1
|
Domarecka E, Olze H, Szczepek AJ. The Size and Localization of Ribeye and GluR2 in the Auditory Inner Hair Cell Synapse of C57BL/6 Mice Are Affected by Short-Pulse Corticosterone in a Sex-Dependent Manner. Brain Sci 2025; 15:441. [PMID: 40426612 PMCID: PMC12110336 DOI: 10.3390/brainsci15050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Inner hair cell (IHC) ribbon synapses are the initial synapses in the auditory pathway, comprising presynaptic ribbons and postsynaptic glutamate receptors on the peripheral afferent fibers. The excitatory neurotransmitter glutamate primarily signals through AMPA-type heterotetrameric receptors (AMPARs), composed of GluR1, GluR2, GluR3, and GluR4 subunits. Research shows that corticosterone affects AMPA receptor subunits in the central nervous system. The present study investigates the effects of corticosterone on AMPA receptor subunits in the murine cochlea. Methods: Cochlear explants were isolated from male and female C57BL/6 pups (postnatal days 4-5), treated for 20 min with 100 nM corticosterone, and cultured for an additional 24 h. The concentration of AMPAR protein subunits was quantified using an ELISA assay, while gene expression was analyzed using RT-PCR. The synaptic localization patterns of GluR2 and Ribeye were examined using immunofluorescence and confocal microscopy. Results: Male C57BL/6 mice have a significantly greater basal concentration of the GluR2 subunit than females and more GluR2 puncta per IHC than females. Corticosterone increases the size of Ribeye in males and increases twofold GluR2/Ribeye colocalization in the apical region of females. Conclusions: Exposure of membranous cochleae to corticosterone induces changes consistent with neuroplasticity in the auditory periphery. The observed effect is sex-dependent.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
2
|
Gao Y, Qiu Y, Lu S. Genetically Predicted Sleep Traits and Sensorineural Hearing Loss: A Mendelian Randomization Study. Laryngoscope 2024; 134:4723-4729. [PMID: 38818872 DOI: 10.1002/lary.31550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Observational studies suggest a potential association between sleep characteristics, sensorineural hearing loss (SNHL), and sudden SNHL (SSNHL), but causal evidence is scarce. We sought to clarify this issue using two-sample Mendelian randomization analysis. METHODS The inverse-variance weighted (IVW) method was performed as primary analysis to assess bidirectional causal associations between sleep traits (chronotype, sleep duration, insomnia, daytime sleepiness, and snoring) and SNHL/SSNHL using publicly available Genome-Wide Association Studies summary data from two large consortia (UK Biobank and FinnGen). Sensitivity analyses, including Mendelian randomization (MR)-Egger, Mendelian randomization pleiotropy residual sum and outlier, weight median, Cochran's Q test, leave-one-out analysis, and potential pleiotropy analysis, were conducted to ensure robustness. RESULTS IVW analysis found suggestive associations of morning chronotype (odds ratio [OR] = 1.08, 95% confidence interval [CI] = 1.01-1.16, p = 0.031) and daytime sleepiness (OR = 1.88, 95% CI = 1.24-2.87, p = 0.003) with SNHL onset. Additionally, morning chronotype was nominally associated with SSNHL onset using IVW method (OR = 1.37, 95% CI = 1.10-1.71, p = 0.006). However, there was no evidence for the causal effect of SNHL and SSNHL on different sleep traits (all p > 0.05). Sensitivity analysis showed that the results were stable. CONCLUSION Within the MR limitations, morning chronotype and daytime sleepiness were underlying causal contributors to the burden of SNHL, indicating that optimal sleep might facilitate the prevention and development of SNHL. LEVEL OF EVIDENCE 3 Laryngoscope, 134:4723-4729, 2024.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
4
|
Manohar S, Chen GD, Li L, Liu X, Salvi R. Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hear Res 2023; 431:108726. [PMID: 36905854 DOI: 10.1016/j.heares.2023.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hyperacusis, a debilitating loudness intolerance disorder, has been linked to chronic stress and adrenal insufficiency. To investigate the role of chronic stress, rats were chronically treated with corticosterone (CORT) stress hormone. Chronic CORT produced behavioral evidence of loudness hyperacusis, sound avoidance hyperacusis, and abnormal temporal integration of loudness. CORT treatment did not disrupt cochlear or brainstem function as reflected by normal distortion product otoacoustic emissions, compound action potentials, acoustic startle reflexex, and auditory brainstem responses. In contrast, the evoked response from the auditory cortex was enhanced up to three fold after CORT treatment. This hyperactivity was associated with a significant increase in glucocorticoid receptors in auditory cortex layers II/III and VI. Basal serum CORT levels remained normal after chronic CORT stress whereas reactive serum CORT levels evoked by acute restraint stress were blunted (reduced) after chronic CORT stress; similar changes were observed after chronic, intense noise stress. Taken together, our results show for the first time that chronic stress can induce hyperacusis and sound avoidance. A model is proposed in which chronic stress creates a subclinical state of adrenal insufficiency that establishes the necessary conditions for inducing hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
6
|
Iinuma R, Okuda H, Obara N, Matsubara Y, Aoki M, Ogawa T. Increased Monocyte Chemotactic Protein-1 Accompanying Pro-Inflammatory Processes are Associated with Progressive Hearing Impairment and Bilateral Disability of Meniere's Disease. Audiol Neurootol 2021; 27:208-216. [PMID: 34903680 DOI: 10.1159/000518839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The progression of hearing impairment and the bilateral involvement of Meniere's disease (MD) may depend on the disease duration and aging. Recent studies reported that MD might involve dysfunction of the microvascular circulation damaged due to inflammatory changes. OBJECTIVES The aim of this study was to determine that the progress of the MD's hearing impairment and bilateral disability may be associated with the pathogenesis of several pro-inflammatory processes. PATIENTS AND METHODS We recruited 30 unilateral MD patients (56.8 ± 14.7 years old), 7 bilateral MD patients (65.3 ± 13.9 years old), and 17 age-matched control subjects (53.5 ± 14.4 years old, p > 0.05). We measured the plasma vascular endothelial growth factor (VEGF), plasma interleukin-6 (IL-6), plasma tumor-necrosis factor α (TNFα), and plasma monocyte chemotactic protein-1 (MCP-1). RESULTS The bilateral MD group and the unilateral MD group had higher plasma MCP-1 (204.7 ± 41.0 pg/mL and 169.5 ± 32.0 pg/mL) than the control group (149.2 ± 30.7 pg/mL) (p < 0.05). There was no significant difference in plasma TNFα, IL-6, and VEGF among 3 groups (p > 0.05). There was a strong correlation between the plasma MCP-1 and age in MD patients (r = 0.58, p < 0.01); however, no significant correlation between the plasma MCP-1 and age was found in control subjects (p > 0.05). The plasma MCP-1 significantly correlated with the average hearing level of 500, 1,000, 2,000, and 4,000 Hz, and the maximum slow phase eye velocity in caloric test in the better side (p < 0.05). Also, the plasma MCP-1 showed significant positive correlations with the plasma IL-6 (r = 0.49, p < 0.01) and plasma TNFα (r = 0.32, p < 0.05) in MD group. CONCLUSIONS Our results suggest that the increased plasma MCP-1 accompanying pro-inflammatory processes are associated with the progression of the hearing impairment and the bilateral disability of MD.
Collapse
Affiliation(s)
- Ryota Iinuma
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hiroshi Okuda
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Natsuko Obara
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yoshitaka Matsubara
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan.,Medical IT Support Department, HRS Co., LTD., Nagoya City, Japan
| | - Mitsuhiro Aoki
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan.,Center for Healthcare Information Technology (C-HiT), Tokai National Higher Education and Research System, Nagoya City, Japan
| | - Takenori Ogawa
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu City, Japan
| |
Collapse
|
7
|
Spankovich C, Walters BJ. Mild Therapeutic Hypothermia and Putative Mechanisms of Hair Cell Survival in the Cochlea. Antioxid Redox Signal 2021; 36:1203-1214. [PMID: 34619988 PMCID: PMC9221161 DOI: 10.1089/ars.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Significance: Sensorineural hearing loss has significant implications for quality of life and risk for comorbidities such as cognitive decline. Noise and ototoxic drugs represent two common risk factors for acquired hearing loss that are potentially preventable. Recent Advances: Numerous otoprotection strategies have been postulated over the past four decades with primary targets of upstream redox pathways. More recently, the application of mild therapeutic hypothermia (TH) has shown promise for otoprotection for multiple forms of acquired hearing loss. Critical Issues: Systemic antioxidant therapy may have limited application for certain ototoxic drugs with a therapeutic effect on redox pathways and diminished efficacy of the primary drug's therapeutic function (e.g., cisplatin for tumors). Future Directions: Mild TH likely targets multiple mechanisms, contributing to otoprotection, including slowed metabolics, reduced oxidative stress, and involvement of cold shock proteins. Further work is needed to identify the mechanisms of mild TH at play for various forms of acquired hearing loss.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
8
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
9
|
The Physiologic Role of Corticosteroids in Menière's Disease: An Update on Glucocorticoid-mediated Pathophysiology and Corticosteroid Inner Ear Distribution. Otol Neurotol 2021; 41:271-276. [PMID: 31821251 DOI: 10.1097/mao.0000000000002467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: There are multiple treatment options for Ménière's disease (MD), including dietary modifications, aminoglycoside therapy, and surgery. All have limitations, ranging from limited effectiveness to permanent hearing loss. Corticosteroids have long been used to manage MD due to their relative efficacy and tolerability, but the exact mechanism for disease alleviation is uncertain. Until recently, the precise distribution and role that glucocorticoid receptors play in inner ear diseases have remained largely uninvestigated. Several studies propose they influence mechanisms of fluid regulation through ion and water homeostasis. This review will provide an update on the basic science literature describing the activity of endogenous glucocorticoids and exogenous corticosteroids in the inner ear and the relevance to MD, as well as early clinical trial data pertaining to the application of novel technologies for more effective administration of corticosteroids for the treatment of MD.
Collapse
|
10
|
Zallocchi M, Hati S, Xu Z, Hausman W, Liu H, He DZ, Zuo J. Characterization of quinoxaline derivatives for protection against iatrogenically induced hearing loss. JCI Insight 2021; 6:141561. [PMID: 33476306 PMCID: PMC8021103 DOI: 10.1172/jci.insight.141561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/20/2021] [Indexed: 01/20/2023] Open
Abstract
Hair cell loss is the leading cause of hearing and balance disorders in humans. It can be caused by many factors, including noise, aging, and therapeutic agents. Previous studies have shown the therapeutic potential of quinoxaline against drug-induced ototoxicity. Here, we screened a library of 68 quinoxaline derivatives for protection against aminoglycoside-induced damage of hair cells from the zebrafish lateral line. We identified quinoxaline-5-carboxylic acid (Qx28) as the best quinoxaline derivative that provides robust protection against both aminoglycosides and cisplatin in zebrafish and mouse cochlear explants. FM1-43 and aminoglycoside uptake, as well as antibiotic efficacy studies, revealed that Qx28 is neither blocking the mechanotransduction channels nor interfering with aminoglycoside antibacterial activity, suggesting that it may be protecting the hair cells by directly counteracting the ototoxin’s mechanism of action. Only when animals were incubated with higher doses of Qx28 did we observe a partial blockage of the mechanotransduction channels. Finally, we assessed the regulation of the NF-κB pathway in vitro in mouse embryonic fibroblasts and in vivo in zebrafish larvae. Those studies showed that Qx28 protects hair cells by blocking NF-κB canonical pathway activation. Thus, Qx28 is a promising and versatile otoprotectant that can act across different species and toxins.
Collapse
|
11
|
Abstract
Emotional stress has accompanied humans since the dawn of time and has played an essential role not only in positive selection and adaptation to an ever-changing environment, but also in the acceleration or even initiation of many illnesses. The three main somatic mechanisms induced by stress are the hypothalamus-pituitary-adrenal axis (HPA axis), the sympathetic-adreno-medullar (SAM) axis, and the immune axis. In this chapter, the stress-induced mechanisms that can affect cochlear physiology are presented and discussed in the context of tinnitus generation and auditory neurobiology. It is concluded that all of the presented mechanisms need to be further investigated. It is advised that clinical practitioners ask patients about stressful events or chronic stress preceding the tinnitus onset and measure the vital signs. Finally, taking into account that tinnitus itself acts as a stressor, the implementation of anti-stress therapies for tinnitus treatment is recommended.
Collapse
|
12
|
Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020; 10:15167. [PMID: 32938973 PMCID: PMC7495466 DOI: 10.1038/s41598-020-72181-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cells of the immune system are present in the adult cochlea and respond to damage caused by noise exposure. However, the types of immune cells involved and their locations within the cochlea are unclear. We used flow cytometry and immunostaining to reveal the heterogeneity of the immune cells in the cochlea and validated the presence of immune cell gene expression by analyzing existing single-cell RNA-sequencing (scRNAseq) data. We demonstrate that cell types of both the innate and adaptive immune system are present in the cochlea. In response to noise damage, immune cells increase in number. B, T, NK, and myeloid cells (macrophages and neutrophils) are the predominant immune cells present. Interestingly, immune cells appear to respond to noise damage by infiltrating the organ of Corti. Our studies highlight the need to further understand the role of these immune cells within the cochlea after noise exposure.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cochlea/immunology
- Cochlea/injuries
- Cochlea/pathology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/immunology
- Female
- Hearing Loss, Noise-Induced/immunology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Immunity, Innate
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Leukocyte Common Antigens/metabolism
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Neutrophils/immunology
- Neutrophils/pathology
- Organ of Corti/immunology
- Organ of Corti/injuries
- Organ of Corti/pathology
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Megan B Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hao Feng
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Nathan M Schabla
- Department of Medical Microbiology and Immunology and Flow Cytometry Core, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Shu Tu
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jian Zuo
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
13
|
Abstract
Cochlear damage is often thought to result in hearing thresholds shift, whether permanent or temporary. The report of tinnitus in the absence of any clear deficit in cochlear function was believed to indicate that hearing loss and tinnitus, while comorbid, could arise independently from each other. In all likelihood, tinnitus that is not of central nervous system origin is associated with hearing loss. As a correlate, although a treatment of most forms of tinnitus will likely emerge in the years to come, curing tinnitus will first require curing hearing loss.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Didier Depireux
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; R&D OtolithLabs, Washington, DC, USA.
| |
Collapse
|
14
|
Li P, Bing D, Wang S, Chen J, Du Z, Sun Y, Qi F, Zhang Y, Chu H. Sleep Deprivation Modifies Noise-Induced Cochlear Injury Related to the Stress Hormone and Autophagy in Female Mice. Front Neurosci 2019; 13:1297. [PMID: 31849600 PMCID: PMC6896935 DOI: 10.3389/fnins.2019.01297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
A lack of sleep is linked with a range of inner ear diseases, including hearing loss and tinnitus. Here, we used a mouse model to investigate the effects of sleep deprivation (SD) on noise vulnerability, and explored the mechanisms that might be involved in vitro, focusing particularly corticosterone levels and autophagic flux in cells. Female BALB/c mice were divided into six groups [control, acoustic trauma (AT)-alone, 1 day (d) SD-alone, 1d SD pre-AT, 5d SD-alone, and 5d SD pre-AT]. Cochlear damage was then assessed by analyzing auditory brainstem response (ABR), and by counting outer hair cells (OHCs) and the synaptic ribbons of inner hair cells (IHCs). In addition, we measured levels of serum corticosterone and autophagy protein expression in the basilar membranes by ELISA kits, and western blotting, respectively. We found that SD-alone temporarily elevated ABR wave I amplitude, but had no permanent effect on hearing level or IHC ribbon numbers. Combined with AT, the number of synaptic ribbons in the 1d SD pre-AT group was significantly higher than that in the AT-alone group, whereas the 5d SD pre-AT group showed more severe synaptopathy, and a greater loss of OHCs after 2 weeks than the other experimental groups exposed to noise. Correspondingly, the levels of corticosterone in the AT-alone group were higher than those of the 1d SD pre-AT group, but lower than those of the 5d SD pre-AT group. The 1d SD pre-AT group showed a marked elevation in the expression of microtubule-associated protein 1 light chain 3B (LC3B), whereas the AT-alone group exhibited only a mild increase. In contrast, the levels of LC3B did not change in the 5d SD pre-AT group. Experiments with HEI-OC-1 cells and cochlear basilar membrane cultures showed that high-concentrations of dexamethasone, and the inhibition of autophagy, aggravated cellular apoptosis induced by oxidative stress. In conclusion, noise-induced synaptopathy and hair cell loss can be mitigated by preceding 1d SD, but will be aggravated by preceding 5d SD. These findings may be attributable to corticosterone levels and the extent of autophagy.
Collapse
Affiliation(s)
- Pengjun Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sumei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Du
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanbo Sun
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Qi
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hanqi Chu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Pérez-Valenzuela C, Terreros G, Dagnino-Subiabre A. Effects of stress on the auditory system: an approach to study a common origin for mood disorders and dementia. Rev Neurosci 2019; 30:317-324. [PMID: 30205652 DOI: 10.1515/revneuro-2018-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
The concept of stress is a fundamental piece to understand how organisms can adapt to the demands produced by a continuously changing environment. However, modern lifestyle subjects humans to high levels of negative stress or distress, which increases the prevalence of mental illnesses. Definitely, stress has become the pandemic of the 21st century, a fact that demands a great intellectual effort from scientists to understand the neurobiology of stress. This review proposes an innovative point of view to understand that mood disorders and dementia have a common etiology in a stressful environment. We propose that distress produces sensory deprivation, and this interferes with the connection between the brain and the environment in which the subject lives. The auditory system can serve as an example to understand this idea. In this sense, distress impairs the auditory system and induces hearing loss or presbycusis at an early age; this can increase the cognitive load in stressed people, which can stimulate the development of dementia in them. On the other hand, distress impairs the auditory system and increases the excitability of the amygdala, a limbic structure involved in the emotional processing of sounds. A consequence of these alterations could be the increase in the persistence of auditory fear memory, which could increase the development of mood disorders. Finally, it is important to emphasize that stress is an evolutionary issue that is necessary to understand the mental health of humans in these modern times. This article is a contribution to this discussion and will provide insights into the origin of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Catherine Pérez-Valenzuela
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.,Auditory and Cognition Center (AUCO), Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile.,Auditory and Cognition Center (AUCO), Santiago, Chile
| |
Collapse
|
16
|
Cederroth CR, Park JS, Basinou V, Weger BD, Tserga E, Sarlus H, Magnusson AK, Kadri N, Gachon F, Canlon B. Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids. Curr Biol 2019; 29:2477-2487.e6. [PMID: 31353184 PMCID: PMC6904421 DOI: 10.1016/j.cub.2019.06.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023]
Abstract
The cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here, we show that cochlear rhythms are system driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Because the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level, suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses.
Collapse
Affiliation(s)
| | - Jung-Sub Park
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Otolaryngology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Vasiliki Basinou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Benjamin D Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Heela Sarlus
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Anna K Magnusson
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
17
|
Ajduk J, Košec A, Kelava I, Ries M, Gregurić T, Kalogjera L. Recovery From Sudden Sensorineural Hearing Loss May Be Linked to Chronic Stress Levels and Steroid Treatment Resistance. Am J Audiol 2019; 28:315-321. [PMID: 31084569 DOI: 10.1044/2019_aja-18-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose This article investigates the possible connections between the level of chronic stress and success of steroid therapy in patients with sudden sensorineural hearing loss (SSNHL). Method A single-center, retrospective, longitudinal cohort study on 55 patients in a tertiary referral otology center was examined. Patients diagnosed with SSNHL between 2014 and 2017 were asked to complete a Measure of Perceived Stress (Brajac, Tkalcic, Dragojević, & Gruber, 2003 ) questionnaire. Inclusion criteria were patients > 18 years of age, SSNHL diagnosed within 4 previous weeks, completed steroid treatment, and complete documentation. Results There were 30 patients (55%) that showed significant improvement in their pure-tone audiogram (PTA) hearing threshold average (≥ 15 dB) after steroid treatment. Two-step cluster analysis identified 3 clusters based on average PTA hearing threshold recovery and average Measure of Perceived Stress scores. The difference between pretreatment and posttreatment hearing levels was significantly higher in the cluster with moderate stress compared to clusters with mild and high stress levels (Kruskal-Wallis test, Friedman test, p < .001). There were no significant differences in average PTA hearing threshold recovery after steroid therapy between groups of patients with mild and severe stress. Conclusion Patients with moderate stress levels show significantly better results after steroid treatment for SSNHL than patients with low or high stress levels.
Collapse
Affiliation(s)
- Jakov Ajduk
- School of Medicine, University of Zagreb, Croatia
| | - Andro Košec
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Iva Kelava
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | - Mihael Ries
- School of Medicine, University of Zagreb, Croatia
| | - Tomislav Gregurić
- Department of Radiology, University Hospital Center Sestre milosrdnice, Zagreb, Croatia
| | | |
Collapse
|
18
|
Sarlus H, Fontana JM, Tserga E, Meltser I, Cederroth CR, Canlon B. Circadian integration of inflammation and glucocorticoid actions: Implications for the cochlea. Hear Res 2019; 377:53-60. [PMID: 30908966 DOI: 10.1016/j.heares.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Auditory function has been shown to be influenced by the circadian system. Increasing evidence point towards the regulation of inflammation and glucocorticoid actions by circadian rhythms in the cochlea. Yet, how these three systems (circadian, immune and endocrine) converge to control auditory function remains to be established. Here we review the knowledge on immune and glucocorticoid actions, and how they interact with the circadian and the auditory system, with a particular emphasis on cochlear responses to noise trauma. We propose a multimodal approach to understand the mechanisms of noise-induced hearing loss by integrating the circadian, immune and endocrine systems into the bearings of the cochlea. Considering the well-established positive impact of chronotherapeutic approaches in the treatment of cardiovascular, asthma and cancer, an increased knowledge on the mechanisms where circadian, immune and glucocorticoids meet in the cochlea may improve current treatments against hearing disorders.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Jacopo Maria Fontana
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | | | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
19
|
Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018; 19:653-668. [PMID: 30187298 PMCID: PMC6249158 DOI: 10.1007/s10162-018-00690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Abstract
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administration. The present study has demonstrated that tetrandrine (TET), a traditional Chinese medicinal alkaloid and the main chemical isolate of the Stephania tetrandra S. Moore herb, significantly attenuated NIHL in CBA/CaJ mice. TET is known to exert antihypertensive and antiarrhythmic effects through the blocking of calcium channels. Whole-cell patch-clamp recording from adult spiral ganglion neurons showed that TET blocked the transient Ca2+ current in a dose-dependent manner and the half-blocking concentration was 0.6 + 0.1 μM. Consistent with previous findings that modulations of calcium-based signaling pathways have both prophylactic and therapeutic effects against neural trauma, NIHL was significantly diminished by TET administration. Importantly, TET has a long-lasting protective effect after noise exposure (48 weeks) in comparison to 2 weeks after noise exposure. The otoprotective effects of TET were achieved mainly by preventing outer hair cell damage and synapse loss between inner hair cells and spiral ganglion neurons. Thus, our data indicate that TET has great potential in the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Yan Yu
- The First People’s Hospital of Zhangjiagang, 68 W Jiyang Road, Zhangjiagang City, 215600 Jiangsu China
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Bing Hu
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Jianxin Bao
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Jessica Mulvany
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Eric Bielefeld
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Ryan T. Harrison
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Sarah A. Neton
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Partha Thirumala
- The University of Pittsburgh Medical Center, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yingying Chen
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Debin Lei
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Maria Cristina Perez-Flores
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Pezhman Salehi
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| |
Collapse
|
20
|
Singer W, Kasini K, Manthey M, Eckert P, Armbruster P, Vogt MA, Jaumann M, Dotta M, Yamahara K, Harasztosi C, Zimmermann U, Knipper M, Rüttiger L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats. FASEB J 2018; 32:3005-3019. [PMID: 29401591 DOI: 10.1096/fj.201701041rrr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.
Collapse
Affiliation(s)
- Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Kamyar Kasini
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Armbruster
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Miriam Annika Vogt
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michela Dotta
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Kohei Yamahara
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany.,Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Csaba Harasztosi
- Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Landegger LD, Honeder C, Zhu C, Schöpper H, Engleder E, Gabor F, Gstoettner W, Arnoldner C. Noise trauma and systemic application of the selective glucocorticoid receptor modulator compound A. J Negat Results Biomed 2016; 15:10. [PMID: 27164957 PMCID: PMC4863352 DOI: 10.1186/s12952-016-0053-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Selective glucocorticoid receptor modulators (SEGRMs) comprise a novel class of drugs promising both reduced side effects and similar pharmacological potency relative to glucocorticoids, which presently serve as the only clinical treatment for many otologic disorders. In the first otologic SEGRM experiment in an animal model of noise trauma, we compare the effects of Compound A (a SEGRM) and dexamethasone (potent glucocorticoid). METHODS Forty adult guinea pigs received experimental treatment once daily for ten days. The animals were divided into four cohorts based on the treatment received: Compound A (1 mg/kg or 3 mg/kg), dexamethasone (1 mg/kg) as gold standard, or water as negative control. After five applications, animals were exposed to broadband noise (8-16 kHz) at 115 dB for three hours. Hearing thresholds were determined by recording auditory brainstem responses to clicks and noise bursts (1-32 kHz) and were assessed a week prior to and immediately after exposure, as well as on days 1, 3, 7, 14, 21, and 28. Cochleae were prepared as whole-mounts or embedded and sectioned for histological analysis. RESULTS Relative to the control treatments, Compound A failed to preserve auditory thresholds post-noise exposure with statistical significance. Histological analyses confirm the physiological result. CONCLUSION The present findings suggest that Compound A does not have substantial otoprotective capacities in a noise trauma model.
Collapse
Affiliation(s)
- Lukas D Landegger
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Elisabeth Engleder
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Wolfgang Gstoettner
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
22
|
de Almeida TF, de Castro Pires T, Monte-Alto-Costa A. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice. Exp Biol Med (Maywood) 2015; 241:353-8. [PMID: 26515142 DOI: 10.1177/1535370215612940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway.
Collapse
Affiliation(s)
| | - Taiza de Castro Pires
- Department of Histology and Embryology, State University of Rio de Janeiro, RJ 20950-003, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, RJ 20950-003, Brazil
| |
Collapse
|
23
|
Vetter DE. Cellular signaling protective against noise-induced hearing loss – A role for novel intrinsic cochlear signaling involving corticotropin-releasing factor? Biochem Pharmacol 2015; 97:1-15. [PMID: 26074267 DOI: 10.1016/j.bcp.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
Hearing loss afflicts approximately 15% of the world's population, and crosses all socioeconomic boundaries. While great strides have been made in understanding the genetic components of syndromic and non-syndromic hearing loss, understanding of the mechanisms underlying noise-induced hearing loss (NIHL) have come much more slowly. NIHL is not simply a mechanism by which older individuals loose their hearing. Significantly, the incidence of NIHL is increasing, and is now involving ever younger populations. This may predict future increased occurrences of hearing loss. Current research has shown that even short-term exposures to loud sounds generating what was previously considered temporary hearing loss, actually produces an almost immediate and permanent loss of specific populations of auditory nerve fibers. Additionally, recurrent exposures to intense sound may hasten age-related hearing loss. While NIHL is a significant medical concern, to date, few compounds have delivered significant protection, arguing that new targets need to be identified. In this commentary, we will explore cellular signaling processes taking place in the cochlea believed to be involved in protection against hearing loss, and highlight new data suggestive of novel signaling not previously recognized as occurring in the cochlea, that is perhaps protective of hearing. This includes a recently described local hypothalamic-pituitary-adrenal axis (HPA)-like signaling system fully contained in the cochlea. This system may represent a local cellular stress-response system based on stress hormone release similar to the systemic HPA axis. Its discovery may hold hope for new drug therapies that can be delivered directly to the cochlea, circumventing systemic side effects.
Collapse
Affiliation(s)
- Douglas E Vetter
- University of Mississippi Medical Center, Department of Neurobiology and Anatomical Sciences, 2500 N. State St., Jackson, MS 39216, USA.
| |
Collapse
|
24
|
Harrison RT, DeBacker JR, Bielefeld EC. A low-dose regimen of cisplatin before high-dose cisplatin potentiates ototoxicity. Laryngoscope 2014; 125:E78-83. [DOI: 10.1002/lary.24948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan T. Harrison
- Department of Speech and Hearing Science; The Ohio State University; Columbus Ohio U.S.A
| | - J. Riley DeBacker
- Department of Speech and Hearing Science; The Ohio State University; Columbus Ohio U.S.A
| | - Eric C. Bielefeld
- Department of Speech and Hearing Science; The Ohio State University; Columbus Ohio U.S.A
| |
Collapse
|
25
|
Smith AR, Kwon JH, Navarro M, Hurley LM. Acoustic trauma triggers upregulation of serotonin receptor genes. Hear Res 2014; 315:40-8. [PMID: 24997228 PMCID: PMC4140997 DOI: 10.1016/j.heares.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/20/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
Abstract
Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 h. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes.
Collapse
Affiliation(s)
- Adam R Smith
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Jae Hyun Kwon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Marco Navarro
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Saint Louis University, Saint Louis, MO 63103, USA
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
26
|
TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol 2014; 24:658-63. [PMID: 24583017 DOI: 10.1016/j.cub.2014.01.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
Abstract
Noise-induced hearing loss (NIHL) is a debilitating sensory impairment affecting 10%-15% of the population, caused primarily through damage to the sensory hair cells or to the auditory neurons. Once lost, these never regenerate [1], and no effective drugs are available [2, 3]. Emerging evidence points toward an important contribution of synaptic ribbons in the long-term coupling of the inner hair cell and afferent neuron synapse to maintain hearing [4]. Here we show in nocturnal mice that night noise overexposure triggers permanent hearing loss, whereas mice overexposed during the day recover to normal auditory thresholds. In view of this time-dependent sensitivity, we identified a self-sustained circadian rhythm in the isolated cochlea, as evidenced by circadian expression of clock genes and ample PERIOD2::LUCIFERASE oscillations, originating mainly from the primary auditory neurons and hair cells. The transcripts of the otoprotecting brain-derived neurotrophic factor (BDNF) showed higher levels in response to day noise versus night noise, suggesting that BDNF-mediated signaling regulates noise sensitivity throughout the day. Administration of a selective BDNF receptor, tropomyosin-related kinase type B (TrkB), in the night protected the inner hair cell's synaptic ribbons and subsequent full recovery of hearing thresholds after night noise overexposure. The TrkB agonist shifted the phase and boosted the amplitude of circadian rhythms in the isolated cochlea. These findings highlight the coupling of circadian rhythmicity and the TrkB receptor for the successful prevention and treatment of NIHL.
Collapse
|
27
|
Bao J, Hungerford M, Luxmore R, Ding D, Qiu Z, Lei D, Yang A, Liang R, Ohlemiller KK. Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss. Hear Res 2013; 304:33-40. [PMID: 23792074 DOI: 10.1016/j.heares.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023]
Abstract
Noise is the most common occupational and environmental hazard. Noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit, after age-related hearing loss (presbycusis). Although promising approaches have been identified for reducing NIHL, currently there are no effective medications to prevent NIHL. Development of an efficacious treatment has been hampered by the complex array of cellular and molecular pathways involved in NIHL. We turned this difficulty into an advantage by asking whether NIHL could be effectively prevented by targeting multiple signaling pathways with a combination of drugs already approved by U.S. Food and Drug Administration (FDA). We previously found that antiepileptic drugs blocking T-type calcium channels had both prophylactic and therapeutic effects for NIHL. NIHL can also be reduced by an up-regulation of glucocorticoid (GC) signaling pathways. Based on these findings, we tested a combination therapy for NIHL that included ethosuximide and zonisamide (anticonvulsants) and dexamethasone and methylprednisolone (synthetic GCs) in mice under exposure conditions typically associated with dramatic permanent threshold shifts (PTS). We first examined possible prophylactic effects for each drug when administered alone 2 h before noise, and calculated the median effective dose (ED50). We then tested for synergistic effects of two-drug combinations (anticonvulsant + GC), and identified combinations with the strongest synergy against NIHL, based on a previously established combination index (CI) metric. We repeated similar tests to determine their therapeutic effects when administered the same drugs 24 h after the noise exposure. Our study shows the feasibility of developing pharmacological intervention in multiple pathways, and discovering drug combinations with optimal synergistic effects in preventing permanent NIHL.
Collapse
Affiliation(s)
- Jianxin Bao
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, 4560 Clayton Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Distribution of glucocorticoid receptors and 11β-hydroxysteroid dehydrogenase isoforms in the human inner ear. Otol Neurotol 2013; 34:151-7. [PMID: 22996157 DOI: 10.1097/mao.0b013e31826a55ad] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS Glucocorticoids (GCs) are widely used as a therapeutic modality for the inner ear disorders including Ménière's disease (MD). The concentration of GCs in the target cells is known to be regulated by 11β-hydroxysteroid dehydrogenase (11β-HSD), an enzyme complex responsible for the conversion of hormonally active cortisol into inactive cortisone. There is no morphologic indication of glucocorticoid receptors (GRs) and 11β-HSD isoforms (11β-HSD1 and 2) in human inner ear. OBJECTIVES The objectives of this study are to determine whether GRs and the isoforms of 11β-HSD are present in human inner ear tissues and to reveal their precise distribution. STUDY DESIGN This study investigated the expression of GRs and 11β-HSD isoforms (11β-HSD1 and 2) in the human inner ear. METHODS In humans, immunostaining of GRs, 11β-HSD1, and 11β-HSD2 was performed in the stria vascularis (SV) and the vestibular tissues, whereas in the cochlear tissues except for the SV, only GRs were investigated. RESULTS Immunoreactivity of GRs was detected in the SV, outer hair cells, inner hair cell, spiral ligament, Reissner's membrane, vestibular hair cells, vestibular nerve, transitional cells, and dark cells of the crista ampullaris. 11β-HSD1 was observed in the SV, the apical area of the vestibular hair cells, the transitional cells, and the dark cells. However, no immunoreactivity of 11β-HSD2 was observed. CONCLUSION Those data indicate that different local steroid regulation by GRs and the isoforms of 11β-HSD is present in various parts of the human inner ear tissues and that the tissues are a direct therapeutic target of glucocorticoids in the inner ear diseases.
Collapse
|
29
|
Canlon B, Theorell T, Hasson D. Associations between stress and hearing problems in humans. Hear Res 2013; 295:9-15. [DOI: 10.1016/j.heares.2012.08.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
|
30
|
Trune DR, Canlon B. Corticosteroid therapy for hearing and balance disorders. Anat Rec (Hoboken) 2012; 295:1928-43. [PMID: 23044978 PMCID: PMC3999710 DOI: 10.1002/ar.22576] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
This review addresses the current status of steroid therapies for hearing and vestibular disorders and how certain misconceptions may be undermining the efficacy in restoring normal ear function, both experimentally and clinically. Specific misconceptions addressed are that steroid therapy is not effective, steroid-responsive hearing loss proves an underlying inflammatory problem in the ear, and steroids only have application to the hearing disorders listed below. Glucocorticoid therapy for hearing and balance disorders has been employed for over 60 years. It is recommended in cases of sudden hearing loss, Meniére's disease, immune-mediated hearing loss, and any vestibular dysfunction suspected of having an inflammatory etiology. The predominant steroids employed today are dexamethasone, prednisone, prednisolone, and methylprednisolone. Despite years of use, little is known of the steroid responsive mechanisms in the ear that are influenced by glucocorticoid therapy. Furthermore, meta-analyses and clinical study reviews occasionally question whether steroids offer any benefit at all. Foremost in the minds of clinicians is the immune suppression and anti-inflammatory functions of steroids because of their efficacy for autoimmune hearing loss. However, glucocorticoids have a strong binding affinity for the mineralocorticoid (aldosterone) and glucocorticoid receptors, both of which are prominent in the ear. Because the auditory and vestibular end organs require tightly regulated endolymph and perilymph fluids, this ion homeostasis role of the mineralocorticoid receptor cannot be overlooked in both normal and pathologic functions of the ear. The function of the glucocorticoid receptor is to provide anti-inflammatory and antiapoptotic signals by mediating survival factors.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|
31
|
Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 2012; 288:34-46. [DOI: 10.1016/j.heares.2012.02.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/09/2011] [Accepted: 02/22/2012] [Indexed: 01/01/2023]
|
32
|
Kraus KS, Ding D, Jiang H, Lobarinas E, Sun W, Salvi RJ. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience 2011; 194:309-25. [PMID: 21821100 PMCID: PMC3390756 DOI: 10.1016/j.neuroscience.2011.07.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Aberrant, lesion-induced neuroplastic changes in the auditory pathway are believed to give rise to the phantom sound of tinnitus. Noise-induced cochlear damage can induce extensive fiber growth and synaptogenesis in the cochlear nucleus, but it is currently unclear if these changes are linked to tinnitus. To address this issue, we unilaterally exposed nine rats to narrow-band noise centered at 12 kHz at 126 dB sound pressure level (SPL) for 2 h and sacrificed them 10 weeks later for evaluation of synaptic plasticity (growth-associated protein 43 [GAP-43] expression) in the cochlear nucleus. Noise-exposed rats along with three age-matched controls were screened for tinnitus-like behavior with gap prepulse inhibition of the acoustic startle (GPIAS) before, 1-10 days after, and 8-10 weeks after the noise exposure. All nine noise-exposed rats showed similar patterns of severe hair cell loss at high- and mid-frequency regions in the exposed ear. Eight of the nine showed strong up-regulation of GAP-43 in auditory nerve fibers and pronounced shrinkage of the ventral cochlear nucleus (VCN) on the noise-exposed side, and strong up-regulation of GAP-43 in the medial ventral VCN, but not in the lateral VCN or the dorsal cochlear nucleus. GAP-43 up-regulation in VCN was significantly greater in Noise-No-Tinnitus rats than in Noise-Tinnitus rats. One Noise-No-Tinnitus rat showed no up-regulation of GAP-43 in auditory nerve fibers and only little VCN shrinkage, suggesting that auditory nerve degeneration plays a role in tinnitus generation. Our results suggest that noise-induced tinnitus is suppressed by strong up-regulation of GAP-43 in the medial VCN. GAP-43 up-regulation most likely originates from medial olivocochlear neurons. Their increased excitatory input on inhibitory neurons in VCN may possibly reduce central hyperactivity and tinnitus.
Collapse
Affiliation(s)
- Kari Suzanne Kraus
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Ed Lobarinas
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Wei Sun
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Richard J Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| |
Collapse
|
33
|
Distribution of glucocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase isoforms in the rat inner ear. Hear Res 2011; 280:148-56. [DOI: 10.1016/j.heares.2011.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 02/07/2023]
|
34
|
Are intra-tympanically administered steroids effective in patients with sudden deafness? Implications for current clinical practice. Eur Arch Otorhinolaryngol 2011; 269:363-80. [DOI: 10.1007/s00405-011-1738-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
|
35
|
Shen H, Lin Z, Lei D, Han J, Ohlemiller KK, Bao J. Old mice lacking high-affinity nicotine receptors resist acoustic trauma. Hear Res 2011; 277:184-91. [PMID: 21272629 PMCID: PMC3094742 DOI: 10.1016/j.heares.2011.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 12/20/2022]
Abstract
There is presently no clearly effective preventative medication against noise-induced hearing loss (NIHL). However, negative feedback systems that presumably evolved to modulate the sensitivity of the organ of Corti may incidentally confer protection. One feedback system implicated in protection from NIHL involves synaptic connections between the lateral olivocochlear efferent terminals and the afferent fibers of spiral ganglion neurons (SGNs). These connections operate via high-affinity nicotinic acetylcholine receptors containing the β2 subunit. We unexpectedly observed protection from NIHL in 9-month old knockout mice lacking the β2 subunit (β2(-/-)); however, the same protection was not observed in 2-month old β2(-/-) mice. This enigmatic observation led to the discovery that protection from acoustic trauma in older β2(-/-) mice is mainly mediated by an age-related increase of corticosterone, not disruption of efferent cholinergic transmission. Significant protection of inner hair cells after acoustic trauma in β2(-/-) mice was linked to the activation of glucocorticoid signaling pathways. However, significant loss of SGNs was observed in animals with chronically high systemic levels of corticosterone. These results suggested a "double-edge sword" nature of glucocorticoid signaling in neuronal protection, and a need for caution regarding when to apply synthetic glucocorticoid drugs to treat neural injury such as accompanies acoustic trauma.
Collapse
MESH Headings
- Age Factors
- Aging
- Animals
- Auditory Pathways/metabolism
- Auditory Pathways/pathology
- Auditory Pathways/physiopathology
- Cochlear Nucleus/metabolism
- Corticosterone/metabolism
- Cytoprotection
- Disease Models, Animal
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Olivary Nucleus/metabolism
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Mineralocorticoid/genetics
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/genetics
- Signal Transduction
- Spiral Ganglion/metabolism
- Synaptic Transmission
- Up-Regulation
Collapse
Affiliation(s)
- Haiyan Shen
- Model Animal Research Center of Nanjing University, 12 Xue-Fu Road, Nanjing P.R. China, 210061
- Fay and Carl Simons Center for Hearing Research at Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Zhaoyu Lin
- Model Animal Research Center of Nanjing University, 12 Xue-Fu Road, Nanjing P.R. China, 210061
- Fay and Carl Simons Center for Hearing Research at Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Debin Lei
- Fay and Carl Simons Center for Hearing Research at Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Josiah Han
- Fay and Carl Simons Center for Hearing Research at Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Kevin K. Ohlemiller
- Fay and Carl Simons Center for Hearing Research at Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Jianxin Bao
- Fay and Carl Simons Center for Hearing Research at Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110
- Center for Aging, Washington University School of Medicine, St. Louis, MO, 63110
| |
Collapse
|
36
|
Meltser I, Canlon B. Protecting the auditory system with glucocorticoids. Hear Res 2011; 281:47-55. [PMID: 21718769 DOI: 10.1016/j.heares.2011.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 01/03/2023]
Abstract
Glucocorticoids are hormones released following stress-related events and function to maintain homeostasis. Glucocorticoid receptors localize, among others, to hair cells, spiral ligament and spiral ganglion neurons. Glucocorticoid receptor-induced protection against acoustic trauma is found by i) pretreatment with glucocorticoid agonists; ii) acute restraint stress; and iii) sound conditioning. In contrast, glucocorticoid receptor antagonists exacerbate hearing loss. These findings have important clinical significance since synthetic glucocorticoids are commonly used to treat hearing loss. However, this treatment has limited success since hearing improvement is often not maintained once the treatment has ended, a fact that reduces the overall appeal for this treatment. It must be realized that despite the widespread use of glucocorticoids to treat hearing disorders, the molecular mechanisms underlying this treatment are not well characterized. This review will give insight into some physiological and biochemical mechanisms underlying glucocorticoid treatment for preventing hearing loss.
Collapse
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
37
|
Hasson D, Theorell T, Wallén MB, Leineweber C, Canlon B. Stress and prevalence of hearing problems in the Swedish working population. BMC Public Health 2011; 11:130. [PMID: 21345187 PMCID: PMC3056746 DOI: 10.1186/1471-2458-11-130] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 02/23/2011] [Indexed: 01/15/2023] Open
Abstract
Background Current human and experimental studies are indicating an association between stress and hearing problems; however potential risk factors have not been established. Hearing problems are projected to become among the top ten disabilities according to the WHO in the near future. Therefore a better understanding of the relationships between stress and hearing is warranted. Here we describe the prevalence of two common hearing problems, i.e. hearing complaints and tinnitus, in relation to different work-and health-related stressors. Methods A total of 18,734 individuals were invited to participate in the study, out of which 9,756 (52%) enrolled. Results The results demonstrate a clear and mostly linear relationship between higher prevalence of hearing problems (tinnitus or hearing loss or both) and different stressors, e.g. occupational, poorer self-rated health, long-term illness, poorer sleep quality, and higher burnout scores. Conclusions The present study unambiguously demonstrates associations between hearing problems and various stressors that have not been previously described for the auditory system. These findings will open new avenues for future investigations.
Collapse
Affiliation(s)
- Dan Hasson
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Peppi M, Kujawa SG, Sewell WF. A corticosteroid-responsive transcription factor, promyelocytic leukemia zinc finger protein, mediates protection of the cochlea from acoustic trauma. J Neurosci 2011; 31:735-41. [PMID: 21228182 PMCID: PMC3274172 DOI: 10.1523/jneurosci.3955-10.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/26/2010] [Accepted: 11/05/2010] [Indexed: 12/20/2022] Open
Abstract
Animals can be induced to resist cochlear damage associated with acoustic trauma by exposure to a variety of "conditioning" stimuli, including restraint stress, moderate level sound, heat stress, hypoxia, and corticosteroids. Here we identify in mice a corticosteroid-responsive transcription factor, PLZF (promyelocytic leukemia zinc finger protein), which mediates conditioned protection of the cochlea from acoustic trauma. PLZF mRNA levels in the cochlea are increased following conditioning stimuli, including restraint stress, dexamethasone administration, and moderate-to-high level acoustic stimulation. Heterozygous mutant (luxoid.Zbtb16(LU)/J) mice deficient in PLZF have hearing and responses to acoustic trauma similar to their wild type littermates but are unable to generate conditioning-induced protection from acoustic trauma. PLZF immunoreactivity is present in the spiral ganglion, lateral wall of the cochlea, and organ of Corti, all targets for acoustic trauma. PLZF is also present in the brain and PLZF mRNA in brain is elevated following conditioning stimuli. The identification of a transcription factor that mediates conditioned protection from trauma provides a tool for understanding the protective action of corticosteroids, which are widely used in treating acute hearing loss, and has relevance to understanding the role of corticosteroids in trauma protection.
Collapse
Affiliation(s)
- Marcello Peppi
- Eaton Peabody Laboratory and
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114
| | - Sharon G. Kujawa
- Eaton Peabody Laboratory and
- Department of Audiology, Massachusetts Eye and Ear Infirmary, and
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114
| | - William F. Sewell
- Eaton Peabody Laboratory and
- Program in Neuroscience and
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
39
|
Meltser I, Canlon B. The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma. Neurobiol Dis 2010; 40:325-30. [PMID: 20598895 DOI: 10.1016/j.nbd.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 12/31/2022] Open
Abstract
Acoustic trauma is well known to cause peripheral damage with subsequent effects in the central auditory system. The inferior colliculus (IC) is a major auditory center for the integration of ascending and descending information and is involved in noise-induced tinnitus and central hyperactivity. Here we show that the early effects of acoustic trauma, that eventually result in permanent damage to auditory system, lead to a transient activation of BDNF and mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the IC. In contrast, the early effects of acoustic trauma that result in a temporary damage produced a reversible activation only of p38. The transient activation of MAPK and BDNF in the IC after permanent acoustic trauma is attributed to the plastic changes triggered by a decreased signal input from the damaged periphery. The pattern of MAPK and BDNF activation in the IC is different from that previously described for the cochlea from this laboratory. The differences in the pattern of MAPK and BDNF expression in the IC highlight unique molecular mechanisms underlying temporary and permanent acoustic damage to the central auditory system.
Collapse
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
40
|
Differential activation of mitogen-activated protein kinases and brain-derived neurotrophic factor after temporary or permanent damage to a sensory system. Neuroscience 2009; 165:1439-46. [PMID: 19925854 DOI: 10.1016/j.neuroscience.2009.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/28/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
Functional and morphological differences between temporary (TTS) and permanent (PTS) hearing loss induced by acoustic trauma are well characterized whereas molecular differences remain to be elucidated. A comparative analysis of the expression of the phosphorylated forms of extracellular signal-regulated kinase (ERK1/2), c-jun-N-terminal kinases 1/2 (JNK1/2) and p38 in the mouse cochlea after acoustic trauma resulting in either a temporary or permanent damage is presented. In the acute phase of PTS an upregulation of phosphorylated p38, JNK1/2, and ERK1/2 was found while in the acute phase of TTS a downregulation of phospho-p38 occurred and no immediate change of pJNK1/2 and pERK1/2 was noted. After a 24 h recovery from TTS JNK1/2 and ERK1/2 was activated while the expression of phospho-p38 was downregulated. In contrast PTS group showed complete recovery to control values for all three MAPKs by 24 h post. The level of brain-derived neurotrophic factor (BDNF), a potent otoprotective agent, was elevated after both types of acoustic trauma but the elevation after permanent trauma was of a longer duration. The expression of BDNF receptor's TrkB (truncated form) was downregulated only after permanent hearing loss. Thus, temporary and permanent hearing loss demonstrate different expression patterns and temporal aspects of MAPK, BDNF and TrkB in the cochlea. The results of this study will help reveal the cellular mechanisms underlying hearing loss induced by acoustic trauma.
Collapse
|
41
|
Mazurek B, Haupt H, Joachim R, Klapp BF, Stöver T, Szczepek AJ. Stress induces transient auditory hypersensitivity in rats. Hear Res 2009; 259:55-63. [PMID: 19840840 DOI: 10.1016/j.heares.2009.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 07/09/2009] [Accepted: 10/13/2009] [Indexed: 12/31/2022]
Abstract
Exposure to harsh environment induces stress reactions that increase probability of survival. Stress influences the endocrine, nervous and immune systems and affects the functioning of a variety of organs. Numerous researchers demonstrated that a 24-h exposure to an acoustic rodent repellent provokes stress reaction in exposed animals. In addition to the activated hypothalamic-pituitary-adrenal (HPA) axis, exposed animals had pathological reactions in the reproductive organs, bronchia and skin. Here, we examined the effect of above stress model on the auditory system of Wistar rats. We found that 24-h stress decreases the thresholds and increases the amplitudes of auditory brainstem responses and distortion product otoacoustic emissions. Resultant auditory hypersensitivity was transient and most pronounced between 3 and 6h post-stress, returning to control levels one week later. The concentration of corticosterone and tumor necrosis factor alpha was systemically elevated in stressed animals between 3 and 6h post-stress, confirming the activation of the HPA axis. In addition, expression of the HPA-axis-associated genes: glucocorticoid receptor (GR) and hypoxia-inducible factor 1 alpha (Hif1a) was modulated in the auditory tissues. In detail, in the inferior colliculus, we found an up-regulation of GR mRNA 3h post-stress and continuous up-regulation of Hif1a up to 24h post-stress. In the spiral ganglion, we found no differences in gene expression between stressed and control animals. In the organ of Corti, expression of GR mRNA remained stable, whereas that of Hif1a was significantly down-regulated one week after stress. In addition, the expression of an outer hair cell marker prestin was significantly up-regulated 6h post-stress. We conclude that 24-h stress induces transient hypersensitivity of the auditory system and modulates gene expression in a tissue-specific manner. Stress-induced auditory hypersensitivity could have evolutionary consequence by giving animals an advantage of hearing better under stress conditions.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Meltser I, Tahera Y, Canlon B. Glucocorticoid Receptor and Mitogen-Activated Protein Kinase Activity after Restraint Stress and Acoustic Trauma. J Neurotrauma 2009; 26:1835-45. [DOI: 10.1089/neu.2008.0874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yeasmin Tahera
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Haake SM, Dinh CT, Chen S, Eshraghi AA, Van De Water TR. Dexamethasone protects auditory hair cells against TNFα-initiated apoptosis via activation of PI3K/Akt and NFκB signaling. Hear Res 2009; 255:22-32. [DOI: 10.1016/j.heares.2009.05.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 12/13/2022]
|
44
|
Jin DX, Lin Z, Lei D, Bao J. The role of glucocorticoids for spiral ganglion neuron survival. Brain Res 2009; 1277:3-11. [PMID: 19233145 PMCID: PMC2700197 DOI: 10.1016/j.brainres.2009.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids, which are steroidal stress hormones, have a broad array of biological functions. Synthetic glucocorticoids are frequently used therapeutically for many pathologic conditions, including diseases of the inner ear; however, their exact functions in the cochlea are not completely understood. Recent work has clearly demonstrated the presence of glucocorticoid signaling pathways in the cochlea and elucidated their protective roles against noise-induced hearing loss. Furthermore, indirect evidence suggests the involvement of glucocorticoids in age-related loss of spiral ganglion neurons and extensive studies in the central nervous system demonstrate profound effects of glucocorticoids on neuronal functions. With the advancement of recent pharmacologic and genetic tools, the role of these pathways in the survival of spiral ganglion neurons after noise exposure and during aging should be revealed.
Collapse
Affiliation(s)
- David Xu Jin
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Zhaoyu Lin
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Debin Lei
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Jianxin Bao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110
- The Division of Biology & Biomedical Science and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
45
|
Zhou Y, Zheng H, Shen X, Zhang Q, Yang M. Intratympanic administration of methylprednisolone reduces impact of experimental intensive impulse noise trauma on hearing. Acta Otolaryngol 2009; 129:602-7. [PMID: 18815936 DOI: 10.1080/00016480802342424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONCLUSION The present findings demonstrated that intratympanic methylprednisolone (MP) reduces the impact of impulse noise trauma on hearing and in part preserves the hair cells from death 1 h after exposure to intensive impulse noise. OBJECTIVE To examine the treatment efficiency of intratympanic MP (IT-MP) with different methods of administration on cochlear injury induced by exposure to intensive impulse noise. MATERIALS AND METHODS Fifty-five guinea pigs were assigned into six groups and exposed to intensive impulse noise, i.e. 60 impulses at 165 dB SPL peak pressure with 0.5 ms duration and 2 s intervals. The auditory brainstem response (ABR) was used to examine the hearing thresholds. Cochlear morphology was examined to estimate the inner and outer hair cell loss induced by impulse noise exposure. MP was applied as a rescue agent via different modalities of administration. RESULTS The ABR threshold value of IT-MP1 or IT-MP4 groups significantly decreased at 4 weeks as compared with the IT-NS (IT 0.9% physiological saline) group. The ABR threshold value of the group that received intramuscular administration of MP (IM-MP) also decreased at 4 weeks as compared with the IT-NS group. Significant hair cell loss was observed at the region 40-50% from the apex in the present model. Within this region, the residual hair cell number in the IT-MP1 or IT-MP4 groups was significantly greater than that in the IT-NS group.
Collapse
|
46
|
Adams JC, Seed B, Lu N, Landry A, Xavier RJ. Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience 2009; 160:530-9. [PMID: 19285117 PMCID: PMC2673023 DOI: 10.1016/j.neuroscience.2009.02.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
Abstract
Damage response pathways triggered by mechanical stress might reasonably be expected to be conserved throughout evolution. However, using a nuclear factor kappa B (NF-kappaB) reporter mouse we show here that this phylogenetically recent transcription factor plays a major role in the response to mechanosensory stress in the mammalian inner ear. The protective action of NF-kappaB is exerted in neither sensory nor non-sensory epithelial cells, but rather in connective tissue cells within the spiral ligament and spiral limbus. In the spiral ligament, predominantly type I fibrocytes are activated following noise exposure, whereas type II fibrocytes are activated following systemic inflammatory stress. Immune-mediated and acoustic trauma-mediated hearing loss syndromes in humans may in part result from the vulnerability of type II and type I fibrocytes to systemic inflammatory stress and acoustic trauma, respectively. Unexpected cell-specific and stress-specific NF-kappaB activation found in the inner ear in this in vivo study suggest that this approach may have wide applications in demonstrating similar specializations of stress responses in other tissues, including the brain.
Collapse
Affiliation(s)
- J C Adams
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
47
|
Ohlemiller KK. Recent findings and emerging questions in cochlear noise injury. Hear Res 2008; 245:5-17. [PMID: 18790034 PMCID: PMC2610263 DOI: 10.1016/j.heares.2008.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin K Ohlemiller
- Fay and Carl Simons Center for the Biology of Hearing and Deafness, Central Institute for the Deaf at Washington University, Department of Otolaryngology, Washington University Medical School, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
|
49
|
Abstract
We assessed the relationship between changes in corticosterone concentrations and hearing in mice exposed to noise during the light (inactive) and dark (active) phases. Serum corticosterone concentrations and hearing levels were measured before, and 1, 3, 5, 7, and 10 days after, noise exposure between 8:00-11:00 h and 15:00-18:00 h. Serum corticosterone concentrations were significantly lower at 8:00-11:00 h than at 15:00-18:00 h and were significantly lower before than after noise exposure. In addition, serum corticosterone concentrations were significantly lower at 11:00 h after noise exposure than at 18:00 h before noise exposure. Mice exposed to noise at 8:00-11:00 h showed significantly elevated threshold shifts after noise exposure than did mice exposed to noise at 15:00-18:00 h. Endogenous serum corticosterone concentration has a significant effect on hearing after noise exposure. Noise exposure during the inactive phase of the hypothalamic-pituitary-adrenal axis may be more harmful to the auditory system than noise exposure during the active phase of the hypothalamic-pituitary-adrenal axis.
Collapse
|
50
|
Webb M, Miller A, Thompson EB. In CEM cells the autosomal deafness gene dfna5 is regulated by glucocorticoids and forskolin. J Steroid Biochem Mol Biol 2007; 107:15-21. [PMID: 17616391 PMCID: PMC2695606 DOI: 10.1016/j.jsbmb.2007.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 02/12/2007] [Indexed: 11/20/2022]
Abstract
Certain mutations of the dfna5 gene result in a form of autosomal deafness that holds special interest because its phenotype resembles the hearing loss often seen during aging. Little is known of the function or regulation of dfna5 or its encoded protein. However dfna5 has recently been shown to be induced by p53. It also is epigenetically repressed in gastric cancer. We have discovered that dfna5 can be induced by glucocorticoids (GCs) and that this regulation is influenced by crosstalk with the protein kinase A (PKA) system. We show that GCs induce dfna5 mRNA and that its expression appears to be repressed in the basal state. Induction of dfna5 mRNA correlates with GC-dependent apoptosis of CEM cells, though dfna5 expression alone is not sufficient for apoptosis.
Collapse
Affiliation(s)
- M.S. Webb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068
| | - A.L. Miller
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068
| | - E. Brad Thompson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-1068
| |
Collapse
|