1
|
Gupta JK. The Role of Aldose Reductase in Polyol Pathway: An Emerging Pharmacological Target in Diabetic Complications and Associated Morbidities. Curr Pharm Biotechnol 2024; 25:1073-1081. [PMID: 37649296 DOI: 10.2174/1389201025666230830125147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The expression of aldose reductase leads to a variety of biological and pathological effects. It is a multifunctional enzyme which has a tendency to reduce aldehydes to the corresponding sugar.alcohol. In diabetic conditions, the aldose reductase enzyme converts glucose into sorbitol using nicotinamide adenine dinucleotide phosphate as a cofactor. It is a key enzyme in polyol pathway which is a surrogate course of glucose metabolism. The polyol pathway has a significant impact on the aetiology of complications in individuals with end-stage diabetes. The exorbitant level of sorbitol leads to the accumulation of intracellular reactive oxygen species in diabetic heart, neurons, kidneys, eyes and other vasculatures, leading to many complications and pathogenesis. Recently, the pathophysiological role of aldose reductase has been explored with multifarious perspectives. Research on aldose reductase suggest that besides implying in diabetic complications, the enzyme also turns down the lipid-derived aldehydes as well as their glutathione conjugates. Although aldose reductase has certain lucrative role in detoxification of toxic lipid aldehydes, its overexpression leads to intracellular accumulation of sorbitol which is involved in secondary diabetic complications, such as neuropathy, cataractogenesis, nephropathy, retinopathy and cardiovascular pathogenesis. Osmotic upset and oxidative stress are produced by aldose reductase via the polyol pathway. The inhibition of aldose reductase alters the activation of transcription factors like NF-ƙB. Moreover, in many preclinical studies, aldose reductase inhibitors have been observed to reduce inflammation-related impediments, such as asthma, sepsis and colon cancer, in diabetic subjects. Targeting aldose reductase can bestow a novel cognizance for this primordial enzyme as an ingenious strategy to prevent diabetic complications and associated morbidities. In this review article, the significance of aldose reductase is briefly discussed along with their prospective applications in other afflictions.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, India
| |
Collapse
|
2
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Ünal A, Baykal O, Öztürk N. Comparison of matrix metalloproteinase 9 and 14 levels in vitreous samples in diabetic and non-diabetic patients: a case control study. Int J Retina Vitreous 2022; 8:44. [PMID: 35729613 PMCID: PMC9210686 DOI: 10.1186/s40942-022-00394-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background MMP-9 plays a prominent role in inflammation and MMP-14 take part in angiogenesis. The objective of this study is to compare MMP-9 and MMP-14 levels between diabetic and non-diabetic patients. Methods The patients who scheduled for pars plana vitrectomy were included in our study. Patients are divided into 2 groups: the diabetic group and non-diabetic group. Age, gender, intraocular pressure(IOP), visual acuity (VA) were reported. Color fundus photography, fundus fluorescein angiography, optic coherence tomography (OCT) were performed before and after the operation. MMP-9 and MMP-14 levels in vitreous samples were analyzed with a reader device by ELISA method. Mann–Whitney U test and logistic regressions were used in statistical analysis, p < 0.05 accepted as statistically significant. Results 70 eyes of 70 patients who received pars plana vitrectomy were enrolled in the study and divided into 2 groups: 34 patients in the diabetic group, 36 patients in the non-diabetic group. The average age of diabetic patients was 60.14 ± 10.20, and non-diabetic patients was 64.22 ± 11.16, respectively. The average MMP-9 (0.67 ± 0.66 ng/ml) and MMP-14 (0.16 ± 0.45 ng/ml) values in the diabetic group were significantly higher than the average MMP-9 (0.21 ± 0.05 ng/ml) and MMP-14 (and 0.07 ± 0.02 ng/ml) values in the non-diabetic group (P < 0.01). Also, it was observed that MMP-9 and MMP-14 levels increases as the diabetic disease duration increases. The risk of diabetes incidence increased with high levels of MMP-9 and MMP-14. Conclusion Due to the higher levels of MMP-9 and MMP-14 in the pathogenesis of diabetic retinopathy, these proteins may probably be among the therapeutic targets in the prevention and treatment of retinopathy.
Collapse
Affiliation(s)
- A Ünal
- Faculty of Medicine, Department of Ophthalmology, Artvin State Hospital, Atatürk University, Çarşı District, Hospital Street, No:5, 08000, Artvin, Turkey.
| | - O Baykal
- Faculty of Medicine, Department of Ophthalmology, Ataturk University, Erzurum, Turkey
| | - N Öztürk
- Faculty of Medicine, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
4
|
Adu-Amankwaah J, Adzika GK, Adekunle AO, Ndzie Noah ML, Mprah R, Bushi A, Akhter N, Huang F, Xu Y, Adzraku SY, Nadeem I, Sun H. ADAM17, A Key Player of Cardiac Inflammation and Fibrosis in Heart Failure Development During Chronic Catecholamine Stress. Front Cell Dev Biol 2021; 9:732952. [PMID: 34966735 PMCID: PMC8710811 DOI: 10.3389/fcell.2021.732952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure development is characterized by persistent inflammation and progressive fibrosis owing to chronic catecholamine stress. In a chronic stress state, elevated catecholamines result in the overstimulation of beta-adrenergic receptors (βARs), specifically β2-AR coupling with Gαi protein. Gαi signaling increases the activation of receptor-stimulated p38 mitogen-activated-protein-kinases (p38 MAPKs) and extracellular signal-regulated kinases (ERKs). Phosphorylation by these kinases is a common way to positively regulate the catalytic activity of A Disintegrin and Metalloprotease 17 (ADAM17), a metalloprotease that has grown much attention in recent years and has emerged as a chief regulatory hub in inflammation, fibrosis, and immunity due to its vital proteolytic activity. ADAM17 cleaves and activates proinflammatory cytokines and fibrotic factors that enhance cardiac dysfunction via inflammation and fibrosis. However, there is limited information on the cardiovascular aspect of ADAM17, especially in heart failure. Hence, this concise review provides a comprehensive insight into the structure of ADAM17, how it is activated and regulated during chronic catecholamine stress in heart failure development. This review highlights the inflammatory and fibrotic roles of ADAM17’s substrates; Tumor Necrosis Factor α (TNFα), soluble interleukin-6 receptor (sIL-6R), and amphiregulin (AREG). Finally, how ADAM17-induced chronic inflammation and progressive fibrosis aggravate cardiac dysfunction is discussed.
Collapse
Affiliation(s)
| | | | | | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Fei Huang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Yaxin Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Seyram Yao Adzraku
- Key Laboratory of Bone Marrow Stem Cell, Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Iqra Nadeem
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
6
|
Suh SH, Ma SK, Kim SW, Bae EH. Angiotensin-converting enzyme 2 and kidney diseases in the era of coronavirus disease 2019. Korean J Intern Med 2021; 36:247-262. [PMID: 33617712 PMCID: PMC7969072 DOI: 10.3904/kjim.2020.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the decades since the discovery of angiotensin-converting enzyme 2 (ACE2), its protective role in terms of antagonizing activation of the classical renin-angiotensin system (RAS) axis has been recognized in clinical and experimental studies on kidney and cardiovascular diseases. The effects of ACE inhibitor/angiotensin type 1 receptor blockers (ACEi/ARBs) on ACE2-angiotensin-(1-7) (Ang- (1-7))-Mas receptor (MasR) axis activation has encouraged the use of such blockers in patients with kidney and cardiovascular diseases, until the emergence of coronavirus disease 2019 (COVID-19). The previously unchallenged functions of the ACE2-Ang-(1-7)-MasR axis and ACEi/ARBs are being re-evaluated in the era of COVID-19; the hypothesis is that ACEi/ARBs may increase the risk of severe acute respiratory syndrome coronavirus 2 infection by upregulating the human ACE2 receptor expression level. In this review, we examine ACE2 molecular structure, function (as an enzyme of the RAS), and distribution. We explore the roles played by ACE2 in kidney, cardiovascular, and pulmonary diseases, highlighting studies that defined the benefits imparted when ACEi/ARBs activated the local ACE2- Ang-(1-7)-MasR axis. Finally, the question of whether ACEi/ARBs therapies should be stopped in COVID-19-infected patients will be reviewed by reference to the available evidence.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Eun Hui Bae, M.D. Department of Internal Medicine, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6503 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
7
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
8
|
Villarreal CF, Santos DS, Lauria PSS, Gama KB, Espírito-Santo RF, Juiz PJL, Alves CQ, David JM, Soares MBP. Bergenin Reduces Experimental Painful Diabetic Neuropathy by Restoring Redox and Immune Homeostasis in the Nervous System. Int J Mol Sci 2020; 21:ijms21144850. [PMID: 32659952 PMCID: PMC7420298 DOI: 10.3390/ijms21144850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a frequent complication of diabetes. Symptoms include neuropathic pain and sensory alterations—no effective treatments are currently available. This work characterized the therapeutic effect of bergenin in a mouse (C57/BL6) model of streptozotocin-induced painful diabetic neuropathy. Nociceptive thresholds were assessed by the von Frey test. Cytokines, antioxidant genes, and oxidative stress markers were measured in nervous tissues by ELISA, RT-qPCR, and biochemical analyses. Single (3.125–25 mg/kg) or multiple (25 mg/kg; twice a day for 14 days) treatments with bergenin reduced the behavioral signs of diabetic neuropathy in mice. Bergenin reduced both nitric oxide (NO) production in vitro and malondialdehyde (MDA)/nitrite amounts in vivo. These antioxidant properties can be attributed to the modulation of gene expression by the downregulation of inducible nitric oxide synthase (iNOS) and upregulation of glutathione peroxidase and Nrf2 in the nervous system. Bergenin also modulated the pro- and anti-inflammatory cytokines production in neuropathic mice. The long-lasting antinociceptive effect induced by bergenin in neuropathic mice, was associated with a shift of the cytokine balance toward anti-inflammatory predominance and upregulation of antioxidant pathways, favoring the reestablishment of redox and immune homeostasis in the nervous system. These results point to the therapeutic potential of bergenin in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Cristiane F. Villarreal
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
- Correspondence: ; Tel.: +55-(71)3283-6933
| | - Dourivaldo S. Santos
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
| | - Pedro S. S. Lauria
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
| | - Kelly B. Gama
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| | - Renan F. Espírito-Santo
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| | - Paulo J. L. Juiz
- Universidade Federal do Recôncavo da Bahia, CEP 44.042-280 Feira de Santana, Brazil;
| | - Clayton Q. Alves
- Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, CEP 44.036-336 Feira de Santana, Brazil;
| | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, CEP 40.170-280 Salvador, Brazil;
| | - Milena B. P. Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| |
Collapse
|
9
|
de Macedo FHP, Aires RD, Fonseca EG, Ferreira RCM, Machado DPD, Chen L, Zhang FX, Souza IA, Lemos VS, Romero TRL, Moutal A, Khanna R, Zamponi GW, Cruz JS. TNF-α mediated upregulation of Na V1.7 currents in rat dorsal root ganglion neurons is independent of CRMP2 SUMOylation. Mol Brain 2019; 12:117. [PMID: 31888677 PMCID: PMC6937926 DOI: 10.1186/s13041-019-0538-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Clinical and preclinical studies have shown that patients with Diabetic Neuropathy Pain (DNP) present with increased tumor necrosis factor alpha (TNF-α) serum concentration, whereas studies with diabetic animals have shown that TNF-α induces an increase in NaV1.7 sodium channel expression. This is expected to result in sensitization of nociceptor neuron terminals, and therefore the development of DNP. For further study of this mechanism, dissociated dorsal root ganglion (DRG) neurons were exposed to TNF-α for 6 h, at a concentration equivalent to that measured in STZ-induced diabetic rats that developed hyperalgesia. Tetrodotoxin sensitive (TTXs), resistant (TTXr) and total sodium current was studied in these DRG neurons. Total sodium current was also studied in DRG neurons expressing the collapsin response mediator protein 2 (CRMP2) SUMO-incompetent mutant protein (CRMP2-K374A), which causes a significant reduction in NaV1.7 membrane cell expression levels. Our results show that TNF-α exposure increased the density of the total, TTXs and TTXr sodium current in DRG neurons. Furthermore, TNF-α shifted the steady state activation and inactivation curves of the total and TTXs sodium current. DRG neurons expressing the CRMP2-K374A mutant also exhibited total sodium current increases after exposure to TNF-α, indicating that these effects were independent of SUMOylation of CRMP2. In conclusion, TNF-α sensitizes DRG neurons via augmentation of whole cell sodium current. This may underlie the pronociceptive effects of TNF-α and suggests a molecular mechanism responsible for pain hypersensitivity in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Rosária Dias Aires
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Esdras Guedes Fonseca
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada
| | - Virgínia Soares Lemos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada.
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Ebrahimi SM, Bathaie SZ, Faridi N, Taghikhani M, Nakhjavani M, Faghihzadeh S. L-lysine protects C2C12 myotubes and 3T3-L1 adipocytes against high glucose damages and stresses. PLoS One 2019; 14:e0225912. [PMID: 31856203 PMCID: PMC6922410 DOI: 10.1371/journal.pone.0225912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia is a hallmark of diabetes, which is associated with protein glycation and misfolding, impaired cell metabolism and altered signaling pathways result in endoplasmic reticulum stress (ERS). We previously showed that L-lysine (Lys) inhibits the nonenzymatic glycation of proteins, and protects diabetic rats and type 2 diabetic patients against diabetic complications. Here, we studied some molecular aspects of the Lys protective role in high glucose (HG)-induced toxicity in C2C12 myotubes and 3T3-L1 adipocytes. C2C12 and 3T3-L1 cell lines were differentiated into myotubes and adipocytes, respectively. Then, they were incubated with normal or high glucose (HG) concentrations in the absence/presence of Lys (1 mM). To investigate the role of HG and/or Lys on cell apoptosis, oxidative status, unfolded protein response (UPR) and autophagy, we used the MTT assay and flow cytometry, spectrophotometry and fluorometry, RT-PCR and Western blotting, respectively. In both cell lines, HG significantly reduced cell viability and induced apoptosis, accompanying with the significant increase in reactive oxygen species (ROS) and nitric oxide (NO). Furthermore, the spliced form of X-box binding protein 1 (XBP1), at both mRNA and protein levels, the phosphorylated eukaryotic translation initiation factor 2α (p-eIf2α), and the Light chain 3 (LC3)II/LC3I ratio was also significantly increased. Lys alone had no significant effects on most of these parameters; but, treatment with HG plus Lys returned them all to, or close to, the normal values. The results indicated the protective role of Lys against glucotoxicity induced by HG in C2C12 myotubes and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- S. Mehdi Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: ,
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghikhani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghrat Faghihzadeh
- Department of Statistics, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Sarikaya M, Yazihan N, Daş Evcimen N. Relationship between aldose reductase enzyme and the signaling pathway of protein kinase C in an in vitro diabetic retinopathy model. Can J Physiol Pharmacol 2019; 98:243-251. [PMID: 31743046 DOI: 10.1139/cjpp-2019-0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) and aldose reductase (AR) enzyme activities are increased in diabetes and complications are include retinopathy, nephropathy, and neuropathy. However, the relationship between PKC and AR and the underlying molecular mechanisms is still unclear. We aimed to evaluate the relationship between these two enzymes and clarify the underlying molecular mechanisms by the related signaling molecules. The effects of hyperglycemia and oxidative stress on AR and PKC enzymes and the signaling molecules such as nuclear factor-kappa B (NF-κB), inhibitor kappa B-alpha (IkB-α), total c-Jun, phospho c-Jun, and stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) were evaluated in human retinal pigment epithelial cells (ARPE-19). AR, PKC protein levels, and related signaling molecules increased with hyperglycemia and oxidative stress. The AR inhibitor sorbinil decreased PKC expression and activity and all signaling molecule protein levels. Increased AR expression during hyperglycemia and oxidative stress was found to be correlated with the increase in PKC expression and activity in both conditions. Decreased expression and activity of PKC and the protein levels of related signaling molecules with the AR inhibitor sorbinil showed that AR enzyme may play a key role in the expression of PKC enzyme and oxidative stress during diabetes.
Collapse
Affiliation(s)
- Mutlu Sarikaya
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Department of Pathophysiology, Faculty of Medicine, Internal Medicine, Ankara University, Ankara, Turkey
| | - Net Daş Evcimen
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Huang Q, Liu Q, Ouyang D. Sorbinil, an Aldose Reductase Inhibitor, in Fighting Against Diabetic Complications. Med Chem 2019; 15:3-7. [PMID: 29792152 DOI: 10.2174/1573406414666180524082445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldose reductase (AR) is involved in the pathogenesis of diabetes, which is one of the major threats to global public health. OBJECTIVE In this review article, we have discussed the role of sorbinil, an AR inhibitor (ARI), in preventing diabetic complications. RESULTS AR contributes in diabetes by generating excess intracellular superoxide and other mediators of oxidative stress through polyol pathway. Inhibition of AR activity thus might be a potential approach for the management of diabetic complications. Experimental evidences indicated that sorbinil can decrease AR activity and inhibit polyol pathway. Both in vitro and animal model studies reported the efficacy of sorbinil in controlling the progression of diabetes. Moreover, Sorbinil has been found to be comparatively safer than other ARIs for human use. But, it is still in earlyphase testing for the treatment of diabetic complications clinically. CONCLUSION Sorbinil is an effective ARI, which could play therapeutic role in treating diabetes and diabetic complications. However, advanced clinical trials are required for sorbinil so that it could be applied with the lowest efficacious dose in humans.
Collapse
Affiliation(s)
- Qi Huang
- Department of Clinical Pharmacology, Xiangya Hospital of Central South University, Changsha 410008, China.,Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qiong Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) is a pivotal player in the physiology and pathophysiology of cardiovascular and renal systems. Discovery of angiotensin-converting enzyme 2 (ACE2), capable of cleaving RAS effector peptide angiotensin (Ang) II into biologically active Ang-(1-7), has increased the complexity of our knowledge of the RAS. ACE2 expression is abundant in the kidney and is thought to provide protection against injury. This review emphasizes current experimental and clinical findings that examine ACE2 in the context of kidney injury and its potential therapeutic impact for treatment of kidney disease. RECENT FINDINGS Clinical studies have reported upregulation of ACE2 in urine from diabetic patients, which may be reflective of pathological shedding of renal ACE2 as suggested by mechanistic experiments. Studies in experimental models have investigated the feasibility of pharmacological induction of ACE2 for improvement of renal function, inflammation, and fibrosis. SUMMARY Emerging concepts about the RAS indicate that ACE2 is a critical regulator of angiotensin peptide metabolism and the pathogenesis of renal disease. Human recombinant ACE2 is available and may be a practical clinical approach to enzyme replacement. Elucidating precise roles of ACE2 throughout disease progression will enrich our view of the RAS and help identify novel targets and appropriate strategies for intervention.
Collapse
|
15
|
Chang KC, Petrash JM. Aldo-Keto Reductases: Multifunctional Proteins as Therapeutic Targets in Diabetes and Inflammatory Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:173-202. [PMID: 30362099 DOI: 10.1007/978-3-319-98788-0_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that has been shown to be involved in the pathogenesis of several blinding diseases such as uveitis, diabetic retinopathy (DR) and cataract. However, possible mechanisms linking the action of AR to these diseases are not well understood. As DR and cataract are among the leading causes of blindness in the world, there is an urgent need to explore therapeutic strategies to prevent or delay their onset. Studies with AR inhibitors and gene-targeted mice have demonstrated that the action of AR is also linked to cancer onset and progression. In this review we examine possible mechanisms that relate AR to molecular signaling cascades and thus explain why AR inhibition is an effective strategy against colon cancer as well as diseases of the eye such as uveitis, cataract, and retinopathy.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
16
|
Jiang Y, Wang W, Liu ZY, Xie Y, Qian Y, Cai XN. Overexpression of miR-130a-3p/301a-3p attenuates high glucose-induced MPC5 podocyte dysfunction through suppression of TNF-α signaling. Exp Ther Med 2017; 15:1021-1028. [PMID: 29434693 DOI: 10.3892/etm.2017.5465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor (TNF)-α has been reported to be important in glomerulonephritis, which is closely associated with podocyte dysfunction and apoptosis. However, the precise mechanisms by which TNF-α expression are regulated remain unclear. The purpose of the present study was to investigate the role of microRNA (miR)-130a-3p/301a-3p in the post-transcriptional control of TNF-α expression and high glucose (HG)-induced podocyte dysfunction. Mice MPC5 podocytes were incubated with HG and transfected with miR-130a-3p/301a-3p mimics or inhibitors, reactive oxygen species (ROS) levels were measured by flow cytometry assay, and the mRNA and protein levels were assayed by using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and verified using a dual luciferase reporter assay. It was observed that miR-130a-3p/301a-3p was a novel regulator of TNF-α in mouse podocytes. miR-130a-3p/301a-3p mimics inhibited TNF-α 3'-untranslated region luciferase reporter activity, in addition to endogenous TNF-α protein expression. Furthermore, forced expression of miR-130a-3p or miR-301a-3p resulted in the downregulation of ROS and malondialdehyde (MDA) and the upregulation of superoxide dismutase (SOD) 1 in the presence of HG. Inhibition of TNF-α level prevented a remarkable reduction in SOD activity and a marked increase in ROS and MDA levels in HG-treated podocytes. Furthermore, TNF-α loss-of-function significantly reversed HG-induced podocyte apoptosis. These data demonstrated a novel up-stream role for miR-130a-3p/301a-3p in TNF-α-mediated podocyte dysfunction and apoptosis in the presence of HG.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Nephrology, The Cancer Hospital of Guizhou, Guiyang, Guizhou 550003, P.R. China
| | - Wei Wang
- Department of Nephrology, The 455 Hospital of Chinese PLA, Nephrology Center of Nanjing Military Area Command of Chinese PLA, Shanghai 200052, P.R. China
| | - Zong-Yang Liu
- Department of Nephrology, The Cancer Hospital of Guizhou, Guiyang, Guizhou 550003, P.R. China
| | - Yi Xie
- Department of Nephrology, The Cancer Hospital of Guizhou, Guiyang, Guizhou 550003, P.R. China
| | - Yuan Qian
- Department of Nephrology, The Cancer Hospital of Guizhou, Guiyang, Guizhou 550003, P.R. China
| | - Xue-Ni Cai
- Department of Nephrology, The Cancer Hospital of Guizhou, Guiyang, Guizhou 550003, P.R. China
| |
Collapse
|
17
|
Ma Y, Zhao Y, Zhang R, Liang X, Yin Z, Geng Y, Shu G, Song X, Zou Y, Li L, Yin L, Yue G, Li Y, Ye G, He C. α-Cyperone Inhibits PMA-Induced EPCR Shedding through PKC Pathway. Biol Pharm Bull 2017; 40:1678-1685. [PMID: 28804104 DOI: 10.1248/bpb.b17-00183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α-Cyperone, a sesquiterpene compound represents 25.23% of the total oil and is the most abundant compound in Cyperus rotundus oil. Endothelial cell protein C receptor (EPCR) is a main member in protein C (PC) anti-coagulation system. EPCR could be shed from cell surface, and is mediated by tumor necrosis factor-α converting enzyme (TACE). Nothing that EPCR is a marker of vascular barrier integrity in vascular inflammatory disease and takes part in systemic inflammatory disease. In this study, we investigated whether α-cyperone could inhibit EPCR shedding. To observe the effect, we investigated this issue by detection the effect of α-cyperone on phorbol-12-myristate 13-acetate (PMA)-induced EPCR shedding in human umbilical vein endothelial cells (HUVECs). The cells were pretreated with α-cyperone for 12 h, and then stimulated by PMA for 1 h. The solute EPCR (sEPCR) and expression of membrane EPCR (mEPCR) were measured by enzyme-linked immunosorbent assay (ELISA) and Western blot. The mRNA, protein level and activity of TACE were tested by quantitative (q)RT-PCR, Western blot and InnoZyme TACE activity assay kit. Furthermore, we measured the protein level of mitogen-activated protein kinase (MAPK) signaling and protein kinase C (PKC) pathway under this condition by Western blot. The results showed that α-cyperone could suppress PMA-induced EPCR shedding through inhibiting the expression and activity of TACE. In addition, α-cyperone could inhibit PKC translocation, but not have an effect on phosphorylation of c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK) 1/2. Given these results, α-cyperone inhibits PMA-induced EPCR shedding through PKC pathway, which will provide an experimental basis for further research on α-cyperone.
Collapse
Affiliation(s)
- Yu Ma
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Yi Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Ran Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Yi Geng
- Department of Pharmacy, Sichuan Agricultural University
| | - Gang Shu
- Department of Pharmacy, Sichuan Agricultural University
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University
| | - Yinglun Li
- Department of Pharmacy, Sichuan Agricultural University
| | - Gang Ye
- Department of Pharmacy, Sichuan Agricultural University
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University
| |
Collapse
|
18
|
Ma Y, Zhao Y, Zhang R, Liang X, Yin Z, Geng Y, Shu G, Song X, Zou Y, Li L, Yin L, Yue G, Li Y, Ye G, He C. Astragaloside IV inhibits PMA-induced EPCR shedding through MAPKs and PKC pathway. Immunopharmacol Immunotoxicol 2017; 39:148-156. [PMID: 28367652 DOI: 10.1080/08923973.2017.1306868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
Abstract
Astragaloside IV (AS-IV), a main active substance isolated from Astragalus membranaceus Bunge, has been shown to have multiple pharmacological effects. Endothelial cell protein C receptor (EPCR) is a marker of inflammation, and is also a major member of protein C (PC) anti-coagulation system. EPCR can be cut off from the cell surface by tumor necrosis factor-α converting enzyme (TACE), which is controlled through mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. To develop novel therapeutic drug for EPCR shedding, the effect of AS-IV was studied in phorbol-12-myristate 13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs) and the potential molecular mechanism of AS-IV action was investigated. The results showed that AS-IV could significantly inhibit PMA-induced EPCR shedding. In further study, AS-IV suppressed the expression and activity of TACE. In addition, AS-IV could decrease the phosphorylation of MAPK such as janus kinase (JNK) and p38, and inhibit activation of PKC through the prevention of non-phosphorylation and phosphorylation of specific PKC isoforms in PMA-stimulated HUVECs. These findings indicate that AS-IV may be used as a natural medicine to treat EPCR-related systemic inflammation and cardiovascular diseases by targeting MAPK and PKC pathway.
Collapse
Affiliation(s)
- Yu Ma
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Yi Zhao
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Ran Zhang
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Xiaoxia Liang
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Zhongqiong Yin
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Yi Geng
- b Department of Pharmacy , Sichuan Agricultural University , Chengdu , PR China
| | - Gang Shu
- b Department of Pharmacy , Sichuan Agricultural University , Chengdu , PR China
| | - Xu Song
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Yuanfeng Zou
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Lixia Li
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Lizi Yin
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| | - Guizhou Yue
- c College of Science , Sichuan Agricultural University , Ya'an , PR China
| | - Yinglun Li
- b Department of Pharmacy , Sichuan Agricultural University , Chengdu , PR China
| | - Gang Ye
- b Department of Pharmacy , Sichuan Agricultural University , Chengdu , PR China
| | - Changliang He
- a Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu , PR China
| |
Collapse
|
19
|
Chang KC, Petrash JM. Aldose Reductase Mediates Transforming Growth Factor β2 (TGF-β2)-Induced Migration and Epithelial-To-Mesenchymal Transition of Lens-Derived Epithelial Cells. Invest Ophthalmol Vis Sci 2015; 56:4198-210. [PMID: 26132779 DOI: 10.1167/iovs.15-16557] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Cataract surgery involves removal of lens tissue, but is associated with a high complication rate due to regrowth of residual lens epithelial cells to produce posterior capsule opacification (PCO) and diminished visual acuity. As inhibitors of aldose reductase (AR) have been shown to suppress markers of PCO, our studies were designed to identify a role for AR in the pathogenesis of PCO. METHODS Sorbinil-mediated AR inhibition was determined by measuring sorbitol accumulation. Cell migration was measured using both transwell and scratch assays. Proteins in the SMAD signaling pathway were measured by Western blotting. The interactions of AR and SMADs were demonstrated by co-immunoprecipitation (Co-IP) and proximity ligation assay (PLA). Epithelial-to-mesenchymal transition (EMT) expression was measured by Western blot and quantitative PCR (q-PCR). Matrix metalloproteinase (MMP)-2 and MMP-9 activities were measured in conditioned medium by zymography. RESULTS We observed that either Sorbinil-mediated AR inhibition or siRNA-mediated AR gene knockdown prevented migration of lens epithelial cells following exposure to TGF-β2. AR inhibition or AR knockdown reduced SMAD and MMP activation triggered by TGF-β2. In addition, we demonstrated AR inhibition or AR knockdown decreased TGF-β2-induced expression of EMT markers. Co-IP studies and PLA were used to demonstrate that AR and SMAD2 interact either directly or in close concert with additional factor(s) in a nonenzymatic manner. CONCLUSIONS This study demonstrates that AR participates in the response of lens epithelial cells to TGF-β2. Our studies raise the possibility that AR inhibition may be effective in preventing development of PCO by disrupting the TGF-β2/SMAD pathway.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz
| | - J Mark Petrash
- Department of Ophthalmology School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz
| |
Collapse
|
20
|
Chang KC, Ponder J, Labarbera DV, Petrash JM. Aldose reductase inhibition prevents endotoxin-induced inflammatory responses in retinal microglia. Invest Ophthalmol Vis Sci 2014; 55:2853-61. [PMID: 24677107 DOI: 10.1167/iovs.13-13487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Retinal microglia become activated in diabetes and produce pro-inflammatory molecules associated with changes in retinal vasculature and increased apoptosis of retinal neurons and glial cells. We sought to determine if the action of aldose reductase (AR), an enzyme linked to the pathogenesis of diabetic retinopathy, contributes to activation of microglial cells. METHODS Involvement of AR in the activation process was studied using primary cultures of retinal microglia (RMG) isolated from wild-type and AR-null mice, or in mouse macrophage cultures treated with either AR inhibitors or small interfering RNA (siRNA) directed to AR. Inflammatory cytokines were measured by ELISA. Cell migration was measured using a transwell assay. Gelatin zymography was used to detect active matrix metalloproteinase (MMP)-9, while RMG-induced apoptosis of adult retinal pigment epithelium (ARPE-19) cells was studied in a cell coculture system. RESULTS Aldose reductase inhibition or genetic deficiency substantially reduced lipopolysacharide (LPS)-induced cytokine secretion from macrophages and RMG. Aldose reductase inhibition or deficiency also reduced the activation of MMP-9 and attenuated LPS-induced cell migration. Additionally, blockade of AR by sorbinil or through genetic means caused a reduction in the ability of activated RMG to induce apoptosis of ARPE-19 cells. CONCLUSIONS These results demonstrate that the action of AR contributes to the activation of RMG. Inhibition of AR may be a therapeutic strategy to reduce inflammation associated with activation of RMG in disease.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | | | | | | |
Collapse
|
21
|
Omote K, Gohda T, Murakoshi M, Sasaki Y, Kazuno S, Fujimura T, Ishizaka M, Sonoda Y, Tomino Y. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am J Physiol Renal Physiol 2014; 306:F1335-47. [PMID: 24647715 DOI: 10.1152/ajprenal.00509.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-A(y) mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-A(y) mice were significantly decreased compared with untreated KK-A(y) mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.
Collapse
Affiliation(s)
- Keisuke Omote
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Tomohito Gohda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Maki Murakoshi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yu Sasaki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Saiko Kazuno
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masanori Ishizaka
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yuji Sonoda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan; and
| |
Collapse
|
22
|
Arora DK, Machhadieh B, Matti A, Wadzinski BE, Ramanadham S, Kowluru A. High glucose exposure promotes activation of protein phosphatase 2A in rodent islets and INS-1 832/13 β-cells by increasing the posttranslational carboxylmethylation of its catalytic subunit. Endocrinology 2014; 155:380-91. [PMID: 24265448 PMCID: PMC3891936 DOI: 10.1210/en.2013-1773] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Existing evidence implicates regulatory roles for protein phosphatase 2A (PP2A) in a variety of cellular functions, including cytoskeletal remodeling, hormone secretion, and apoptosis. We report here activation of PP2A in normal rat islets and insulin-secreting INS-1 832/13 cells under the duress of hyperglycemic (HG) conditions. Small interfering RNA-mediated knockdown of the catalytic subunit of PP2A (PP2Ac) markedly attenuated glucose-induced activation of PP2A. HG, but not nonmetabolizable 3-O-methyl glucose or mannitol (osmotic control), significantly stimulated the methylation of PP2Ac at its C-terminal Leu-309, suggesting a novel role for this posttranslational modification in glucose-induced activation of PP2A. Moreover, knockdown of the cytosolic leucine carboxymethyl transferase 1 (LCMT1), which carboxymethylates PP2Ac, significantly attenuated PP2A activation under HG conditions. In addition, HG conditions, but not 3-O-methyl glucose or mannitol, markedly increased the expression of LCMT1. Furthermore, HG conditions significantly increased the expression of B55α, a regulatory subunit of PP2A, which has been implicated in islet dysfunction under conditions of oxidative stress and diabetes. Thapsigargin, a known inducer of endoplasmic reticulum stress, failed to exert any discernible effects on the carboxymethylation of PP2Ac, expression of LCMT1 and B55α, or PP2A activity, suggesting no clear role for endoplasmic reticulum stress in HG-induced activation of PP2A. Based on these findings, we conclude that exposure of the islet β-cell to HG leads to accelerated PP2A signaling pathway, leading to loss in glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Daleep K Arora
- Beta-Cell Biochemistry Laboratory (D.K.A., A.K.), John D. Dingell Veterans Affairs Medical Center, and Department of Pharmaceutical Sciences (D.K.A., A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201; Section of Endocrinology, Diabetes and Metabolism (B.M.), University of Illinois at Chicago, Chicago, Illinois 60612; Department of Engineering and Science (A.M.), University of Detroit Mercy, Detroit, Michigan 48221; Department of Pharmacology (B.E.W.), Vanderbilt University Medical Center, Nashville, Tennessee 37232; and Department of Cell, Developmental, and Integrative Biology (S.R.), University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | | | | | | | | |
Collapse
|
23
|
Taniguchi K, Xia L, Goldberg HJ, Lee KW, Shah A, Stavar L, Masson EA, Momen A, Shikatani EA, John R, Husain M, Fantus IG. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 2013; 62:3874-86. [PMID: 23942551 PMCID: PMC3806624 DOI: 10.2337/db12-1010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic exposure to high glucose leads to diabetic nephropathy characterized by increased mesangial matrix protein (e.g., collagen) accumulation. Altered cell signaling and gene expression accompanied by oxidative stress have been documented. The contribution of the tyrosine kinase, c-Src (Src), which is sensitive to oxidative stress, was examined. Cultured rat mesangial cells were exposed to high glucose (25 mmol/L) in the presence and absence of Src inhibitors (PP2, SU6656), Src small interfering RNA (siRNA), and the tumor necrosis factor-α-converting enzyme (TACE) inhibitor, TAPI-2. Src was investigated in vivo by administration of PP2 to streptozotocin (STZ)-induced diabetic DBA2/J mice. High glucose stimulated Src, TACE, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK1/2, p38), and collagen IV accumulation in mesangial cells. PP2 and SU6656 blocked high glucose-stimulated phosphorylation of Src Tyr-416, EGFR, and MAPKs. These inhibitors and Src knockdown by siRNA, as well as TAPI-2, also abrogated high glucose-induced phosphorylation of these targets and collagen IV accumulation. In STZ-diabetic mice, albuminuria, increased Src pTyr-416, TACE activation, ERK and EGFR phosphorylation, glomerular collagen accumulation, and podocyte loss were inhibited by PP2. These data indicate a role for Src in a high glucose-Src-TACE-heparin-binding epidermal growth factor-EGFR-MAPK-signaling pathway to collagen accumulation. Thus, Src may provide a novel therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Kanta Taniguchi
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ling Xia
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Howard J. Goldberg
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ken W.K. Lee
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anu Shah
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Laura Stavar
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Elodie A.Y. Masson
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Abdul Momen
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - Eric A. Shikatani
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - I. George Fantus
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine and Lunedfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Center for Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: I. George Fantus,
| |
Collapse
|
24
|
Wysocki J, Garcia-Halpin L, Ye M, Maier C, Sowers K, Burns KD, Batlle D. Regulation of urinary ACE2 in diabetic mice. Am J Physiol Renal Physiol 2013; 305:F600-11. [PMID: 23761674 PMCID: PMC3891267 DOI: 10.1152/ajprenal.00600.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) enhances the degradation of ANG II and its expression is altered in diabetic kidneys, but the regulation of this enzyme in the urine is unknown. Urinary ACE2 was studied in the db/db model of type 2 diabetes and stretozotocin (STZ)-induced type 1 diabetes during several physiological and pharmacological interventions. ACE2 activity in db/db mice was increased in the serum and to a much greater extent in the urine compared with db/m controls. Neither a specific ANG II blocker, telmisartan, nor an ACE inhibitor, captopril, altered the levels of urinary ACE2 in db/db or db/m control mice. High-salt diet (8%) increased whereas low-salt diet (0.1%) decreased urinary ACE2 activity in the urine of db/db mice. In STZ mice, urinary ACE2 was also increased, and insulin decreased it partly but significantly after several weeks of administration. The increase in urinary ACE2 activity in db/db mice reflected an increase in enzymatically active protein with two bands identified of molecular size at 110 and 75 kDa and was associated with an increase in kidney cortex ACE2 protein at 110 kDa but not at 75 kDa. ACE2 activity was increased in isolated tubular preparations but not in glomeruli from db/db mice. Administration of soluble recombinant ACE2 to db/m and db/db mice resulted in a marked increase in serum ACE2 activity, but no gain in ACE2 activity was detectable in the urine, further demonstrating that urinary ACE2 is of kidney origin. Increased urinary ACE2 was associated with more efficient degradation of exogenous ANG II (10(-9) M) in urine from db/db compared with that from db/m mice. Urinary ACE2 could be a potential biomarker of increased metabolism of ANG II in diabetic kidney disease.
Collapse
Affiliation(s)
- Jan Wysocki
- Div. of Nephrology and Hypertension, Dept. of Medicine, The Feinberg School of Medicine, Northwestern Univ., 320 E. Superior, Chicago, IL 60611.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ford BM, Eid AA, Göőz M, Barnes JL, Gorin YC, Abboud HE. ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice. Am J Physiol Renal Physiol 2013; 305:F323-32. [PMID: 23678045 DOI: 10.1152/ajprenal.00522.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix protein accumulation is a prominent feature of diabetic nephropathy that contributes to renal fibrosis and decline in renal function. The pathogenic mechanisms of matrix accumulation are incompletely characterized. We investigated if the matrix metalloprotease a disintegrin and metalloprotease1 7 (ADAM17), known to cleave growth factors and cytokines, is activated in the kidney cortex of OVE26 type 1 diabetic mice and the potential mechanisms by which ADAM17 mediates extracellular matrix accumulation. Protein expression and activity of ADAM17 were increased in OVE26 kidney cortex. Using a pharmacological inhibitor to ADAM17, TMI-005, we determined that ADAM17 activation results in increased type IV collagen, Nox4, and NADPH oxidase activity in the kidney cortex of diabetic mice. In cultured mouse proximal tubular epithelial cells (MCTs), high glucose increases ADAM17 activity, Nox4 and fibronectin expression, cellular collagen content, and NADPH oxidase activity. These effects of glucose were inhibited when cells were pretreated with TMI-005 and/or transfected with small interfering ADAM17. Collectively, these data indicate a novel mechanism whereby hyperglycemia in diabetes increases extracellular matrix protein expression in the kidney cortex through activation of ADAM17 and enhanced oxidative stress through Nox enzyme activation. Additionally, our study is the first to provide evidence that Nox4 is downstream of ADAM17.
Collapse
Affiliation(s)
- Bridget M Ford
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
26
|
Park SE, Kim WJ, Park SW, Park JW, Lee N, Park CY, Youn BS. High urinary ACE2 concentrations are associated with severity of glucose intolerance and microalbuminuria. Eur J Endocrinol 2013; 168:203-10. [PMID: 23144053 DOI: 10.1530/eje-12-0782] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Angiotensin-converting enzyme 2 (ACE2) plays an important role in glucose metabolism and renal function. However, the relationship between ACE2 and hyperglycemia or microalbuminuria has not been established in humans. We investigated whether urinary ACE2 levels are associated with abnormal glucose homeostasis and urinary albumin excretion. METHODS We developed an ELISA for quantifying ACE2 in urine. The ELISA was used to measure urinary ACE2 levels in 621 subjects with: normal glucose tolerance (NGT; n=77); impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) (n=132); and type 2 diabetes mellitus (T2DM, n=412). Insulin resistance was assessed by homeostasis model assessment for insulin resistance (HOMA-IR) index and urinary albumin excretion by urine albumin-to-creatinine ratio (ACR). Other biochemical and anthropometric parameters were measured. RESULTS Urinary ACE2 levels were significantly higher in insulin-resistant subjects with IFG, IGT, and T2DM than in the NGT group (P<0.001). Urinary ACE2 concentrations appeared to correlate with HOMA-IR, fasting blood glucose, triglyceride, high-sensitivity C-reactive protein, serum creatinine, urinary ACR, and systolic blood pressure (all P<0.05). After adjustment for impaired renal function and other metabolic parameters, urinary ACE2 concentration was still associated with a higher risk for T2DM (OR 1.80, 95% CI 1.05-3.08, P=0.02). In addition, urinary ACE2 levels were highly predictive of microalbuminuria after adjusting for clinical risk factors (OR 2.68, 95% CI 1.55-4.64, P<0.001). CONCLUSION Our data suggest that the urinary ACE2 level is closely associated with T2DM and is an independent risk factor for microalbuminuria.
Collapse
Affiliation(s)
- Se Eun Park
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Jowett JBM, Okada Y, Leedman PJ, Curran JE, Johnson MP, Moses EK, Goring HHH, Mochizuki S, Blangero J, Stone L, Allen H, Mitchell C, Matthews VB. ADAM28 is elevated in humans with the metabolic syndrome and is a novel sheddase of human tumour necrosis factor-α. Immunol Cell Biol 2012; 90:966-73. [PMID: 23010875 DOI: 10.1038/icb.2012.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metalloproteinases are implicated in cleaving numerous proinflammatory mediators from the cell surface. Interestingly, the elevated levels of tumour necrosis factor-α (TNF-α) have been associated with the metabolic syndrome. We aimed to ascertain whether the human metalloproteinase ADAM28 correlates with parameters of the metabolic syndrome and whether ADAM28 is a novel sheddase of human TNF-α. To identify novel metalloproteinases associated with the metabolic syndrome, we conducted microarray studies on peripheral blood mononuclear cells from a well characterised human cohort. Human ADAM28 and TNF-α were overexpressed and ADAM28 expression or activity was reduced with small-interfering RNA (siRNA) or pharmacological inhibition. TNF-α levels were measured in cell supernatant by enzyme-linked immunosorbent assay. We also conducted ADAM28 inhibition studies in human THP-1 macrophages. Human ADAM28 expression levels were positively correlated with parameters of the metabolic syndrome. When human ADAM28 and TNF-α were overexpressed in HEK293 cells, both proteins co-localised, co-immunoprecipitated and promoted TNF-α shedding. The shedding was significantly reduced when ADAM28 activity was inhibited or ADAM28 expression was downregulated. In human THP-1 macrophages, endogenous ADAM28 and TNF-α were co-expressed and TNF-α shedding was significantly reduced when ADAM28 was inhibited by pharmacological inhibition or siRNA knockdown. Our data suggest a novel mechanistic role for the metalloproteinase ADAM28 in inflammation, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jeremy B M Jowett
- Genomics and Systems Biology, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sanchez-Guerrero E, Chen E, Kockx M, An SW, Chong BH, Khachigian LM. IL-1beta signals through the EGF receptor and activates Egr-1 through MMP-ADAM. PLoS One 2012; 7:e39811. [PMID: 22792188 PMCID: PMC3391205 DOI: 10.1371/journal.pone.0039811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/27/2012] [Indexed: 01/22/2023] Open
Abstract
The immediate-early gene Egr-1 controls the inducible expression of many genes implicated in the pathogenesis of a range of vascular disorders, yet our understanding of the mechanisms controlling the rapid expression of this prototypic zinc finger transcription factor is poor. Here we show that Egr-1 expression induced by IL-1beta is dependent on metalloproteinases (MMP) and a disintegrin and a metalloproteinase (ADAM). Pharmacologic MMP/ADAM inhibitors and siRNA knockdown prevent IL-1beta induction of Egr-1. Further, IL-1beta activates Egr-1 via the epidermal growth factor receptor (EGFR). This is blocked by EGFR tyrosine kinase inhibition and EGFR knockdown. IL-1beta induction of Egr-1 expression is reduced in murine embryonic fibroblasts (mEFs) deficient in ADAM17 despite unbiased expression of EGFR and IL-1RI in ADAM17-deficient and wild-type mEFs. Finally, we show that IL-1beta-inducible wound repair after mechanical injury requires both EGFR and MMP/ADAM. This study reports for the first time that Egr-1 induction by IL-1beta involves EGFR and MMP/ADAM-dependent EGFR phosphorylation.
Collapse
Affiliation(s)
| | - Elya Chen
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Maaike Kockx
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Si-Wei An
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Beng H. Chong
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
29
|
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 2012; 3:87. [PMID: 22582044 PMCID: PMC3348620 DOI: 10.3389/fphar.2012.00087] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/19/2012] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.
Collapse
Affiliation(s)
- Wai Ho Tang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University New Haven, CT, USA
| | | | | |
Collapse
|
30
|
Kowluru RA, Zhong Q, Santos JM. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs 2012; 21:797-805. [PMID: 22519597 DOI: 10.1517/13543784.2012.681043] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Diabetic retinopathy remains one of the most feared complications of diabetes. Despite extensive research in the field, the molecular mechanism responsible for the development of this slow progressing disease remains unclear. In the pathogenesis of diabetic retinopathy, mitochondria are damaged and inflammatory mediators are elevated before the histopathology associated with the disease can be observed. Matrix metalloproteinases (MMPs) regulate a variety of cellular functions including apoptosis and angiogenesis. Diabetic environment stimulates the secretion of several MMPs that are considered to participate in complications, including retinopathy, nephropathy and cardiomyopathy. Patients with diabetic retinopathy and also animal models have shown increased MMP-9 and MMP-2 in their retina and vitreous. Recent research has shown that MMPs have dual role in the development of diabetic retinopathy; in the early stages of the disease (pre-neovascularization), MMP-2 and MMP-9 facilitate the apoptosis of retinal capillary cells, possibly via damaging the mitochondria, and in the later phase, they help in neovascularization. AREAS COVERED This article reviews the literature to evaluate the role of MMPs, especially MMP-9, in the development of diabetic retinopathy, and presents existing evidence that the inhibitors targeted toward MMP-9, depending on the duration of diabetes at the times their administration could have potential to prevent the progression of this blinding disease, and protect the vision loss. EXPERT OPINION Inhibitors of MMPs could have dual role: in the early stages of the diseases, inhibit capillary cell apoptosis, and if the disease has progressed to the angiogenic stage, inhibit the growth of new vessels.
Collapse
Affiliation(s)
- Renu A Kowluru
- Wayne State University, Kresge Eye Institute, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
31
|
Costa GN, Vindeirinho J, Cavadas C, Ambrósio AF, Santos PF. Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Mol Cell Neurosci 2012; 50:113-23. [PMID: 22522145 DOI: 10.1016/j.mcn.2012.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/16/2012] [Accepted: 04/02/2012] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness among working-age adults, holds several hallmarks of an inflammatory disease. The increase in cell death in neural retina is an early event in the diabetic retina, preceding the loss of microvascular cells. Since tumor necrosis factor-α (TNF-α) has been shown to trigger the death of perycites and endothelial cells as well as the breakdown of the blood-retinal barrier, we set out to investigate whether TNF-α acting through tumor necrosis factor receptor 1 (TNFR1), the major receptor responsible for mediating TNF-induced cell death, could also be responsible for the early neuronal cell death observed in DR. We used retinal neural cell cultures exposed to high glucose conditions, to mimic hyperglycaemia, and evaluated the contribution of TNFR1 in neural cell death. TNFR1 was found to be present to a great extent in retinal neurons and the levels of this receptor were found to be altered in cells cultured in high glucose conditions. High glucose induced an early decrease in cell viability, an increase in apoptosis and a higher immunoreactivity for the cleaved caspase-3, indicating a high glucose-induced caspase-dependent cell death. These observations were correlated with an increase in TNF-α expression. Nonetheless, inhibiting the activation of TNFR1 was sufficient to prevent the decrease in cell viability and the increase in retinal cell death by apoptosis. In conclusion, our data indicate that TNF-α acting through TNFR1 is responsible for the high glucose-induced cell death and that blocking the activity of this receptor is an adequate strategy to avoid cell loss in such conditions.
Collapse
Affiliation(s)
- G N Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
32
|
Mizuiri S, Aoki T, Hemmi H, Arita M, Sakai K, Aikawa A. Urinary angiotensin-converting enzyme 2 in patients with CKD. Nephrology (Carlton) 2011; 16:567-72. [PMID: 21457402 DOI: 10.1111/j.1440-1797.2011.01467.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM Angiotensin-converting enzyme 2 (ACE2) is a type I membrane protein that antagonizes the action of angiotensin II. Because of the need for invasive kidney biopsy, little is known about the role of renal ACE2 in human kidney diseases. The authors studied if urinary ACE2 could provide a novel clue to renal ACE2 in chronic kidney disease (CKD). METHODS Subjects were 190 patients with CKD including 38 patients with diabetic nephropathy and 36 healthy subjects. Parameters were urinary ACE2 by enzyme-linked immunosorbent assay, blood pressure, casual plasma glucose, proteinuria, microalbuminuria, serum creatinine and estimated glomerular filtration rate. Urine and serum samples were also subjected to western blotting of ACE2. RESULTS Western blotting confirmed increased urinary ACE2 levels in patients with CKD. Urinary ACE2 was significantly higher in patients with CKD than healthy subjects (median 9.64 (interquartile range, 4.41-16.89) vs 1.50 (0.40-2.33) mg/g·creatinine, P < 0.001) and in patients with diabetic nephropathy than patients without diabetic nephropathy (median 13.16 (interquartile range 6.81-18.70) vs 8.90 (4.19-16.67) mg/g·creatinine, P < 0.05). No significant difference in urinary ACE2 was observed by the use of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker. CONCLUSION Urinary ACE2 could be used as a non-invasive marker to understand the role of renal ACE2 in CKD.
Collapse
Affiliation(s)
- Sonoo Mizuiri
- Department of Nephrology, Toho University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Ma R, Gu Y, Groome LJ, Wang Y. ADAM17 regulates TNFα production by placental trophoblasts. Placenta 2011; 32:975-80. [PMID: 22018416 DOI: 10.1016/j.placenta.2011.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
Abstract
Increased trophoblast TNFα production is an important component of placental dysfunction in preeclampsia. However, the mechanism of increased TNFα production in the preeclamptic placenta is largely unknown. ADAM17 is a metallopeptidase that functions as a TNFα converting enzyme. In this study, we examined ADAM17 expression in placentas from normal and preeclamptic pregnancies and found increased ADAM17 expression in preeclamptic placentas compared to those from normal placentas, p < 0.05. Since hypoxia/oxidative stress is an underlying pathophysiology in the preeclamptic placenta, we further determined if hypoxia/oxidative stress could modulate ADAM17 expression and subsequently induce TNFα production in placental trophoblasts. Trophoblasts were isolated from normal term placentas and treated with cobalt (II) chloride (CoCl(2)), a hypoxia mimetic agent, at different concentrations. Our results showed that CoCl(2) induced a dose-dependent increase in TNFα production that is associated with enhanced ADAM17 expression. Trophoblast expressions of HO-1 (a sensor of cellular oxidative stress) and caspase-3 (an indicator of apoptosis) in response to CoCl(2) stimulation were also examined. We further found that metallopeptidase inhibitor GM6001 and ADAM17 siRNA could block CoCl(2) induced TNFα production, demonstrating the role of ADAM17 in TNFα production in placental trophoblasts. These results suggest that oxidative stress-induced increased ADAM17 expression could contribute to the increased TNFα production in preeclamptic placentas.
Collapse
Affiliation(s)
- R Ma
- Dept. of Gynecology, The Third Hospital of Harbin Medical University, Harbin, China
| | | | | | | |
Collapse
|
34
|
Abstract
In the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, a number of AR inhibitors have been developed and tested for diabetic complications. Although, these inhibitors have found to be safe for human use, they have not been successful at the clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR besides reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Since lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-kB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-kB and AP1 signals that lead to cell death or growth. Further, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in-vitro and in-vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how the recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
35
|
Kveiborg M, Instrell R, Rowlands C, Howell M, Parker PJ. PKCα and PKCδ regulate ADAM17-mediated ectodomain shedding of heparin binding-EGF through separate pathways. PLoS One 2011; 6:e17168. [PMID: 21386996 PMCID: PMC3046143 DOI: 10.1371/journal.pone.0017168] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/24/2011] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanisms of PKC-dependent ectodomain shedding of EGFR-ligands, including the involvement of specific PKC isoforms and possible functional redundancy, are poorly understood. To address this issue, we employed a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB-EGF. We identified PKCα as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCδ and ERK activity. While PKCα specifically regulated PMA-induced shedding, PKCδ and ERK influenced both constitutive and inducible shedding by apparently affecting the level of HB-EGF on the cell surface. Together, these findings indicate the existence of multiple modes of regulation controlling EGFR-ligand availability and subsequent EGFR signal transduction.
Collapse
Affiliation(s)
- Marie Kveiborg
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
| | | | | | | | | |
Collapse
|
36
|
Uttarwar L, Peng F, Wu D, Kumar S, Gao B, Ingram AJ, Krepinsky JC. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells. Am J Physiol Renal Physiol 2011; 300:F921-31. [PMID: 21289053 DOI: 10.1152/ajprenal.00436.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- L Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
von Burstin VA, Xiao L, Kazanietz MG. Bryostatin 1 inhibits phorbol ester-induced apoptosis in prostate cancer cells by differentially modulating protein kinase C (PKC) delta translocation and preventing PKCdelta-mediated release of tumor necrosis factor-alpha. Mol Pharmacol 2010; 78:325-32. [PMID: 20516369 PMCID: PMC2939481 DOI: 10.1124/mol.110.064741] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 11/22/2022] Open
Abstract
Bryostatin 1, a macrocyclic lactone that has been widely characterized as an ultrapotent protein kinase C (PKC) activator, displays marked pharmacological differences with the typical phorbol ester tumor promoters. Bryostatin 1 impairs phorbol 12-myristate 13-acetate (PMA)-induced tumor promotion in mice and is in clinical trials as an anticancer agent for a number of hematopoietic malignancies and solid tumors. In this study, we characterized the effect of bryostatin 1 on LNCaP prostate cancer cells, a cellular model in which PKC isozymes play important roles in the control of growth and survival. Although phorbol esters promote a strong apoptotic response in LNCaP cells via PKCdelta-mediated release of TNFalpha, bryostatin 1 failed to trigger a death effect even at high concentrations, and it prevented PMA-induced apoptosis in these cells. Mechanistic analysis revealed that bryostatin 1 is unable to induce TNFalpha release, and it impairs the secretion of this cytokine from LNCaP cells in response to PMA. Unlike PMA, bryostatin 1 failed to promote the translocation of PKCdelta to the plasma membrane. Moreover, bryostatin 1 prevented PMA-induced PKCdelta peripheral translocation. Studies using a membrane-targeted PKCdelta construct revealed that the peripheral localization of the kinase is a requisite for triggering apoptosis in LNCaP cells, arguing that mislocalization of PKCdelta may explain the actions of bryostatin 1. The identification of an antiapoptotic effect of bryostatin 1 may have significant relevance in the context of its therapeutic efficacy.
Collapse
Affiliation(s)
- Vivian A von Burstin
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
38
|
Abstract
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
39
|
Ramana KV. Tumor necrosis factor-alpha converting enzyme: Implications for ocular inflammatory diseases. Int J Biochem Cell Biol 2010; 42:1076-9. [PMID: 20303413 DOI: 10.1016/j.biocel.2010.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 01/18/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE), a member of the family of metalloproteinase disintegrin proteins, is responsible for the conversion of inactive TNF-alpha precursor form to active mature form. TNF-alpha is a pleiotropic cytokine that contributes to cellular immunity and inflammatory response in wide range of inflammatory pathologies. Although a large number of studies indicate the use of TACE inhibitors, which prevents processing of TNF-alpha as potential therapeutic drugs for the treatment of inflammatory diseases including rheumatoid arthritis, Crohn's disease and cancer, very few studies indicate its use in ocular pathologies. It is still not clearly understood how the TACE-mediated shedding of cytokines and growth factors in various ocular tissues plays a critical role in the cytotoxic signals causing tissue dysfunction and damage leading to blindness. Regulation of TACE activity is likely to have wide implications for ocular immunology and inflammatory diseases. Specifically, since anti-TNF-alpha therapies have been used to prevent ocular inflammatory complications, the use of TACE inhibitors could be a novel therapeutic approach for ocular inflammatory diseases especially uveitis.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
40
|
Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW. Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 2010; 20:5236-49. [PMID: 19846666 DOI: 10.1091/mbc.e08-12-1256] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-alpha (TGF-alpha) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-alpha proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-alpha shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-alpha shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-alpha shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Jacobsen KT, Adlerz L, Multhaup G, Iverfeldt K. Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem 2010; 285:10223-31. [PMID: 20139073 DOI: 10.1074/jbc.m109.038224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Secretase cleavage of the amyloid precursor protein (APP) is of great interest because it prevents the formation of the Alzheimer-linked amyloid-beta peptide. APP belongs to a conserved gene family including the two paralogues APP-like protein (APLP) 1 and 2. Insulin-like growth factor-1 (IGF-1) stimulates the shedding of all three proteins. IGF-1-induced shedding of both APP and APLP1 is dependent on phosphatidylinositol 3-kinase (PI3-K), whereas APLP2 shedding is independent of this signaling pathway. Here, we used human neuroblastoma SH-SY5Y cells to investigate the involvement of protein kinase C (PKC) in the proteolytic processing of endogenously expressed members of the APP family. Processing was induced by IGF-1 or retinoic acid, another known stimulator of APP alpha-secretase shedding. Our results show that stimulation of APP and APLP1 processing involves multiple signaling pathways, whereas APLP2 processing is mainly dependent on PKC. Next, we wanted to investigate whether the difference in the regulation of APLP2 shedding compared with APP shedding could be due to involvement of different processing enzymes. We focused on the two major alpha-secretase candidates ADAM10 and TACE, which both are members of the ADAM (a disintegrin and metalloprotease) family. Shedding was analyzed in the presence of the ADAM10 inhibitor GI254023X, or after transfection with small interfering RNAs targeted against TACE. The results clearly demonstrate that different alpha-secretases are involved in IGF-1-induced processing. APP is mainly cleaved by ADAM10, whereas APLP2 processing is mediated by TACE. Finally, we also show that IGF-1 induces PKC-dependent phosphorylation of TACE.
Collapse
Affiliation(s)
- Kristin T Jacobsen
- Department of Neurochemistry, Stockholm University, SE10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
42
|
Pereira TDOS, da Costa GNF, Santiago ARS, Ambrósio AF, dos Santos PFM. High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Res 2010; 1316:129-38. [DOI: 10.1016/j.brainres.2009.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 01/06/2023]
|
43
|
Fiorentino L, Vivanti A, Cavalera M, Marzano V, Ronci M, Fabrizi M, Menini S, Pugliese G, Menghini R, Khokha R, Lauro R, Urbani A, Federici M. Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology 2010; 51:103-10. [PMID: 19877183 DOI: 10.1002/hep.23250] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Tumor necrosis factor alpha-converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C(2)C(12) myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3(-/-) mice have higher TACE activity compared with wild-type (WT) mice. Timp3(-/-) mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3(-/-) liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N-methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3(-/-) compared with WT mice. CONCLUSION We have identified novel mechanisms, governed by the TACE-Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice.
Collapse
Affiliation(s)
- Loredana Fiorentino
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cardellini M, Menghini R, Martelli E, Casagrande V, Marino A, Rizza S, Porzio O, Mauriello A, Solini A, Ippoliti A, Lauro R, Folli F, Federici M. TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes 2009; 58:2396-401. [PMID: 19581416 PMCID: PMC2750223 DOI: 10.2337/db09-0280] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Atherosclerosis is accelerated in subjects with type 2 diabetes by unknown mechanisms. We identified tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of A disintegrin and metalloprotease domain 17 (ADAM17) and other matrix metalloproteinases (MMPs), as a gene modifier for insulin resistance and vascular inflammation in mice. We tested its association with atherosclerosis in subjects with type 2 diabetes and identified Sirtuin 1 (SirT1) as a major regulator of TIMP3 expression. RESEARCH DESIGN AND METHODS We investigated ADAM10, ADAM17, MMP9, TIMP1, TIMP2, TIMP3, and TIMP4 expression levels in human carotid atherosclerotic plaques (n = 60) from subjects with and without diabetes. Human vascular smooth muscle cells exposed to several metabolic stimuli were used to identify regulators of TIMP3 expression. SirT1 small interference RNA, cDNA, and TIMP3 promoter gene reporter were used to study SirT1-dependent regulation of TIMP3. RESULTS Here, we show that in human carotid atherosclerotic plaques, TIMP3 was significantly reduced in subjects with type 2 diabetes, leading to ADAM17 and MMP9 overactivity. Reduced expression of TIMP3 was associated in vivo with SirT1 levels. In smooth muscle cells, inhibition of SirT1 activity and levels reduced TIMP3 expression, whereas SirT1 overexpression increased TIMP3 promoter activity. CONCLUSIONS In atherosclerotic plaques from subjects with type 2 diabetes, the deregulation of ADAM17 and MMP9 activities is related to inadequate expression of TIMP3 via SirT1. Studies in vascular cells confirmed the role of SirT1 in tuning TIMP3 expression.
Collapse
Affiliation(s)
- Marina Cardellini
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rossella Menghini
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eugenio Martelli
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Viviana Casagrande
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna Marino
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rizza
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ottavia Porzio
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Mauriello
- Department of Biopathology and Diagnostic Imaging, University of Rome Tor Vergata, Rome, Italy
| | - Anna Solini
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Arnaldo Ippoliti
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Renato Lauro
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Franco Folli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Massimo Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
- Corresponding author: Massimo Federici,
| |
Collapse
|
45
|
Popov D, Nemecz M, Dumitrescu M, Georgescu A, Böhmer FD. Long-term high glucose concentration influences Akt, ERK1/2, and PTP1B protein expression in human aortic smooth muscle cells. Biochem Biophys Res Commun 2009; 388:51-5. [PMID: 19647719 DOI: 10.1016/j.bbrc.2009.07.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/22/2009] [Indexed: 11/26/2022]
Abstract
Hyperglycemia stimulates a plethora of intracellular signaling pathways within the cells of the vascular wall resulting in dysfunction-associated pathologies. Most of the studies reported so far explored the effect of rather short-time exposure of smooth muscle cells to high glucose concentrations. To mimic situation in Type 2 diabetes in which vascular wall is constantly exposed to circulating hyperglycemia, we report here the long-term (7days) effect of high glucose concentration on human media artery smooth muscle cells. This consists in up-regulation of PTP1B protein expression, down-regulation of basal Akt phosphorylation, and elevation of basal ERK1/2 activation. Acute stimulation of cells in high glucose with insulin down-regulated PTP1B expression, slightly decreased ERK1/2 activity, and activated Akt, whereas oxidative stress up-regulated Akt and ERK1/2 phosphorylation. In conclusion, long-term high glucose and acute oxidative stress and insulin stimulation imbalance the expression of activated kinases Akt and ERK1/2 and of dephosphorylating PTP1B in the insulin signaling pathway.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology "N. Simionescu", Bucharest, Romania.
| | | | | | | | | |
Collapse
|