1
|
Du Y, Chen C, Zhou G, Cai Z, Man Q, Liu B, Wang WC. Perfluorooctanoic acid disrupts thyroid-specific genes expression and regulation via the TSH-TSHR signaling pathway in thyroid cells. ENVIRONMENTAL RESEARCH 2023; 239:117372. [PMID: 37827365 DOI: 10.1016/j.envres.2023.117372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Chaojie Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
2
|
Grassi ES, Lábadi A, Vezzoli V, Ghiandai V, Bonomi M, Persani L. Thyrotropin Receptor p.N432D Retained Variant Is Degraded Through an Alternative Lysosomal/Autophagosomal Pathway and Can Be Functionally Rescued by Chemical Chaperones. Thyroid 2021; 31:1030-1040. [PMID: 33446056 DOI: 10.1089/thy.2020.0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Loss-of-function mutations of thyrotropin receptor (TSHR) are one of the main causes of congenital hypothyroidism. As for many disease-associated G-protein coupled receptors (GPCRs), these mutations often affect the correct trafficking and maturation of the receptor, thus impairing the expression on the cell surface. Several retained GPCR mutants are able to effectively bind their ligands and to transduce signals when they are forced to the cell surface by degradation inhibition or by treatment with chaperones. Despite the large number of well-characterized retained TSHR mutants, no attempts have been made for rescue. Further, little is known about TSHR degradation pathways. We hypothesize that, similar to other GPCRs, TSHR retained mutants may be at least partially functional if their maturation and membrane expression is facilitated by chaperones or degradation inhibitors. Methods: We performed in silico predictions of the functionality of known TSHR variants and compared the results with available in vitro data. Western blot, confocal microscopy, enzyme-linked immunosorbent assays, and dual luciferase assays were used to investigate the effects of degradation pathways inhibition and of chemical chaperone treatments on TSHR variants' maturation and functionality. Results: We found a high discordance rate between in silico predictions and in vitro data for retained TSHR variants, a fact indicative of a conserved potential to initiate signal transduction if these mutants were expressed on the cell surface. We show experimentally that some maturation defective TSHR mutants are able to effectively transduce Gs/cAMP signaling if their maturation and expression are enhanced by using chemical chaperones. Further, through the characterization of the intracellular retained p.N432D variant, we provide new insights on the TSHR degradation mechanism, as our results suggest that aggregation-prone mutant can be directed toward the autophagosomal pathway instead of the canonical proteasome system. Conclusions: Our study reveals alternative pathways for TSHR degradation. Retained TSHR variants can be functional when expressed on the cell surface membrane, thus opening the possibility of further studies on the pharmacological modulation of TSHR expression and functionality in patients in whom TSHR signaling is disrupted.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Arpad Lábadi
- Department of Laboratory Medicine, University of Pécs, Pécs, Hungary
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Viola Ghiandai
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
3
|
Stoupa A, Adam F, Kariyawasam D, Strassel C, Gawade S, Szinnai G, Kauskot A, Lasne D, Janke C, Natarajan K, Schmitt A, Bole-Feysot C, Nitschke P, Léger J, Jabot-Hanin F, Tores F, Michel A, Munnich A, Besmond C, Scharfmann R, Lanza F, Borgel D, Polak M, Carré A. TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol Med 2019; 10:emmm.201809569. [PMID: 30446499 PMCID: PMC6284387 DOI: 10.15252/emmm.201809569] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic causes of congenital hypothyroidism due to thyroid dysgenesis (TD) remain largely unknown. We identified three novel TUBB1 gene mutations that co‐segregated with TD in three distinct families leading to 1.1% of TUBB1 mutations in TD study cohort. TUBB1 (Tubulin, Beta 1 Class VI) encodes for a member of the β‐tubulin protein family. TUBB1 gene is expressed in the developing and adult thyroid in humans and mice. All three TUBB1 mutations lead to non‐functional α/β‐tubulin dimers that cannot be incorporated into microtubules. In mice, Tubb1 knock‐out disrupted microtubule integrity by preventing β1‐tubulin incorporation and impaired thyroid migration and thyroid hormone secretion. In addition, TUBB1 mutations caused the formation of macroplatelets and hyperaggregation of human platelets after stimulation by low doses of agonists. Our data highlight unexpected roles for β1‐tubulin in thyroid development and in platelet physiology. Finally, these findings expand the spectrum of the rare paediatric diseases related to mutations in tubulin‐coding genes and provide new insights into the genetic background and mechanisms involved in congenital hypothyroidism and thyroid dysgenesis.
Collapse
Affiliation(s)
- Athanasia Stoupa
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute Affiliate, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Frédéric Adam
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dulanjalee Kariyawasam
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Catherine Strassel
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Sanjay Gawade
- Department of Biomedicine, Pediatric Immunology, University of Basel, Basel, Switzerland
| | - Gabor Szinnai
- Department of Biomedicine, Pediatric Immunology, University of Basel, Basel, Switzerland.,Pediatric Endocrinology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Kauskot
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Dominique Lasne
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Necker Children's Hospital, Biological Hematology Service, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France.,Institut Curie, CNRS UMR3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Kathiresan Natarajan
- Institut Curie, CNRS UMR3348, PSL Research University, Orsay, France.,Institut Curie, CNRS UMR3348, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Alain Schmitt
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, IMAGINE Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Patrick Nitschke
- Bioinformatics Platform, IMAGINE Institute, Paris Descartes University, Paris, France
| | - Juliane Léger
- RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1141, DHU Protect, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatics Platform, IMAGINE Institute, Paris Descartes University, Paris, France
| | - Frédéric Tores
- Bioinformatics Platform, IMAGINE Institute, Paris Descartes University, Paris, France
| | - Anita Michel
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Arnold Munnich
- INSERM U1163, IMAGINE Institute, Translational Genetics, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Claude Besmond
- INSERM U1163, IMAGINE Institute, Translational Genetics, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raphaël Scharfmann
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Lanza
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Delphine Borgel
- INSERM UMR_S1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Necker Children's Hospital, Biological Hematology Service, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michel Polak
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute Affiliate, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France.,Fédération Parisienne pour le Dépistage et la Prévention des Handicaps de l'Enfant (FPDPHE), Paris, France
| | - Aurore Carré
- INSERM U1016, Faculté de Médecine, Cochin Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France .,IMAGINE Institute Affiliate, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance et du Développement, Paris, France
| |
Collapse
|
4
|
Carré A, Stoupa A, Kariyawasam D, Gueriouz M, Ramond C, Monus T, Léger J, Gaujoux S, Sebag F, Glaser N, Zenaty D, Nitschke P, Bole-Feysot C, Hubert L, Lyonnet S, Scharfmann R, Munnich A, Besmond C, Taylor W, Polak M. Mutations in BOREALIN cause thyroid dysgenesis. Hum Mol Genet 2017; 26:599-610. [PMID: 28025328 DOI: 10.1093/hmg/ddw419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Congenital hypothyroidism is the most common neonatal endocrine disorder and is primarily caused by developmental abnormalities otherwise known as thyroid dysgenesis (TD). We performed whole exome sequencing (WES) in a consanguineous family with TD and subsequently sequenced a cohort of 134 probands with TD to identify genetic factors predisposing to the disease. We identified the novel missense mutations p.S148F, p.R114Q and p.L177W in the BOREALIN gene in TD-affected families. Borealin is a major component of the Chromosomal Passenger Complex (CPC) with well-known functions in mitosis. Further analysis of the missense mutations showed no apparent effects on mitosis. In contrast, expression of the mutants in human thyrocytes resulted in defects in adhesion and migration with corresponding changes in gene expression suggesting others functions for this mitotic protein. These results were well correlated with the same gene expression pattern analysed in the thyroid tissue of the patient with BOREALIN-p.R114W. These studies open new avenues in the genetics of TD in humans.
Collapse
Affiliation(s)
- Aurore Carré
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute affiliate, Paris, France
| | - Athanasia Stoupa
- IMAGINE Institute affiliate, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Dulanjalee Kariyawasam
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Cyrille Ramond
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Taylor Monus
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Juliane Léger
- Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| | - Sébastien Gaujoux
- Department of Digestive and Endocrine Surgery, Cochin Hospital, AP-HP, Université Paris Descartes, Paris, France
| | - Frédéric Sebag
- Department of General, Endocrine and Metabolic Surgery, Hopital de la Conception, Marseille, France
| | - Nicolas Glaser
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Delphine Zenaty
- Pediatric Endocrinology Unit, Hôpital Universitaire Robert Debré, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| | - Patrick Nitschke
- Bioinformatics Platform, Paris Descartes University, IMAGINE Institute, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Paris Descartes Sorbonne Paris Cite University, Imagine Institute, Paris, France
| | - Laurence Hubert
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Raphaël Scharfmann
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Arnold Munnich
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Claude Besmond
- INSERM U1163, IMAGINE Institute, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - William Taylor
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Michel Polak
- INSERM U1016, Cochin Institute, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute affiliate, Paris, France.,Pediatric Endocrinology, Gynecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France.,RARE Disorder Center: Centre des Maladies Endocriniennes Rares de la Croissance
| |
Collapse
|
5
|
Abstract
Resistance to thyrotropin (RTSH) is broadly defined as reduced sensitivity of thyroid follicle cells to stimulation by biologically active TSH due to genetic defects. Affected individuals have elevated serum TSH in the absence of goiter, with the severity ranging from nongoitrous isolated hyperthyrotropinemia to severe congenital hypothyroidism with thyroid hypoplasia. Conceptually, defects leading to RTSH impair both aspects of TSH-mediated action, namely thyroid hormone synthesis and gland growth. These include inactivating mutations in the genes encoding the TSH receptor and the PAX8 transcription factor. A common third cause has been genetically mapped to a locus on chromosome 15, but the underlying pathophysiology has not yet been elucidated. This review provides a succinct overview of currently defined causes of nonsyndromic RTSH, their differential diagnoses (autoimmune; partial iodine organification defects; syndromic forms of RTSH) and implications for the clinical approach to patients with RTSH.
Collapse
Affiliation(s)
- Helmut Grasberger
- University of Michigan, 6504 MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Samuel Refetoff
- The University of Chicago, MC3090, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Cahoreau C, Klett D, Combarnous Y. Structure-function relationships of glycoprotein hormones and their subunits' ancestors. Front Endocrinol (Lausanne) 2015; 6:26. [PMID: 25767463 PMCID: PMC4341566 DOI: 10.3389/fendo.2015.00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Glycoprotein hormones (GPHs) are the most complex molecules with hormonal activity. They exist only in vertebrates but the genes encoding their subunits' ancestors are found in most vertebrate and invertebrate species although their roles are still unknown. In the present report, we review the available structural and functional data concerning GPHs and their subunits' ancestors.
Collapse
Affiliation(s)
- Claire Cahoreau
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
| | - Danièle Klett
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
| | - Yves Combarnous
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
- *Correspondence: Yves Combarnous, Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly 37380, France e-mail:
| |
Collapse
|
7
|
Abstract
Advances in prenatal imaging techniques and in fetal hormonology now allow for identification of disorders of thyroid function in the fetus. These can potentially be treated in utero by giving drugs to the mother. This review shows the feasibility of in utero treatment of fetal thyroid disorders, either indirectly by treating the mother or by giving the necessary drugs directly to the fetus. For goitrous fetal hypothyroidism leading to hydramnios, repeated intra-amniotic injections of thyroxine have been reported to decrease the size of the fetal thyroid. Experience with such procedures is limited but positive. The risk that direct in utero treatment of the fetus may provoke premature labor or cause infection should be carefully evaluated. In women with Graves' disease, autoimmune fetal hyperthyroidism can generally be treated in a noninvasive way by optimizing treatment of the mother, such as by increasing the dose of antithyroid drugs. Follow-up of the efficacy and the possible long-term consequences of medical interventions to normalize thyroid function of the fetus are of great importance. Specialized care of the fetus should be provided by skilled teams with extensive experience in prenatal care.
Collapse
Affiliation(s)
- Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Necker Enfants-Malades Hospital, AP-HP, Paris, France; INSERM U845, IMAGINE affiliate, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Dominique Luton
- Obstetrics and Gynecology, AP-HP, GHU Nord, Hôpital Beaujon and Bichat, Paris and Clichy, Université Paris VII, Paris, France.
| |
Collapse
|
8
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
Moia S, Godi M, Walker GE, Roccio M, Agretti P, Tonacchera M, Berardi R, Bellone S, Prodam F, Giordano M, Bona G. The W520X mutation in the TSHR gene brings on subclinical hypothyroidism through an haploinsufficiency mechanism. J Endocrinol Invest 2013; 36:716-21. [PMID: 23563316 DOI: 10.3275/8930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND TSHR is a G-protein-coupled seven transmembrane domain receptor that activates the two major signal transduction pathways: the Gαs/adenylate cyclase and the Gαq/11/phospholipase C pathways. Inactivating mutations in the TSHR gene have been demonstrated to be responsible for subclinical hypothyroidism, a disorder characterized by elevated serum TSH concentrations despite normal thyroid hormones levels. AIM We identified in a child a nonsense mutation (W520X) in the third transmembrane domain of the TSHR that causes the lack of the C-terminus portion of the receptor. The functional significance of this variation was assessed in vitro. MATERIAL/SUBJECT AND METHODS The W520X mutation was introduced into the pSVL vector containing the wild-type sequence of TSHR gene. Wild-type and mutated vectors were expressed in Chinese Hamster Ovary (CHO) cells, and cAMP, inositol phosphate (IP), immunofluorescence and FACS analyses were performed. RESULTS Transfection with pSVL-TSHR vector induced basal cAMP and IP production in the absence of TSH stimulation, indicating a constitutive activity for the TSHR. An impairment of receptor function was demonstrated by the observation that cells expressing the mutant TSHR exhibited a lower second messenger production with respect to the wild-type, despite a normal expression of the receptor at the cell surface. CONCLUSIONS The mechanism through which the W520X mutation exerts its effect is more likely haploinsufficiency rather than a dominant-negative effect. This could explain the phenotype of our patient, who has a hormonal pattern in the range of a mild subclinical hypothyroidism, without an overt disease phenotype.
Collapse
Affiliation(s)
- S Moia
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nettore IC, Cacace V, De Fusco C, Colao A, Macchia PE. The molecular causes of thyroid dysgenesis: a systematic review. J Endocrinol Invest 2013; 36:654-64. [PMID: 23698639 DOI: 10.3275/8973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Congenital hypothyroidism (CH) is a frequent disease occurring with an incidence of about 1/2500 newborns/year. In 80-85% of the cases CH is caused by alterations in thyroid morphogenesis, generally indicated by the term "thyroid dysgenesis" (TD). TD is generally a sporadic disease, but in about 5% of the cases a genetic origin has been demonstrated. In these cases, mutations in genes playing a role during thyroid morphogenesis (NKX2-1, PAX8, FOXE1, NKX2-5, TSHR) have been reported. AIM This work reviews the main steps of thyroid morphogenesis and all the genetic alterations associated with TD and published in the literature.
Collapse
Affiliation(s)
- I C Nettore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini, 5 - 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
11
|
Cassio A, Nicoletti A, Rizzello A, Zazzetta E, Bal M, Baldazzi L. Current loss-of-function mutations in the thyrotropin receptor gene: when to investigate, clinical effects, and treatment. J Clin Res Pediatr Endocrinol 2013; 5 Suppl 1:29-39. [PMID: 23154162 PMCID: PMC3608004 DOI: 10.4274/jcrpe.864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Thyroid-stimulating hormone receptor (TSHR) loss-of-function (LOF) mutations lead to a wide spectrum of phenotypes, ranging from severe congenital hypothyroidism (CH) to mild euthyroid hyperthyrotropinemia. The degree of TSH resistance depends on the severity of the impairment of the receptor function caused by the mutation and on the number of mutated alleles In this review data about genotype-phenotype correlation and criteria for clinical work-up will be presented and discussed. Complete TSH resistance due to biallelic LOF TSHR mutations must be suspected in all patients with severe not syndromic CH and severe thyroid hypoplasia diagnosed at birth by neonatal screening. Partial forms of TSH resistance show a more heterogeneous hormonal and clinical pattern . In these cases TSH serum levels are above the upper limit of normal range for the age but with a very variable pattern, free thyroxine (T4) concentrations are within the normal range and thyroid size can be normal or hypoplastic at ultrasound scan. An early substitutive treatment with L-T4 must be mandatory in all patients with severe CH due to complete uncompensated TSH resistance diagnosed at birth by neonatal screening. The usefulness of substitutive treatment appears much more controversial inpatients with subclinical hypothyroidism due to partial TSH resistance in whom the increased TSH concentration should be able to compensate the mild functional impairment of the mutant receptor. Together with standard criteria we recommend also an accurate clinical work-up to select patients who are candidates for a LOF TSHR mutation.
Collapse
Affiliation(s)
- Alessandra Cassio
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Annalisa Nicoletti
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Angela Rizzello
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Emanuela Zazzetta
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Milva Bal
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Lilia Baldazzi
- Department of Gynaecologic, Obstetric and Paediatric Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Cohen S, Haimovich J, Hollander N. Distinct processing of the pre-B cell receptor and the B cell receptor. Mol Immunol 2012; 54:115-21. [PMID: 23267849 DOI: 10.1016/j.molimm.2012.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/04/2012] [Accepted: 11/13/2012] [Indexed: 02/03/2023]
Abstract
It has been recently demonstrated that while oligosaccharide moieties of μ heavy chains in the B-cell receptor (BCR) are of the complex type as expected, those of the pre-BCR on the surface of pre-B cells contain oligosaccharide moieties of the high-mannose type only. This is unique, because high-mannose glycans are generally restricted to the endoplasmic reticulum and not presented on the surface of mammalian cells. In the present study, we examined the processing of the unusually glycosylated μ heavy chains in pre-B cells. We demonstrate that the pre-BCR reaches the cell surface by a non-conventional brefeldin A-sensitive monensin-insensitive transport pathway. Although pre-BCR complexes consist of μ heavy chains with high-mannose oligosaccharide moieties, they are stably expressed in the plasma membrane and demonstrate turnover rates similar to those of the BCR. Thus, rapid internalization cannot account for their low surface expression, as previously postulated. Rather, we demonstrate that the low pre-BCR abundance in the plasma membrane results, at least in part, from insufficient production of surrogate light chains, which appears to be a limiting factor in pre-BCR expression.
Collapse
Affiliation(s)
- Sharon Cohen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
13
|
Prydz K, Tveit H, Vedeler A, Saraste J. Arrivals and departures at the plasma membrane: direct and indirect transport routes. Cell Tissue Res 2012; 352:5-20. [DOI: 10.1007/s00441-012-1409-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/14/2012] [Indexed: 12/21/2022]
|
14
|
Unal H, Karnik SS. Domain coupling in GPCRs: the engine for induced conformational changes. Trends Pharmacol Sci 2011; 33:79-88. [PMID: 22037017 DOI: 10.1016/j.tips.2011.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 11/28/2022]
Abstract
Recent solved structures of G protein-coupled receptors (GPCRs) provide insights into variation of the structure and molecular mechanisms of GPCR activation. In this review, we provide evidence for the emerging paradigm of domain coupling facilitated by intrinsic disorder of the ligand-free state in GPCRs. The structure-function and dynamic studies suggest that ligand-bound GPCRs exhibit multiple active conformations in initiating cellular signals. Long-range intramolecular and intermolecular interactions at distant sites on the same receptor are crucial factors that modulate signaling function of GPCRs. Positive or negative coupling between the extracellular, the transmembrane and the intracellular domains facilitates cooperativity of activating 'switches' as requirements for the functional plasticity of GPCRs. Awareness that allosteric ligands robustly affect domain coupling provides a novel mechanistic basis for rational drug development, small molecule antagonism and GPCR regulation by classical as well as nonclassical modes.
Collapse
Affiliation(s)
- Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
15
|
Benned-Jensen T, Mokrosinski J, Rosenkilde MM. The E92K melanocortin 1 receptor mutant induces cAMP production and arrestin recruitment but not ERK activity indicating biased constitutive signaling. PLoS One 2011; 6:e24644. [PMID: 21931793 PMCID: PMC3172247 DOI: 10.1371/journal.pone.0024644] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The melanocortin 1 receptor (MC1R) constitutes a key regulator of melanism. Consequently, many naturally-occurring MC1R mutations are associated with a change in color. An example is the Glu-to-Lys substitution found at position II:20/2.60 in the top of transmembrane helix II which has been identified in melanic mice and several other species. This mutation induces a pronounced increase in MC1R constitutive activity suggesting a link between constitutive activity and melanism which is corroborated by the attenuation of α-melanocyte stimulating hormone (αMSH) induced activation. However, the mechanism by which the mutation induces constitutive activity is currently not known. METHODOLOGY/PRINCIPAL FINDINGS Here we characterize the constitutive activity, cell surface expression and internalization of the mouse mutant, Mc1r E92K. As previously reported, only positively charged residues at position II:20/2.60 induced an increase in constitutive activity as measured by cAMP accumulation and CREB activation. Furthermore, the mutation induced a constitutive recruitment of β-arrestin. This phenomenon is only observed in MC1R, however, as the equivalent mutations in MC2-5R had no effect on receptor signaling. Interestingly, the mutation did not induce constitutive ERK1/2 phosphorylation or increase the internalization rate indicating the constitutive activity to be biased. Finally, to identify regions of importance for the increased constitutive activity of Mc1r E92K, we employed a chimeric approach and identified G102 and L110 in the extracellular loop 1 to be selectively important for the constitutive activity as this, but not αMSH-mediated activation, was abolished upon Ala substitution. CONCLUSIONS/SIGNIFICANCE It is concluded that the E92K mutation induces an active conformation distinct from that induced by αMSH and that the extracellular loop 1 is involved in maintaining this conformational state. In turn, the results suggest that in MC1R, which lacks an extracellular loop 2, the first extracellular loop may play a more prominent role during receptor activation than in general.
Collapse
Affiliation(s)
- Tau Benned-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Mokrosinski
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M. Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
16
|
Biebermann H, Winkler F, Handke D, Grüters A, Krude H, Kleinau G. Molecular description of non-autoimmune hyperthyroidism at a neonate caused by a new thyrotropin receptor germline mutation. Thyroid Res 2011; 4 Suppl 1:S8. [PMID: 21835055 PMCID: PMC3155114 DOI: 10.1186/1756-6614-4-s1-s8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Constitutively activating germline mutations in the thyrotropin receptor (TSHR) gene result in non-autoimmune hyperthyroidism and can be transmitted as a dominant trait or occur sporadically. These mutations are mostly located in the serpentine part of this G-protein coupled receptor. Methods Sequencing exon 9 and 10 of the thyrotropin receptor gene in a two months old patient identified a mutation which was functionally characterized after transient transfection into COS-7 cells. Cell surface localization was investigated by an ELISA approach and for signalling properties we measured cAMP by alpha screen technology for Gs/adenylyl cyclase activation and use a reporter gene assay for determination of Gq/11 phospholipase C-β activation. Results We detected a heterozygous mutation in the first extracellular loop of the TSHR gene leading to an exchange of an isoleucine residue for asparagine at amino acid position 486 (I486N). Cell surface localization was reduced to 51% of wild-type TSHR. Functional characterization of the mutant receptor revealed constitutive activation of the Gs/adenylyl cyclase pathway, in contrast basal activity of the Gq/11 pathway was comparable to the wild-type. The bovine TSH-induced cAMP accumulation was slightly reduced, but IP3 signaling was impaired. Conclusion We identified a new TSHR germline mutation (I486N) in a neonate with non-autoimmune sporadic hyperthyroidism. The mutation is located at the extracellular loop 1 and exhibits an increase in basal cAMP accumulation, but unexpectedly impairs the capability for TSH induced Gq mediated signaling. The TSHR homology model suggests isoleucine 486 as a potential key-player for induction of signal transduction by an interplay with further activation sensitive extracellular parts.
Collapse
Affiliation(s)
- Heike Biebermann
- Institute of Experimental Paediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Alves EAC, Cruz CM, Pimentel CP, Ribeiro RCM, Santos AKCR, Caldato MCF, Santana-da-silva LC. High frequency of D727E polymorphisms in exon 10 of the TSHR gene in Brazilian patients with congenital hypothyroidism. J Pediatr Endocrinol Metab 2010; 23:1321-8. [PMID: 21714466 DOI: 10.1515/jpem.2010.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Congenital Hypothyroidism affects between 1:3000 and 1:4000 newborn infants in iodine-sufficient regions. Some studies have shown that mutations and polymorphisms in the TSH receptor gene are responsible for this disease. In the present study, mutations of exon 10 of the TSH receptor gene were investigated in Congenital Hypothyroidism patients. In the present study a sample of 90 Brazilian patients with primary congenital hypothyroidism was analyzed. Genomic DNA was isolated from peripheric blood samples. Exon 10 of the TSH receptor gene was amplified by PCR, and amplicons were automatically sequenced. Three nucleotide alterations were identified: c.1377G>A (A459A), c.1935G>A (L645L), and c.2181C>G (D727E). A459A polymorphism was also described previously in patients with thyroid cancer. The nucleotide alteration L645L was found in a single patient. This is the first time the L645L mutation has been described. D727E polymorphism showed high frequency (allele frequency 10%) in present study when compared to others reports.
Collapse
Affiliation(s)
- Erik A C Alves
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Peeters MC, Westen GJP, Guo D, Wisse LE, Muller CE, Beukers MW, IJzerman AP. GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A
2B
receptor. FASEB J 2010; 25:632-43. [DOI: 10.1096/fj.10-164319] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miriam C. Peeters
- Division of Medicinal ChemistryLeiden/Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Gerard J. P. Westen
- Division of Medicinal ChemistryLeiden/Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Dong Guo
- Division of Medicinal ChemistryLeiden/Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Lisanne E. Wisse
- Division of Medicinal ChemistryLeiden/Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Christa E. Muller
- PharmaCenter BonnPharmaceutical InstitutePharmaceutical Chemistry IPharmaceutical Sciences Bonn (PSB)University of BonnBonnGermany
| | - Margot W. Beukers
- Division of Medicinal ChemistryLeiden/Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal ChemistryLeiden/Amsterdam Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
19
|
Nikiforovich GV, Taylor CM, Marshall GR, Baranski TJ. Modeling the possible conformations of the extracellular loops in G-protein-coupled receptors. Proteins 2010; 78:271-85. [PMID: 19731375 DOI: 10.1002/prot.22537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study presents the results of a de novo approach modeling possible conformational dynamics of the extracellular (EC) loops in G-protein-coupled receptors (GPCRs), specifically in bovine rhodopsin (bRh), squid rhodopsin (sRh), human beta-2 adrenergic receptor (beta2AR), turkey beta-1 adrenergic receptor (beta1AR), and human A2 adenosine receptor (A2AR). The approach deliberately sacrificed a detailed description of any particular 3D structure of the loops in GPCRs in favor of a less precise description of many possible structures. Despite this, the approach found ensembles of the low-energy conformers of the EC loops that contained structures close to the available X-ray snapshots. For the smaller EC1 and EC3 loops (6-11 residues), our results were comparable with the best recent results obtained by other authors using much more sophisticated techniques. For the larger EC2 loops (25-34 residues), our results consistently yielded structures significantly closer to the X-ray snapshots than the results of the other authors for loops of similar size. The results suggested possible large-scale movements of the EC loops in GPCRs that might determine their conformational dynamics. The approach was also validated by accurately reproducing the docking poses for low-molecular-weight ligands in beta2AR, beta1AR, and A2AR, demonstrating the possible influence of the conformations of the EC loops on the binding sites of ligands. The approach correctly predicted the system of disulfide bridges between the EC loops in A2AR and elucidated the probable pathways for forming this system.
Collapse
|
20
|
Tveit H, Akslen LKA, Fagereng GL, Tranulis MA, Prydz K. A secretory Golgi bypass route to the apical surface domain of epithelial MDCK cells. Traffic 2009; 10:1685-95. [PMID: 19765262 DOI: 10.1111/j.1600-0854.2009.00984.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins leave the endoplasmic reticulum (ER) for the plasma membrane via the classical secretory pathway, but routes bypassing the Golgi apparatus have also been observed. Apical and basolateral protein secretion in epithelial Madin-Darby canine kidney (MDCK) cells display differential sensitivity to Brefeldin A (BFA), where low concentrations retard apical transport, while basolateral transport still proceeds through intact Golgi cisternae. We now describe that BFA-mediated retardation of glycoprotein and proteoglycan transport through the Golgi apparatus induces surface transport of molecules lacking Golgi modifications, possessing those acquired in the ER. Low concentrations of BFA induces apical Golgi bypass, while higher concentrations were required to induce basolateral Golgi bypass. Addition of the KDEL ER-retrieval sequence to model protein cores allowed observation of apical Golgi bypass in untreated MDCK cells. Basolateral Golgi bypass was only observed after the addition of BFA or upon cholesterol depletion. Thus, in MDCK cells, an apical Golgi bypass route can transport cargo from pre-Golgi organelles in untreated cells, while the basolateral bypass route is inducible.
Collapse
Affiliation(s)
- Heidi Tveit
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|