1
|
Mugisha S, Di X, Disoma C, Jiang H, Zhang S. Fringe family genes and their modulation of Notch signaling in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188746. [PMID: 35660646 DOI: 10.1016/j.bbcan.2022.188746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Fringes are glycosyltransferases that transfer N-acetylglucosamine to the O-linked fucose of Notch receptors. They regulate the Notch signaling activity that drives tumor formation and progression, resulting in poor prognosis. However, the specific tumor-promoting role of Fringes differs depending on the type of cancer. Although a particular Fringe member could act as a tumor suppressor in one cancer type, it may act as an oncogene in another. This review discusses the tumorigenic role of the Fringe family (lunatic fringe, manic fringe, and radical fringe) in modulating Notch signaling in various cancers. Although the crucial functions of Fringes continue to emerge as more mechanistic studies are being pursued, further translational research is needed to explore their roles and therapeutic benefits in various malignancies.
Collapse
Affiliation(s)
- Samson Mugisha
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
2
|
Aldahl J, Yu EJ, He Y, Hooker E, Wong M, Le V, Olson A, Lee DH, Kim WK, Murtaugh CL, Cunha GR, Sun Z. A pivotal role of androgen signaling in Notch-responsive cells in prostate development, maturation, and regeneration. Differentiation 2019; 107:1-10. [PMID: 30927641 PMCID: PMC6612318 DOI: 10.1016/j.diff.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Androgen signaling is essential for prostate development, morphogenesis, and regeneration. Emerging evidence also indicates a regulatory role of Notch signaling in prostate development, differentiation, and growth. However, the collaborative regulatory mechanisms of androgen and Notch signaling during prostate development, growth, and regeneration are largely unknown. Hairy and Enhancer of Split 1 (Hes1) is a transcriptional regulator of Notch signaling pathways, and its expression is responsive to Notch signaling. Hes1-expressing cells have been shown to possess the regenerative capability to repopulate a variety of adult tissues. In this study, we developed new mouse models to directly assess the role of the androgen receptor in prostatic Hes1-expressing cells. Selective deletion of AR expression in embryonic Hes1-expressing cells impeded early prostate development both in vivo and in tissue xenograft experiments. Prepubescent deletion of AR expression in Hes1-expressing cells resulted in prostate glands containing abnormalities in cell morphology and gland architecture. A population of castration-resistant Hes1-expressing cells was revealed in the adult prostate, with the ability to repopulate prostate epithelium following androgen supplementation. Deletion of AR in Hes1-expressing cells diminishes their regenerative ability. These lines of evidence demonstrate a critical role for the AR in Notch-responsive cells during the course of prostate development, morphogenesis, and regeneration, and implicate a mechanism underlying interaction between the androgen and Notch signaling pathways in the mouse prostate.
Collapse
Affiliation(s)
- Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Eun-Jeong Yu
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Yongfeng He
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Erika Hooker
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA
| | - Monica Wong
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Adam Olson
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Charles L Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gerald R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Urology, Stanford University School of Medicine, Stanford, CA 94305-5328, USA.
| |
Collapse
|
3
|
Montano M, Bushman W. Morphoregulatory pathways in prostate ductal development. Dev Dyn 2018; 246:89-99. [PMID: 27884054 DOI: 10.1002/dvdy.24478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/22/2023] Open
Abstract
The mouse prostate is a male sex-accessory gland comprised of a branched ductal network arranged into three separate bilateral lobes: the anterior, dorsolateral, and ventral lobes. Prostate ductal development is the primary morphogenetic event in prostate development and requires a complex regulation of spatiotemporal factors. This review provides an overview of prostate development and the major genetic regulators and signaling pathways involved. To identify new areas for further study, we briefly highlight the likely important, but relatively understudied, role of the extracellular matrix (ECM). Finally, we point out the potential importance of the ECM in influencing the behavior and prognosis of prostate cancer. Developmental Dynamics 246:89-99, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Monica Montano
- University of Wisconsin Madison, Department of Urology, Madison, Wisconsin.,University of Wisconsin Madison, Cellular and Molecular Pathology, Madison, Wisconsin.,University of Wisconsin Madison, Carbone Cancer Center, Clinical Sciences Center, Madison, Wisconsin
| | - Wade Bushman
- University of Wisconsin Madison, Department of Urology, Madison, Wisconsin.,University of Wisconsin Madison, Carbone Cancer Center, Clinical Sciences Center, Madison, Wisconsin
| |
Collapse
|
4
|
Boufaied N, Nash C, Rochette A, Smith A, Orr B, Grace OC, Wang YC, Badescu D, Ragoussis J, Thomson AA. Identification of genes expressed in a mesenchymal subset regulating prostate organogenesis using tissue and single cell transcriptomics. Sci Rep 2017; 7:16385. [PMID: 29180763 PMCID: PMC5703996 DOI: 10.1038/s41598-017-16685-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 01/25/2023] Open
Abstract
Prostate organogenesis involves epithelial growth controlled by inductive signalling from specialised mesenchymal subsets. To identify pathways active in mesenchyme we used tissue and single cell transcriptomics to define mesenchymal subsets and subset-specific transcript expression. We documented transcript expression using Tag-seq and RNA-seq in female rat Ventral Mesenchymal Pad (VMP) as well as adjacent urethra comprised of smooth muscle and peri-urethral mesenchyme. Transcripts enriched in female VMP were identified with Tag-seq of microdissected tissue, RNA-seq of cell populations, and single cells. We identified 400 transcripts as enriched in the VMP using bio-informatic comparisons of Tag-seq and RNA-seq data, and 44 were confirmed by single cell RNA-seq. Cell subset analysis showed that VMP and adjacent mesenchyme were composed of distinct cell types and that each tissue contained two subgroups. Markers for these subgroups were highly subset specific. Thirteen transcripts were validated by qPCR to confirm cell specific expression in microdissected tissues, as well as expression in neonatal prostate. Immunohistochemical staining demonstrated that Ebf3 and Meis2 showed a restricted expression pattern in female VMP and prostate mesenchyme. We conclude that prostate inductive mesenchyme shows limited cellular heterogeneity and that transcriptomic analysis identified new mesenchymal subset transcripts associated with prostate organogenesis.
Collapse
Affiliation(s)
- Nadia Boufaied
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Claire Nash
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Annie Rochette
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Anthony Smith
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Brigid Orr
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - O Cathal Grace
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yu Chang Wang
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, Canada
| | - Dunarel Badescu
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, Canada
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Montreal, H3A 0G1, Canada
| | - Axel A Thomson
- Department of Surgery, Division of Urology, Cancer Research Program, McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
5
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene 2016; 36:618-627. [PMID: 27345403 PMCID: PMC5192002 DOI: 10.1038/onc.2016.232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/15/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
Abstract
The role of Notch signaling in prostate cancer has not been defined definitively. Several large scale tissue microarray studies have revealed that the expression of some Notch signaling components including the Jagged1 ligand are upregulated in advanced human prostate cancer specimens. Jagged1 expressed by tumor cells may activate Notch signaling in both adjacent tumor cells and cells in tumor microenvironment. However, it remains undetermined whether increased Jagged1 expression reflects a cause for or a consequence of tumor progression in vivo. To address this question, we generated a novel R26-LSL-JAG1 mouse model that enables spatiotemporal Jagged1 expression. Prostate specific upregulation of Jagged1 neither interferes with prostate epithelial homeostasis nor significantly accelerates tumor initiation or progression in the prostate-specific Pten deletion mouse model for prostate cancer. However, Jagged1 upregulation results in increased inflammatory foci in tumors and incidence of intracystic adenocarcinoma. In addition, Jagged1 overexpression upregulates Tgfβ signaling in prostate stromal cells and promotes progression of a reactive stromal microenvironment in the Pten null prostate cancer model. Collectively, Jagged1 overexpression does not significantly accelerate prostate cancer initiation and progression in the context of loss-of-function of Pten, but alters tumor histopathology and microenvironment. Our study also highlights an understudied role of Notch signaling in regulating prostatic stromal homeostasis.
Collapse
|
7
|
Deng G, Ma L, Meng Q, Ju X, Jiang K, Jiang P, Yu Z. Notch signaling in the prostate: critical roles during development and in the hallmarks of prostate cancer biology. J Cancer Res Clin Oncol 2016; 142:531-47. [PMID: 25736982 DOI: 10.1007/s00432-015-1946-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/22/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE This review aims to summarize the evidence that Notch signaling is associated with prostate development, tumorigenesis and prostate tumor progression. METHODS Studies in PubMed database were searched using the keywords of Notch signaling, prostate development and prostate cancer. Relevant literatures were identified and summarized. RESULTS The Notch pathway plays an important role in determining cell fate, proliferation, differentiation and apoptosis. Recent findings have highlighted the involvement of Notch signaling in prostate development and in the maintenance of adult prostate homeostasis. Aberrant Notch expression in tissues leads to dysregulation of Notch functions and promotes various neoplasms, including prostate cancer. High expression of Notch has been implicated in prostate cancer, and its expression increases with higher cancer grade. However, the precise role of Notch in prostate cancer has yet to be clearly defined. The roles of Notch either as an oncogene or tumor suppressor in prostate cancer hallmarks such as cell proliferation, apoptosis and anoikis, hypoxia, migration and invasion, angiogenesis as well as the correlation with metastasis are therefore discussed. CONCLUSIONS Notch signaling is a complicated signaling pathway in modulating prostate development and prostate cancer. Understanding and manipulating Notch signaling could therefore be of potential therapeutic value in combating prostate cancer.
Collapse
Affiliation(s)
- Gang Deng
- Department of Urology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Libin Ma
- Department of Nephrology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| | - Qi Meng
- Department of Urology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiang Ju
- Department of Urology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Kang Jiang
- Department of Urology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Peiwu Jiang
- Department of Urology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Zhijian Yu
- Department of Urology, The First People's Hospital of Hangzhou, 216 Huansha Road, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
8
|
Su Q, Xin L. Notch signaling in prostate cancer: refining a therapeutic opportunity. Histol Histopathol 2016; 31:149-57. [PMID: 26521657 PMCID: PMC4822406 DOI: 10.14670/hh-11-685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Notch is an evolutionarily conserved signaling pathway that plays a critical role in specifying cell fate and regulating tissue homeostasis and carcinogenesis. Studies using organ cultures and genetically engineered mouse models have demonstrated that Notch signaling regulates prostate development and homeostasis. However, the role of the Notch signaling pathway in prostate cancer remains inconclusive. Many published studies have documented consistent deregulation of major Notch signaling components in human prostate cancer cell lines, mouse models for prostate cancers, and human prostate cancer specimens at both the mRNA and the protein levels. However, functional studies in human cancer cells by modulation of Notch pathway elements suggest both tumor suppressive and oncogenic roles of Notch. These controversies may originate from our inadequate understanding of the regulation of Notch signaling under versatile genetic contexts, and reflect the multifaceted and pleiotropic roles of Notch in regulating different aspects of prostate cancer cell biology, such as proliferation, metastasis, and chemo-resistance. Future comprehensive studies using various mouse models for prostate cancer may help clarify the role of Notch signaling in prostate cancer and provide a solid basis for determining whether and how Notch should be employed as a therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Qingtai Su
- Department of Molecular and Cellular Biology, Baylor College of Medicine, and Graduate Program in Integrative Molecular and Biomedical Sciences, Houston, Texas, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Department of Pathology and Immunology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Ipulan LA, Suzuki K, Sakamoto Y, Murashima A, Imai Y, Omori A, Nakagata N, Nishinakamura R, Valasek P, Yamada G. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology 2014; 155:2467-79. [PMID: 24742196 PMCID: PMC4060183 DOI: 10.1210/en.2014-1008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bulbocavernosus (BC) is a sexually dimorphic muscle observed only in males. Androgen receptor knockout mouse studies show the loss of BC formation. This suggests that androgen signaling plays a vital role in its development. Androgen has been known to induce muscle hypertrophy through satellite cell activation and myonuclei accretion during muscle regeneration and growth. Whether the same mechanism is present during embryonic development is not yet elucidated. To identify the mechanism of sexual dimorphism during BC development, the timing of morphological differences was first established. It was revealed that the BC was morphologically different between male and female mice at embryonic day (E) 16.5. Differences in the myogenic process were detected at E15.5. The male BC possesses a higher number of proliferating undifferentiated myoblasts. To identify the role of androgen signaling in this process, muscle-specific androgen receptor (AR) mutation was introduced, which resulted in no observable phenotypes. Hence, the expression of AR in the BC was examined and found that the AR did not colocalize with any muscle markers such as Myogenic differentiation 1, Myogenin, and paired box transcription factor 7. It was revealed that the mesenchyme surrounding the BC expressed AR and the BC started to express AR at E15.5. AR mutation on the nonmyocytic cells using spalt-like transcription factor 1 (Sall1) Cre driver mouse was performed, which resulted in defective BC formation. It was revealed that the number of proliferating undifferentiated myoblasts was reduced in the Sall1 Cre:AR(L-/Y) mutant embryos, and the adult mutants were devoid of BC. The transition of myoblasts from proliferation to differentiation is mediated by cyclin-dependent kinase inhibitors. An increased expression of p21 was observed in the BC myoblast of the Sall1 Cre:AR(L-/Y) mutant and wild-type female. Altogether this study suggests that the nonmyocytic AR may paracrinely regulate the proliferation of myoblast possibly through inhibiting p21 expression in myoblasts of the BC.
Collapse
Affiliation(s)
- Lerrie Ann Ipulan
- Department of Developmental Genetics (L.A.I., K.S., Y.S., A.M., A.O., G.Y.), Institute of Advanced Medicine, and Department of Biology, Wakayama Medical University (WMU), Wakayama 641-8509, Japan; Graduate School of Pharmaceutical Sciences (L.A.I., Y.S.), Division of Reproductive Engineering (N.N.), Center for Animal Resources and Development, Department of Kidney Development (R.N.), Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan; Division of Integrative Pathophysiology (Y.I.), Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; School of Biological Sciences and Institute for Cardiovascular and Metabolic Research (P.V.), University of Reading, Reading RG6 6UR, United Kingdom; and Institute of Anatomy (P.V.), First Faculty of Medicine, Charles University, 128 00 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Carvalho FLF, Simons BW, Eberhart CG, Berman DM. Notch signaling in prostate cancer: a moving target. Prostate 2014; 74:933-45. [PMID: 24737393 PMCID: PMC4323172 DOI: 10.1002/pros.22811] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/20/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION By regulating cell fate, proliferation, and survival, Notch pathway signaling provides critical input into differentiation, organization, and function of multiple tissues. Notch signaling is also becoming an increasingly recognized feature in malignancy, including prostate cancer, where it may play oncogenic or tumor suppressive roles. METHODS Based on an electronic literature search from 2000 to 2013 we identified, summarized, and integrated published research on Notch signaling dynamics in prostate homeostasis and prostate cancer. RESULTS In benign prostate, Notch controls the differentiation state and architecture of the gland. In prostate cancer, similar features correlate with lethal potential and may be influenced by Notch. Increased Notch1 can confer a survival advantage on prostate cancer cells, and levels of Notch family members, such as Jagged2, Notch3, and Hes6 increase with higher cancer grade. However, Notch signaling can also antagonize growth and survival of both benign and malignant prostate cells, possibly through antagonistic effects of the Notch target HEY1 on androgen receptor function. DISCUSSION Notch signaling can dramatically influence prostate development and disease. Determining the cellular contexts where Notch promotes or suppresses prostate growth could open opportunities for diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Filipe L F Carvalho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | |
Collapse
|
11
|
NOTCH and PTEN in prostate cancer. Adv Biol Regul 2014; 56:51-65. [PMID: 24933481 DOI: 10.1016/j.jbior.2014.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
Over the past decade, our understanding of the role that Notch-signaling has in tumorigenesis has shifted from leukemogenesis into cancers of solid tumors. Emerging data suggests that in addition to direct effects mediated through the canonical Notch pathway, Notch may participate in epithelial tumor development through regulation of pathways such as PTEN/PI3K/Akt. Prostate cancer is a disease for which PTEN gene expression is especially essential. This review will summarize a role for Notch in prostate development and cancer with an emphasis on how the Notch pathway may intersect with PTEN/PI3K/Akt and mTOR signaling.
Collapse
|
12
|
Frank SB, Miranti CK. Disruption of prostate epithelial differentiation pathways and prostate cancer development. Front Oncol 2013; 3:273. [PMID: 24199173 PMCID: PMC3813973 DOI: 10.3389/fonc.2013.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the foremost problems in the prostate cancer (PCa) field is the inability to distinguish aggressive from indolent disease, which leads to difficult prognoses and thousands of unnecessary surgeries. This limitation stems from the fact that the mechanisms of tumorigenesis in the prostate are poorly understood. Some genetic alterations are commonly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to androgen-regulated promoters, and loss of Pten. However, the specific roles of these aberrations in tumor initiation and progression are poorly understood. Likewise, the cell of origin for PCa remains controversial and may be linked to the aggressive potential of the tumor. One important clue is that prostate tumors co-express basal and luminal protein markers that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In support of this hypothesis, many of the pathways known to be involved in prostate differentiation can be linked to genes commonly altered in PCa. In this article, we review what is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in the prostate and how their misregulation could lead to oncogenesis. Better understanding of normal differentiation will offer new insights into tumor initiation and may help explain the functional significance of common genetic alterations seen in PCa. Additionally, this understanding could lead to new methods for classifying prostate tumors based on their differentiation status and may aid in identifying more aggressive tumors.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute , Grand Rapids, MI , USA ; Genetics Graduate Program, Michigan State University , East Lansing, MI , USA
| | | |
Collapse
|
13
|
Valdez JM, Zhang L, Su Q, Dakhova O, Zhang Y, Shahi P, Spencer DM, Creighton CJ, Ittmann MM, Xin L. Notch and TGFβ form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. Cell Stem Cell 2013; 11:676-88. [PMID: 23122291 DOI: 10.1016/j.stem.2012.07.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 06/04/2012] [Accepted: 07/02/2012] [Indexed: 01/17/2023]
Abstract
The role of Notch signaling in the maintenance of adult murine prostate epithelial homeostasis remains unclear. We found that Notch ligands are mainly expressed within the basal cell lineage, while active Notch signaling is detected in both the prostate basal and luminal cell lineages. Disrupting the canonical Notch effector Rbp-j impairs the differentiation of prostate basal stem cells and increases their proliferation in vitro and in vivo, but does not affect luminal cell biology. Conversely, ectopic Notch activation in adult prostates results in a decrease in basal cell number and luminal cell hyperproliferation. TGFβ dominates over Notch signaling and overrides Notch ablation-induced proliferation of prostate basal cells. However, Notch confers sensitivity and positive feedback by upregulating a plethora of TGFβ signaling components including TgfβR1. These findings reveal crucial roles of the self-enforced positive reciprocal regulatory loop between TGFβ and Notch in maintaining prostate basal stem cell dormancy.
Collapse
Affiliation(s)
- Joseph M Valdez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Machiela MJ, Lindström S, Allen NE, Haiman CA, Albanes D, Barricarte A, Berndt SI, Bueno-de-Mesquita HB, Chanock S, Gaziano JM, Gapstur SM, Giovannucci E, Henderson BE, Jacobs EJ, Kolonel LN, Krogh V, Ma J, Stampfer MJ, Stevens VL, Stram DO, Tjønneland A, Travis R, Willett WC, Hunter DJ, Le Marchand L, Kraft P. Association of type 2 diabetes susceptibility variants with advanced prostate cancer risk in the Breast and Prostate Cancer Cohort Consortium. Am J Epidemiol 2012. [PMID: 23193118 DOI: 10.1093/aje/kws191] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Observational studies have found an inverse association between type 2 diabetes (T2D) and prostate cancer (PCa), and genome-wide association studies have found common variants near 3 loci associated with both diseases. The authors examined whether a genetic background that favors T2D is associated with risk of advanced PCa. Data from the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium, a genome-wide association study of 2,782 advanced PCa cases and 4,458 controls, were used to evaluate whether individual single nucleotide polymorphisms or aggregations of these 36 T2D susceptibility loci are associated with PCa. Ten T2D markers near 9 loci (NOTCH2, ADCY5, JAZF1, CDKN2A/B, TCF7L2, KCNQ1, MTNR1B, FTO, and HNF1B) were nominally associated with PCa (P < 0.05); the association for single nucleotide polymorphism rs757210 at the HNF1B locus was significant when multiple comparisons were accounted for (adjusted P = 0.001). Genetic risk scores weighted by the T2D log odds ratio and multilocus kernel tests also indicated a significant relation between T2D variants and PCa risk. A mediation analysis of 9,065 PCa cases and 9,526 controls failed to produce evidence that diabetes mediates the association of the HNF1B locus with PCa risk. These data suggest a shared genetic component between T2D and PCa and add to the evidence for an interrelation between these diseases.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Orr B, Grace OC, Brown P, Riddick ACP, Stewart GD, Franco OE, Hayward SW, Thomson AA. Reduction of pro-tumorigenic activity of human prostate cancer-associated fibroblasts using Dlk1 or SCUBE1. Dis Model Mech 2012; 6:530-6. [PMID: 23136397 PMCID: PMC3597035 DOI: 10.1242/dmm.010355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human prostatic cancer-associated fibroblasts (CAFs) can elicit malignant changes in initiated but non-tumorigenic human prostate epithelium, demonstrating that they possess pro-tumorigenic properties. We set out to reduce the pro-tumorigenic activity of patient CAFs using the Dlk1 and SCUBE1 molecules that we had previously identified in prostate development. Our hypothesis was that mesenchymally expressed molecules might reduce CAF pro-tumorigenic activity, either directly or indirectly. We isolated primary prostatic CAFs and characterised their expression of CAF markers, expression of Notch2, Dlk1 and SCUBE1 transcripts, and confirmed their ability to stimulate BPH1 epithelial cell proliferation. Next, we expressed Dlk1 or SCUBE1 in CAFs and determined their effects upon tumorigenesis in vivo following recombination with BPH1 epithelia and xenografting in SCID mice. Tumour size was reduced by about 75% and BPH1 proliferation was reduced by about 50% after expression of Dlk1 or SCUBE1 in CAFs, and there was also a reduction in invasion of BPH1 epithelia into the host kidney. Inhibition of Notch signalling, using inhibitor XIX, led to a reduction in BPH1 cell proliferation in CAF-BPH1 co-cultures, whereas inhibition of Dlk1 in NIH3T3-conditioned media led to an increase in BPH1 growth. Our results suggest that pro-tumorigenic CAF activity can be reduced by the expression of developmental pathways.
Collapse
Affiliation(s)
- Brigid Orr
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Henke A, Grace OC, Ashley GR, Stewart GD, Riddick ACP, Yeun H, O’Donnell M, Anderson RA, Thomson AA. Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS One 2012; 7:e42516. [PMID: 22880013 PMCID: PMC3411755 DOI: 10.1371/journal.pone.0042516] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background and Aim During prostate development, mesenchymal-epithelial interactions regulate organ growth and differentiation. In adult prostate, stromal-epithelial interactions are important for tissue homeostasis and also play a significant role in prostate cancer. In this study we have identified molecules that show a mesenchymal expression pattern in the developing prostate, and one of these showed reduced expression in prostate cancer stroma. Methodology and Principal Findings Five candidate molecules identified by transcript profiling of developmental prostate mesenchyme were selected using a wholemount in situ hybridisation screen and studied Decorin (Dcn), Semaphorin6D (Sema6D), SPARC/Osteonectin (SPARC), Sprouty1 (Spry-1) and Tsukushi (Tsku). Expression in rat tissues was evaluated using wholemount in situ hybridisation (postnatal day (P) 0.5) and immunohistochemistry (embryonic day (E) E17.5, E19.5; P0.5; P6; 28 & adult). Four candidates (Decorin, SPARC, Spry-1, Tsukushi) were immunolocalised in human foetal prostate (weeks 14, 16, 19) and expression of Decorin was evaluated on a human prostate cancer tissue microarray. In embryonic and perinatal rats Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi were expressed with varying distribution patterns throughout the mesenchyme at E17.5, E19.5, P0.5 and P6.5. In P28 and adult prostates there was either a decrease in the expression (Semaphorin6D) or a switch to epithelial expression of SPARC, and Spry-1, whereas Decorin and Tsukushi were specific to mesenchyme/stroma at all ages. Expression of Decorin, SPARC, Spry-1 and Tsukushi in human foetal prostates paralleled that in rat. Decorin showed mesenchymal and stromal-specific expression at all ages and was further examined in prostate cancer, where stromal expression was significantly reduced compared with non-malignant prostate. Conclusion and Significance We describe the spatio-temporal expression of Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi in developing prostate and observed similar mesenchymal expression patterns in rat and human. Additionally, Decorin showed reduced expression in prostate cancer stroma compared to non-malignant prostate stroma.
Collapse
Affiliation(s)
- Alexander Henke
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
- * E-mail: (AH); (AAT)
| | - O. Cathal Grace
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - George R. Ashley
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Grant D. Stewart
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Antony C. P. Riddick
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry Yeun
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie O’Donnell
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Anderson
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Axel A. Thomson
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
- * E-mail: (AH); (AAT)
| |
Collapse
|
17
|
Timms BG, Hofkamp LE. Prostate development and growth in benign prostatic hyperplasia. Differentiation 2011; 82:173-83. [DOI: 10.1016/j.diff.2011.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/22/2011] [Accepted: 08/04/2011] [Indexed: 11/15/2022]
|
18
|
Shahi P, Seethammagari MR, Valdez JM, Xin L, Spencer DM. Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells 2011; 29:678-88. [PMID: 21308863 DOI: 10.1002/stem.606] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony ("prostasphere") formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1(+) CD49f(+) basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in "triple positive" (cytokeratin [CK] 5(+), CK8(+), p63(+)) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling.
Collapse
Affiliation(s)
- Payam Shahi
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77025, USA
| | | | | | | | | |
Collapse
|
19
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 712] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
20
|
Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L, Albain KS, Osipo C. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 2011; 105:796-806. [PMID: 21847123 PMCID: PMC3171020 DOI: 10.1038/bjc.2011.321] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/12/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We reported that Notch-1, a potent breast oncogene, is activated in response to trastuzumab and contributes to trastuzumab resistance in vitro. We sought to determine the preclinical benefit of combining a Notch inhibitor (γ-secretase inhibitor (GSI)) and trastuzumab in both trastuzumab-sensitive and trastuzumab-resistant, ErbB-2-positive, BT474 breast tumours in vivo. We also studied if the combination therapy of lapatinib plus GSI can induce tumour regression of ErbB-2-positive breast cancer. METHODS We generated orthotopic breast tumour xenografts from trastuzumab- or lapatinib-sensitive and trastuzumab-resistant BT474 cells. We investigated the antitumour activities of two distinct GSIs, LY 411 575 and MRK-003, in vivo. RESULTS Our findings showed that combining trastuzumab plus a GSI completely prevented (MRK-003 GSI) or significantly reduced (LY 411 575 GSI) breast tumour recurrence post-trastuzumab treatment in sensitive tumours. Moreover, combining lapatinib plus MRK-003 GSI showed significant reduction of tumour growth. Furthermore, a GSI partially reversed trastuzumab resistance in resistant tumours. CONCLUSION Our data suggest that a combined inhibition of Notch and ErbB-2 signalling pathways could decrease recurrence rates for ErbB-2-positive breast tumours and may be beneficial in the treatment of recurrent trastuzumab-resistant disease.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Amyloid Precursor Protein Secretases/therapeutic use
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Cell Line, Tumor
- Cyclic S-Oxides/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Targeting
- Genes, erbB
- Genes, erbB-2
- Humans
- Lapatinib
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Quinazolines/administration & dosage
- Receptor, ErbB-2/metabolism
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/genetics
- Recurrence
- Signal Transduction/drug effects
- Thiadiazoles/pharmacology
- Trastuzumab
Collapse
Affiliation(s)
- K Pandya
- Molecular Biology Program, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | - K Meeke
- Oncology Institute, Stritch School of Medicine at Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - A G Clementz
- Molecular and Cellular Biochemistry Program, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | - A Rogowski
- Molecular Biology Program, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | - J Roberts
- Oncology Institute, Stritch School of Medicine at Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | - L Miele
- University of Mississippi Cancer Institute, 350 Woodrow Wilson Drive, Suite 600, Jackson, MS 39213, USA
| | - K S Albain
- Department of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
| | - C Osipo
- Molecular Biology Program, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
- Oncology Institute, Stritch School of Medicine at Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
- Molecular and Cellular Biochemistry Program, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Pathology, 2160 South First Avenue, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
21
|
Differentiation of the ductal epithelium and smooth muscle in the prostate gland are regulated by the Notch/PTEN-dependent mechanism. Dev Biol 2011; 356:337-49. [PMID: 21624358 DOI: 10.1016/j.ydbio.2011.05.659] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 02/08/2023]
Abstract
We have shown previously that during branching morphogenesis of the mouse prostate gland, Bone morphogenetic protein 7 functions to restrict Notch1-positive progenitor cells to the tips of the prostate buds. Here, we employed prostate-specific murine bi-genic systems to investigate the effects of gain and loss of Notch function during prostate development. We show that Nkx3.1(Cre) and Probasin(Cre) alleles drive expression of Cre recombinase to the prostate epithelium and periepithelial stroma. We investigated the effects of gain of Notch function using the Rosa(NI1C) conditional allele, which carries a constitutively active intracellular domain of Notch1 receptor. We carried out the analysis of loss of Notch function in Nkx3.1(Cre/+);RBP-J(flox/flox) prostates, where RBP-J is a ubiquitous transcriptional mediator of Notch signaling. We found that gain of Notch function resulted in inhibition of the tumor suppressor PTEN, and increase in cell proliferation and progenitor cells in the basal epithelium and smooth muscle compartments. In turn, loss of Notch/RBP-J function resulted in decreased cell proliferation and loss of epithelial and smooth muscle progenitors. Gain of Notch function resulted in an early onset of benign prostate hyperplasia by three months of age. Loss of Notch function also resulted in abnormal differentiation of the prostate epithelium and stroma. In particular, loss of Notch signaling and increase in PTEN promoted a switch from myoblast to fibroblast lineage, and a loss of smooth muscle. In summary, we show that Notch signaling is necessary for terminal differentiation of the prostate epithelium and smooth muscle, and that during normal prostate development Notch/PTEN pathway functions to maintain patterned progenitors in the epithelial and smooth muscle compartments. In addition, we found that both positive and negative modulation of Notch signaling results in abnormal organization of the prostate tissue, and can contribute to prostate disease in the adult organ.
Collapse
|
22
|
Orr B, Vanpoucke G, Grace OC, Smith L, Anderson RA, Riddick ACP, Franco OE, Hayward SW, Thomson AA. Expression of pleiotrophin in the prostate is androgen regulated and it functions as an autocrine regulator of mesenchyme and cancer associated fibroblasts and as a paracrine regulator of epithelia. Prostate 2011; 71:305-17. [PMID: 20812209 PMCID: PMC3045659 DOI: 10.1002/pros.21244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/12/2010] [Indexed: 11/12/2022]
Abstract
BACKGROUND Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn). METHODS Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. RESULTS During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female. CONCLUSIONS Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels.
Collapse
Affiliation(s)
- Brigid Orr
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Karlou M, Tzelepi V, Efstathiou E. Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 2011; 7:494-509. [PMID: 20818327 DOI: 10.1038/nrurol.2010.134] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Solid tumors can be thought of as multicellular 'organs' that consist of a variety of cells as well as a scaffold of noncellular matrix. Stromal-epithelial crosstalk is integral to prostate cancer progression and metastasis, and androgen signaling is an important component of this crosstalk at both the primary and metastatic sites. Intratumoral production of androgen is an important mechanism of castration resistance and has been the focus of novel therapeutic approaches with promising results. Various other pathways are important for stromal-epithelial crosstalk and represent attractive candidate therapeutic targets. Hedgehog signaling has been associated with tumor progression, growth and survival, while Src family kinases have been implicated in tumor progression and in regulation of cancer cell migration. Fibroblast growth factors and transforming growth factor beta signaling regulate cell proliferation, apoptosis and angiogenesis in the prostate cancer microenvironment. Integrins mediate communication between the cell and the extracellular matrix, enhancing growth, migration, invasion and metastasis of cancer cells. The contribution of stromal-epithelial crosstalk to prostate cancer initiation and progression provides the impetus for combinatorial microenvironment-targeting strategies.
Collapse
Affiliation(s)
- Maria Karlou
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1439, USA
| | | | | |
Collapse
|
24
|
Ashley GR, Grace OC, Vanpoucke G, Thomson AA. Identification of EphrinB1 expression in prostatic mesenchyme and a role for EphB-EphrinB signalling in prostate development. Differentiation 2010; 80:89-98. [PMID: 20633976 DOI: 10.1016/j.diff.2010.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 11/17/2022]
Abstract
Paracrine signalling from mesenchyme to epithelium plays a key role in regulating prostate organogenesis and it is important to identify the mesenchymally expressed molecules that regulate organ growth, though currently few such molecules are known. Tyrosine kinase signalling via EphB receptors has been characterised in many developmental processes, and EphB3 mRNA expression was detected in prostate inductive mesenchyme in previous gene profiling studies. This led us to examine the expression and function of EphrinB signalling in prostate development, to determine if EphrinB ligands might function as mesenchymal paracrine regulators of prostate growth. Using PCR, wholemount in situ hybridisation, and immunohistochemistry we examined the expression of EphB receptors and EphrinB ligands in rat prostate during development to determine which showed mesenchymal expression. EphB3 and EphrinB1 transcripts and proteins were expressed in the mesenchyme of developing prostate and in female urogenital mesenchyme and smooth muscle. The function of EphrinB signalling was examined using in vitro organ culture assays of ventral prostate (VP), which were treated with EphB3-Fc and EphrinB1-Fc proteins to inhibit or augment Ephrin signalling. Addition of recombinant EphB3-Fc resulted in a significant decrease in VP organ size, while recombinant EphrinB1-Fc resulted in a significant increase in VP organ size and epithelial proliferation. Additionally, EphrinB1-Fc reduced the degree of epithelial branching in VP organs and increased ductal tip size, though without disrupting normal differentiation. We have identified expression of EphrinB1 in prostatic mesenchyme and suggest that the EphrinB signalling system acts as a regulator of prostate growth. EphrinB-EphB signalling may function as an autocrine regulator of mesenchyme and/or as a paracrine regulator of epithelia.
Collapse
Affiliation(s)
- George R Ashley
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
25
|
Moreno CS. The Sex-determining region Y-box 4 and homeobox C6 transcriptional networks in prostate cancer progression: crosstalk with the Wnt, Notch, and PI3K pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:518-27. [PMID: 20019190 DOI: 10.2353/ajpath.2010.090657] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transforming growth factor beta, Hedgehog, Notch, and Wnt signaling pathways all play critical roles in the development and progression of prostate cancer. It is becoming increasingly apparent that these pathways may intersect with developmentally important transcription factors such as the sex-determining region Y-box 4 (SOX4), homeobox C6, enhancer of zeste 2, and ETS-related gene, which are up-regulated in prostate cancers. For example, identification of the downstream targets of SOX4 and homeobox C6 suggests that these factors may cooperate to activate the Notch pathway and the PI3K/AKT pathway, possibly in response to Wnt signals. PI3K/AKT activation likely occurs indirectly via up-regulation of growth factor receptors, while Notch activation is secondary to up-regulation of Notch pathway components. In addition, SOX4 may affect terminal differentiation via regulation of other transcription factors such as NKX3.1 and MLL, and regulation of components of the microRNA pathway such as Dicer and Argonaute 1. The evidence supporting activation of these pathways in prostate cancer progression suggests that combinations of compounds targeting them may be of benefit to patients with aggressive, metastatic disease.
Collapse
Affiliation(s)
- Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Atlanta, GA 30322, USA.
| |
Collapse
|