1
|
Lindley AK, Arrant E, Costello ML, Hantz RK, Kelly AM, Mangiamele LA, Thompson RR. Acute effects of estradiol on shoaling in male and female zebrafish (Danio rerio). Horm Behav 2025; 168:105691. [PMID: 39904285 DOI: 10.1016/j.yhbeh.2025.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The role that estrogens play in the dynamic modulation of social behaviors related to reproduction has been well established, yet whether they can acutely modulate social responses outside of reproductive contexts remains less clear. Further, while estrogens typically promote aggressive responses in competitive contexts, especially in territorial species, it is possible they enhance non-sexual, prosocial interactions in other contexts, especially in species that live in groups. We therefore tested the acute effects of two doses of estradiol (E2) and of an aromatase inhibitor, Fadrozole, on social approach/preference responses for same-sex shoals in male and female zebrafish, as well as the effects of an agonist for the membrane G-protein coupled estrogen receptor (GPER). Estradiol, added to the water at a dose of 10-6 M, was able to significantly increase approach/preference responses in both sexes in multiple experiments in <1 h, whereas Fadrozole inhibited social approach responses 1 h and 17 h after exposure in females, but not in males. A GPER agonist did not enhance social preference responses like E2 did. Neither the effects of E2 nor FAD were paralleled by influences on measures of stress/anxiety, indicating E2 rapidly increases tendencies to approach and maintain proximity to groups in this highly social species through direct actions on social brain circuits.
Collapse
Affiliation(s)
- Abel K Lindley
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America
| | - Ella Arrant
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America
| | - Maya L Costello
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America
| | - Rachel K Hantz
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA, United States of America
| | - Richmond R Thompson
- Program in Neuroscience and Behavioral Biology, Oxford College of Emory University, Oxford, GA, United States of America; Department of Psychology, Oxford College of Emory University, Oxford, GA, United States of America.
| |
Collapse
|
2
|
González-Flores O, Garcia-Juárez M, Tecamachaltzi-Silvarán MB, Lucio RA, Ordoñez RD, Pfaus JG. Cellular and molecular mechanisms of action of ovarian steroid hormones. I: Regulation of central nervous system function. Neurosci Biobehav Rev 2024; 167:105937. [PMID: 39510217 DOI: 10.1016/j.neubiorev.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The conventional way steroid hormones work through receptors inside cells is widely acknowledged. There are unanswered questions about what happens to the hormone in the end and why there isn't always a strong connection between how much tissue takes up and its biological effects through receptor binding. Steroid hormones can also have non-traditional effects that happen quickly but don't involve entering the cell. Several possible mechanisms for these non-traditional actions include (a) changes in membrane fluidity, (b) steroid hormones acting on receptors on the outer surface of cells, (c) steroid hormones regulating GABAA receptors on cell membranes, and (d) activation of steroid receptors by factors like EGF, IGF-1, and dopamine. Data also suggests that steroid hormones may be inserted into DNA through receptors, acting as transcription factors. These proposed new mechanisms of action should not be seen as challenging the conventional mechanism. Instead, they contribute to a more comprehensive understanding of how hormones work, allowing for rapid, short-term, and prolonged effects to meet the body's physiological needs.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Raymundo Domínguez Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Gardner J, Eiger DS, Hicks C, Choi I, Pham U, Chundi A, Namjoshi O, Rajagopal S. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization. Sci Signal 2024; 17:eadd9139. [PMID: 38349966 PMCID: PMC10927030 DOI: 10.1126/scisignal.add9139] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of β-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.
Collapse
Affiliation(s)
- Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Ojas Namjoshi
- Center for Drug Discovery RTI International, Research Triangle Park, NC, 27709, USA
- Present address: Engine Biosciences, 733 Industrial Rd., San Carlos, CA, 94070, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
5
|
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain's Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023; 13:1405. [PMID: 37759805 PMCID: PMC10526964 DOI: 10.3390/biom13091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| |
Collapse
|
6
|
Urban N, Leonhardt M, Schaefer M. Multiplex G Protein-Coupled Receptor Screen Reveals Reliably Acting Agonists and a Gq-Phospholipase C Coupling Mode of GPR30/GPER1. Mol Pharmacol 2023; 103:48-62. [PMID: 36400433 DOI: 10.1124/molpharm.122.000580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the most versatile family of pharmacological target proteins. For some "orphan" GPCRs, no ligand or drug-like modulator is known. In this study, we have established and applied a parallelized assay to coscreen 29 different human GPCRs. Three compounds, chlorhexidine, Lys-05, and 9-aminoacridine, triggered transient Ca2+ signals linked to the expression of GPR30. GPR30, also named G protein-coupled estrogen receptor 1 (GPER1), was reported to elicit increases in cAMP in response to 17β-estradiol, 4-hydroxytamoxifen, or G-1. These findings could, however, not be reproduced by other groups, and the deorphanization of GPR30 is, therefore, intensely disputed. The unbiased screen and following experiments in transiently or stably GPR30-overexpressing HEK293 cells did not show responses to 17β-estradiol, 4-hydroxytamoxifen, or G-1. A thorough analysis of the activated signaling cascade revealed a canonical Gq-coupled pathway, including phospholipase C, protein kinase C and ERK activation, receptor internalization, and sensitivity to the Gq inhibitor YM-254890. When expressed in different cell lines, the localization of a fluorescent GPR30 fusion protein appeared variable. An efficient integration into the plasma membrane and stronger functional responses were found in HEK293 and in MCF-7 cells, whereas GPR30 appeared mostly retained in endomembrane compartments in Cos-7 or HeLa cells. Thus, conflicting findings may result from the use of different cell lines. The newly identified agonists and the finding that GPR30 couples to Gq are expected to serve as a starting point for identifying physiologic responses that are controlled by this GPCR. SIGNIFICANCE STATEMENT: This study has identified and thoroughly characterized novel and reliably acting agonists of the G protein-coupled receptor GPER1/GPR30. Applying these agonists, this study demonstrates that GPR30 couples to the canonical Gq-phospholipase C pathway and is rapidly internalized upon continuous exposure to the agonists.
Collapse
Affiliation(s)
- Nicole Urban
- Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Marion Leonhardt
- Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Michael Schaefer
- Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| |
Collapse
|
7
|
Guthrie GL, Almutlaq RN, Sugahara S, Butt MK, Brooks CR, Pollock DM, Gohar EY. G protein-coupled estrogen receptor 1 regulates renal endothelin-1 signaling system in a sex-specific manner. Front Physiol 2023; 14:1086973. [PMID: 36733911 PMCID: PMC9887121 DOI: 10.3389/fphys.2023.1086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12-16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system.
Collapse
Affiliation(s)
- Ginger L. Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rawan N. Almutlaq
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sho Sugahara
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Craig R. Brooks
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David M. Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Eman Y. Gohar,
| |
Collapse
|
8
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
9
|
Bertoni APS, Manfroi PDA, Tomedi J, Assis-Brasil BM, de Souza Meyer EL, Furlanetto TW. The gene expression of GPER1 is low in fresh samples of papillary thyroid carcinoma (PTC), and in silico analysis. Mol Cell Endocrinol 2021; 535:111397. [PMID: 34273443 DOI: 10.1016/j.mce.2021.111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
Papillary thyroid cancer (PTC), whose incidence has been increasing in the last years, occurs more frequently in women. Experimental studies suggested that estrogen could be an important risk factor for the higher female incidence. In fact, it has been demonstrated that 17β-estradiol (E2) could increase proliferation and dedifferentiation in thyroid follicular cells. Genomic estrogen responses are typically mediated through classical estrogen receptors, the α and β isoforms, which have been described in normal and abnormal human thyroid tissue. Nevertheless, effects mediated through G protein estrogen receptor 1 (GPR30/GPER/GPER1), described in some thyroid cancer cell lines, could be partially responsible for the regulation of growth in normal cells. In this study, GPER1 gene and protein expression are described in non-malignant and in papillary thyroid cancer (PTC), as well as its association with clinical features of patients with PTC. The GPER1 expression was lower in PTC as compared to paired non-malignant thyroid tissues in fresh samples of PTC and in silico analysis of GEO and TCGA databases. In PTC cases of TCGA database, low GPER1 mRNA expression was independently associated with metastatic lymph nodes, female gender, and BRAF mutation. Besides, GPER1 mRNA levels were positively correlated with mRNA levels of thyroid differentiation genes. These results support the hypothesis that GPER1 have a role in PTC tumorigenesis and might be a potential target for its therapy. Further studies are needed to determine the functionality of these receptors in normal and diseased thyroid.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde (DCBS) e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Patrícia de Araujo Manfroi
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Joelson Tomedi
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, Brazil
| | | | | | - Tania Weber Furlanetto
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.
| |
Collapse
|
10
|
Quigley JA, Logsdon MK, Turner CA, Gonzalez IL, Leonardo NB, Becker JB. Sex differences in vulnerability to addiction. Neuropharmacology 2021; 187:108491. [PMID: 33567305 PMCID: PMC7979496 DOI: 10.1016/j.neuropharm.2021.108491] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
This article reviews evidence for sex differences in vulnerability to addiction with an emphasis on the neural mechanisms underlying these differences. Sex differences in the way that the gonadal hormone, estradiol, interacts with the ascending telencephalic dopamine system results in sex differences in motivated behaviors, including drug-seeking. In rodents, repeated psychostimulant exposure enhances incentive sensitization to a greater extent in females than males. Estradiol increases females' motivation to attain psychostimulants and enhances the value of drug related cues, which ultimately increases their susceptibility towards spontaneous relapse. This, along with females' dampened ability to alter decisions regarding risky behaviors, enhances their vulnerability for escalation of drug use. In males, recent evidence suggests that estradiol may be protective against susceptibility towards drug-preference. Sex differences in the actions of estradiol are reviewed to provide a foundation for understanding how future research might enhance understanding of the mechanisms of sex differences in addiction-related behaviors, which are dependent on estradiol receptor (ER) subtype and the region of the brain they are acting in. A comprehensive review of the distribution of ERα, ERβ, and GPER1 throughout the rodent brain are provided along with a discussion of the possible ways in which these patterns differentially regulate drug-taking between the sexes. The article concludes with a brief discussion of the actions of gonadal hormones on the circuitry of the stress system, including the hypothalamic pituitary adrenal axis and regulation of corticotropin-releasing factor. Sex differences in the stress system can also contribute to females' enhanced vulnerability towards addiction.
Collapse
Affiliation(s)
- Jacqueline A Quigley
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Molly K Logsdon
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Christopher A Turner
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Ivette L Gonzalez
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - N B Leonardo
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Jill B Becker
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA.
| |
Collapse
|
11
|
Marraudino M, Carrillo B, Bonaldo B, Llorente R, Campioli E, Garate I, Pinos H, Garcia-Segura LM, Collado P, Grassi D. G Protein-Coupled Estrogen Receptor Immunoreactivity in the Rat Hypothalamus Is Widely Distributed in Neurons, Astrocytes, and Oligodendrocytes, Fluctuates during the Estrous Cycle, and Is Sexually Dimorphic. Neuroendocrinology 2021; 111:660-677. [PMID: 32570260 DOI: 10.1159/000509583] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The membrane-associated G protein-coupled estrogen receptor 1 (GPER) mediates the regulation by estradiol of arginine-vasopressin immunoreactivity in the supraoptic and paraventricular hypothalamic nuclei of female rats and is involved in the estrogenic control of hypothalamic regulated functions, such as food intake, sexual receptivity, and lordosis behavior. OBJECTIVE To assess GPER distribution in the rat hypothalamus. METHODS GPER immunoreactivity was assessed in different anatomical subdivisions of five selected hypothalamic regions of young adult male and cycling female rats: the arcuate nucleus, the lateral hypothalamus, the paraventricular nucleus, the supraoptic nucleus, and the ventromedial hypothalamic nucleus. GPER immunoreactivity was colocalized with NeuN as a marker of mature neurons, GFAP as a marker of astrocytes, and CC1 as a marker of mature oligodendrocytes. RESULTS GPER immunoreactivity was detected in hypothalamic neurons, astrocytes, and oligodendrocytes. Sex and regional differences and changes during the estrous cycle were detected in the total number of GPER-immunoreactive cells and in the proportion of neurons, astrocytes, and oligodendrocytes that were GPER-immunoreactive. CONCLUSIONS These findings suggest that estrogenic regulation of hypothalamic function through GPER may be different in males and females and may fluctuate during the estrous cycle in females.
Collapse
Affiliation(s)
- Marilena Marraudino
- Department of Neuroscience "Rita Levi Montalcini," Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Beatriz Carrillo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Brigitta Bonaldo
- Department of Neuroscience "Rita Levi Montalcini," Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Ricardo Llorente
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
| | - Elia Campioli
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
| | - Iciar Garate
- Department of Physiotherapy, Podology, and Dance, Universidad Europea de Madrid, Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Daniela Grassi
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain,
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain,
- Instituto Cajal, CSIC, and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain,
| |
Collapse
|
12
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Kelly AM, Wilson LC. Aggression: Perspectives from social and systems neuroscience. Horm Behav 2020; 123:104523. [PMID: 31002771 DOI: 10.1016/j.yhbeh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023]
Abstract
Exhibiting behavioral plasticity in order to mount appropriate responses to dynamic and novel social environments is crucial to the survival of all animals. Thus, how animals regulate flexibility in the timing, duration, and intensity of specific behaviors is of great interest to biologists. In this review, we discuss how animals rapidly respond to social challenges, with a particular focus on aggression. We utilize a conceptual framework to understand the neural mechanisms of aggression that is grounded in Wingfield and colleagues' Challenge Hypothesis, which has profoundly influenced how scientists think about aggression and the mechanisms that allow animals to exhibit flexible responses to social instability. Because aggressive behavior is rooted in social interactions, we propose that mechanisms modulating prosocial behavior may be intricately tied to mechanisms of aggression. Therefore, in order to better understand how aggressive behavior is mediated, we draw on perspectives from social neuroscience and discuss how social context, species-typical behavioral phenotype, and neural systems commonly studied in relation to prosocial behavior (i.e., neuropeptides) contribute to organizing rapid responses to social challenges. Because complex behaviors are not the result of one mechanism or a single neural system, we consider how multiple neural systems important for prosocial and aggressive behavior (i.e., neuropeptides and neurosteroids) interact in the brain to produce behavior in a rapid, context-appropriate manner. Applying a systems neuroscience perspective and seeking to understand how multiple systems functionally integrate to rapidly modulate behavior holds great promise for expanding our knowledge of the mechanisms underlying social behavioral plasticity.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | - Leah C Wilson
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
14
|
Balapattabi K, Little JT, Bachelor ME, Cunningham RL, Cunningham JT. Sex Differences in the Regulation of Vasopressin and Oxytocin Secretion in Bile Duct-Ligated Rats. Neuroendocrinology 2020; 111:237-248. [PMID: 32335554 PMCID: PMC7584765 DOI: 10.1159/000508104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyponatremia due to elevated arginine vasopressin (AVP) secretion increases mortality in liver failure patients. No previous studies have addressed sex differences in hyponatremia in liver failure animal models. OBJECTIVE This study addressed this gap in our understanding of the potential sex differences in hyponatremia associated with increased AVP secretion. METHODS This study tested the role of sex in the development of hyponatremia using adult male, female, and ovariectomized (OVX) female bile duct-ligated (BDL) rats. RESULTS All BDL rats had significantly increased liver to body weight ratios compared to sham controls. Male BDL rats had hyponatremia with significant increases in plasma copeptin and FosB expression in supraoptic AVP neurons compared to male shams (all p < 0.05; 5-7). Female BDL rats did not become hyponatremic or demonstrate increased supraoptic AVP neuron activation and copeptin secretion compared to female shams. Plasma oxytocin was significantly higher in female BDL rats compared to female sham (p < 0.05; 6-10). This increase was not observed in male BDL rats. Ovariectomy significantly decreased plasma estradiol in sham rats compared to intact female sham (p < 0.05; 6-10). However, circulating estradiol was significantly elevated in OVX BDL rats compared to the OVX and female shams (p < 0.05; 6-10). Adrenal estradiol, testosterone, and dehydroepiandrosterone (DHEA) were measured to identify a possible source of circulating estradiol in OVX BDL rats. The OVX BDL rats had significantly increased adrenal estradiol along with significantly decreased adrenal testosterone and DHEA compared to OVX shams (all p < 0.05; 6-7). Plasma osmolality, hematocrit, copeptin, and AVP neuron activation were not significantly different between OVX BDL and OVX shams. Plasma oxytocin was significantly higher in OVX BDL rats compared to OVX sham. CONCLUSIONS Our results show that unlike male BDL rats, female and OVX BDL rats did not develop hyponatremia, supraoptic AVP neuron activation, or increased copeptin secretion compared to female shams. Adrenal estradiol might have compensated for the lack of ovarian estrogens in OVX BDL rats.
Collapse
Affiliation(s)
- Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA,
| |
Collapse
|
15
|
Antalikova J, Secova P, Horovska L, Krejcirova R, Simonik O, Jankovicova J, Bartokova M, Tumova L, Manaskova-Postlerova P. Missing Information from the Estrogen Receptor Puzzle: Where Are They Localized in Bull Reproductive Tissues and Spermatozoa? Cells 2020; 9:cells9010183. [PMID: 31936899 PMCID: PMC7016540 DOI: 10.3390/cells9010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues. In this study, we analyzed the presence of all types of ERs (ESR1, ESR2, and GPER1) in bull testicular and epididymal tissues and epididymal and ejaculated spermatozoa, and we characterize them here for the first time. We observed different localizations of each type of ER in the sperm head by immunofluorescent microscopy. Additionally, using a selected polyclonal antibody, we found that each type of ER in bull sperm extracts had two isoforms with different molecular masses. The detailed detection of ERs is a prerequisite not only for understanding the effect of estrogen on all reproductive events but also for further studying the negative effect of environmental estrogens (endocrine disruptors) on processes that lead to fertilization.
Collapse
Affiliation(s)
- Jana Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Petra Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lubica Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Romana Krejcirova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Jana Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Michaela Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Pavla Manaskova-Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-22438-2934
| |
Collapse
|
16
|
Manfroi PDA, Bertoni APS, Furlanetto TW. GPER1 in the thyroid: A systematic review. Life Sci 2020; 241:117112. [DOI: 10.1016/j.lfs.2019.117112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
17
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac‐Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. Proteomics Clin Appl 2019; 13:e1900029. [PMID: 31282103 PMCID: PMC6771495 DOI: 10.1002/prca.201900029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M. Alkhanjaf
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Molecular Biotechnology, Department of Clinical Laboratory SciencesCollege of Applied Medical sciencesNajran UniversityNajran61441Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Mark Crawford
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| | - Gabriella Pinto
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
- Department of Chemical SciencesUniversity of Naples Federico II80126NaplesItaly
| | - Jasminka Godovac‐Zimmermann
- Proteomics and Molecular Cell DynamicsDivision of MedicineSchool of Life and Medical SciencesUniversity College LondonNW3 2PFLondonUK
| |
Collapse
|
18
|
Alkhanjaf AAM, Raggiaschi R, Crawford M, Pinto G, Godovac-Zimmermann J. Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen. PROTEOMICS. CLINICAL APPLICATIONS 2019. [PMID: 31282103 DOI: 10.1002/prca.201900029,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The purpose of this study is to apply quantitative high-throughput proteomics methods to investigate dynamic aspects of protein changes in nucleocytoplasmic distribution of proteins and of total protein abundance for MCF-7 cells exposed to tamoxifen (Tam) in order to reveal the agonistic and antagonistic roles of the drug. EXPERIMENTAL DESIGN The MS-based global quantitative proteomics with the analysis of fractions enriched in target subcellular locations is applied to measure the changes in total abundance and in the compartmental abundance/distribution between the nucleus and cytoplasm for several thousand proteins differentially expressed in MCF-7 cells in response to Tam stimulation. RESULTS The response of MCF-7 cells to the Tam treatment shows significant changes in subcellular abundance rather than in their total abundance. The bioinformatics study reveals the relevance of moonlighting proteins and numerous pathways involved in Tam response of MCF-7 including some of which may explain the agonistic and antagonistic roles of the drug. CONCLUSIONS The results indicate possible protective role of Tam against cardiovascular diseases as well as its involvement in G-protein coupled receptors pathways that enhance breast tissue proliferation.
Collapse
Affiliation(s)
- Abdulrab Ahmed M Alkhanjaf
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Molecular Biotechnology, Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Roberto Raggiaschi
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| | - Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK.,Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, NW3 2PF, London, UK
| |
Collapse
|
19
|
Human G protein-coupled receptor 30 is N-glycosylated and N-terminal domain asparagine 44 is required for receptor structure and activity. Biosci Rep 2019; 39:BSR20182436. [PMID: 30760632 PMCID: PMC6390128 DOI: 10.1042/bsr20182436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptor 30 (GPR30), or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used human embryonic kidney (HEK) 293 (HEK293) cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targetting the receptor N-terminal domain (N-domain) to investigate the role of N-glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated extracellular-regulated protein kinase (ERK) 1/2 (ERK1/2) activity. GPR30 expression was complex with receptor species spanning from approximately 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N-glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N-glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at approximately 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1–42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1–42, including specifically Asn25 and Asn32, do not play any major structural or functional role(s).
Collapse
|
20
|
Blockade of miR-3614 maturation by IGF2BP3 increases TRIM25 expression and promotes breast cancer cell proliferation. EBioMedicine 2019; 41:357-369. [PMID: 30797711 PMCID: PMC6444029 DOI: 10.1016/j.ebiom.2018.12.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The cross-talk between RNA binding proteins (RBPs) and microRNAs (miRNAs) in the regulation of gene expression is a complex process. Here, we describe a new mode of regulation of TRIM25 expression mediated by an antagonistic interplay between IGF2BP3 and miR-3614-3p. METHODS The expression level of TRIM25, IGF2BP3, pri-miR-3614 and miR-3614-3p in breast cancer (BC) tissues, non-tumor tissues and BC cell lines were detected by qRT-PCR, Western blot and Immunohistochemistry (IHC). Binding of miR-3614-3p and IGF2BP3 to TRIM25 RNA was verified using luciferase activation assays, RNA immunoprecipitation (RIP) and biotin pull-down assays. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and related mechanism of IGF2BP3-miR-3614-3p-TRIM25 axis in in breast cancer cells proliferation. FINDINGS We found that an intragenic miRNA-3614-3p inhibits the expression of its host gene TRIM25 by binding to its 3'- untranslated region (UTR). Interestingly, IGF2BP3 can competitively occupy this binding site and inhibit miRNA-3614 maturation, thereby protecting TRIM25 mRNA from miR-3614-mediated degradation. The overexpression of miR-3614-3p dramatically inhibited breast cancer cell growth through the downregulation of TRIM25. Furthermore, the silencing of IGF2BP3 reduced TRIM25 expression, suppressed cell proliferation, and exhibited a synergistic effect with miR-3614-3p overexpression. INTERPRETATION Collectively, these results demonstrate that control of TRIM25 RNA by an interplay between IGF2BP3 and miR-3614-3p represents a mechanism for breast cancer cell proliferation. FUND: The scientific research and sharing platform construction project of Shaanxi Province, Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, China Postdoctoral Science Foundation and The National Natural Science Foundation of China.
Collapse
|
21
|
Xia T, Liu Q, Ye Q, Xing W, Wang D, Li J, Zang ZJ. Serum oxytocin profiles in patients with repeated implantation failure during IVF cycles. Gynecol Endocrinol 2018; 34:1048-1052. [PMID: 29909692 DOI: 10.1080/09513590.2018.1480715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE The objective of this study is to investigate the association between oxytocin (OT) levels and repeated implantation failure (RIF) during in vitro fertilization-embryo transfer (IVF-ET) cycles. METHODS Blood samples were collected from 108 women undergoing IVF-ET treatment at the following time points: gonadotrophin (Gn) administration day (Gn Day 0), hCG administration day (hCG Day 0), ET administration day (ET Day 0), and 5 d after ET (ET Day 5). Serum OT and steroid profiles were measured and compared among three groups: Group A included 38 women with a history of RIF, Group B included 41 women who became pregnant following the first fresh ET, and Group C included 29 women who did not become pregnant following the first fresh ET. RESULTS The OT levels of the three groups at different time points were not significantly different. Serum OT levels were significantly higher on hCG Day 0, ET Day 0, and ET Day 5 than on Gn Day 0, and they were significantly correlated with the estradiol concentration on ET Day 0. CONCLUSIONS RIF patients do not have elevated serum OT levels during IVF-ET cycles.
Collapse
Affiliation(s)
- Tingting Xia
- a Department of Infertility and Sexual Medicine , The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
- b Reproductive Medical Center, Reproductive Medical Center , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Qiuli Liu
- c Cell-gene Therapy Translational Medicine Research Center , The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Qingjian Ye
- d Department of Gynecology , The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Weijie Xing
- a Department of Infertility and Sexual Medicine , The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Dong Wang
- e Department of Immunology , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Jie Li
- b Reproductive Medical Center, Reproductive Medical Center , The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Zhi-Jun Zang
- a Department of Infertility and Sexual Medicine , The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
22
|
Diversity of central oxytocinergic projections. Cell Tissue Res 2018; 375:41-48. [PMID: 30498946 DOI: 10.1007/s00441-018-2960-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
Localization and distribution of hypothalamic neurons expressing the nonapeptide oxytocin has been extensively studied. Their projections to the neurohypophyseal system release oxytocin into the systemic circulation thus controlling endocrine events associated with reproduction in males and females. Oxytocinergic neurons seem to be confined to the ventral hypothalamus in all mammals. Groups of such cells located outside the supraoptic and the paraventricular nuclei are summarized as "accessory neurons." Although evolutionary probably associated with the classical magocellular nuclei, accessory oxytocin neurons seem to consist of rather heterogenous groups: Periventricular oxytocin neurons may gain contact to the third ventricle to secrete the peptide into the cerebrospinal fluid. Perivascular neurons may be involved in control of cerebral blood flow. They may also gain access to the portal circulation of the anterior pituitary lobe. Central projections of oxytocinergic neurons extend to portions of the limbic system, to the mesencephalon and to the brain stem. Such projections have been associated with control of behaviors, central stress response as well as motor and vegetative functions. Activity of the different oxytocinergic systems seems to be malleable to functional status, strongly influenced by systemic levels of steroid hormones.
Collapse
|
23
|
Vajaria R, Vasudevan N. Is the membrane estrogen receptor, GPER1, a promiscuous receptor that modulates nuclear estrogen receptor-mediated functions in the brain? Horm Behav 2018; 104:165-172. [PMID: 29964007 DOI: 10.1016/j.yhbeh.2018.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen signals both slowly to regulate transcription and rapidly to activate kinases and regulate calcium levels. Both rapid, non-genomic signaling as well as genomic transcriptional signaling via intracellular estrogen receptors (ER)s can change behavior. Rapid non-genomic signaling is initiated from the plasma membrane by a G-protein coupled receptor called GPER1 that binds 17β-estradiol. GPER1 or GPR30 is one of the candidates for a membrane ER (mER) that is not only highly expressed in pathology i.e. cancers but also in several behaviorally-relevant brain regions. In the brain, GPER1 signaling, in response to estrogen, facilitates neuroprotection, social behaviors and cognition. In this review, we describe several notable characteristics of GPER1 such as the ability of several endogenous steroids as well as artificially synthesized molecules to bind the GPER1. In addition, GPER1 is localized to the plasma membrane in breast cancer cell lines but may be present in the endoplasmic reticulum or the Golgi apparatus in the hippocampus. Unusually, GPER1 can also translocate to the perinuclear space from the plasma membrane. We explore the idea that subcellular localization and ligand promiscuity may determine the varied downstream signaling cascades of the activated GPER1. Lastly, we suggest that GPER1 can act as a modulator of ERα-mediated action on a convergent target, spinogenesis, in neurons that in turn drives female social behaviors such as lordosis and social learning.
Collapse
Affiliation(s)
- Ruby Vajaria
- School of Biological Sciences, Hopkins Building, University of Reading WhiteKnights Campus, Reading RG6 6AS, United Kingdom.
| | - Nandini Vasudevan
- School of Biological Sciences, Hopkins Building Room 205, University of Reading WhiteKnights Campus, Reading RG6 6AS, United Kingdom.
| |
Collapse
|
24
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
25
|
Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 2018; 176:49-56. [PMID: 28249728 DOI: 10.1016/j.jsbmb.2017.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The aggressiveness of breast tumors is deeply influenced by the surrounding stroma. In this regard, the functional crosstalk between cancer cells and the tumor microenvironment has received considerable attention in recent years. Cancer-associated fibroblasts (CAFs) are active components of the tumor stroma as they play a main role in the initiation, progression, metastasis and recurrence of breast malignancy. Hence, a better understanding of the mechanisms through which host stroma may contribute to cancer development would lead to novel therapeutic approaches aimed to target both tumor cells and the adjacent microenvironment. The G protein estrogen receptor (GPER/GPR30) has been involved in estrogenic signaling in normal and malignant cells, including breast cancer. It is noteworthy that the potential of GPER to mediate stimulatory effects of estrogens has been also shown in CAFs derived from patients with breast tumors, suggesting that GPER may act at the cross-road between cancer cells and these important components of the tumor microenvironment. This review recapitulates recent findings underlying the breast tumor-promoting action of CAFs, in particular their functional liaison with breast cancer cells via GPER toward the occurrence of malignant features.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
26
|
Domínguez-Ordóñez R, Garcia-Juárez M, Lima-Hernández FJ, Gómora-Arrati P, Domínguez-Salazar E, Blaustein JD, Etgen AM, González-Flores O. Lordosis facilitated by GPER-1 receptor activation involves GnRH-1, progestin and estrogen receptors in estrogen-primed rats. Horm Behav 2018; 98:77-87. [PMID: 29269179 DOI: 10.1016/j.yhbeh.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
The present study assessed the participation of membrane G-protein coupled estrogen receptor 1 (GPER-1) and gonadotropin releasing hormone 1 (GnRH-1) receptor in the display of lordosis induced by intracerebroventricular (icv) administration of G1, a GPER-1 agonist, and by unesterified 17β-estradiol (free E2). In addition, we assessed the participation of both estrogen and progestin receptors in the lordosis behavior induced by G1 in ovariectomized (OVX), E2-benzoate (EB)-primed rats. In Experiment 1, icv injection of G1 induced lordosis behavior at 120 and 240min. In Experiment 2, icv injection of the GPER-1 antagonist G15 significantly reduced lordosis behavior induced by either G1 or free E2. In addition, Antide, a GnRH-1 receptor antagonist, significantly depressed G1 facilitation of lordosis behavior in OVX, EB-primed rats. Similarly, icv injection of Antide blocked the stimulatory effect of E2 on lordosis behavior. In Experiment 3, systemic injection of either tamoxifen or RU486 significantly reduced lordosis behavior induced by icv administration of G1 in OVX, EB-primed rats. The results suggest that GnRH release activates both estrogen and progestin receptors and that this activation is important in the chain of events leading to the display of lordosis behavior in response to activation of GPER-1 in estrogen-primed rats.
Collapse
Affiliation(s)
- R Domínguez-Ordóñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - M Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - F J Lima-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - P Gómora-Arrati
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México
| | - E Domínguez-Salazar
- Area de Neurosciencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, México
| | - J D Blaustein
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - A M Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - O González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, México; Area de Neurosciencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, México.
| |
Collapse
|
27
|
Abstract
Biosynthesis and secretion of the hypothalamic nonapeptide oxytocin largely depends on steroid hormones. Estradiol, corticosterone, and vitamin D seem to be the most prominent actors. Due to their lipophilic nature, systemic steroids are thought to be capable of crossing the blood-brain barrier, thus mediating central functions including neuroendocrine and behavioral control. The actual mode of action of steroids in hypothalamic circuitry is still unknown: Most of the oxytocinergic perikarya lack nuclear steroid receptors but express proteins suspected to be membrane receptors for steroids. Oxytocin expressing neurons contain enzymes important for intrinsic steroid metabolism. Furthermore, they produce and probably liberate specific steroid-binding globulins. Rapid responses to steroid hormones may involve these binding proteins and membrane-associated receptors, rather than classic nuclear receptors and genomic pathways. Neuroendocrine regulation, reproductive behaviors, and stress response seem to depend on these mechanisms.
Collapse
Affiliation(s)
| | - Scott D Ochs
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Jack D Caldwell
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| |
Collapse
|
28
|
Hsu LH, Chu NM, Kao SH. Estrogen, Estrogen Receptor and Lung Cancer. Int J Mol Sci 2017; 18:ijms18081713. [PMID: 28783064 PMCID: PMC5578103 DOI: 10.3390/ijms18081713] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER) in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR), and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.
Collapse
Affiliation(s)
- Li-Han Hsu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan.
- Department of Medicine, National Yang-Ming University Medical School, Taipei 112, Taiwan.
| | - Nei-Min Chu
- Department of Medical Oncology, Sun Yat-Sen Cancer Center, Taipei 112, Taiwan.
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
29
|
Blitzer DS, Wells TE, Hawley WR. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats. Horm Behav 2017; 94:33-39. [PMID: 28596135 DOI: 10.1016/j.yhbeh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/20/2017] [Accepted: 06/03/2017] [Indexed: 01/23/2023]
Abstract
In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats.
Collapse
Affiliation(s)
- D S Blitzer
- Franklin and Marshall College, Department of Psychology, United States
| | - T E Wells
- Franklin and Marshall College, Department of Psychology, United States
| | - W R Hawley
- Franklin and Marshall College, Department of Psychology, United States; Edinboro University of Pennsylvania, Department of Psychology, United States.
| |
Collapse
|
30
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|
31
|
Oxytocin modulates third-party sanctioning of selfish and generous behavior within and between groups. Psychoneuroendocrinology 2017; 77:18-24. [PMID: 28006725 DOI: 10.1016/j.psyneuen.2016.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/29/2016] [Indexed: 11/21/2022]
Abstract
Human groups function because members trust each other and reciprocate cooperative contributions, and reward others' cooperation and punish their non-cooperation. Here we examined the possibility that such third-party punishment and reward of others' trust and reciprocation is modulated by oxytocin, a neuropeptide generally involved in social bonding and in-group (but not out-group) serving behavior. Healthy males and females (N=100) self-administered a placebo or 24 IU of oxytocin in a randomized, double-blind, between-subjects design. Participants were asked to indicate (incentivized, costly) their level of reward or punishment for in-group (outgroup) investors donating generously or fairly to in-group (outgroup) trustees, who back-transferred generously, fairly or selfishly. Punishment (reward) was higher for selfish (generous) investments and back-transfers when (i) investors were in-group rather than outgroup, and (ii) trustees were in-group rather than outgroup, especially when (iii) participants received oxytocin rather than placebo. It follows, first, that oxytocin leads individuals to ignore out-groups as long as out-group behavior is not relevant to the in-group and, second, that oxytocin contributes to creating and enforcing in-group norms of cooperation and trust.
Collapse
|
32
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
33
|
Mangiamele LA, Gomez JR, Curtis NJ, Thompson RR. GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J Comp Neurol 2016; 525:252-270. [PMID: 27283982 DOI: 10.1002/cne.24056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 04/01/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Estradiol rapidly (within 30 minutes) influences a variety of sociosexual behaviors in both mammalian and nonmammalian vertebrates, including goldfish, in which it rapidly stimulates approach responses to the visual cues of females. Such rapid neuromodulatory effects are likely mediated via membrane-associated estrogen receptors; however, the localization and distribution of such receptors within the nervous system is not well described. To begin to address this gap, we identified GPER/GPR30, a G-protein-coupled estrogen receptor, in goldfish (Carassius auratus) neural tissue and used reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization to test if GPR30 is expressed in the brain regions that might mediate visually guided social behaviors in males. We then used immunohistochemistry to determine whether GPR30 colocalizes with isotocin-producing cells in the preoptic area, a critical node in the highly conserved vertebrate social behavior network. We used quantitative (q)PCR to test whether GPR30 mRNA levels differ in males in breeding vs. nonbreeding condition and in males that were socially interacting with a female vs. a rival male. Our results show that GPR30 is expressed in the retina and in many brain regions that receive input from the retina and/or optic tectum, as well as in a few nodes in the social behavior network, including cell populations that produce isotocin. J. Comp. Neurol. 525:252-270, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Julia R Gomez
- Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA
| | - Nancy J Curtis
- Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA
| | - Richmond R Thompson
- Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA.,Department of Psychology, Bowdoin College, Brunswick, Maine, USA
| |
Collapse
|
34
|
Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER). Methods Mol Biol 2016; 1366:11-17. [PMID: 26585123 DOI: 10.1007/978-1-4939-3127-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.
Collapse
|
35
|
Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 2015; 74:125-38. [PMID: 26122294 PMCID: PMC4820286 DOI: 10.1016/j.yhbeh.2015.06.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Over the past 30 years, research has demonstrated that estrogens not only are important for female reproduction, but also play a role in a diverse array of cognitive functions. Originally, estrogens were thought to have only one receptor, localized exclusively to the cytoplasm and nucleus of cells. However, it is now known that there are at least three estrogen receptors (ERs): ERα, ERβ and G-protein coupled ER1 (GPER1). In addition to being localized to nuclei, ERα and ERβ are localized to the cell membrane, and GPER1 is also observed at the cell membrane. The mechanism through which ERs are associated with the membrane remains unclear, but palmitoylation of receptors and associations between ERs and caveolin are implicated in membrane association. ERα and ERβ are mostly observed in the nucleus using light microscopy unless they are particularly abundant. However, electron microscopy has revealed that ERs are also found at the membrane in complimentary distributions in multiple brain regions, many of which are innervated by dopamine inputs and were previously thought to contain few ERs. In particular, membrane-associated ERs are observed in the prefrontal cortex, dorsal striatum, nucleus accumbens, and hippocampus, all of which are involved in learning and memory. These findings provide a mechanism for the rapid effects of estrogens in these regions. The effects of estrogens on dopamine-dependent cognition likely result from binding at both nuclear and membrane-associated ERs, so elucidating the localization of membrane-associated ERs helps provide a more complete understanding of the cognitive effects of these hormones.
Collapse
Affiliation(s)
- Anne Almey
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
36
|
Santollo J, Daniels D. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats. Horm Behav 2015; 73:39-46. [PMID: 26093261 PMCID: PMC4546888 DOI: 10.1016/j.yhbeh.2015.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022]
Abstract
Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, United States
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, United States.
| |
Collapse
|
37
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
38
|
Santollo J, Daniels D. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents. Physiol Behav 2015; 152:431-7. [PMID: 26037634 DOI: 10.1016/j.physbeh.2015.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, United States
| | - Derek Daniels
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
39
|
Satoh K, Oti T, Katoh A, Ueta Y, Morris JF, Sakamoto T, Sakamoto H. In vivoprocessing and release into the circulation of GFP fusion protein in arginine vasopressin enhanced GFP transgenic rats: response to osmotic stimulation. FEBS J 2015; 282:2488-99. [DOI: 10.1111/febs.13291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Keita Satoh
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Takumi Oti
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Akiko Katoh
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - Yoichi Ueta
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - John F. Morris
- Department of Physiology; Anatomy and Genetics; Le Gros Clark Building; University of Oxford; UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| |
Collapse
|
40
|
Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab 2015; 26:185-92. [PMID: 25767029 PMCID: PMC4731095 DOI: 10.1016/j.tem.2015.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 01/13/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA; UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| |
Collapse
|
41
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|
42
|
Takanami K, Sakamoto H, Matsuda KI, Satoh K, Tanida T, Yamada S, Inoue K, Oti T, Sakamoto T, Kawata M. Distribution of gastrin-releasing peptide in the rat trigeminal and spinal somatosensory systems. J Comp Neurol 2014; 522:1858-73. [PMID: 24254931 DOI: 10.1002/cne.23506] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/30/2013] [Accepted: 11/15/2013] [Indexed: 12/12/2022]
Abstract
Gastrin-releasing peptide (GRP) has recently been identified as an itch-specific neuropeptide in the spinal sensory system in mice, but there are no reports of the expression and distribution of GRP in the trigeminal sensory system in mammals. We characterized and compared GRP-immunoreactive (ir) neurons in the trigeminal ganglion (TG) with those in the rat spinal dorsal root ganglion (DRG). GRP immunoreactivity was expressed in 12% of TG and 6% of DRG neurons and was restricted to the small- and medium-sized type cells. In both the TG and DRG, many GRP-ir neurons also expressed substance P and calcitonin gene-related peptide, but not isolectin B4 . The different proportions of GRP and transient receptor potential vanilloid 1 double-positive neurons in the TG and DRG imply that itch sensations via the TG and DRG pathways are transmitted through distinct mechanisms. The distribution of the axon terminals of GRP-ir primary afferents and their synaptic connectivity with the rat trigeminal sensory nuclei and spinal dorsal horn were investigated by using light and electron microscopic histochemistry. Although GRP-ir fibers were rarely observed in the trigeminal sensory nucleus principalis, oralis, and interpolaris, they were predominant in the superficial layers of the trigeminal sensory nucleus caudalis (Vc), similar to the spinal dorsal horn. Ultrastructural analysis revealed that GRP-ir terminals contained clear microvesicles and large dense-cored vesicles, and formed asymmetric synaptic contacts with a few dendrites in the Vc and spinal dorsal horn. These results suggest that GRP-dependent orofacial and spinal pruriceptive inputs are processed mainly in the superficial laminae of the Vc and spinal dorsal horn.
Collapse
Affiliation(s)
- Keiko Takanami
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Clède S, Policar C. Metal-carbonyl units for vibrational and luminescence imaging: towards multimodality. Chemistry 2014; 21:942-58. [PMID: 25376740 DOI: 10.1002/chem.201404600] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-carbonyl complexes are attractive structures for bio-imaging. In addition to unique vibrational properties due to the CO moieties enabling IR and Raman cell imaging, the appropriate choice of ancillary ligands opens up the opportunity for luminescence detection. Through a classification by techniques, past and recent developments in the application of metal-carbonyl complexes for vibrational and luminescence bio-imaging are reviewed. Finally, their potential as bimodal IR and luminescent probes is addressed.
Collapse
Affiliation(s)
- Sylvain Clède
- Ecole Normale Supérieure, PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS-ENS-UPMC, Laboratoire des Biomolécules, UMR7203, 24, rue Lhomond, 75005 Paris (France), Fax: (+33) 1-4432-3389
| | | |
Collapse
|
44
|
Laredo SA, Villalon Landeros R, Trainor BC. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms. Front Neuroendocrinol 2014; 35:447-58. [PMID: 24685383 PMCID: PMC4175137 DOI: 10.1016/j.yfrne.2014.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
Abstract
Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions.
Collapse
Affiliation(s)
- Sarah A Laredo
- Animal Behavior Graduate Group, University of California, Davis, CA 95616, United States; Center for Neuroscience, University of California, Davis, CA 95616, United States; Department of Psychology, University of California, Davis, CA 95616, United States
| | - Rosalina Villalon Landeros
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Brian C Trainor
- Animal Behavior Graduate Group, University of California, Davis, CA 95616, United States; Center for Neuroscience, University of California, Davis, CA 95616, United States; Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
45
|
Yang X, Xi TF, Li YX, Wang HH, Qin Y, Zhang JP, Cai WT, Huang MT, Shen JQ, Fan XM, Shi XZ, Xie DP. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors. World J Gastroenterol 2014; 20:10886-10894. [PMID: 25152590 PMCID: PMC4138467 DOI: 10.3748/wjg.v20.i31.10886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/25/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats.
METHODS: Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors.
RESULTS: Colon transit was slower in the cold group than in the control group (P < 0.05). Colonic smooth muscle contractile response to oxytocin decreased, and the inhibitory effect of oxytocin on muscle contractility was enhanced by cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P < 0.05). Atosiban and tetrodotoxin inhibited the effect of oxytocin on colonic motility. Oxytocin receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P < 0.05). Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P < 0.05). However, in ovariectomized rats, estradiol treatment increased blood oxytocin, and the response of colonic muscle strips to oxytocin was attenuated.
CONCLUSION: Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.
Collapse
MESH Headings
- Animals
- Cold Temperature
- Colon/innervation
- Dose-Response Relationship, Drug
- Drinking
- Estradiol/pharmacology
- Estrogen Replacement Therapy
- Female
- Gastrointestinal Motility/drug effects
- Hormone Antagonists/pharmacology
- Muscle, Smooth/innervation
- Myenteric Plexus/drug effects
- Myenteric Plexus/metabolism
- Myenteric Plexus/physiopathology
- Ovariectomy
- Oxytocin/blood
- Oxytocin/pharmacology
- Rats, Sprague-Dawley
- Receptors, Oxytocin/agonists
- Receptors, Oxytocin/antagonists & inhibitors
- Receptors, Oxytocin/metabolism
- Signal Transduction/drug effects
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Time Factors
- Water
Collapse
|
46
|
G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. Obstet Gynecol Int 2013; 2013:472720. [PMID: 24379833 PMCID: PMC3863501 DOI: 10.1155/2013/472720] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/17/2013] [Indexed: 01/28/2023] Open
Abstract
Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.
Collapse
|
47
|
Srivastava DP, Evans PD. G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. J Neuroendocrinol 2013; 25:1219-30. [PMID: 23822769 DOI: 10.1111/jne.12071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/20/2013] [Accepted: 06/29/2013] [Indexed: 11/29/2022]
Abstract
Oestrogens are now recognised to be able to initiate rapid, fast responses, in addition to their classical, longer-term actions. There is a growing appreciation of the potential implications of this mode of action for oestrogenic signalling in both neuronal and non-neuronal systems. As such, much effort has been made to determine the mechanisms that are critical for transducing these rapid effects into cellular responses. Recently, an orphan G-protein-coupled receptor (GPCR), termed GPR30, was identified as an oestrogen-sensitive receptor in cancer cells. This receptor, now term G-protein oestrogen receptor 1 (GPER1) has been the subject of many investigations, and a role for this receptor in the nervous system is now emerging. In this review, we highlight some of the more recent advances in our understanding of the distribution and subcellular localisation of this receptor in the brain, as well as some of the evidence for the potential role that this receptor may play in the brain. We then discuss some of the controversies surrounding the pharmacology of this receptor, and attempt to reconcile these by suggesting that the 'agonist-specific coupling' model of GPCR function may provide a potential explanation for some of the divergent reports of GPER1 pharmacology.
Collapse
Affiliation(s)
- D P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London, UK
| | | |
Collapse
|
48
|
Pupo M, Vivacqua A, Perrotta I, Pisano A, Aquila S, Abonante S, Gasperi-Campani A, Pezzi V, Maggiolini M. The nuclear localization signal is required for nuclear GPER translocation and function in breast Cancer-Associated Fibroblasts (CAFs). Mol Cell Endocrinol 2013; 376:23-32. [PMID: 23748028 DOI: 10.1016/j.mce.2013.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/02/2013] [Accepted: 05/30/2013] [Indexed: 12/26/2022]
Abstract
Cancer associated fibroblasts (CAFs) actively contribute to the growth and invasion of cancer cells. In recent years, the G protein estrogen receptor (GPER) has been largely involved in the estrogenic signals in diverse types of normal and tumor cells. In CAFs, GPER was localized into the nucleus, however the molecular mechanisms which regulate its nuclear shuttle remain to be clarified. In the present study, we demonstrate that in breast CAFs GPER translocates into the nucleus through an importin-dependent mechanism. Moreover, we show that a nuclear localization signal is involved in the nuclear import of GPER, in the up-regulation of its target genes c-fos and CTGF and in the migration of CAFs induced by estrogens. Our data provide novel insights into the nuclear localization and function of GPER in CAFs toward a better understanding of the estrogen action elicited through these key players of the tumor microenvironment.
Collapse
Affiliation(s)
- Marco Pupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shi Y, Liu X, Zhu P, Li J, Sham KW, Cheng SH, Li S, Zhang Y, Cheng CH, Lin H. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis. Biochem Biophys Res Commun 2013; 435:21-7. [DOI: 10.1016/j.bbrc.2013.03.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023]
|
50
|
G-protein coupled estrogen receptor 1 mediated estrogenic neuroprotection against spinal cord injury. Crit Care Med 2013; 40:3230-7. [PMID: 22975889 DOI: 10.1097/ccm.0b013e3182657560] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE What underlies the protection of estrogen against spinal cord injury remains largely unclear. Here, we investigated the expression pattern of a new estrogen receptor, G-protein coupled estrogen receptor 1 in the spinal cord and its role in estrogenic protection against spinal cord injury. DESIGN AND SETTINGS Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS The animals subjected to spinal cord injury were divided into six groups and given vehicle solution, 17β-estradiol, or G-protein coupled estrogen receptor 1 agonist G-1 at 15 mins and 24 hrs postinjury, or given nuclear estrogen receptor antagonist ICI 182,780 at 1 hr before spinal cord injury followed by 17β-estradiol administration at 15 mins and 24 hrs postinjury, or given G-protein coupled estrogen receptor 1 specific antisense or random control oligonucleotide at 4 days before spinal cord injury followed by 17β-estradiol administration at 15 mins and 24 hrs postinjury. MEASUREMENTS Male Sprague-Dawley rats were subjected to spinal cord injury using a weight-drop injury approach. Immunohistochemical assays were used to observe the distribution and cell-type expression pattern of G-protein coupled estrogen receptor 1. The terminal deoxynucleotidyl transferase dUTP nick-end labeling-staining assay and behavior tests were employed to assess the role of G-protein coupled estrogen receptor 1 in mediating estrogenic protection against spinal cord injury. MAIN RESULTS We show that G-protein coupled estrogen receptor 1 is mainly distributed in the ventral horn and white matter of the spinal cord, which is totally different from nuclear estrogen receptors. We also show that G-protein coupled estrogen receptor 1 is specifically expressed by neurons, oligodendrocytes, and microglial cells, but not astrocytes. Furthermore, estrogen treatment prevents spinal cord injury-induced apoptotic cell death and enhances functional recovery after spinal cord injury, which can be mimicked by the specific G-protein coupled estrogen receptor 1 agonist G-1 and inhibited by specific knockdown of G-protein coupled estrogen receptor 1 expression, but not pure nuclear ER antagonist ICI 182,780. Finally, we show that estrogen or G-1 up-regulates the protein expression level of G-protein coupled estrogen receptor 1 to intensify estrogenic effects during spinal cord injury. CONCLUSIONS These results reveal that G-protein coupled estrogen receptor 1 may mediate estrogenic neuroprotection against spinal cord injury, and underline the promising potential of estrogen with its new target G-protein coupled estrogen receptor 1 for the treatment of spinal cord injury patients.
Collapse
|