1
|
Alfarano M, Marchionni G, Costantino J, Ballatore F, Verardo R, Miraldi F, Ciciarello FL, Petramala L, Letizia C, Frustaci A, Chimenti C. Aldosterone-Related Cardiovascular Disease and Benefits of Mineralocorticoid Receptor Antagonists in Clinical Practice. JACC. ADVANCES 2025; 4:101762. [PMID: 40319836 DOI: 10.1016/j.jacadv.2025.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 05/07/2025]
Abstract
High levels of aldosterone are associated with vascular and cardiac remodeling, myocardial fibrosis, and endothelial dysfunction with consequent increased risk of cardiovascular events and cardiovascular mortality. Indeed, mineralcorticoid receptor antagonists (MRAs) are recommended in the treatment of arterial hypertension, heart failure, alone or associated with chronic kidney disease. Nevertheless, molecular pathways underlying aldosterone-induced cardiac remodeling are poorly investigated. High levels of aldosterone induce reactive oxygen species with consequent oxidative stress and mitochondrial dysfunction. Moreover, aldosterone induces myocardial hypertrophy through increase of sarcomere mass mediated by pro-hypertrophic effect mediated by a G protein-coupled receptor kinase 5 cytosolic signaling and retention of ions and water regulated by aquaporins. Aim of this review is to report the data from the literature regarding excessive aldosterone signaling in mediating cardiovascular disease, also highlighting the morphostructural and molecular pathways correlated to myocardial damage and the role of MRAs in clinical practice.
Collapse
Affiliation(s)
- Maria Alfarano
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Marchionni
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; Policlinico San Matteo Pavia IRCCS Foundation, University of Pavia, Pavia, Italy
| | - Jacopo Costantino
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Romina Verardo
- Cellular and Molecular Cardiology Lab, IRCCS Lazzaro Spallanzani, Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Luigi Ciciarello
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Petramala
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Claudio Letizia
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Frustaci
- Cellular and Molecular Cardiology Lab, IRCCS Lazzaro Spallanzani, Rome, Italy
| | - Cristina Chimenti
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Tokcan M, Lauder L, Götzinger F, Böhm M, Mahfoud F. Arterial hypertension-clinical trials update 2024. Hypertens Res 2024; 47:3114-3125. [PMID: 39300298 DOI: 10.1038/s41440-024-01900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Arterial hypertension remains the most important modifiable cardiovascular risk factor for morbidity and mortality worldwide. This review summarizes and discusses major clinical trials published in 2023 and early 2024 in hypertension research. These trials include new epidemiological data, studies investigating the impact of blood pressure cuff size on blood pressure measurements, benefits of salt substitutes, and novel antihypertensive treatment options, including pharmacotherapy and bariatric surgery in patients with obesity. This summary reviews the major clinical trials published in 2023 and early 2024. AHT arterial hypertension, BP blood pressure, HR hazard ratio, OBP office blood pressure, PRA plasma renin activity, SBP systolic blood pressure.
Collapse
Affiliation(s)
- Mert Tokcan
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University Medical Center and Saarland University, Homburg, Germany.
| | - Lucas Lauder
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, Basel, Switzerland
| | - Felix Götzinger
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, Basel, Switzerland
| | - Michael Böhm
- Klinik für Innere Medizin III - Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University Medical Center and Saarland University, Homburg, Germany
| | - Felix Mahfoud
- Department of Cardiology, University Heart Center, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Camarda ND, Ibarrola J, Biwer LA, Jaffe IZ. Mineralocorticoid Receptors in Vascular Smooth Muscle: Blood Pressure and Beyond. Hypertension 2024; 81:1008-1020. [PMID: 38426347 PMCID: PMC11023801 DOI: 10.1161/hypertensionaha.123.21358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
After half a century of evidence suggesting the existence of mineralocorticoid receptors (MR) in the vasculature, the advent of technology to specifically knockout the MR from smooth muscle cells (SMCs) in mice has elucidated contributions of SMC-MR to cardiovascular function and disease, independent of the kidney. This review summarizes the latest understanding of the molecular mechanisms by which SMC-MR contributes to (1) regulation of vasomotor function and blood pressure to contribute to systemic and pulmonary hypertension; (2) vascular remodeling in response to hypertension, vascular injury, obesity, and aging, and the impact on vascular calcification; and (3) cardiovascular pathologies including aortic aneurysm, heart valve dysfunction, and heart failure. Data are reviewed from in vitro studies using SMCs and in vivo findings from SMC-specific MR-knockout mice that implicate target genes and signaling pathways downstream of SMC-MR. By regulating expression of the L-type calcium channel subunit Cav1.2 and angiotensin II type-1 receptor, SMC-MR contributes to myogenic tone and vasoconstriction, thereby contributing to systemic blood pressure. MR activation also promotes SMC proliferation, migration, production and degradation of extracellular matrix, and osteogenic differentiation by regulating target genes including connective tissue growth factor, osteopontin, bone morphogenetic protein 2, galectin-3, and matrix metallopeptidase-2. By these mechanisms, SMC-MR promotes disease progression in models of aging-associated vascular stiffness, vascular calcification, mitral and aortic valve disease, pulmonary hypertension, and heart failure. While rarely tested, when sexes were compared, the mechanisms of SMC-MR-mediated disease were sexually dimorphic. These advances support targeting SMC-MR-mediated mechanisms to prevent and treat diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Nicholas D. Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Lauren A. Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Feldman JM, Frishman WH, Aronow WS. Emerging Therapies for Treatment-Resistant Hypertension: A Review of Lorundrostat and Related Selective Aldosterone Synthase Inhibitors. Cardiol Rev 2024:00045415-990000000-00213. [PMID: 38358268 DOI: 10.1097/crd.0000000000000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The target-hypertension (Target-HTN) trial investigated the efficacy and safety of lorundrostat, an aldosterone synthase inhibitor, as an antihypertensive. Cohort 1 of the trial includes patients with suppressed plasma renin activity and elevated aldosterone levels. Lorundrostat doses of 100 mg and 50 mg daily significantly decreased systolic blood pressure compared to the placebo group. Cohort 2 also demonstrated a reduction in systolic blood pressure with the 100 mg daily dose of lorundrostat. Lorundrostat is more selective for the inhibition of CYP11B2 versus CYP11B1, which makes it preferable to other aldosterone synthase inhibitors that inhibit cortisol synthesis, such as osilodrostat. Phase 3 trials are needed to validate the safety and efficacy of lorundrostat, and further research should be performed on other selective aldosterone synthase inhibitors such as baxdrostat, dexfadrostat, and BI 690517.
Collapse
Affiliation(s)
- Jared M Feldman
- From the Division of Hospital Medicine, Long Island Jewish Medical Center and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | - William H Frishman
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
5
|
Laffin LJ, Rodman D, Luther JM, Vaidya A, Weir MR, Rajicic N, Slingsby BT, Nissen SE. Aldosterone Synthase Inhibition With Lorundrostat for Uncontrolled Hypertension: The Target-HTN Randomized Clinical Trial. JAMA 2023; 330:1140-1150. [PMID: 37690061 PMCID: PMC10493865 DOI: 10.1001/jama.2023.16029] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Importance Excess aldosterone production contributes to hypertension in both classical hyperaldosteronism and obesity-associated hypertension. Therapies that reduce aldosterone synthesis may lower blood pressure. Objective To compare the safety and efficacy of lorundrostat, an aldosterone synthase inhibitor, with placebo, and characterize dose-dependent safety and efficacy to inform dose selection in future trials. Design, Setting, and Participants Randomized, placebo-controlled, dose-ranging trial among adults with uncontrolled hypertension taking 2 or more antihypertensive medications. An initial cohort of 163 participants with suppressed plasma renin (plasma renin activity [PRA] ≤1.0 ng/mL/h) and elevated plasma aldosterone (≥1.0 ng/dL) were enrolled, with subsequent enrollment of 37 participants with PRA greater than 1.0 ng/mL/h. Interventions Participants were randomized to placebo or 1 of 5 dosages of lorundrostat in the initial cohort (12.5 mg, 50 mg, or 100 mg once daily or 12.5 mg or 25 mg twice daily). In the second cohort, participants were randomized in a 1:6 ratio to placebo or lorundrostat, 100 mg once daily. Main Outcomes and Measures The primary end point was change in automated office systolic blood pressure from baseline to study week 8. Results Between July 2021 and June 2022, 200 participants were randomized, with final follow-up in September 2022. Following 8 weeks of treatment in participants with suppressed PRA, changes in office systolic blood pressure of -14.1, -13.2, -6.9, and -4.1 mm Hg were observed with 100 mg, 50 mg, and 12.5 mg once daily of lorundrostat and placebo, respectively. Observed reductions in systolic blood pressure in individuals receiving twice-daily doses of 25 mg and 12.5 mg of lorundrostat were -10.1 and -13.8 mm Hg, respectively. The least-squares mean difference between placebo and treatment in systolic blood pressure was -9.6 mm Hg (90% CI, -15.8 to -3.4 mm Hg; P = .01) for the 50-mg once-daily dose and -7.8 mm Hg (90% CI, -14.1 to -1.5 mm Hg; P = .04) for 100 mg daily. Among participants without suppressed PRA, 100 mg once daily of lorundrostat decreased systolic blood pressure by 11.4 mm Hg (SD, 2.5 mm Hg), which was similar to blood pressure reduction among participants with suppressed PRA receiving the same dose. Six participants had increases in serum potassium above 6.0 mmol/L that corrected with dose reduction or drug discontinuation. No instances of cortisol insufficiency occurred. Conclusions and Relevance Among individuals with uncontrolled hypertension, use of lorundrostat was effective at lowering blood pressure compared with placebo, which will require further confirmatory studies. Trial Registration ClinicalTrials.gov Identifier: NCT05001945.
Collapse
Affiliation(s)
- Luke J Laffin
- Cleveland Clinic Foundation, Cleveland, Ohio
- C5 Research, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - James M Luther
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anand Vaidya
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Steven E Nissen
- Cleveland Clinic Foundation, Cleveland, Ohio
- C5 Research, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
6
|
Blazek O, Bakris GL. Slowing the Progression of Diabetic Kidney Disease. Cells 2023; 12:1975. [PMID: 37566054 PMCID: PMC10417620 DOI: 10.3390/cells12151975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetes is the most frequent cause of kidney disease that progresses to end-stage renal disease worldwide, and diabetic kidney disease is significantly related to unfavorable cardiovascular outcomes. Since the 1990s, specific therapies have emerged and been approved to slow the progression of diabetic kidney disease, namely, renin-angiotensin-aldosterone system blockers (including angiotensin-converting enzyme inhibitors (ACEi) angiotensin receptor blockers (ARBs), the non-steroidal mineralocorticoid receptor antagonist (NS-MRA), finerenone, and sodium-glucose cotransporter-2 (SGLT2) inhibitors). Mechanistically, these different classes of agents bring different anti-inflammatory, anti-fibrotic, and complementary hemodynamic effects to patients with diabetic kidney disease such that they have additive benefits on slowing disease progression. Within the coming year, there will be data on renal outcomes using the glucagon-like peptide-1 receptor agonist, semaglutide. All the aforementioned medications have also been shown to improve cardiovascular outcomes. Thus, all three classes (maximally dosed ACEi or ARB, low-dose SGLT-2 inhibitors, and the NS-MRA, finerenone) form the "pillars of therapy" such that, when used together, they maximally slow diabetic kidney disease progression. Ongoing studies aim to expand these pillars with additional medications to potentially normalize the decline in kidney function and reduce associated cardiovascular mortality.
Collapse
Affiliation(s)
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, IL 60637, USA;
| |
Collapse
|
7
|
Bakris GL, Jaisser F. Aldosterone excess and cardiorenal risk: more common than appreciated. Eur Heart J 2022; 43:3792-3793. [DOI: 10.1093/eurheartj/ehac410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- George L Bakris
- Department of Medicine, AHA Comprehensive Hypertension Center, University of Chicago Medicine , 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637 , USA
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
8
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
9
|
Wang L, Zhang Z, Liu D, Yuan K, Zhu G, Qi X. Association of -344C/T polymorphism in the aldosterone synthase (CYP11B2) gene with cardiac and cerebrovascular events in Chinese patients with hypertension. J Int Med Res 2020; 48:300060520949409. [PMID: 32938270 PMCID: PMC7503017 DOI: 10.1177/0300060520949409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective Several recent studies have shown that the aldosterone synthase gene (CYP11B2) −344C/T polymorphism is related to cardiovascular diseases. However, whether the −344C allele influences the incidence of cardiovascular diseases in Chinese patients with hypertension is unclear. Methods Chinese patients with essential hypertension were genotyped for the −344C/T polymorphism in CYP11B2 (n = 755; CC, n = 112; CT, n = 361; TT, n = 282) and followed for 11 years for major adverse cardiovascular events (MACEs), including stroke, onset of coronary artery disease (CAD), and CAD-related death. Established cardiovascular risk factors were used to adjust the multivariate Cox analysis. Results After a mean follow-up period of 7.60 ± 1.12 years, a significantly higher incidence of MACEs was seen in patients with the CC genotype than in those with the CT and TT genotypes. The CC variant was significantly and independently predictive of MACEs (hazard ratio = 2.049), CAD (hazard ratio = 1.754), and stroke (hazard ratio = 2.588), but not CAD-related stroke or death. Conclusion The CYP11B2 −344 CC genotype is a risk factor for CAD and stroke, independent of other established cardiovascular risk factors in Chinese patients with hypertension.
Collapse
Affiliation(s)
- Lili Wang
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zhi Zhang
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Dongxia Liu
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Kexin Yuan
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Guohua Zhu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyong Qi
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
10
|
Morimoto S, Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens Res 2020; 43:744-753. [PMID: 32424201 DOI: 10.1038/s41440-020-0468-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/31/2022]
Abstract
Resistant hypertension is associated with a poor prognosis due to organ damage caused by prolonged suboptimal blood pressure control. The concomitant use of mineralocorticoid receptor (MR) antagonists with other antihypertensives has been shown to improve blood pressure control in some patients with resistant hypertension, and such patients are considered to have MR-associated hypertension. MR-associated hypertension is classified into two subtypes: one with a high plasma aldosterone level, which includes primary aldosteronism (PA), and the other with a normal aldosterone level. In patients with unilateral PA, adrenalectomy may be the first-choice procedure, while in patients with bilateral PA, MR antagonists are selected. In addition, in patients with other types of MR-associated hypertension with high aldosterone levels, MR antagonists may be selected as a first-line therapy. In patients with normal aldosterone levels, ARBs or ACE inhibitors are used as a first-line therapy, and MR antagonists may be used as an add-on agent. Since MR antagonist therapy may have efficacy as a first-line or add-on agent in these patients, it is important to recognize this type of hypertension. Further studies are needed to elucidate the pathogenesis and management of MR-associated hypertension in more detail to improve the clinical outcomes of patients with MR-associated hypertension.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Granberg KL, Yuan ZQ, Lindmark B, Edman K, Kajanus J, Hogner A, Malmgren M, O’Mahony G, Nordqvist A, Lindberg J, Tångefjord S, Kossenjans M, Löfberg C, Brånalt J, Liu D, Selmi N, Nikitidis G, Nordberg P, Hayen A, Aagaard A, Hansson E, Hermansson M, Ivarsson I, Jansson-Löfmark R, Karlsson U, Johansson U, William-Olsson L, Hartleib-Geschwindner J, Bamberg K. Identification of Mineralocorticoid Receptor Modulators with Low Impact on Electrolyte Homeostasis but Maintained Organ Protection. J Med Chem 2018; 62:1385-1406. [DOI: 10.1021/acs.jmedchem.8b01523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dongmei Liu
- Pharmaron Beijing Co., Ltd., No. 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Piotrowski DW, Futatsugi K, Casimiro-Garcia A, Wei L, Sammons MF, Herr M, Jiao W, Lavergne SY, Coffey SB, Wright SW, Song K, Loria PM, Banker ME, Petersen DN, Bauman J. Identification of Morpholino-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-ones as Nonsteroidal Mineralocorticoid Antagonists. J Med Chem 2018; 61:1086-1097. [PMID: 29300474 DOI: 10.1021/acs.jmedchem.7b01515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel series of morpholine-based nonsteroidal mineralocorticoid receptor antagonists is reported. Starting from a pyrrolidine HTS hit 9 that possessed modest potency but excellect selectivity versus related nuclear hormone receptors, a series of libraries led to identification of morpholine lead 10. After further optimization, cis disubstituted morpholine 22 was discovered, which showed a 45-fold boost in binding affinity and corresponding functional potency compared to 13. While 22 had high clearance in rat, it provided sufficient exposure at high doses to favorably assess in vivo efficacy (increased urinary Na+/K+ ratio) and safety. In contrast to rat, the dog and human MetID and PK profiles of 22 were adequate, suggesting that it could be suitable as a potential clinical asset.
Collapse
Affiliation(s)
- David W Piotrowski
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | | | - Liuqing Wei
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Matthew F Sammons
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Michael Herr
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Wenhua Jiao
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Sophie Y Lavergne
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Stephen W Wright
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Kun Song
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Paula M Loria
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Mary Ellen Banker
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Donna N Petersen
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| | - Jonathan Bauman
- Pfizer Research and Development , Groton, Connecticut 06340, United States
| |
Collapse
|
13
|
Lavall D, Schuster P, Jacobs N, Kazakov A, Böhm M, Laufs U. Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling. J Biol Chem 2017; 292:7542-7553. [PMID: 28320863 DOI: 10.1074/jbc.m116.764449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to characterize the role of Rac1 GTPase for the mineralocorticoid receptor (MR)-mediated pro-fibrotic remodeling. Transgenic mice with cardiac overexpression of constitutively active Rac1 (RacET) develop an age-dependent phenotype with atrial dilatation, fibrosis, and atrial fibrillation. Expression of MR was similar in RacET and WT mice. The expression of 11β hydroxysteroid dehydrogenase type 2 (11β-HSD2) was age-dependently up-regulated in the atria and the left ventricles of RacET mice on mRNA and protein levels. Statin treatment inhibiting Rac1 geranylgeranylation reduced 11β-HSD2 up-regulation. Samples of human left atrial myocardium showed a positive correlation between Rac1 activity and 11β-HSD2 expression (r = 0.7169). Immunoprecipitation showed enhanced Rac1-bound 11β-HSD2 relative to Rac1 expression in RacET mice that was diminished with statin treatment. Both basal and phorbol 12-myristate 13-acetate (PMA)-induced NADPH oxidase activity were increased in RacET and correlated positively with 11β-HSD2 expression (r = 0.788 and r = 0.843, respectively). In cultured H9c2 cardiomyocytes, Rac1 activation with l-buthionine sulfoximine increased; Rac1 inhibition with NSC23766 decreased 11β-HSD2 mRNA and protein expression. Connective tissue growth factor (CTGF) up-regulation induced by aldosterone was prevented with NSC23766. Cardiomyocyte transfection with 11β-HSD2 siRNA abolished the aldosterone-induced CTGF up-regulation. Aldosterone-stimulated MR nuclear translocation was blocked by the 11β-HSD2 inhibitor carbenoxolone. In cardiac fibroblasts, nuclear MR translocation induced by aldosterone was inhibited with NSC23766 and spironolactone. NSC23766 prevented the aldosterone-induced proliferation and migration of cardiac fibroblasts and the up-regulation of CTGF and fibronectin. In conclusion, Rac1 GTPase regulates 11β-HSD2 expression, MR activation, and MR-mediated pro-fibrotic signaling.
Collapse
Affiliation(s)
- Daniel Lavall
- From the Universität des Saarlandes, Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Pia Schuster
- From the Universität des Saarlandes, Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Nadine Jacobs
- From the Universität des Saarlandes, Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Andrey Kazakov
- From the Universität des Saarlandes, Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Michael Böhm
- From the Universität des Saarlandes, Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany
| | - Ulrich Laufs
- From the Universität des Saarlandes, Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, D-66421 Homburg/Saar, Germany
| |
Collapse
|
14
|
Hofmann A, Brunssen C, Peitzsch M, Martin M, Mittag J, Jannasch A, Engelmann F, Brown NF, Weldon SM, Huber J, Streicher R, Deussen A, Eisenhofer G, Bornstein SR, Morawietz H. Aldosterone Synthase Inhibition Improves Glucose Tolerance in Zucker Diabetic Fatty (ZDF) Rats. Endocrinology 2016; 157:3844-3855. [PMID: 27526033 DOI: 10.1210/en.2016-1358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Plasma aldosterone is elevated in type 2 diabetes and obesity in experimental and clinical studies and can act to inhibit both glucose-stimulated insulin secretion by the β-cell and insulin signaling. Currently mineralocorticoid receptor antagonism is the best characterized treatment to ameliorate aldosterone-mediated effects. A second alternative is inhibition of aldosterone synthase, an approach with protective effects on end-organ damage in heart or kidney in animal models. The effect of aldosterone synthase inhibition on metabolic parameters in type 2 diabetes is not known. Therefore, male Zucker diabetic fatty (ZDF) rats were treated for 11 weeks with the aldosterone synthase inhibitor FAD286, beginning at 7 weeks of age. Results were compared with the mineralocorticoid receptor antagonist eplerenone. Plasma aldosterone was abolished by FAD286 and elevated more than 9-fold by eplerenone. The area under the curve calculated from an oral glucose tolerance test (OGTT) was lower and overall insulin response during OGTT was increased by FAD286. In contrast, eplerenone elevated blood glucose levels and blunted insulin secretion during the OGTT. Fasting glucose was lowered and fasting insulin was increased by FAD286 in the prediabetic state. Glycated hemoglobin was lowered by FAD286, whereas eplerenone showed no effect. We conclude that aldosterone synthase inhibition, in contrast to mineralocorticoid receptor antagonism, has the potential for beneficial effects on metabolic parameters in type 2 diabetes.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Mirko Peitzsch
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Melanie Martin
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Anett Jannasch
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Felix Engelmann
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Nicholas F Brown
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Steven M Weldon
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Jochen Huber
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Rüdiger Streicher
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Andreas Deussen
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Graeme Eisenhofer
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Stefan R Bornstein
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| |
Collapse
|
15
|
Abstract
Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona
glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel
(LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound
8, we investigated the role of CaV1.3 on steroidogenesis in
the human adrenocortical cell line, H295R, and in primary human adrenal cells. This
investigational drug was compared with the common antihypertensive drug nifedipine,
which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over
CaV1.3. In H295R cells transfected with wild-type or mutant
CaV1.3 channels, the latter produced more aldosterone than wild-type,
which was ameliorated by 100 μM of compound 8. In primary
adrenal and non-transfected H295R cells, compound 8 decreased aldosterone
production similar to high concentration of nifedipine (100 μM).
Selective CaV1.3 blockade may offer a novel way of treating primary
hyperaldosteronism, which avoids the vascular side effects of
CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with
mutations of CaV1.3.
Collapse
|
16
|
ŠOMLÓOVÁ Z, PETRÁK O, ROSA J, ŠTRAUCH B, INDRA T, ZELINKA T, HALUZÍK M, ZIKÁN V, HOLAJ R, WIDIMSKÝ J. Inflammatory Markers in Primary Aldosteronism. Physiol Res 2016; 65:229-37. [DOI: 10.33549/physiolres.932994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Primary aldosteronism (PA) is the most common cause of endocrine hypertension with a high frequency of cardiovascular complications. The unfavorable cardiometabolic profile may be due to aldosterone-mediated activation of inflammatory cells, circulatory cytokines and activation of collagen synthesis in the vessel wall. Aim of our study was to evaluate differences in the levels of hsCRP, IL-6, TNF-α and N-terminal propeptide of collagen I (PINP) in patients with PA and essential hypertension (EH) as a control group, and between the subtypes of PA (aldosterone producing adenoma – APA, idiopathic hyperaldosteronism – IHA). We studied 28 patients with PA (IHA – 10 patients, APA – 12 patients, 6 unclassified) and 28 matched patients with EH. There were no differences in the levels of inflammatory markers between the followed groups [EH vs. PA: TNF-α (5.09 [3.68-6.32] vs. 4.84 [3.62-6.50] pg/ml), IL-6 (0.94 [0.70-1.13] vs. 0.97 [0.71-1.28] pg/ml), hsCRP (0.53 [0.25-1.54] vs. 0.37 [0.31-0.61] mg/l), leukocytes (6.35±1.42 vs. 5.97±1.29 109 l); APA vs. IHA: TNF-α (4.54 [3.62-7.03] vs. 5.19 [4.23-5.27] pg/ml), IL-6 (0.96 [0.63-1.21] vs. 0.90 [0.65-1.06] pg/ml), hsCRP (0.34 [0.29-0.47] vs. 0.75 [0.36-1.11] mg/l), leukocytes (6.37±1.41 vs. 5.71±1.21 109 l)]. Significant differences in the levels of PINP between PA and EH group were observed (35.18 [28.46-41.16] vs. 45.21 [36.95-62.81] μg/l, p≤0.003). No differences in inflammatory markers were observed between the followed groups, we confirmed higher levels of PINP in patients with PA.
Collapse
Affiliation(s)
- Z. ŠOMLÓOVÁ
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Corticosterone exposure augments sensitivity to the behavioral and neuroplastic effects of fluoxetine in C57BL/6 mice. Neurobiol Stress 2016; 3:34-42. [PMID: 26844246 PMCID: PMC4730790 DOI: 10.1016/j.ynstr.2015.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/29/2015] [Indexed: 11/24/2022] Open
Abstract
Both genetic background and pre-existing stress play critical roles in the effects of antidepressant drugs. The current studies showed this principal by demonstrating that exposure to the stress hormone corticosterone (CORT) allowed behavioral and neurogenic effects to emerge following chronic treatment with fluoxetine of C57BL/6 mice, a strain ordinarily resistant to these effects. Adult male mice were implanted subcutaneously with 21-day slow-release CORT pellets (10 mg) or placebo and then co-treated with 5 mg/kg fluoxetine (b.i.d., i.p.) or saline for 14 days. Animals were then assessed for approach behavior in the novelty-induced hypophagia (NIH) test, hippocampal cell proliferation, corticosteroid receptor expression, and CORT plasma levels. Co-treatment of CORT with fluoxetine significantly reduced approach behavior in the novel environment of the NIH test and increased hippocampal cell proliferation whereas fluoxetine given alone was ineffective. CORT given alone did not alter approach behavior in the novel environment and caused a smaller increase of cell proliferation. The CORT effect was blocked by adrenalectomy and was likely due to increased adrenal feedback. Cell proliferation in CORT-treated animals was associated with reduced mineralocorticoid, but not glucocorticoid, receptor mRNA expression. Although the pellets were advertised to release CORT for 21 days, plasma CORT levels were increased at 1 day after implantation but were not sustained when measured at 7 days or longer intervals. Nevertheless, the transient CORT increase was sufficient to induce long-lasting behavioral and molecular changes when followed by fluoxetine treatment. These studies warrant further investigation into the role of glucocorticoids and environmental stress as adjunctive facilitators of the response to antidepressants, especially for treatment-resistant patients. C57BL/6J mice are not responsive to behavioral and neurogenic effects of chronic fluoxetine. CORT reduced anxiogenic behavior, increased hippocampal neurogenesis in response to fluoxetine. CORT pellets are not effective in sustaining elevated plasma CORT levels.
Collapse
|
18
|
Mannic T, Satta N, Pagano S, Python M, Virzi J, Montecucco F, Frias MA, James RW, Maturana AD, Rossier MF, Vuilleumier N. CD14 as a Mediator of the Mineralocorticoid Receptor-Dependent Anti-apolipoprotein A-1 IgG Chronotropic Effect on Cardiomyocytes. Endocrinology 2015; 156:4707-4719. [PMID: 26393305 DOI: 10.1210/en.2015-1605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro and animal studies point to autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) as possible mediators of cardiovascular (CV) disease involving several mechanisms such as basal heart rate interference mediated by a mineralocorticoid receptor-dependent L-type calcium channel activation, and a direct pro-inflammatory effect through the engagement of the toll-like receptor (TLR) 2/CD14 complex. Nevertheless, the possible implication of these receptors in the pro-arrhythmogenic effect of anti-apoA-1 antibodies remains elusive. We aimed at determining whether CD14 and TLRs could mediate the anti-apoA-1 IgG chronotropic response in neonatal rat ventricular cardiomyocytes (NRVC). Blocking CD14 suppressed anti-apoA-1 IgG binding to NRVC and the related positive chronotropic response. Anti-apoA-1 IgG alone induced the formation of a TLR2/TLR4/CD14 complex, followed by the phosphorylation of Src, whereas aldosterone alone promoted the phosphorylation of Akt by phosphatidylinositol 3-kinase (PI3K), without affecting the chronotropic response. In the presence of both aldosterone and anti-apoA-1 IgG, the localization of TLR2/TLR4/CD14 was increased in membrane lipid rafts, followed by PI3K and Src activation, leading to an L-type calcium channel-dependent positive chronotropic response. Pharmacological inhibition of the Src pathway led to the decrease of L-type calcium channel activity and abrogated the NRVC chronotropic response. Activation of CD14 seems to be a key regulator of the mineralocorticoid receptor-dependent anti-apoA-1 IgG positive chronotropic effect on NRVCs, involving relocation of the CD14/TLR2/TLR4 complex into lipid rafts followed by PI3K and Src-dependent L-type calcium channel activation.
Collapse
Affiliation(s)
- Tiphaine Mannic
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nathalie Satta
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Sabrina Pagano
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Magaly Python
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Julien Virzi
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Fabrizio Montecucco
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Miguel A Frias
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Richard W James
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Andres D Maturana
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Michel F Rossier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nicolas Vuilleumier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| |
Collapse
|
19
|
Inder WJ, Meyer C, Hunt PJ. Management of hypertension and heart failure in patients with Addison's disease. Clin Endocrinol (Oxf) 2015; 82:789-92. [PMID: 25138826 DOI: 10.1111/cen.12592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/23/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023]
Abstract
Addison's disease may be complicated by hypertension and less commonly by heart failure. We review the pathophysiology of the renin-angiotensin-aldosterone axis in Addison's disease and how this is altered in the setting of hypertension and heart failure. An essential first step in management in both conditions is optimizing glucocorticoid replacement and considering dose reduction if excessive. Following this, if a patient with Addison's disease remains hypertensive, the fludrocortisone dose should be reviewed and reduced if there are clinical and/or biochemical signs of mineralocorticoid excess. In the absence of such signs, where the renin is towards the upper end of the normal range or elevated, an angiotensin II (AII) receptor antagonist or angiotensin converting enzyme (ACE) inhibitor is the treatment of choice, and the fludrocortisone dose should remain unchanged. Dihydropyridine calcium channel blockers are clinically useful as second line agents, but diuretics should be avoided. In the setting of heart failure, there is an increase in total body sodium and water; therefore, it is appropriate to reduce and rarely consider ceasing the fludrocortisone. Loop diuretics may be used, but not aldosterone antagonists such as spironolactone or eplerenone. Standard treatment with ACE inhibitors, or as an alternative, AII receptor antagonists, are appropriate. Measurements of renin are no longer helpful in heart failure to determine the volume status but plasma levels of brain natriuretic peptide (BNP/proBNP) may help guide therapy.
Collapse
Affiliation(s)
- Warrick J Inder
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital and University of Queensland, Brisbane, Qld, Australia
| | - Caroline Meyer
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Vic., Australia
| | - Penny J Hunt
- Department of Endocrinology, Christchurch Hospital and University of Otago, Christchurch, New Zealand
| |
Collapse
|
20
|
Greater efficacy of aldosterone blockade and diuretic reinforcement vs. dual renin–angiotensin blockade for left ventricular mass regression in patients with resistant hypertension. J Hypertens 2014; 32:2038-44; discussion 2044. [DOI: 10.1097/hjh.0000000000000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Indra T, Holaj R, Štrauch B, Rosa J, Petrák O, Šomlóová Z, Widimský J. Long-term effects of adrenalectomy or spironolactone on blood pressure control and regression of left ventricle hypertrophy in patients with primary aldosteronism. J Renin Angiotensin Aldosterone Syst 2014; 16:1109-17. [PMID: 25271250 DOI: 10.1177/1470320314549220] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/25/2014] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Primary aldosteronism (PA) represents the most common cause of secondary hypertension. Beyond increased blood pressure, additional harmful effects of aldosterone excess including inappropriate left ventricle (LV) hypertrophy were found. We evaluated the effect of adrenalectomy and spironolactone on blood pressure and myocardial remodelling in a long-term follow-up study. METHODS Thirty-one patients with PA were recruited. Fifteen patients with confirmed aldosterone-producing adenoma underwent adrenalectomy; in the remaining 16 patients, treatment with spironolactone was initiated. Laboratory data, 24-hour ambulatory blood pressure monitoring (ABPM) and echocardiography parameters were evaluated at baseline and at a median follow-up of 64 months. RESULTS Both approaches reduced blood pressure (p = 0.001 vs. baseline). In both groups we observed a decrease in end-diastolic (p = 0.04, p = 0.01) and end-systolic LV cavity diameters (p = 0.03, p = 0.01). Interventricular septum and posterior wall thickness reduction was significant only after adrenalectomy (p = 0.01, p = 0.03) as was reduction of LV mass index (p = 0.004). A trend to lower LV mass on spironolactone was caused predominantly by diminution of the LV cavity, which was reflected in increased relative wall thickness (p = 0.05). CONCLUSIONS Although both surgical and conservative treatment can induce a long-term decrease of blood pressure, adrenalectomy seems to be more effective in reduction of LV mass, as it reverses both wall thickening and enlargement of the LV cavity.
Collapse
Affiliation(s)
- Tomáš Indra
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Robert Holaj
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Branislav Štrauch
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ján Rosa
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Petrák
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Šomlóová
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Widimský
- Third Department of Internal Medicine, General University Hospital, Prague, Czech Republic; and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
22
|
Oberleithner H. Vascular endothelium: a vulnerable transit zone for merciless sodium. Nephrol Dial Transplant 2013; 29:240-6. [PMID: 24335504 DOI: 10.1093/ndt/gft461] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In humans, when plasma sodium concentration rises slightly beyond 140 mM, vascular endothelium sharply stiffens and nitric oxide release declines. In search of a vascular sodium sensor, the endothelial glycocalyx was identified as being a negatively charged biopolymer capable of selectively buffering sodium ions. Sodium excess damages the glycocalyx and renders vascular endothelium increasingly permeable for sodium. In the long term, sodium accumulates in the interstitium and gradually damages the organism. It was discovered that circulating red blood cells (RBC) 'report' surface properties of the vascular endothelium. To some extent, the RBC glycocalyx mirrors the endothelial glycocalyx. A poor (charge-deprived) endothelial glycocalyx causes a poor RBC glycocalyx and vice versa. This observation led to the assumption that the current state of an individual's vascular endothelium in terms of electrical surface charges and sodium-buffering capabilities could be read simply from a blood sample. Recently, a so-called salt blood test was introduced that quantifies the RBC sodium buffer capacity and thus characterizes the endothelial function. The arguments are outlined in this article spanning a bridge from cellular nano-mechanics to clinical application.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II, Medical Faculty, University of Münster, Münster 48149, Germany
| |
Collapse
|
23
|
Tsai CF, Yang SF, Chu HJ, Ueng KC. Cross-talk between mineralocorticoid receptor/angiotensin II type 1 receptor and mitogen-activated protein kinase pathways underlies aldosterone-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Cardiol 2013; 169:17-28. [PMID: 24120080 DOI: 10.1016/j.ijcard.2013.06.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Aldosterone is increasingly recognized for its involvement in atrial structural remodeling. However, the precise molecular mechanisms and signal pathways underlying aldosterone-induced atrial fibrosis are unknown. METHODS Western blotting was used to investigate the effects of aldosterone on the expression of mineralocorticoid receptor (MR), angiotensin II type I receptor (AT1), mitogen-activated protein kinases (MAPKs), and fibrotic marker proteins in cultured HL-1 cardiomyocytes. RESULTS Aldosterone upregulated MR and AT1 expressions in a concentration-dependent and time-dependent manner. Aldosterone (10(-6)M) significantly and time-dependently increased activation of the extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38MAPK pathways, and the protein expression of collagen 1A and 3A (COL1A and COL3A), transforming growth factor (TGF)-β1, and α-smooth muscle actin (SMA). Pre-treatment with eplerenone (10(-10)M) prevented the increased expression of MR, MAPK signals and the above profibrotic molecules, but amplified the increase in AT1 level stimulated by aldosterone (10(-6)M). Pre-treatment with losartan (10(-10)M) or MAPK pathway inhibitors (U0126 or SP600125) abolished aldosterone-induced MR upregulation and significantly inhibited the expression of the above fibrotic marker proteins, indicating the critical role of MR and the requirement for active AT1 in the development of aldosterone-induced atrial fibrosis. CONCLUSIONS Elevated MR activity plays a central role in aldosterone-mediated activation of the MAPK signaling pathway and subsequent profibrotic effects in HL-1 atrial cells. MR/AT1 and the MAPK signaling pathway interact to trigger the molecular mechanism underlying the aldosterone-induced atrial fibrotic response. Our results support the view that MR blockade in conjunction with AT1 blockade can prevent the occurrence of atrial fibrillation.
Collapse
Affiliation(s)
- Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
24
|
Guichard JL, Clark D, Calhoun DA, Ahmed MI. Aldosterone receptor antagonists: current perspectives and therapies. Vasc Health Risk Manag 2013; 9:321-31. [PMID: 23836977 PMCID: PMC3699348 DOI: 10.2147/vhrm.s33759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aldosterone is a downstream effector of angiotensin II in the renin-angiotensin-aldosterone system and binds to the mineralocorticoid receptor. The classical view of aldosterone primarily acting at the level of the kidneys to regulate plasma potassium and intravascular volume status is being supplemented by evidence of new "off-target" effects of aldosterone in other organ systems. The genomic effects of aldosterone are well known, but there is also evidence for non-genomic effects and these recently identified effects of aldosterone have required a revision in the traditional view of aldosterone's role in human health and disease. The aim of this article is to review the biological action of aldosterone and the mineralocorticoid receptor leading to subsequent physiologic and pathophysiologic effects involving the vasculature, central nervous system, heart, and kidneys. Furthermore, we outline current evidence evaluating the use of mineralocorticoid receptor antagonists in the treatment of primary aldosteronism, primary hypertension, resistant hypertension, obstructive sleep apnea, heart failure, and chronic kidney disease.
Collapse
Affiliation(s)
- Jason L Guichard
- University of Alabama at Birmingham, Department of Medicine, Division of Cardiovascular Disease, Birmingham, AL 35294-2041 , USA
| | | | | | | |
Collapse
|
25
|
Nguyen Dinh Cat A, Montezano AC, Touyz RM. Renin–angiotensin–aldosterone system: new concepts. Hypertension 2013. [DOI: 10.2217/ebo.12.463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Aurelie Nguyen Dinh Cat is a Research Fellow in Rhian Touyz’s group. She has been working on the pathophysiological roles of the aldosterone and the mineralocorticoid receptor in the cardiovascular system and adipose tissue, focusing on the interaction between adipocytes and vessels
| | - Augusto C Montezano
- Augusto C Montezano is a Leadership Fellow at the College of Medicine, Veterinary and Life Sciences at the Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. He is interested in understanding how osteogenic factors impact the renin–angiotensin–aldosterone system and oxidative stress in the cardiovascular system
| | - Rhian M Touyz
- Rhian M Touyz is a Clinician–Scientist focusing on molecular, cellular and vascular mechanisms of hypertension. She is Professor of Medicine and Director of the Institute of Cardiovascular and Medical Sciences, University of Glasgow. She was the Canada Research Chair in Hypertension at the Kidney Research Centre, Ottawa Hospital Research Institute/University of Ottawa (Canada). She received her degrees from the University of the Witwatersrand, South Africa. She has received numerous awards, including the
| |
Collapse
|
26
|
Kusche-Vihrog K, Oberleithner H. An emerging concept of vascular salt sensitivity. F1000 BIOLOGY REPORTS 2012; 4:20. [PMID: 23112808 PMCID: PMC3463896 DOI: 10.3410/b4-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Excessive amounts of salt in food, as usually consumed worldwide, affect the vascular system, leading to high blood pressure and premature disabilities. Salt entering the vascular bed after a salty meal is transiently bound to the endothelial glycocalyx, a negatively charged biopolymer lining the inner surface of the blood vessels. This barrier protects the endothelium against salt overload. A poorly-developed glycocalyx increases the salt permeability of the vascular system and the amount of salt being deposited in the body, which affects organ function. A simple test system is now available that evaluates vascular salt sensitivity in humans and identifies individuals who are at risk of salt-induced hypertension. This short review aims to discuss how the underlying basic research can be translated into medical practice and, thus, meaningful health outcomes.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Physiology II, Medical Faculty, University of Münster Robert-Koch-Strasse 27, 48149 Münster Germany
| | | |
Collapse
|
27
|
Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 2012; 82:771-89. [DOI: 10.1038/ki.2012.188] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
ŠOMLÓOVÁ Z, INDRA T, ROSA J, PETRÁK O, ŠTRAUCH B, ZELINKA T, HOLAJ R, WIDIMSKÝ J. Have Main Types of Primary Aldosteronism Different Phenotype? Physiol Res 2012; 61:431-6. [DOI: 10.33549/physiolres.932335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Primary aldosteronism (PA) is the most common cause of endocrine hypertension with a high frequency of cardiovascular complications. We found in our previous study higher occurrence of metabolic disturbances in patients with idiopathic hyperaldosteronism (IHA) compared to subjects with aldosterone-producing adenoma (APA). The aim of our present study is to evaluate potential differences in the frequency of end-organ damage (arterial stiffness and microalbuminuria) between two main types of PA. The diagnosis of the particular form of PA was based on adrenal venous sampling and/or histopathological examination. We analyzed clinical and laboratory data from 72 patients with PA (36 with IHA, 36 with APA). The arterial stiffness was expressed as the carotid-femoral pulse wave velocity (PWV) and the renal damage as urinary albumin excretion levels (UAE). Patients with IHA had significantly (p<0.03) higher prevalence of metabolic syndrome (17 % in APA, 35 % in IHA), higher triglycerides (1.37±0.71 mmol/l in APA, 1.85±0.87 mmol/l in IHA), lower HDL cholesterol (1.25±0.28 mmol/l in APA, 1.06±0.25 mmol/l in IHA), higher PWV (7.91±1.61 m/s in APA, 8.99±1.77 m/s in IHA) and higher UAE (12.93±2.21 mg/l in APA, 28.09±6.66 mg/l in IHA). It seems that patients with IHA may have a slightly different phenotype compared to APA.
Collapse
Affiliation(s)
- Z. ŠOMLÓOVÁ
- Third Department of Internal Medicine – Center for Hypertension, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee HJ, Rho J, Gui SR, Kim MK, Lee YK, Lee YS, Kim JE, Cho E, Cho M, Hwang TH. Effect of aldosterone on the amplification of oncolytic vaccinia virus in human cancer lines. THE KOREAN JOURNAL OF HEPATOLOGY 2012; 17:213-9. [PMID: 22102388 PMCID: PMC3304654 DOI: 10.3350/kjhep.2011.17.3.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND/AIMS JX-594 is an oncolytic virus derived from the Wyeth vaccinia strain that causes replication-dependent cytolysis and antitumor immunity. Starting with a cross-examination of clinical-trial samples from advanced hepatocellular carcinoma patients having high levels of aldosterone and virus amplification in JX-594 treatment, we investigated the association between virus amplification and aldosterone in human cancer cell lines. METHODS Cell proliferation was determined by a cell-counting-kit-based colorimetric assay, and vaccinia virus quantitation was performed by quantitative polymerase chain reaction (qPCR) and a viral plaque assay. Also, the intracellular pH was measured using a pH-sensitive dye. RESULTS Simultaneous treatment with JX-594 and aldosterone significantly increased viral replication in A2780, PC-3, and HepG2 cell lines, but not in U2OS cell lines. Furthermore, the aldosterone treatment time altered the JX-594 replication according to the cell line. The JX-594 replication peaked after 48 and 24 hours of treatment in PC-3 and HepG2 cells, respectively. qPCR showed that JX-594 entry across the plasma membrane was increased, however, the changes are not significant by the treatment. This was inhibited by treatment with spironolactone (an aldosterone-receptor inhibitor). JX-594 entry was significantly decreased by treatment with EIPA [5-(N-ethyl-N-isopropyl)amiloride; a Na(+)/H(+)-exchange inhibitor], but aldosterone significantly restored JX-594 entry even in the presence of EIPA. Intracellular alkalization was observed after aldosterone treatment but was acidified by EIPA treatment. CONCLUSIONS Aldosterone stimulates JX-594 amplification via increased virus entry by affecting the H(+) gradient.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pharmacology, Pusan National University School of Korean Medicine, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rossier MF, Pagano S, Python M, Maturana AD, James RW, Mach F, Roux-Lombard P, Vuilleumier N. Antiapolipoprotein A-1 IgG chronotropic effects require nongenomic action of aldosterone on L-type calcium channels. Endocrinology 2012; 153:1269-78. [PMID: 22253414 DOI: 10.1210/en.2011-1835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoantibodies to apolipoprotein A-1 (antiapoA-1 IgG) have been shown to be associated with higher resting heart rate and morbidity in myocardial infarction patients and to behave as a chronotropic agent in the presence of aldosterone on isolated neonatal rat ventricular cardiomyocytes (NRVC). We aimed at identifying the pathways accounting for this aldosterone-dependent antiapoA-1 IgG-positive chronotropic effect on NRVC. The rate of regular spontaneous contractions was determined on NRVC in the presence of different steroid hormones and antagonists. AntiapoA-1 IgG chronotropic response was maximal within 20 min and observed only in aldosterone-pretreated cells but not in those exposed to other steroids. The positive antiapoA-1 IgG chronotropic effect was already significant after 5 min aldosterone preincubation, was dependent on 3-kinase and protein kinase A activities, was not inhibited by actinomycin D, and was fully abrogated by eplerenone (but not by spironolactone), demonstrating the dependence on a nongenomic action of aldosterone elicited through the mineralocorticoid receptor (MR). Under oxidative conditions (but not under normal redox state), corticosterone mimicked the permissive action of aldosterone on the antiapoA-1 IgG chronotropic response. Pharmacological and patch-clamp studies identified L-type calcium channels as crucial effectors of antiapoA-1 IgG chronotropic action, involving two converging pathways that increase the channel activity. The first one involves the rapid, nongenomic activation of the phosphatidylinositol 3-kinase enzyme by MR, and the second one requires a constitutive basal protein kinase A activity. In conclusion, our results indicate that, on NRVC, the aldosterone-dependent chronotropic effects of antiapoA-1 IgG involve the nongenomic activation of L-type calcium channels.
Collapse
Affiliation(s)
- Michel F Rossier
- Service of Endocrinology and Diabetology, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Takata H, Takeda Y, Zhu A, Cheng Y, Yoneda T, Demura M, Yagi K, Karashima S, Yamagishi M. Protective effects of mineralocorticoid receptor blockade against neuropathy in experimental diabetic rats. Diabetes Obes Metab 2012; 14:155-162. [PMID: 21951301 DOI: 10.1111/j.1463-1326.2011.01499.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS Mineralocorticoid receptor (MR) blockade is an effective treatment for hypertension and diabetic nephropathy. There are no data on the effects of MR blockade on diabetic peripheral neuropathy (DPN). The aim of this study was to determine whether MRs are present in the peripheral nerves and to investigate the effectiveness of MR blockade on DPN in streptozotocin (STZ)-induced diabetic rats. METHODS Expression of MR protein and messenger RNA (mRNA) was examined in the peripheral nerves using Western blot analysis and RT-PCR. We next studied the effects of the selective MR antagonist eplerenone and the angiotensin II receptor blocker candesartan on motor and sensory nerve conduction velocity (NCV), morphometric changes and cyclooxygenase-2 (COX-2) gene and NF-κB protein expression in the peripheral nerves of STZ-induced diabetic rats. RESULTS Expression of MR protein and mRNA in peripheral nerves was equal to that in the kidney. Motor NCV was significantly improved by 8 weeks of treatment with either eplerenone (39.1 ± 1.2 m/s) or candesartan (46.4 ± 6.8 m/s) compared with control diabetic rats (33.7 ± 2.0 m/s) (p < 0.05). Sensory NCV was also improved by treatment with candesartan or eplerenone in diabetic rats. Eplerenone and candesartan caused significant improvement in mean myelin fibre area and mean myelin area compared with control diabetic rats (p < 0.05). COX-2 mRNA and NF-κB protein were significantly elevated in the peripheral nerves of diabetic rats compared with control rats, and treatment with eplerenone or candesartan reduced these changes in gene expression (p < 0.05). CONCLUSION MR blockade may have neuroprotective effects on DPN.
Collapse
Affiliation(s)
- H Takata
- Division of Endocrinology and Hypertension, Department of Internal Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Provencher M, Houde V, Brochu M, St-Louis J. Mineralocorticoids participate in the reduced vascular reactivity of pregnant rats. Am J Physiol Heart Circ Physiol 2011; 302:H1195-201. [PMID: 22198172 DOI: 10.1152/ajpheart.00510.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The renin-angiotensin-aldosterone (RAA) system is markedly activated in pregnancy. We evaluated if mineralocorticoid receptors (MR), a major component of the RAA system, are involved in the reduced vascular reactivity associated with pregnancy. Canrenoate (MR antagonist; 20 mg·kg(-1)·day(-1)) was administered to nonpregnant (NP) rats for 7 days and to pregnant rats from day 15 to 22 of gestation. These were killed on day 17, 19, or 22 of gestation and, for NP rats, after 7 days treatment. Constrictor responses to phenylephrine (PhE) and KCl were measured in endothelium-denuded thoracic aortic rings under the influence of modulators of potassium (activators) and calcium (blocker) channels. Responses to the constrictors were blunted from days 17 to 22 of gestation. Although canrenoate increased responses to PhE and KCl, it did not reverse their blunted responses in gestation. NS-1619 and cromakalim (respectively, high-conductance calcium-activated potassium channels and ATP-sensitive potassium channel activators) diminished responses to both PhE and KCl. Inhibition by NS-1619 on responses to both agonists was decreased under canrenoate treatment in NP, but the reduced influence of NS-1619 during gestation was reversed by the mineralocorticoid antagonist. Cromakalim reduced the response to PhE significantly in the pregnant groups; this effect was enhanced by canrenoate. Finally, nifedipine (calcium channel blocker) markedly reduced KCl responses but to a lesser extent at the end of pregnancy, an inhibiting effect that was increased with canrenoate treatment. These data demonstrate that treating rats with a MR antagonist increased vascular reactivity but that it differentially affected potassium and calcium channel activity in aortas of NP and pregnant animals. This suggests that aldosterone is one of the components involved in vascular adaptations to pregnancy.
Collapse
Affiliation(s)
- M Provencher
- Research Centre, CHU Sainte-Justine and Departments of Obstetrics-Gynecology, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
33
|
Abstract
Multiple hormonal factors play a major role in the functional and structural abnormalities of hypertension (HT). At present, the kidneys and, in particular, renal Na(+) retention are thought to constitute a primary and sustaining mechanism in the development of HT. However, the precise renal and hormonal mechanisms leading to increased Na(+) reabsorption and HT remain unknown. Because the vast majority of HT is primary, this article focuses on the major endocrine systems, the RAS, aldosterone, and the SNS, that play a prominent role in the pathogenesis of HT.
Collapse
Affiliation(s)
- Robert M Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, PO Box 801414, Charlottesville, VA 22908-1414, USA.
| |
Collapse
|
34
|
Rahman TJ, Mayosi BM, Hall D, Avery PJ, Stewart PM, Connell JM, Watkins H, Keavney B. Common Variation at the 11-β Hydroxysteroid Dehydrogenase Type 1 Gene Is Associated With Left Ventricular Mass. ACTA ACUST UNITED AC 2011; 4:156-62. [DOI: 10.1161/circgenetics.110.958496] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background—
Polymorphisms in 11-β hydroxysteroid dehydrogenase type 1 (11β-HSD1, encoded by
HSD11B1
) have been reported to be associated with obesity-related cardiovascular risk factors, such as type II diabetes and hypertension. Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular death associated with these factors but has significant additional heritability, the cause of which is undetermined. The 11β-HSD1 is believed to maintain tonic inhibition of the mineralocorticoid receptor in cardiomyocytes, and mineralocorticoid receptor activation is involved in the pathophysiology of LVH. We assessed the association between polymorphisms in the
HSD11B1
gene and left ventricular mass (LVM) in 248 families ascertained through a proband with hypertension.
Methods and Results—
LVM was measured by electrocardiography and echocardiography in 868 and 829 participants, respectively. Single-nucleotide polymorphisms (SNPs) tagging common variation in the
HSD11B1
gene were genotyped by mass spectrometry. The rs846910 SNP, which lies in the flanking region 5′ to exon 1B of
HSD11B1
, was associated with LVM both by electrocardiography (≈5% lower LVM per copy of the rare allele,
P
=0.02) and by echocardiography (≈10% lower LVM per copy of the rare allele,
P
=0.003). Genotype explained 1% to 2% of the population variability in LVM, or approximately 5% of the heritable fraction. There were no significant associations between any
HSD11B1
SNP and blood pressure or body mass index that could have confounded the association with LVM.
Conclusions—
Genotype at
HSD11B1
has a small, but significant effect on LVM, apparently independently of any effect on obesity-related traits. These findings suggest a novel action of 11β-HSD1 in the human cardiomyocyte, which may be of therapeutic importance.
Collapse
Affiliation(s)
- Thahira J. Rahman
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - Bongani M. Mayosi
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - Darroch Hall
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - Peter J. Avery
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - Paul M. Stewart
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - John M.C. Connell
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - Hugh Watkins
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| | - Bernard Keavney
- From the Institute of Human Genetics (T.J.R., D.H., P.J.A., B.K.), Newcastle University, Newcastle upon Tyne, UK; Department of Medicine (B.M.M.), University of Cape Town, Cape Town, South Africa; Department of Medicine (P.M.S.), University of Birmingham, Birmingham, UK; Department of Medicine (J.M.C.C.), University of Dundee, Dundee, UK; Department of Cardiovascular Medicine (H.W.), Oxford University, Oxford, UK
| |
Collapse
|
35
|
Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension 2011; 57:442-51. [PMID: 21242460 DOI: 10.1161/hypertensionaha.110.161653] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been increasingly appreciated that steroids elicit acute vascular effects through rapid, so-called nongenomic signaling pathways. Though aldosterone, for example, has been demonstrated to mediate rapid vascular effects via both mineralocorticoid receptor-dependent and -independent pathways, the mechanism(s) of this mineralocorticoid receptor-independent effect of aldosterone is yet to be determined. For estrogen, its rapid effects have been reported to be, at least in part, mediated via the 7-transmembrane-spanning, G protein-coupled receptor GPR30. Previous studies have demonstrated common response outcomes in response to both aldosterone and estrogen on GPR30 expression, ie, activation of phosphatidylinositol 3-kinase-dependent contraction and extracellular signal-regulated kinase activation in vascular smooth muscle cells. The present studies were undertaken to test the hypothesis that the rapid response to aldosterone in smooth muscle is dependent on the availability of a GPR30-dependent signaling pathway. These findings not only reconcile differences in the literature for aldosterone response in freshly isolated versus cultured aortic smooth muscle cells but also suggest alternative therapeutic strategies for modulating aldosterone actions on the vasculature in vivo.
Collapse
Affiliation(s)
- Robert Gros
- Departments of Medicine and Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, and Vascular Biology Research Group, Robarts Research Institute, 100 Perth Drive, PO Box 5015, Stn B, London, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, Pavenstädt H, Brand E, Oberleithner H. C-reactive protein makes human endothelium stiff and tight. Hypertension 2010; 57:231-7. [PMID: 21149827 DOI: 10.1161/hypertensionaha.110.163444] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevation of C-reactive protein (CRP) in human blood accompanies inflammatory processes, including cardiovascular diseases. There is increasing evidence that the acute-phase reactant CRP is not only a passive marker protein for systemic inflammation but also affects the vascular system. Further, CRP is an independent risk factor for atherosclerosis and the development of hypertension. Another crucial player in atherosclerotic processes is the mineralocorticoid hormone aldosterone. Even in low physiological concentrations, it stimulates the expression and membrane insertion of the epithelial sodium channel, thereby increasing the mechanical stiffness of endothelial cells. This contributes to the progression of endothelial dysfunction. In the present study, the hypothesis was tested that the acute application of CRP (25 mg/L), in presence of aldosterone (0.5 nmol/L; 24 hour incubation), modifies the mechanical stiffness and permeability of the endothelium. We found that endothelial cells stiffen in response to CRP. In parallel, endothelial epithelial sodium channel is inserted into the plasma membrane, while, surprisingly, the endothelial permeability decreases. CRP actions are prevented either by the inhibition of the intracellular aldosterone receptors using spironolactone (5 nmol/L) or by the inactivation of epithelial sodium channel using specific blockers. In contrast, inhibition of the release of the vasodilating gas nitric oxide via blockade of the phosphoinositide 3-kinase/Akt pathway has no effect on the CRP-induced stiffening of endothelial cells. The data indicate that CRP enhances the effects of aldosterone on the mechanical properties of the endothelium. Thus, CRP could counteract any decrease in arterial blood pressure that accompanies severe acute inflammatory processes.
Collapse
|
37
|
Queisser N, Fazeli G, Schupp N. Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action. Biol Chem 2010; 391:1265-79. [DOI: 10.1515/bc.2010.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe formation of reactive oxygen species (ROS) can be induced by xenobiotic substances, such as redox cycling molecules, but also by endogenous substances such as hormones and cytokines. Recent research shows the importance of ROS in cellular signaling. Here, the signaling pathways of the two blood pressure-regulating hormones angiotensin II and aldosterone are presented, focusing on both their physiological effects and the change of signaling owing to the action of increased concentrations or prolonged exposure. When present in high concentrations, both angiotensin II and aldosterone, as various other endogenous substances, activate NADPH oxidase, which produces superoxide. In this review the generation of superoxide anions and hydrogen peroxide in cells stimulated with angiotensin II or aldosterone, as well as the subsequently induced signaling processes and DNA damage is discussed.
Collapse
|
38
|
Hernández-Díaz I, Giraldez T, Arnau MR, Smits VAJ, Jaisser F, Farman N, Alvarez de la Rosa D. The mineralocorticoid receptor is a constitutive nuclear factor in cardiomyocytes due to hyperactive nuclear localization signals. Endocrinology 2010; 151:3888-99. [PMID: 20484457 DOI: 10.1210/en.2010-0099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mineralocorticoid receptor (MR), a member of the nuclear receptor family, mediates the action of aldosterone in target epithelia, enhancing sodium reabsorption. In addition, MR may have other physiological functions in nonepithelial tissues. Altered expression or inappropriate activation of cardiac MR is directly linked to the development of cardiac fibrosis, and MR blockade is beneficial for the treatment of heart failure. However, the physiological role, activation status, and target genes of MR in the heart are poorly known. Because ligand-free steroid receptors are typically cytoplasmic and translocate to the nucleus upon ligand binding, we examined the subcellular localization of MR under different corticosteroid levels using subcellular fractionation and immunostaining. Our results demonstrate that MR is a chromatin-bound factor in mouse left ventricle and in a cultured model of cardiomyocytes, HL-1 cells, regardless of circulating corticosteroid levels. Immunohistochemical localization of MR in human heart confirms the subcellular localization pattern. Mutation of nuclear localization signals (NLSs) demonstrates that MR constitutive nuclear localization mainly depends on the synergistic contribution of NLS0 and NLS1. Constitutive nuclear localization in HL-1 cells can be reverted by cotransfection of heat shock protein 90. Heat shock protein 90 expression levels in the mouse heart and HL-1 cells are lower than those found in other tissues, suggesting that low levels of cochaperones render MR NLSs hyperactive in cardiomyocytes. Even though MR is constitutively nuclear, corticosteroids still control the transactivation properties of the receptor in a model promoter, although other MR ligand-independent activities cannot be excluded.
Collapse
Affiliation(s)
- Iván Hernández-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, La Laguna 38071, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Boilson BA, Larsen K, Harbuzariu A, Delacroix S, Korinek J, Froehlich H, Bailey KR, Scott CG, Shapiro BP, Boerrigter G, Chen HH, Redfield MM, Burnett JC, Simari RD. Regulation of circulating progenitor cells in left ventricular dysfunction. Circ Heart Fail 2010; 3:635-42. [PMID: 20573992 DOI: 10.1161/circheartfailure.109.879437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Reductions in numbers of circulating progenitor cells (CD34+ cell subsets) have been demonstrated in patients at risk for, or in the presence of, cardiovascular disease. The mediators of these reductions remain undefined. To determine whether neurohumoral factors might regulate circulating CD34+ cell subsets in vivo, we studied complementary canine models of left ventricular (LV) dysfunction. METHODS AND RESULTS A pacing model of severe LV dysfunction and a hypertensive renal wrap model in which dogs were randomized to receive deoxycorticosterone acetate (DOCA) were studied. Circulating CD34+ cell subsets including hematopoietic precursor cells (HPCs: CD34+/CD45(dim)/VEGFR2-) and endothelial progenitor cells (EPCs: CD34+/CD45-/VEGFR2+) were quantified. Additionally, the effect of mineralocorticoid excess on circulating progenitor cells in normal dogs was studied. The majority of circulating CD34+ cells expressed CD45dimly and did not express VEGFR2, consistent with an HPC phenotype. HPCs were decreased in response to pacing, and this decrease correlated with plasma aldosterone levels (Spearman rank correlation=-0.67, P=0.03). In the hypertensive renal wrap model, administration of DOCA resulted in decreased HPCs. No changes were seen in EPCs in either model. Normal dogs treated with DOCA exhibited a decrease in HPCs in peripheral blood but not bone marrow associated with decreased telomerase activity. CONCLUSIONS This is the first study to demonstrate that mineralocorticoid excess, either endogenous or exogenous, results in reduction in HPCs. These data suggest that mineralocorticoids may induce accelerated senescence of progenitor cells, leading to their reduced survival and decline in numbers.
Collapse
Affiliation(s)
- Barry A Boilson
- Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic, Rochester, Minn, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krug AW, Allenhöfer L, Monticone R, Spinetti G, Gekle M, Wang M, Lakatta EG. Elevated mineralocorticoid receptor activity in aged rat vascular smooth muscle cells promotes a proinflammatory phenotype via extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and epidermal growth factor receptor-dependent pathways. Hypertension 2010; 55:1476-83. [PMID: 20421514 DOI: 10.1161/hypertensionaha.109.148783] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Arterial aging is a predominant risk factor for the onset of cardiovascular diseases, such as hypertension, myocardial infarction, or stroke. Aging is associated with intravascular renin-angiotensin system activation, increased vascular stiffness, intima-media thickening, and a proinflammatory phenotype. Little is known about the influence of aldosterone on arterial aging. Hence, we hypothesized that aldosterone and mineralocorticoid receptor (MR) activation might contribute to and possibly accelerate the arterial aging process. We demonstrate increased MR expression in whole aortae and early passage aortic vascular smooth muscle cells from aged (30 months) compared with adult (8 months) F344XBN rats. Sensitivity to aldosterone-induced extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activity is increased in aged cells. MR blockade and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase inhibition prevent age-associated increases of transforming growth factor-beta, intercellular adhesion molecule 1, and procollagen 1. Aldosterone increases expression of proinflammatory marker proteins, shifting the phenotype of adult vascular smooth muscle cells toward the proinflammatory phenotype of aged rats. Epidermal growth factor receptor expression is increased with age and by aldosterone, and inhibition of epidermal growth factor receptor tyrosine kinase decreases age-associated proinflammatory marker expression. Our data support the hypothesis that increased constitutive MR signaling may promote and amplify age-associated inflammation that accompanies arterial aging through increased angiotensin II-stimulated expression of MR and enhanced sensitivity to aldosterone-mediated extracellular signal-regulated kinase 1/2 activation, likely related to increased epidermal growth factor receptor expression.
Collapse
Affiliation(s)
- Alexander W Krug
- National Institutes of Health, National Institute on Aging, Laboratory of Cardiovascular Science, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 2010; 50:439-65. [PMID: 20055710 DOI: 10.1146/annurev.pharmtox.010909.105610] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin-aldosterone system is one of the most important systems in cardiovascular control and in the pathogenesis of cardiovascular diseases. Therefore, it is already a very successful drug target for the therapy of these diseases. However, angiotensins are generated not only in the plasma but also locally in tissues from precursors and substrates either locally expressed or imported from the circulation. In most areas of the brain, only locally generated angiotensins can exert effects on their receptors owing to the blood-brain barrier. Other tissue renin-angiotensin-aldosterone systems are found in cardiovascular organs such as kidney, heart, and vessels and play important roles in the function of these organs and in the deleterious actions of hypertension and diabetes on these tissues. Novel components with mostly opposite actions to the classical renin-angiotensin-aldosterone systems have been described and need functional characterization to evaluate their suitability as novel drug targets.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
| |
Collapse
|
42
|
Tian J, Shidyak A, Periyasamy SM, Haller S, Taleb M, El-Okdi N, Elkareh J, Gupta S, Gohara S, Fedorova OV, Cooper CJ, Xie Z, Malhotra D, Bagrov AY, Shapiro JI. Spironolactone attenuates experimental uremic cardiomyopathy by antagonizing marinobufagenin. Hypertension 2009; 54:1313-20. [PMID: 19884563 DOI: 10.1161/hypertensionaha.109.140038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spironolactone has been noted to attenuate cardiac fibrosis. We have observed that the cardiotonic steroid marinobufagenin plays an important role in the diastolic dysfunction and cardiac fibrosis seen with experimental renal failure. We performed the following studies to determine whether and how spironolactone might ameliorate these changes. First, we studied rats subjected to partial nephrectomy or administration of exogenous marinobufagenin. We found that spironolactone (20 mg/kg per day) attenuated the diastolic dysfunction as assessed by ventricular pressure-volume loops and essentially eliminated cardiac fibrosis as assessed by trichrome staining and Western blot. Next, we examined the effects of spironolactone and its major metabolite, canrenone (both 100 nM), on marinobufagenin stimulation of rat cardiac fibroblasts. Both spironolactone and canrenone prevented the stimulation of collagen production by 1 nM marinobufagenin but not 100 nM marinobufagenin, as assessed by proline incorporation and procollagen 1 expression, as well as signaling through the sodium-potassium-ATPase, as evidenced by protein kinase C isoform delta translocation and extracellular signal regulated kinase 1/2 activation. Both spironolactone and canrenone also altered ouabain binding to cultured porcine cells in a manner consistent with competitive inhibition. Our data suggest that some of the antifibrotic effects of spironolactone may be attributed to antagonism of marinobufagenin signaling through the sodium-potassium-ATPase.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614-2598, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The extracellular cardiac matrix (ECCM) plays an important role in the support of myocytes and fibroblasts. ECCM turnover is influenced by ischemia, stretch, inflammation, and neurohormonal mediators. Myocardial fibrosis is the consequence of several pathologic processes mediated by mechanical, neurohormonal, and cytokine factors. It is a major determinant of diastolic dysfunction and pumping capacity and may result in tissue heterogeneity, dys-synchrony, and arrhythmias. The measurement of various serum peptides arising from the metabolism of collagen types 1 and 3, of degradation fragments, and of specific metalloproteinases may provide noninvasive assessment of fibrosis. ECCM biomarkers are clinically useful tools, particularly given the potential for cardioprotective and cardioreparative pharmacologic strategies.
Collapse
Affiliation(s)
- Faiez Zannad
- Hôpital Jeanne d'Arc, Dommartin-les-Toul, France
| | | |
Collapse
|
44
|
Klusonová P, Reháková L, Borchert G, Vagnerová K, Neckár J, Ergang P, Miksík I, Kolár F, Pácha J. Chronic intermittent hypoxia induces 11beta-hydroxysteroid dehydrogenase in rat heart. Endocrinology 2009; 150:4270-7. [PMID: 19470702 DOI: 10.1210/en.2008-1493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Corticosteroids are known to not only regulate electrolyte homeostasis but also play a role in the cardiovascular system, including myocardial remodeling. Because transgenic mice that overexpress 11beta-hydroxysteroid dehydrogenase (11HSD) type 2 in cardiomyocytes have been shown to spontaneously develop cardiac hypertrophy and fibrosis, we investigated whether changes in the cardiac metabolism of glucocorticoids accompany remodeling of the heart under physiological conditions. In the present study, glucocorticoid metabolism and 11HSD2 were explored in the hearts of rats exposed to chronic intermittent hypobaric hypoxia (CIH), which induces hypertrophy and fibrosis of the right and less of the left ventricle. We first demonstrated that adaptation to CIH led to a significant increase in 11HSD2 transcript levels and activity in the myocardium. In contrast, neither 11HSD1 activity and mRNA level nor the abundance of mineralocorticoid and glucocorticoid receptor mRNA were up-regulated. The adaptation to CIH also led to an increase of 11HSD2 mRNA in isolated cardiomyocytes, whereas 11HSD1, glucocorticoid receptor, and mineralocorticoid receptor mRNA levels were not changed in comparison with the cardiomyocytes of control normoxic rats. The changes in cardiac metabolism of glucocorticoids were accompanied by inflammatory responses. The expression levels of the proinflammatory markers cyclooxygenase-2 and osteopontin were significantly increased in both the myocardium and the cardiomyocytes isolated from rats exposed to CIH. These findings suggest that myocardial remodeling induced by CIH is associated with the up-regulation of cardiac 11HSD2. Consequently, local metabolism of glucocorticoids could indeed play a role in cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Petra Klusonová
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Krc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int 2009; 76:877-84. [PMID: 19641483 DOI: 10.1038/ki.2009.269] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperkalemia is a common life-threatening problem in hemodialysis patients. Because glycyrrhetinic acid (GA) inhibits the enzyme 11beta-hydroxy-steroid dehydrogenase II and thereby increases cortisol availability to the colonic mineralocorticoid receptor, it has the potential to lower serum potassium concentrations. To test this, 10 patients in a 6 month prospective, double-blind, placebo-controlled crossover study were given cookies or bread rolls supplemented with glycyrrhetinic acid or placebo. Twenty-four-hour blood pressure measurements were performed at baseline and week 6 and 12 of each treatment period. The ratio of plasma cortisol/cortisone was significantly increased in all patients on GA as compared to baseline or placebo, indicating appropriate enzyme inhibition. Nine of the 10 patients had a persistent decrease in predialysis serum potassium concentration. On GA, mean predialysis serum potassium was significantly lower than at baseline or on placebo. On placebo, serum potassium was significantly elevated above the upper limit of normal in 76% compared to 30% of measurements during GA treatment. Furthermore, on this treatment the frequency of severe hyperkalemia significantly decreased from 9% to 0.6%. No differences were found in parameters reflecting sodium retention. Although these studies show that prolonged GA supplementation persistently lowers serum potassium in dialysis patients, a long-term toxicity study will be mandatory before we recommend the routine use of this treatment.
Collapse
|
46
|
Becker GJ, Hewitson TD, Chrysostomou A. Aldosterone in clinical nephrology--old hormone, new questions. Nephrol Dial Transplant 2009; 24:2316-21. [DOI: 10.1093/ndt/gfp256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
|
48
|
Abstract
Although elevated levels of aldosterone are associated with vascular inflammation, the proinflammatory pathways of aldosterone are not completely defined. We now show that aldosterone triggers endothelial cell exocytosis, the first step in leukocyte trafficking. Exogenous aldosterone stimulates endothelial exocytosis of Weibel-Palade bodies, externalizing P-selectin and releasing von Willebrand factor. Spironolactone, a nonselective mineralocorticoid receptor (MR) blocker, antagonizes aldosterone-induced endothelial exocytosis. Knockdown of the MR also decreases exocytosis, suggesting that the MR mediates exocytosis. Aldosterone triggers exocytosis within minutes, and this effect is not inhibited by actinomycin D, suggesting a nongenomic effect of aldosterone. Aldosterone treatment of endothelial cells increases leukocyte adherence to endothelial cells in culture. Taken together, our data suggest that aldosterone activates vascular inflammation in part through nongenomic, MR-mediated pathways. Aldosterone antagonism may decrease vascular inflammation and cardiac fibrosis in part by blocking endothelial exocytosis.
Collapse
|
49
|
|
50
|
Wildling L, Hinterdorfer P, Kusche-Vihrog K, Treffner Y, Oberleithner H. Aldosterone receptor sites on plasma membrane of human vascular endothelium detected by a mechanical nanosensor. Pflugers Arch 2008; 458:223-30. [DOI: 10.1007/s00424-008-0615-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/30/2008] [Indexed: 12/18/2022]
|