1
|
Shrestha K, Puttabyatappa M, Wynn MA, Hannon PR, Al-Alem LF, Rosewell KL, Akin J, Curry TE. Protease expression in the human and rat cumulus-oocyte complex during the periovulatory period: a role in cumulus-oocyte complex migration†. Biol Reprod 2024; 111:845-855. [PMID: 39018235 PMCID: PMC11473928 DOI: 10.1093/biolre/ioae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
The migratory and matrix-invading capacities of the cumulus-oocyte complex have been shown to be important for the ovulatory process. In metastatic cancers, these capacities are due to increased expression of proteases, however, there is limited information on protease expression in the cumulus-oocyte complexes. The present study examined cumulus-oocyte complex expression of plasmins, matrix metalloproteases, and A Disintegrin and Metalloproteinase with Thrombospondin Motifs family members in the rat and human. In the rat, human chorionic gonadotropin (hCG) administration increased cumulus-oocyte complex expression of Mmp2, Mmp9, Mmp13, Mmp14, Mmp16, Adamts1, and the protease inhibitors Timp1, Timp3, and Serpine1 by 8-12 h. This ovulatory induction of proteases in vivo could be mimicked by forskolin and ampiregulin treatment of cultured rat cumulus-oocyte complexes with increases observed in Mmp2, Mmp13, Mmp14, Mmp16, Mmp19, Plat, and the protease inhibitors Timp1, Timp3, and Serpine1. Comparison of expression between rat cumulus-oocyte complexes and granulosa cells at the time of ovulation showed decreased Mmp9 and increased Mmp13, Mmp14, Mmp16, Adamts1, Timp1, and Timp3 expression in the cumulus-oocyte complexes. In human, comparison of expression between cumulus and granulosa cells at the time of in vitro fertilization retrieval showed decreased MMP1, MMP2, MMP9, and ADAMTS1, while expression of MMP16, TIMP1, and TIMP3 were increased. Treatment of expanding rat cumulus-oocyte complexes with a broad spectrum matrix metalloproteases inhibitor, GM6001, significantly reduced the migration of cumulus cells in vitro. These data provide evidence that multiple proteases and their inhibitors are expressed in the cumulus-oocyte complex and play an important role in imparting the migratory phenotype of the cumulus-oocyte complex at the time of ovulation. Summary Sentence Multiple proteases and their inhibitors are induced in the cumulus-oocyte complex (COC) during the periovulatory period and potentially play an important role in imparting the migratory phenotype of the COC at the time of ovulation.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Michelle A Wynn
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Patrick R Hannon
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Linah F Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - James Akin
- Bluegrass Fertility Center, Lexington, KY, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Kopij G, Kiezun M, Gudelska M, Dobrzyn K, Zarzecka B, Rytelewska E, Zaobidna E, Swiderska B, Malinowska A, Rak A, Kaminski T, Smolinska N. Visfatin impact on the proteome of porcine luteal cells during implantation. Sci Rep 2024; 14:14625. [PMID: 38918475 PMCID: PMC11199572 DOI: 10.1038/s41598-024-65577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
3
|
Qin P, Pan Z, Zhang W, Wang R, Li X, Lu J, Xu S, Gong X, Ye J, Yan X, Liu Y, Li Y, Zhang Y, Fang F. Integrative proteomic and transcriptomic analysis in the female goat ovary to explore the onset of puberty. J Proteomics 2024; 301:105183. [PMID: 38688390 DOI: 10.1016/j.jprot.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Puberty is considered a prerequisite for affecting reproductive performance and productivity. Little was known about molecular changes in pubertal goat ovaries. Therefore, we measured and performed a correlation analysis of the mRNA and proteins changes in the pre-pubertal and pubertal goat ovaries. The results showed that only six differentially expressed genes and differentially abundant proteins out of 18,139 genes and 7550 proteins quantified had significant correlations. CNTN2 and THBS1, discovered in the mRNA-mRNA interaction network, probably participated in pubertal and reproductive regulation by influencing GnRH receptor signals, follicular development, and ovulation. The predicted core transcription factors may either promote or inhibit the expression of reproductive genes and act synergistically to maintain normal reproductive function in animals. The interaction between PKM and TIMP3 with other proteins may impact animal puberty through energy metabolism and ovarian hormone secretion. Pathway enrichment analyses revealed that the co-associated key pathways between ovarian genes and proteins at puberty included calcium signalling pathway and olfactory transduction. These pathways were associated with gonadotropin-releasing hormone synthesis and secretion, signal transmission, and cell proliferation. In summary, these results enriched the potential molecules and signalling pathways that affect puberty and provided new insights for regulating and promoting the onset of puberty. SIGNIFICANCE: This study conducted the first transcriptomic and proteomic correlation analysis of pre-pubertal and pubertal goat ovaries and identified six significantly correlated molecules at both the gene and protein levels. Meanwhile, we were drawn to several molecules and signalling pathways that may play a regulatory role in the onset of puberty and reproduction by influencing reproductive-related gene expression, GnRH receptor signals, energy metabolism, ovarian hormone secretion, follicular development, and ovulation. This information contributed to identify potential biomarkers in pubertal goat ovaries, which was vital for predicting the onset of puberty and improving livestock performance.
Collapse
Affiliation(s)
- Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhihao Pan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunhai Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Escalona RM, Kannourakis G, Findlay JK, Ahmed N. Expression of TIMPs and MMPs in Ovarian Tumors, Ascites, Ascites-Derived Cells, and Cancer Cell Lines: Characteristic Modulatory Response Before and After Chemotherapy Treatment. Front Oncol 2022; 11:796588. [PMID: 35047406 PMCID: PMC8762252 DOI: 10.3389/fonc.2021.796588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The tissue inhibitors of metalloproteinase (TIMPs) and their associated metalloproteinase (MMPs) are essential regulators of tissue homeostasis and are essential for cancer progression. This study analyzed the expression of TIMP-1,-2,-3 and the associated MMPs (MMP-2,-9,-11,-14) in different Stages, Grades and World Health Organization (WHO) classifications of serous ovarian tumors, ascites, ascites-derived cells from chemo-naïve (CN) and relapsed (CR) patients, and in ovarian cancer cell lines. The status of TIMPs and associated MMPs in response to chemotherapy treatment was assessed in cancer cell lines; TCGA data was interrogated to gauge TIMPs and associated MMPs as prognostic and platinum-response indicators. Methods The levels of TIMP-1, -2 and -3 were assessed by immunohistochemistry. The mRNA expression of TIMPs and MMPs was quantified by real time PCR (qRT-PCR). The chemosensitivity (IC50 values) to Cisplatin or Paclitaxel in cell lines was evaluated by MTT assay. The levels of TIMPs in ascites and cell lysates were analyzed by an ELISA assay. Results The expression of TIMP-2 was significantly upregulated in Type 2 compared to Type 1 tumors and normal/benign ovarian tissues. TIMP-3 expression was significantly enhanced in Stage III, Grade 3 and Type 2 tumors compared to normal/benign ovarian tissues. The mRNA expression of MMP-9,-11 and -14 was significantly upregulated in Stage IV compared to normal/benign ovarian tissues. The expression of TIMP-1 was highest, followed by TIMP-2 and then TIMP-3 in CN ascites. At the cellular level, TIMP-2 mRNA expression was significantly higher in CN compared to CR epithelial cells in patients. The expression of TIMP-1 and -2, MMPs and cancer stem cells (CSCs) were upregulated in response to chemotherapy treatments in cancer cell lines. Interrogation of the TCGA dataset suggests shifts in platinum responses in patients consistent with genetic alterations in TIMP-2, -3 and MMP-2, -11 genes in tumors; and decreased overall survival (OS) and progression-free survival (PFS) in patients with altered MMP-14 genes. Conclusions TIMPs and related MMPs are differentially expressed in serous ovarian tumors, ascites, ascites-derived cells and ovarian cancer cell lines. Chemotherapy treatment modulates expression of TIMPs and MMPs in association with increased expression of genes related to cancer stem cells.
Collapse
Affiliation(s)
- Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| |
Collapse
|
5
|
Pan B, Zhan X, Li J. MicroRNA-574 Impacts Granulosa Cell Estradiol Production via Targeting TIMP3 and ERK1/2 Signaling Pathway. Front Endocrinol (Lausanne) 2022; 13:852127. [PMID: 35813635 PMCID: PMC9261285 DOI: 10.3389/fendo.2022.852127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Estradiol represents a key steroid ovarian hormone that not only plays a vital role in ovarian follicular development but also is associated with many other reproductive functions. Our primary study revealed that miR-574 expression decreased in porcine granulosa cells during development from small to large follicles, and the increase of ERK1/2 phosphorylation accompanies this change. Since it has been well established that the ERK1/2 activity is tightly associated with granulosa cell functions, including ovarian hormone production, we thus further investigate if the miRNA is involved in the regulation of estradiol production in granulosa cells. We found that overexpression of miR-574 decreased phosphorylated ERK1/2 without affecting the level of ERK1/2 protein, and on the other hand, the inhibition of miR-574 increased phosphorylated ERK1/2 level (P<0.05); meanwhile, overexpression of miR-574 increased estradiol production but knockdown of miR-574 decreased estradiol level in granulosa cells. To further identify the potential mechanism involved in the miR-574 regulatory effect, in silico screening was performed and revealed a potential binding site on the 3'UTR region of the tissue inhibitor of metalloproteinase 3 (TIMP3). Our gain-, loss- of function experiments, and luciferase reporter assay confirmed that TIMP3 is indeed the target of miR-574 in granulosa cell. Furthermore, the siRNA TIMP3 knockdown resulted in decreased phosphorylated ERK1/2, and an increase in estradiol production. In contrast, the addition of recombinant TIMP3 increased phosphorylated ERK1/2 level and decreased estradiol production. In summary, our results suggest that the miR-574-TIMP3-pERK1/2 cascade may be one of the pathways by which microRNAs regulate granulosa cell estradiol production.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|
6
|
Zakerkish F, Soriano MJ, Novella-Mestre E, Brännström M, Díaz-García C. Differential effects of the immunosuppressive calcineurin inhibitors cyclosporine-A and tacrolimus on ovulation in a murine model. Hum Reprod Open 2021; 2021:hoab012. [PMID: 33997300 PMCID: PMC8111498 DOI: 10.1093/hropen/hoab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do therapeutic levels of cyclosporine-A and tacrolimus affect ovulation in a rat gonadotrophin-induced ovulation model? SUMMARY ANSWER Cyclosporine-A, but not tacrolimus, decreases ovulation rate when administered for 5 days before induced ovulation. WHAT IS KNOWN ALREADY The mainstays of immunosuppression in solid organ transplantation, to prevent rejection, are the calcineurin inhibitors cyclosporine-A or tacrolimus. These drugs could potentially affect fertility in transplanted patients. Since ovulation is an inflammation-like process with pivotal roles for several immune cells and modulators, it is possible that the calcineurin inhibitors, with broad effects on the immune system, could interfere with this sensitive, biological process. STUDY DESIGN, SIZE, DURATION Experimental design at university-based animal facilities. A total of 45 immature Sprague–Dawley rats were used. The study was carried out over 3 months. PARTICIPANTS/MATERIALS, SETTING, METHODS Immature Sprague–Dawley rats (n = 45) were randomly assigned to receive equivalent doses of tacrolimus (0.5 mg/kg/day; TAC), cyclosporine-A (10 mg/kg/day; CyA) or vehicle (Control). Ovarian hyperstimulation was induced with 10 IU of equine chorionic gonadotrophin, and ovulation was triggered with 10 IU of hCG. Oocytes were retrieved from the oviducts and ovulation rates were calculated. Various subpopulations of white blood cells were counted in peripheral blood and ovarian tissue samples. MAIN RESULTS AND THE ROLE OF CHANCE Animals in the CyA group showed a lower ovulation rate when compared to the TAC and Control groups (CyA: mean 9 oocytes (range 0–22); TAC: 21 oocytes (8–41); Control: 22 oocytes (6–39); P = 0.03). Regarding counts of the white blood cell subpopulations and resident neutrophils in the ovary, no significant differences were observed between the groups. LIMITATIONS, REASONS FOR CAUTION Although the ovulation process is highly conserved within species, the differences between rodents and humans may limit the external translatability of the study. WIDER IMPLICATIONS OF THE FINDINGS These findings suggest that tacrolimus should be the preferred calcineurin inhibitor of choice in transplanted patients who are aiming for pregnancy. STUDY FUNDING/COMPETING INTEREST(S) Swedish Research Council and ALF of Sahlgrenska Academy, Sweden. Rio Hortega Grant from the Instituto de Salud Carlos III, Spain (CM09/00063). There are no conflicts of interest.
Collapse
Affiliation(s)
- F Zakerkish
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M J Soriano
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - E Novella-Mestre
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - M Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Díaz-García
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| |
Collapse
|
7
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
8
|
Hrabia A, Wolak D, Kwaśniewska M, Kieronska A, Socha JK, Sechman A. Expression of gelatinases (MMP-2 and MMP-9) and tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3) in the chicken ovary in relation to follicle development and atresia. Theriogenology 2018; 125:268-276. [PMID: 30481606 DOI: 10.1016/j.theriogenology.2018.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of peptidases that possess the ability to break down extracellular matrix macromolecules associated with tissue turnover in various physiological and pathological conditions. Their activity is largely regulated by specific tissue inhibitors of MMPs (TIMPs). Information concerning the role of MMPs in the chicken ovary is very limited. The aim of the present study was to determine the expression and localization of selected members of the MMP system in different compartments of the laying hen ovary and to investigate whether their expression changes at different stages of the ovulatory cycle. MMP-2 and -9 activity was also examined. Expression of MMP-2, -9 and tissue inhibitors of MMPs (TIMP-2 and -3) in the ovarian follicles was examined 22 h and 3 h before F1 ovulation. Real-time polymerase chain reaction and western blot revealed differential mRNA and protein expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in the ovarian follicles: white, yellowish, small yellow, the largest preovulatory (F3-F1), and white atretic. Within the ovary, the relative expression of MMP and TIMP mRNA depended on follicle development, the layer of follicular wall, and ovulation stage. The relatively higher expression of MMP-2 and MMP-9 mRNA in the ovarian follicles 3 h compared to 22 h before ovulation was found. As follicle development progressed toward ovulation, elevated MMP-2 and -9 activity was noted. Atresia of white follicles was accompanied by an increase in gelatinase activities. Immunohistochemistry demonstrated tissue- and follicle-dependent immunoreactivity of the examined MMPs and TIMPs. In summary, the results show tissue- and stage of the ovulatory cycle-dependent differences in MMP and TIMP expression, as well as MMP-2 and -9 activity. Findings that suggest these molecules might significantly participate in the complex remodeling of extracellular matrix required for follicle development, ovulation, and atresia in the chicken ovary.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Maria Kwaśniewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Kieronska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Joanna K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
9
|
Levin G, Coelho TM, Nóbrega NG, Trombetta-Lima M, Sogayar MC, Carreira ACO. Spatio-temporal expression profile of matrix metalloproteinase (Mmp) modulators Reck and Sparc during the rat ovarian dynamics. Reprod Biol Endocrinol 2018; 16:116. [PMID: 30424792 PMCID: PMC6234678 DOI: 10.1186/s12958-018-0422-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/14/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (Mmps) and their tissue inhibitors (Timps) are widely recognized as crucial factors for extracellular matrix remodeling in the ovary and are involved in follicular growth, ovulation, luteinization, and luteolysis during the estrous cycle. Recently, several genes have been associated to the modulation of Mmps activity, including Basigin (Bsg), which induces the expression of Mmps in rat ovaries; Sparc, a TGF-β modulator that is related to increased expression of Mmps in cancer; and Reck, which is associated with Mmps inhibition. However, the expression pattern of Mmp modulators in ovary dynamics is still largely uncharacterized. METHODS To characterize the expression pattern of Mmps network members in ovary dynamics, we analyzed the spatio-temporal expression pattern of Reck and Sparc, as well as of Mmp2, Mmp9 and Mmp14 proteins, by immunohistochemistry (IHC), in pre-pubertal rat ovaries obtained from an artificial cycle induced by eCG/hCG, in the different phases of the hormone-induced estrous cycle. We also determined the gene expression profiles of Mmps (2, 9, 13 14), Timps (1, 2, 3), Sparc, Bsg, and Reck to complement this panel. RESULTS IHC analysis revealed that Mmp protein expression peaks at the early stages of folliculogenesis and ovulation, decreases during ovulation-luteogenesis transition and luteogenesis, increasing again during corpus luteum maintenance and luteolysis. The protein expression patterns of these metalloproteinases and Sparc were inverse relative to the pattern displayed by Reck. We observed that the gene expression peaks of Mmps inhibitors Reck and Timp2 were closely paraleled by Mmp2 and Mmp9 suppression. The opposite was also true: increased Mmp2 and Mmp9 expression was concomitant to reduced Reck and Timp2 levels. CONCLUSION Therefore, our results generate a spatio-temporal expression profile panel of Mmps and their regulators, suggesting that Reck and Sparc seem to play a role during ovarian dynamics: Reck as a possible inhibitor and Sparc as an inducer of Mmps.
Collapse
Affiliation(s)
- Gabriel Levin
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
| | - Tatiane Maldonado Coelho
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
| | - Nathali Guimarães Nóbrega
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
| | - Marina Trombetta-Lima
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
| | - Mari Cleide Sogayar
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
| | - Ana Claudia Oliveira Carreira
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
- 0000 0004 1937 0722grid.11899.38Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270 Brazil
| |
Collapse
|
10
|
Li F, Miao X, Chen Y, Curry TE. CXADR-like membrane protein (CLMP) in the rat ovary: stimulation by human chorionic gonadotrophin during the periovulatory period. Reprod Fertil Dev 2017; 28:742-9. [PMID: 25400132 DOI: 10.1071/rd14201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023] Open
Abstract
CXADR-like membrane protein (CLMP) is a novel cell-cell adhesion molecule. The present study investigated the spatiotemporal expression pattern of CLMP and its regulation in the rat ovary during the periovulatory period. Real-time polymerase chain reaction analysis revealed that Clmp mRNA was rapidly stimulated in intact ovaries by 4h after human chorionic gonadotrophin (hCG) treatment. In situ hybridisation analysis demonstrated that Clmp mRNA expression was stimulated in theca cells at 4h after hCG and remained elevated until 12h. Clmp mRNA was also upregulated in granulosa cells and was present in forming corpora lutea. Our data indicate that the protein kinase A but not the protein kinase C pathway regulates the expression of Clmp mRNA in granulosa cells. Phosphatidylinositol 3 kinase and p38 kinase are also involved in regulating Clmp mRNA expression. The stimulation of Clmp mRNA by hCG requires new protein synthesis. Furthermore, inhibition of epidermal growth factor receptor activation significantly inhibited Clmp mRNA expression, whereas inhibition of prostaglandin synthesis or progesterone action had no effect. The stimulation of CLMP in the rat ovary may be important in cell adhesion events during ovulation and luteal formation such as maintaining the structure and communication of ovarian follicular and luteal cells.
Collapse
Affiliation(s)
- Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Xiaoping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Yonglong Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
11
|
Puttabyatappa M, Al-Alem LF, Zakerkish F, Rosewell KL, Brännström M, Curry TE. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity. Endocrinology 2017; 158:109-120. [PMID: 27813674 PMCID: PMC5412983 DOI: 10.1210/en.2016-1544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Linah F. Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Farnosh Zakerkish
- Department of Obstetrics and Gynecology, University of Gothenburg, and Stockholm IVF, Gothenburg, Sweden SE 405 30
| | - Katherine L. Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, and Stockholm IVF, Gothenburg, Sweden SE 405 30
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| |
Collapse
|
12
|
Li FX, Yu JJ, Liu Y, Miao XP, Curry TE. Induction of Ectonucleotide Pyrophosphatase/Phosphodiesterase 3 During the Periovulatory Period in the Rat Ovary. Reprod Sci 2016; 24:1033-1040. [PMID: 27872196 DOI: 10.1177/1933719116676394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 3 ( Enpp3) is involved in multiple physiological processes, such as morphological changes and inflammatory processes. The present study investigated the spatiotemporal expression pattern and regulatory mechanisms controlling expression of Enpp3 in the rat ovary during the periovulatory period. Immature female rats were injected with pregnant mare serum gonadotropin to stimulate follicular development. Ovaries, granulosa cells, or theca-interstitial cells were collected at various times after human chorionic gonadotropin (hCG) administration. Real-time polymerase chain reaction analysis revealed that messenger RNA (mRNA) for Enpp3 was highly induced in both granulosa cells and theca-interstitial cells by hCG. In situ hybridization analysis demonstrated that Enpp3 mRNA expression was induced in theca cells at 4 hours after hCG, and the expression remained elevated until 12 hours after hCG. The expression of Enpp3 mRNA was stimulated in granulosa cells at 8 hours and reached the highest expression at 12 hours. Localization of Enpp3 mRNA was observed in newly forming corpora lutea by in situ hybridization. The hCG-stimulated expression of Enpp3 mRNA was blocked by a protein kinase C inhibitor (GF109203) instead of the protein kinase A inhibitor (H89). Furthermore, Enpp3 induction is dependent on new protein synthesis. Inhibition of progesterone action did not alter Enpp3 mRNA expression, whereas inhibition of prostaglandin synthesis or the epidermal growth factor pathway diminished Enpp3 mRNA levels. In conclusion, our findings suggest that the induction of the Enpp3 mRNA may be important for the morphological changes and inflammatory response during ovulation and luteinization.
Collapse
Affiliation(s)
- Fei-Xue Li
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiao-Jiao Yu
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiao-Ping Miao
- 1 Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Thomas E Curry
- 2 Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Li FX, Liu Y, Miao XP, Fu GQ, Curry TE. Expression and regulation of the differentiation regulators ERBB Receptor Feedback Inhibitor 1 (ERRFI1) and Interferon-related Developmental Regulator 1 (IFRD1) during the periovulatory period in the rat ovary. Mol Reprod Dev 2016; 83:714-23. [DOI: 10.1002/mrd.22673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Fei-xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Ying Liu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Xiao-ping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Guo-quan Fu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center; University of Kentucky; Lexington Kentucky
| |
Collapse
|
14
|
Peng J, Gao K, Gao T, Lei Y, Han P, Xin H, An X, Cao B. Expression and regulation of tissue inhibitors of metalloproteinases (TIMP1 and TIMP3) in goat oviduct. Theriogenology 2015; 84:1636-43. [DOI: 10.1016/j.theriogenology.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
|
15
|
Peng J, Xin H, Han P, Gao K, Gao T, Lei Y, Ji S, An X, Cao B. Expression and regulative function of tissue inhibitor of metalloproteinase 3 in the goat ovary and its role in cultured granulosa cells. Mol Cell Endocrinol 2015; 412:104-15. [PMID: 26054746 DOI: 10.1016/j.mce.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) played a key role in female reproduction. However, its expression and function in goat are still unclear. In the present study, the full-length cDNA of goat TIMP3 was cloned from adult goat ovary; meanwhile, we demonstrated that putative TIMP3 protein shared a highly conserved amino acid sequence with known mammalian homologs. Real-time PCR results showed that TIMP3 was widely expressed in the tissues of adult goat. In the ovary, increasing expression of TIMP3 mRNA was discovered during the growth process of follicle and corpus luteum. Immunohistochemistry results suggested that TIMP3 protein existed in oocytes of all types of follicles, corpus luteum and granulosa and theca cells of primary, secondary, and antral but not primordial follicles. In vitro, human chorionic gonadotropin (hCG) stimulated the expression of TIMP3 in goat granulosa cells. hCG-induced TIMP3 mRNA expression was reduced by the inhibitors of protein kinase A, protein kinase C, MAPK kinase, or p38 kinase. Functionally, over-expression of TIMP3 significantly increased apoptosis and decreased the viability of cultured granulosa cells. Knockdown of TIMP3 could decrease hCG-induced progesterone secretion and the mRNA abundance of key steroidogenic enzymes (StAR, p450scc and HSD3B) as well as ECM proteins (DCN and FN). These findings provided evidence that the hCG induced expression of TIMP3 may play an important role in regulating goat granulosa cell survival and steroidogenesis.
Collapse
Affiliation(s)
- Jiayin Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyun Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Teyang Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengyue Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Peng JY, Han P, Xin HY, Ji SY, Gao KX, An XP, Cao BY. Molecular characterization and hormonal regulation of tissue inhibitor of metalloproteinase 1 in goat ovarian granulosa cells. Domest Anim Endocrinol 2015; 52:1-10. [PMID: 25700266 DOI: 10.1016/j.domaniend.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP1) belongs to a group of endogenous inhibitors that control the activity of matrix metalloproteinases and other metalloproteinases. TIMP1 is ubiquitously expressed and implicated in many physiological and pathologic processes. In this study, the full-length complementary DNA of goat (Capra hircus) Timp1 was cloned from adult goat ovary for the first time to better understand the regulatory role of TIMP1. The putative TIMP1 protein shared a high amino acid sequence identity with other species. Real-time polymerase chain reaction results showed that Timp1 was widely expressed in adult goat tissues, and messenger RNA expression was higher in the ovary than in other tissues; meanwhile, increasing expression of Timp1 was also discovered during the process of follicle growth and corpus luteum. We then investigated Timp1 expression patterns in different types of ovarian follicular cells from goats. In small or large antral follicles, Timp1 expression was higher (P < 0.05) in theca cells than in granulosa cells, cumulus cells, and oocytes. Increasing expression of Timp1 in theca and granulosa cells was observed as the variation of the follicle size. Immunohistochemical analyses further revealed the presence of the TIMP1 proteins in follicles at all antral stages of development. The most intense staining for TIMP1 was observed in the theca cells and granulosa cells of large antral follicles and corpus luteum. Timp1 was highly (P < 0.05) induced in granulosa cells in vitro after treatment with the luteinizing hormone agonist, human chorionic gonadotropin. Treatments with forskolin, phorbol 12-myristate 13-acetate, or phorbol 12-myristate 13-acetate + forskolin could also stimulate Timp1 messenger RNA expression. The effects of human chorionic gonadotropin were reduced (P < 0.05) by the inhibitors of protein kinase A, protein kinase C, MAPK kinase, or p38 kinase, indicating that Timp1 expression could be adjusted by luteinizing hormone-initiated activation of these signaling mediators. Our results suggested that TIMP1 may be involved in regulating ovarian follicle development and ovulation.
Collapse
Affiliation(s)
- J Y Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - P Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - H Y Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - S Y Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - K X Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - X P An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - B Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
17
|
Shahed A, Simmons JJ, Featherstone SL, Young KA. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters. Gen Comp Endocrinol 2015; 216:46-53. [PMID: 25910436 PMCID: PMC4457603 DOI: 10.1016/j.ygcen.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 11/25/2022]
Abstract
Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.
Collapse
Affiliation(s)
- Asha Shahed
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Jamie J Simmons
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Sydney L Featherstone
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Kelly A Young
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
18
|
Deleterious effects of benomyl and carbendazim on human placental trophoblast cells. Reprod Toxicol 2014; 51:64-71. [PMID: 25530041 DOI: 10.1016/j.reprotox.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Benomyl and carbendazim are benzimidazole fungicides that are used throughout the world against a wide range of fungal diseases of agricultural products. There is as yet little information regarding the toxicity of benzimidazole fungicides to human placenta. In this study, we utilized human placental trophoblast cell line HTR-8/SVneo (HTR-8) to access the toxic effects of benomyl and carbendazim. Our data showed that these two fungicides decreased cell viability and the percentages of cells in G0/G1 phase, as well as induced apoptosis of HTR-8 cells. The invasion and migration of HTR-8 cells were significantly inhibited by benomyl and carbendazim. We further found that benomyl and carbendazim altered the expression of protease systems (MMPs/TIPMs and uPA/PAI-1) and adhesion molecules (integrin α5 and β1) in HTR-8 cells. Our present study firstly shows the deleterious effects of benomyl and carbendazim on placental cells and suggests a potential risk of benzimidazole fungicides to human reproduction.
Collapse
|
19
|
Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ, Schwartz RC. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 2014; 155:2301-13. [PMID: 24693965 PMCID: PMC4020926 DOI: 10.1210/en.2013-1933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well documented that macrophages and eosinophils play important roles in normal murine pubertal mammary gland development. Although it is accepted that estrogen (E) and progesterone (P) are key players in mammary gland development, the roles these hormones might play in regulating the actions of leukocytes in that process is an understudied area. We show here that P and E, respectively, induce unique, but overlapping, sets of proinflammatory and angiogenic cytokines and chemokines, in the pubertal female BALB/c mammary gland, as well as induce infiltration of macrophages and eosinophils to the mammary periepithelium. This extends earlier studies showing P induction of proinflammatory products in pubertal and adult mammary epithelial organoids and P-induced in vivo infiltration of leukocytes to the adult mammary periepithelium. Importantly, epidermal growth factor receptor-signaling, which is likely mediated by amphiregulin (Areg), a downstream mediator of E and P, is both necessary and sufficient for both E- and P-induced recruitment of macrophages and eosinophils to the pubertal mammary periepithelium. We further show that receptor activator of nuclear factor κB ligand (RANKL), although not sufficient of itself to cause macrophage and eosinophil recruitment, contributes to an optimal response to P. The potency of Areg is highlighted by the fact that it is sufficient to induce macrophage and eosinophil recruitment at levels equivalent to that induced by either E or P. Our finding of a dominant role for Areg in hormonally induced leukocyte recruitment to the pubertal mammary gland parallels its dominance in regulating ductal outgrowth and its role in P-induced proliferation in the pubertal gland.
Collapse
Affiliation(s)
- Mark D Aupperlee
- Breast Cancer and the Environment Research Program, Departments of Physiology (M.D.A., Y.Z., Y.S.T., J.R.L., J.B., S.Z.H.) and Microbiology and Molecular Genetics (R.C.S.), Michigan State University, East Lansing, Michigan 48824
| | | | | | | | | | | | | |
Collapse
|
20
|
Rosewell KL, Li F, Puttabyatappa M, Akin JW, Brännström M, Curry TE. Ovarian expression, localization, and function of tissue inhibitor of metalloproteinase 3 (TIMP3) during the periovulatory period of the human menstrual cycle. Biol Reprod 2013; 89:121. [PMID: 24048576 DOI: 10.1095/biolreprod.112.106989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.
Collapse
Affiliation(s)
- Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | | | | | |
Collapse
|
21
|
Dias FCF, Khan MIR, Sirard MA, Adams GP, Singh J. Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle. Reproduction 2013; 146:181-91. [PMID: 23740080 DOI: 10.1530/rep-13-0114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microarray analysis was used to compare the gene expression of granulosa cells from dominant follicles with that of those after superstimulatory treatment. Cows were allocated randomly to two groups (superstimulation and control, n=6/group). A new follicular wave was induced by ablation of follicles ≥5 mm in diameter, and a progesterone-releasing device controlled internal drug release (CIDR) was placed in the vagina. The superstimulation group was given eight doses of 25 mg FSH at 12-h intervals starting from the day of wave emergence (day 0), whereas the control group was not given FSH treatment. Both groups were given prostaglandin F2α twice, 12 h apart, on day 3 and the CIDR was removed at the second injection; 25 mg porcine luteinizing hormone (pLH) was given 24 h after CIDR removal, and cows were ovariectomized 24 h later. Granulosa cells were collected for RNA extraction, amplification, and microarray hybridization. A total of 190 genes were downregulated and 280 genes were upregulated. To validate the microarray results, five genes were selected for real-time PCR (NTS, FOS, THBS1, FN1, and IGF2). Expression of four genes increased significantly in the three different animals tested (NTS, FOS, THBS1, and FN1). The upregulated genes are related to matrix remodeling (i.e. tissue proliferation), disturbance of angiogenesis, apoptosis, and oxidative stress response. We conclude that superstimulation treatment i) results in granulosa cells that lag behind in maturation and differentiation (most of the upregulated genes are markers of the follicular growth stage), ii) activates genes involved with the NFE2L2 oxidative stress response and endoplasmic reticulum stress response, and iii) disturbs angiogenesis.
Collapse
Affiliation(s)
- F C F Dias
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4
| | | | | | | | | |
Collapse
|
22
|
Fields J, Cisneros IE, Borgmann K, Ghorpade A. Extracellular regulated kinase 1/2 signaling is a critical regulator of interleukin-1β-mediated astrocyte tissue inhibitor of metalloproteinase-1 expression. PLoS One 2013; 8:e56891. [PMID: 23457635 PMCID: PMC3572966 DOI: 10.1371/journal.pone.0056891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Irma E. Cisneros
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
23
|
Lin H, Zhang Y, Wang H, Xu D, Meng X, Shao Y, Lin C, Ye Y, Qian H, Wang S. Tissue inhibitor of metalloproteinases-3 transfer suppresses malignant behaviors of colorectal cancer cells. Cancer Gene Ther 2012; 19:845-851. [PMID: 23037807 DOI: 10.1038/cgt.2012.70] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 12/26/2022]
Abstract
Colorectal carcinoma is one of the most frequent cancer diseases. For patients with this type of cancer, liver metastases are the main cause of death. Therefore, new therapeutic approaches are urgently needed to improve the outcomes. We found that both mRNA and protein levels of tissue inhibitor of metalloproteinase-3 (TIMP3) were decreased significantly in colorectal cancer tissue when compared with normal mucosa, suggesting that decrease of TIMP3 expression was correlated with malignant behavior of colorectal cancer. We evaluated the power of TIMP3, a new potent multiple functional molecule, as a biotheropeutic tool to treat cancer. Adenovirus-mediated TIMP3 transduction in CT26 colon cancer model demonstrated multiple effects to arrest cancer cell growth and induced massive apoptosis. Also, adenovirally transferred TIMP3 reduced adhesion, migration and invasion behaviors of CT26 cells in vitro. In vivo data showed that TIMP3 suppressed in vivo tumor growth and that liver metastasis was significantly reduced by TIMP3 transduction. This is the first systematic preclinical study to show that TIMP3 may be a potential molecular tool for colon cancer biological therapy.
Collapse
Affiliation(s)
- H Lin
- Department of Gastroenterology Surgery, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Segers I, Adriaenssens T, Wathlet S, Smitz J. Gene expression differences induced by equimolar low doses of LH or hCG in combination with FSH in cultured mouse antral follicles. J Endocrinol 2012; 215:269-80. [PMID: 22906696 DOI: 10.1530/joe-12-0150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In a natural cycle, follicle growth is coordinated by FSH and LH. Follicle growth stimulation in Assisted Reproductive Technologies (ART) requires antral follicles to be exposed to both FSH and LH bioactivity, especially after GNRH analog pretreatment. The main aim was to detect possible differences in gene expression in granulosa cells after exposing the follicle during antral growth to LH or hCG, as LH and hCG are different molecules acting on the same receptor. Effects of five gonadotropin treatments were investigated for 16 genes using a mouse follicle culture model. Early (day 6) antral follicles were exposed to high recombinant FSH combined or not with equimolar concentrations of recombinant LH (rLH) or recombinant hCG (rhCG) and to highly purified human menopausal gonadotropin (HP-hMG) for 6 h, 12 h, or 3 days. Expression differences were tested for genes involved in steroidogenesis: Mvk, Lss, Cyp11a1, Hsd3b1, Cyp19a1, Nr4a1, and Timp1; final granulosa differentiation: Lhcgr, Oxtr, Pgr, Egfr, Hif1a, and Vegfa; and cytokines: Cxcl12, Cxcr4, and Sdc4. Lhcgr was present and upregulated by gonadotropins. Nr4a1, Cxcl12, and Cxcr4 showed a different expression pattern if LH bioactivity was added to high FSH in the first hours after exposure. However, no signs of premature luteinization were present even after a 3-day treatment as shown by Cyp19a1, Oxtr, Pgr, and Egfr and by estrogen and progesterone measurements. The downstream signaling by rhCG or rLH through the LHCGR was not different for this gene selection. Granulosa cells from follicles exposed to HP-hMG showed an enhanced expression level for several genes compared with recombinant gonadotropin exposure, possibly pointing to enhanced cellular activity.
Collapse
Affiliation(s)
- Ingrid Segers
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Jette, Belgium.
| | | | | | | |
Collapse
|
25
|
Yu JL, Han J, Yu QM, Zheng ZG, Fang XH, Ling ZQ. Correlation between TIMP-3 hypermethylation in peritoneal lavage fluid and peritoneal micrometastasis in patients with gastric cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:2194-2199. [DOI: 10.11569/wcjd.v20.i23.2194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between ectopic methylation of the tissue inhibitor of metalloproteinase 3 (TIMP-3) gene in preoperative peritoneal lavage fluid and peritoneal micrometastasis in patients with gastric cancer.
METHODS: Methylation-specific real-time polymerase chain reaction (qMSP) was used to detect the methylation status of CpG islands in the promoter of the TIMP-3 gene in 92 preoperative peritoneal lavage fluid samples. The relationship between ectopic methylation of the TIMP-3 gene and clinicopathologic features and prognosis was then analyzed.
RESULTS: Abberant TIMP-3 gene methylation occurred in 49 (53.26%) samples. Correlation was observed between TIMP-3 gene methylation and tumor size (P = 0.015), distant metastasis (P = 0.013) and venous invasion (P = 0.030), and there is a significant correlation between TIMP-3 gene methylation and tumor growth pattern, differentiation, lymph node metastasis and clinical stage (P = 0.000). However, the level of TIMP-3 methylation had no significant association with patient's gender and age, Helicobacter pylori infection, or lesion location (P = 0.833, 0.236, 0.300, 0.236, respectively). Survival analysis indicate that patients who had no TIMP-3 gene methylation had a higher survival rate (P = 0.000).
CONCLUSION: Ectopic methylation of TIMP-3 gene in preoperative lavage fluid samples is associated with peritoneal micrometastasis and poor prognosis in patients with gastric cancer.
Collapse
|
26
|
Li F, Jo M, Curry TE, Liu J. Hormonal induction of polo-like kinases (Plks) and impact of Plk2 on cell cycle progression in the rat ovary. PLoS One 2012; 7:e41844. [PMID: 22870256 PMCID: PMC3411565 DOI: 10.1371/journal.pone.0041844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/29/2012] [Indexed: 11/19/2022] Open
Abstract
The highly conserved polo-like kinases (Plks) are potent regulators of multiple functions in the cell cycle before and during mitotic cell division. We investigated the expression pattern of Plk genes and their potential role(s) in the rat ovary during the periovulatory period. Plk2 and Plk3 were highly induced both in intact ovaries and granulosa cells in vivo after treatment with the luteinizing hormone (LH) agonist, human chorionic gonadotropin (hCG). In vitro, hCG stimulated the expression of Plk2 in granulosa cells, but not Plk3. This induction of Plk2 expression was mimicked by both forskolin and phorbol 12 myristate 13-acetate (PMA). Moreover, Plk2 expression was reduced by inhibitors of prostaglandin synthesis or the EGF pathway, but not by progesterone receptor antagonist (RU486) treatment. At the promoter level, mutation of the Sp1 binding sequence abolished the transcriptional activity of the Plk2 gene. ChIP assays also revealed the interaction of endogenous Sp1 protein in the Plk2 promoter region. Functionally, the over-expression of Plk2 and Plk3 arrested granulosa cells at the G0/G1 phase of the cell cycle. In contrast, the knockdown of Plk2 expression in granulosa cells decreased the number of cells in the G0/G1 stage of the cell cycle, but increased granulosa cell viability. In summary, hCG induced Plk2 and Plk3 expression in the rat ovary. Prostaglandins and the EGF signaling pathway are involved in regulating Plk2 expression. The transcription factor Sp1 is important for Plk2 transcriptional up-regulation. Our findings suggest that the increase in Plk2 and Plk3 expression contributes to the cell cycle arrest of granulosa cells which is important for the luteinization of granulosa cells during the periovulatory period.
Collapse
Affiliation(s)
- Feixue Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Stilley JAW, Sharpe-Timms KL. TIMP1 contributes to ovarian anomalies in both an MMP-dependent and -independent manner in a rat model. Biol Reprod 2012; 86:47. [PMID: 22053095 DOI: 10.1095/biolreprod.111.094680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ovulatory dysfunction occurs in women with endometriosis, yet the mechanisms are unknown. We have shown that endometriotic lesions synthesize and secrete tissue inhibitor of metalloproteinase (TIMP) 1 into the peritoneal cavity in humans and a rat model of endometriosis, where excess TIMP1 localizes in the ovarian theca in endometriosis and modulating peritoneal TIMP1 alters ovarian dynamics. Here, we evaluated whether mechanisms whereby excessive peritoneal fluid TIMP1 negatively impacts ovarian function are matrix metalloproteinase (MMP)-dependent and/or MMP-independent actions. Rats were treated with a mutated TIMP1 without MMP inhibitory function (Ala-TIMP1), wild-type TIMP1 (rTIMP1), or PBS. Rats treated with Ala-TIMP1 or rTIMP1 had fewer antral follicles, fewer new corpora lutea, and the presence of luteinized unruptured follicle syndrome compared with PBS rats. Ala-TIMP1 and rTIMP1 differentially caused downstream changes in gene expression and protein localization related to ovulation, as measured by whole-genome microarray with quantitative real-time PCR validation and immunohistochemistry. More vascular endothelial growth factor and FN were expressed and localized in ovaries of Ala-TIMP1-treated rats compared to rTIMP1- and PBS-treated rats inferring MMP-independent functions. Less caspase 3 localized in ovaries of rTIMP1 compared with the other two groups, and was thus dependent on MMP action. Furthermore, after coimmunoprecipitation, more CD63 was bound to TIMP1 in ovaries of rats treated with Ala-TIMP1 than in rTIMP1-treated rats, providing evidence for another MMP-independent mechanism of ovulatory dysfunction. We predict that MMP-dependent and MMP-independent events are involved in improper fortification of the follicular wall through multiple mechanisms, such as apoptosis inhibition, extracellular matrix components and angiogenesis. Collectively, excessive peritoneal TIMP1 causes changes in ovarian dynamics, both dependently and independently of MMP inhibition.
Collapse
Affiliation(s)
- Julie A W Stilley
- The Department of Obstetrics, Gynecology and Women's Health, School of Medicine, the University of Missouri, Columbia, 65212, USA
| | | |
Collapse
|
28
|
Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology 2011; 290:42-9. [DOI: 10.1016/j.tox.2011.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 12/19/2022]
|
29
|
Liu J, Yang Y, Yang Y, Zhang Y, Liu W. Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. Toxicology 2011; 282:47-55. [DOI: 10.1016/j.tox.2011.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
|
30
|
Li F, Liu J, Jo M, Curry TE. A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression. Mol Endocrinol 2011; 25:445-59. [PMID: 21212137 DOI: 10.1210/me.2010-0250] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor IL-3 (NFIL3), a transcriptional regulator of the basic leucine zipper transcription factor superfamily, and its potential role in the ovary during the periovulatory period. Immature female rats were injected with pregnant mare's serum gonadotropin, treated with human chorionic gonadotropin (hCG), and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4-8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Overexpression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down-regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 small interfering RNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (Hpgd) was also inhibited by NFIL3 overexpression. Data from luciferase assays demonstrated that NFIL3 overexpression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and chromatin immunoprecipitation analyses indicated that NFIL3 binds to the promoter region containing the DNA-binding sites of cAMP response element binding protein and CCAAT enhancer binding protein-β. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with cAMP response element binding protein and CCAAT enhancer binding protein-β on their target gene promoters.
Collapse
Affiliation(s)
- Feixue Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Villeneuve DL, Garcia-Reyero N, Martinović D, Cavallin JE, Mueller ND, Wehmas LC, Kahl MD, Linnum AL, Perkins EJ, Ankley GT. Influence of ovarian stage on transcript profiles in fathead minnow (Pimephales promelas) ovary tissue. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:354-366. [PMID: 20363515 DOI: 10.1016/j.aquatox.2010.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 05/29/2023]
Abstract
Interpretation of toxicogenomic experiments conducted with ovary tissue from asynchronous-spawning small fish species is complicated by background variation in the relative abundance and proportion of follicles at different stages within the ovary tissue sample. This study employed both real-time quantitative polymerase chain reaction and a 15,000 gene oligonucleotide microarray to examine variation in the fathead minnow (Pimephales promelas) ovarian transcriptional profile as a function of quantitative and qualitative differences in ovarian histology. The objectives were to provide data that could potentially aid interpretation of future toxicogenomics experiments, identify putative stage-related transcriptional markers, and generate insights into basic biological regulation of asynchronous oocyte development. Multiple lines of evidence from the present study indicate that variation in the transcriptional profile is primarily dependent on the relative abundance of previtellogenic versus vitellogenic follicles in the ovary. Due to the relatively small proportions of mature ovulated follicles or atretic follicles in the overall follicle population, few potential transcriptional markers of maturation, ovulation, or atresia could be identified. However, among the 460 differentially expressed genes identified in the present study, several targets, including HtrA serine peptidase 3 (htra3), tissue inhibitor of metalloproteinase 3 (timp3), aquaporin 8 (aqp8), transgelin 2 like (tagln2), Nedd4 family interacting protein 2 (ndfip2), chemokine ligand 12a (cxcl12a), midkine-related growth factor (mdka), and jagged 1b (jag 1b) exhibited responses and functional properties that support them as candidate molecular markers of significant shift in gross ovarian stage. Genes associated with a diversity of functions including cellular development, morphogenesis, coated vesicle transport, sexual reproduction, and neuron development, among others, were statistically enriched within the list of 460 genes differentially expressed among different ovarian classes. Overall, results of this study provide insights into background variation in ovary transcript profiles that should aid and enhance the interpretation of toxicogenomic data generated in experiments conducted with small, asynchronous-spawning fish species.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|