions are accompanied by recruitment of the co-repressors SMRT (silencing mediator of retinoid and thyroid hormone receptor) and NCoR (nuclear receptor corepressor) to the promoter and that SMRT and NCoR knockdown reverse E2-mediated down-regulation of VEGFR2 expression in MCF-7 cells. This study illustrates that both SMRT and NCoR are involved in E2-dependent repression of VEGFR2 in MCF-7 cells.
Collapse
Affiliation(s)
- Kelly J Higgins
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The vascular endothelial growth factor (VEGF) family of polypeptide growth factors regulates a family of VEGF receptor (VEGFR) tyrosine kinases with pleiotropic downstream effects. Angiogenesis is the best known of these effects, but additional VEGF-dependent actions include increased vascular permeability, paracrine/autocrine growth factor release, enhancement of cell motility, and inhibition of apoptosis. In theory, therapeutic inhibition of angiogenesis should reduce tumor perfusion and thus increase tumor hypoxia and chemoresistance, but in clinical practice the VEGF antibody bevacizumab acts as a broad-spectrum chemosensitizer. Since VEGFR expression occurs in many tumor types, such chemosensitization is more readily explained by direct inhibition of tumor cell survival signals than by indirect stromal/vascular effects. The emerging model of anti-VEGF drug action being mediated primarily by tumoral (as distinct from endothelial) VEGFRs has clinically important implications for optimizing the anti-metastatic efficacy of this expanding drug class.
Collapse
Affiliation(s)
- Richard J Epstein
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
32
|
Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 2007; 67:11001-11011. [PMID: 18006846 DOI: 10.1158/0008-5472.can-07-2416] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is evidence that specificity proteins (Sp), such as Sp1, Sp3, and Sp4, are overexpressed in tumors and contribute to the proliferative and angiogenic phenotype associated with cancer cells. Sp1, Sp3, and Sp4 are expressed in a panel of estrogen receptor (ER)-positive and ER-negative breast cancer cell lines, and we hypothesized that regulation of their expression may be due to microRNA-27a (miR-27a), which is also expressed in these cell lines and has been reported to regulate the zinc finger ZBTB10 gene, a putative Sp repressor. Transfection of ER-negative MDA-MB-231 breast cancer cells with antisense miR-27a (as-miR-27a) resulted in increased expression of ZBTB10 mRNA and decreased expression of Sp1, Sp3, and Sp4 at the mRNA and protein levels and also decreased activity in cells transfected with constructs containing Sp1 and Sp3 promoter inserts. In addition, these responses were accompanied by decreased expression of Sp-dependent survival and angiogenic genes, including survivin, vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1). Moreover, similar results were observed in MDA-MB-231 cells transfected with ZBTB10 expression plasmid. Both as-miR-27a and ZBTB10 overexpression decreased the percentage of MDA-MB-231 cells in S phase of the cell cycle; however, ZBTB10 increased the percentage of cells in G(0)-G(1), whereas as-miR-27a increased the percentage in G(2)-M. This latter response was associated with induction of Myt-1 (another miR-27a target gene), which inhibits G(2)-M through enhanced phosphorylation and inactivation of cdc2. Thus, the oncogenic activity of miR-27a in MDA-MB-231 cells is due, in part, to suppression of ZBTB10 and Myt-1.
Collapse
Affiliation(s)
- Susanne U Mertens-Talcott
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
33
|
Sun JM, Chen HY, Davie JR. Differential distribution of unmodified and phosphorylated histone deacetylase 2 in chromatin. J Biol Chem 2007; 282:33227-36. [PMID: 17827154 DOI: 10.1074/jbc.m703549200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase 2 (HDAC2) is one of the histone-modifying enzymes that regulate gene expression by remodeling chromatin structure. Along with HDAC1, HDAC2 is found in the Sin3 and NuRD multiprotein complexes, which are recruited to promoters by DNA-binding proteins. In this study, we show that the majority of HDAC2 in human breast cancer cells is not phosphorylated. However, the minor population of HDAC2, preferentially cross-linked to DNA by cisplatin, is mono-, di-, or tri-phosphorylated. Furthermore, HDAC2 phosphorylation is required for formation of Sin3 and NuRD complexes and recruitment to promoters by transcription factors including p53, Rb, YY1, NF-kappaB, Sp1, and Sp3. Unmodified HDAC2 requires linker DNA to associate with chromatin but is not cross-linked to DNA by formaldehyde. We provide evidence that unmodified HDAC2 is associated with the coding region of transcribed genes, whereas phosphorylated HDAC2 is primarily recruited to promoters.
Collapse
Affiliation(s)
- Jian-Min Sun
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
34
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Kundu P, Alioua A, Stefani E, Toro L. Regulation of mouse Slo gene expression: multiple promoters, transcription start sites, and genomic action of estrogen. J Biol Chem 2007; 282:27478-27492. [PMID: 17635926 DOI: 10.1074/jbc.m704777200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The large conductance, voltage- and Ca(2+)-activated K(+) channel plays key roles in diverse body functions influenced by estrogen, including smooth muscle and neural activities. In mouse (m), estrogen up-regulates the transcript levels of its pore-forming alpha-subunit (Slo, KCNMA1), yet the underlying genomic mechanism(s) is (are) unknown. We first mapped the promoters and regulatory motifs within the mSlo 5'-flanking sequence to subsequently identify genomic regions and mechanisms required for estrogen regulation. mSlo gene has at least two TATA-less promoters with distinct potencies that may direct mSlo transcription from multiple transcription start sites. These qualities mark mSlo as a prototype gene with promoter plasticity capable of generating multiple mRNAs and the potential to adapt to organismal needs. mSlo promoters contain multiple estrogen-responsive sequences, e.g. two quasi-perfect estrogen-responsive elements, ERE1 and ERE2, and Sp1 sites. Accordingly, mSlo promoter activity was highly enhanced by estrogen and blocked by estrogen antagonist ICI 182,780. When promoters are embedded in a 4.91-kb backbone, estrogen responsiveness involves a classical genomic mechanism, via ERE1 and ERE2, that may be complemented by Sp factors, particularly Sp1. Simultaneous but not individual ERE1 and ERE2 mutations caused significant loss of estrogen action. ERE2, which is closer to the proximal promoter, up-regulates this promoter via a classical genomic mechanism. ERE2 strategic position together with ERE1 and ERE2 independence and Sp contribution should ensure mSlo estrogen responsiveness. Thus, the mSlo gene seems to have uniquely evolved to warrant estrogen regulation. Estrogen-mediated mSlo genomic regulation has important implications on long term estrogenic effects affecting smooth muscle and neural functions.
Collapse
Affiliation(s)
- Pallob Kundu
- Department of Anesthesiology, Division of Molecular Medicine, the.
| | | | - Enrico Stefani
- Department of Anesthesiology, Division of Molecular Medicine, the; Department of Physiology, UCLA, Los Angeles, California 90095; Cardiovascular Research Laboratories and Brain Research Institute, UCLA, Los Angeles, California 90095
| | - Ligia Toro
- Department of Anesthesiology, Division of Molecular Medicine, the; Cardiovascular Research Laboratories and Brain Research Institute, UCLA, Los Angeles, California 90095; Department of Molecular and Medical Pharmacology and UCLA, Los Angeles, California 90095
| |
Collapse
|
36
|
Ishimaru N, Tabuchi A, Hara D, Hayashi H, Sugimoto T, Yasuhara M, Shiota J, Tsuda M. Regulation of neurotrophin-3 gene transcription by Sp3 and Sp4 in neurons. J Neurochem 2007; 100:520-31. [PMID: 17059557 DOI: 10.1111/j.1471-4159.2006.04216.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurotrophin-3 (NT-3), a neurotrophin member, plays crucial roles in neuronal development, function and plasticity. Previous studies have demonstrated that NT-3 gene transcription is driven by alternative promoters A and B, located upstream of exons 1A (EIA) and 1B (EIB), respectively. However, the transcription factors and DNA elements that drive NT-3 gene transcription remain to be identified. Here, we analysed the promoter region of the NT-3 gene and found that an NT-3 transcript containing EIB is predominantly expressed in cortical neurons which preferentially utilize promoter B, and two tandemly repeated GC-boxes, located between -100 and -60 base pairs within promoter B, are required for the transcription. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that both specificity protein (Sp)3 and Sp4 were able to bind to the Sp1 binding sequences within the GC boxes. Expression of dominant-negative Sp3 and Sp4 small interfering RNA in cortical neurons reduced the activity of the NT-3 gene promoter. Over-expression of Sp1 family members, especially Sp4, resulted in an increase of the NT-3 gene promoter. These findings indicate that the NT-3 gene is a target gene for Sp4 that is abundantly expressed in the brain.
Collapse
Affiliation(s)
- Naoki Ishimaru
- Department of Biological Chemistry, Graduate School of Medicine, University of Toyama, Sugitani, Japan
| | | | | | | | | | | | | | | |
Collapse
|