1
|
Massri N, Arora R. Uterine stromal but not epithelial PTGS2 is critical for murine pregnancy success. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620133. [PMID: 39484555 PMCID: PMC11527190 DOI: 10.1101/2024.10.24.620133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Use of non-steroidal anti-inflammatory drugs that target prostaglandin synthase (PTGS) enzymes have been implicated in miscarriage. Further, PTGS2-derived prostaglandins are reduced in the endometrium of patients with a history of implantation failure. However, in the mouse model of pregnancy, peri-implantation PTGS2 function is controversial. Some studies suggest that Ptgs2-/- mice display deficits in ovulation, fertilization, and implantation, while other studies suggest a role for PTGS2 only in ovulation but not implantation. Further, the uterine cell type responsible for PTGS2 function and role of PTGS2 in regulating implantation chamber formation is not known. To address this we generated tissue-specific deletion models of Ptgs2. We observed that PTGS2 ablation from the epithelium alone in Ltfcre/+; Ptgs2f/f mice and in both the epithelium and endothelium of the Pax2cre/+; Ptgs2f/f mice does not affect embryo implantation. Further, deletion of PTGS2 in the ovary, oviduct, and the uterus using Pgrcre/+; Ptgs2f/f does not disrupt pre-implantation events but instead interferes with post-implantation chamber formation, vascular remodeling and decidualization. While all embryos initiate chamber formation, more than half of the embryos fail to transition from blastocyst to epiblast stage, resulting in embryo death and resorbing decidual sites at mid-gestation. Thus, our results suggest no role for uterine epithelial PTGS2 in early pregnancy but instead highlight a role for uterine stromal PTGS2 in modulating post-implantation embryo and implantation chamber growth. Overall, our study provides clarity on the compartment-specific role of PTGS2 and provides a valuable model for further investigating the role of stromal PTGS2 in post-implantation embryo development.
Collapse
Affiliation(s)
- Noura Massri
- Cell and Molecular Biology Program, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
| | - Ripla Arora
- Cell and Molecular Biology Program, Michigan State University
- Institute for Quantitative Health Science and Engineering, Michigan State University
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University
| |
Collapse
|
2
|
Yang N, Sun Y, Han B, Deng N, Li G, Han Q, Wang Y, Cai H, Liu F, Cao B, Deng W, Bao H, Kong S, Lu J, Wang H. Trophoblastic signals facilitate endometrial interferon response and lipid metabolism, ensuring normal decidualization. Cell Rep 2024; 43:114246. [PMID: 38762885 DOI: 10.1016/j.celrep.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.
Collapse
Affiliation(s)
- Ningjie Yang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Bing Han
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Na Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Qian Han
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fan Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Sakurai J, Oka S, Higuchi Y, Ohsawa S, Fujimori T. Effects of blastocyst elongation and implantation chamber formation on the alignment of the embryonic axis and uterine axis in mice. Front Cell Dev Biol 2024; 12:1421222. [PMID: 38946796 PMCID: PMC11211524 DOI: 10.3389/fcell.2024.1421222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Embryo implantation involves a series of events that bring the embryo and maternal tissues into contact to support post-implantation development in mammals. During implantation, alignment of the embryonic-abembryonic (E-Ab) axis of the blastocyst with the mesometrial-antimesometrial (M-AM) axis of the uterus precedes post-implantation embryonic development and placentation. In the present study, we observed the morphological changes in blastocysts and the endometrial luminal epithelium (LE) that occur during the alignment of the embryonic and the uterine axes. We found that at the time that the blastocysts attached to the LE at the mural trophectoderm, the embryonic axis was not aligned with the uterine axis. Alignment of the embryonic E-Ab axis with the uterine M-AM axis occurred after E4.0, and the embryo was significantly elongated during the process. The depth of the implantation chamber (IC) correlated with the degree of alignment, suggesting that elongated embryos are oriented along the M-AM axis during IC formation. Transplantation of the Concanavalin A (Con A)-coated beads induced IC formation, and the alignment of two Con A-coated beads present in the same IC in the M-AM direction suggested that elongated materials can align along the M-AM axis. These data suggest that an elongated shape of the embryo and IC formation coordinate the alignment of the embryonic and uterine axes.
Collapse
Affiliation(s)
- Jun Sakurai
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Deapartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoko Higuchi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Sonoko Ohsawa
- Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Deapartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
4
|
Massri N, Loia R, Sones JL, Arora R, Douglas NC. Vascular changes in the cycling and early pregnant uterus. JCI Insight 2023; 8:e163422. [PMID: 37288662 PMCID: PMC10393238 DOI: 10.1172/jci.insight.163422] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Uterine vascular remodeling is intrinsic to the cycling and early pregnant endometrium. Maternal regulatory factors such as ovarian hormones, VEGF, angiopoietins, Notch, and uterine natural killer cells significantly mediate these vascular changes. In the absence of pregnancy, changes in uterine vessel morphology and function correlate with different stages of the human menstrual cycle. During early pregnancy, vascular remodeling in rodents and humans results in decreased uterine vascular resistance and increased vascular permeability necessary for pregnancy success. Aberrations in these adaptive vascular processes contribute to increased risk of infertility, abnormal fetal growth, and/or preeclampsia. This Review comprehensively summarizes uterine vascular remodeling in the human menstrual cycle, and in the peri- and post-implantation stages in rodent species (mice and rats).
Collapse
Affiliation(s)
- Noura Massri
- Cell and Molecular Biology Graduate Program and
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Rachel Loia
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Jennifer L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ripla Arora
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health and
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| |
Collapse
|
5
|
Fang X, Ni N, Gao Y, Lydon JP, Ivanov I, Rijnkels M, Bayless KJ, Li Q. Transforming growth factor beta signaling and decidual integrity in mice†. Biol Reprod 2020; 103:1186-1198. [PMID: 32902612 PMCID: PMC7711917 DOI: 10.1093/biolre/ioaa155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signaling regulates multifaceted reproductive processes. It has been shown that the type 1 receptor of TGFβ (TGFBR1) is indispensable for female reproductive tract development, implantation, placental development, and fertility. However, the role of TGFβ signaling in decidual development and function remains poorly defined. Our objective is to determine the impact of uterine-specific deletion of Tgfbr1 on decidual integrity, with a focus on the cellular and molecular properties of the decidua during development. Our results show that the developmental dynamics of the decidua is altered in TGFBR1 conditionally depleted uteri from embryonic day (E) 5.5 to E8.5, substantiated by downregulation of genes associated with inflammatory responses and uterine natural killer cell abundance, reduced presence of nondecidualized fibroblasts in the antimesometrial region, and altered decidual cell development. Notably, conditional ablation of TGFBR1 results in the formation of decidua containing more abundant alpha smooth muscle actin (ACTA2)-positive cells at the peripheral region of the antimesometrial side versus controls at E6.5-E8.5. This finding is corroborated by upregulation of a subset of smooth muscle marker genes in Tgfbr1 conditionally deleted decidua at E6.5 and E8.5. Moreover, increased cell proliferation and enhanced decidual ERK1/2 signaling were found in Tgfbr1 conditional knockout mice upon decidual regression. In summary, conditional ablation of TGFBR1 in the uterus profoundly impacts the cellular and molecular properties of the decidua. Our results suggest that TGFBR1 in uterine epithelial and stromal compartments is important for the integrity of the decidua, a transient but crucial structure that supports embryo development.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yang Gao
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Kowalewski MP, Tavares Pereira M, Kazemian A. Canine conceptus-maternal communication during maintenance and termination of pregnancy, including the role of species-specific decidualization. Theriogenology 2020; 150:329-338. [PMID: 32143817 DOI: 10.1016/j.theriogenology.2020.01.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
Among domestic animal species, the reproductive biology of the dog belongs to the most peculiar. This includes the conceptus-maternal communication and endocrine mechanisms involved in maintenance of pregnancy. Dogs fully depend on luteal progesterone (P4) throughout pregnancy, with similar steroid secretion patterns in pregnant and non-pregnant bitches until prepartum luteolysis. Thus, dogs lack the classical recognition of pregnancy. The luteal P4 is the most important hormone regulating the onset and maintenance of pregnancy in previously estrogenized bitches. Although the canine uterus is exposed to high P4 levels, decidualization is not spontaneous but induced by the presence of embryos. Following implantation, decidualization continues, associated with development of the invasive endotheliochorial placenta, leading to establishment of maternal decidual cells expressing the nuclear P4 receptor (PGR). Consequently, although not producing steroids, the canine placenta remains highly sensitive to circulating ovarian steroids. The placental conceptus-maternal communication is responsible for the maintenance of pregnancy, with functional withdrawal of PGR evoking a luteolytic cascade with prepartum PGF2α release. The fetal trophoblast is the major source of prepartum placental prostaglandins. This conceptus-maternal communication is unique to the dog and has clinical implications. Due to luteal steroids, there is no prepartum estradiol increase. Elevated cortisol levels are observed irregularly. This emphasizes the unique character of canine reproductive physiology and the challenges in transferring translational research to the dog. Further research is needed for better understanding of canine reproduction and improving clinical protocols, including the latest results obtained from applying modern laboratory technologies such as the transcriptomic approach.
Collapse
Affiliation(s)
- M P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - M Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| | - A Kazemian
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
7
|
Li H, Zhou R, Li Y, Liu R, Miao Y, Zhang B, Wu X, Zhang S, Tang F, Li X. Effects of Intrauterine Air Bubbles on Embryonic Development in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:7-15. [PMID: 30497539 DOI: 10.30802/aalas-jaalas-18-000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During murine embryo transfer, air bubbles frequently are loaded with embryos into the transfer catheter, but the role of air bubbles on embryonic development is unclear. This study shows that intrauterine air disrupted embryo spacing, induced deciduoma, and impaired postimplantation development. RNA sequencing showed that the gene expression profile of air-induced deciduoma differed significantly from that of embryo-induced decidua but is similar to tetraploid-induced deciduoma. A subset of 33 common genes was upregulated in the embryo-induced decidua compared with air- or tetraploid-induced deciduoma. These data suggest that the inner cell mass (ICM) plays a key role in regulating decidualization and that the trophectoderm is an intermediate that relays ICM-derived signals to other target cells. Our results may provide an innovative approach for detecting the developmental status of embryos in human reproductive medicine.
Collapse
Affiliation(s)
- Hua Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yimeng Li
- School of Basic Medical Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ruonan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yanping Miao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Bin Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xinglong Wu
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
| | - Shu Zhang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
| | - Xiangyun Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China;,
| |
Collapse
|
8
|
Peterse D, Clercq KD, Goossens C, Binda MM, F O D, Saunders P, Vriens J, Fassbender A, D'Hooghe TM. Optimization of Endometrial Decidualization in the Menstruating Mouse Model for Preclinical Endometriosis Research. Reprod Sci 2018; 25:1577-1588. [PMID: 29455621 DOI: 10.1177/1933719118756744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND To induce endometrial decidualization in rodents, an intrauterine oil stimulus can be delivered via the nontraumatic vagina or via the traumatic laparotomy. However, there is considerable variation in amount of decidualization using these inducing methods. Therefore, we studied which oil delivery route could achieve the highest rate of endometrial decidualization along the full length of both uterine horns. METHODS To induce decidualization, ovariectomized C57Bl/6J mice were injected with estrogen (100 ng/day; 3 days). A progesterone pellet (5 mg) was implanted subcutaneously, followed by estrogen injections (5 ng/day; 3 days). Oil (20 µL/horn) was injected in the uterus via laparotomy, laparoscopy, or vagina. Four days later, the pellet was removed, followed by hysterectomy after 4 to 6 hours. Endometrial decidualization was evaluated macroscopically and microscopically using hematoxylin and eosin and desmin staining. Furthermore, uterine weight and hormone levels were measured. RESULTS The proportion of animals with macroscopic bicornuate decidualization was higher after laparoscopic (83%) and laparotomic (89%) injection than after sham injection (11%). Furthermore, macroscopic bicornuate decidualization was significantly higher after laparotomic injection (89%) compared to the vaginal injection (38%). Uterine weight and endometrial surface area were significantly higher in both laparotomy and laparoscopy groups compared to the sham group, while the relative desmin-positive endometrial surface area was only significantly different between the laparotomy and the sham animals. CONCLUSION Methods using laparoscopic and laparotomic intrauterine oil injection resulted in a higher amount of decidualized endometrium compared to sham injection, although further optimization is needed to reach full bicornuate decidualization.
Collapse
Affiliation(s)
- Daniëlle Peterse
- 1 Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospital Leuven, Leuven, Belgium
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Katrien De Clercq
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Chloë Goossens
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - M Mercedes Binda
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Dorien F O
- 1 Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospital Leuven, Leuven, Belgium
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Philippa Saunders
- 3 MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joris Vriens
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Amelie Fassbender
- 1 Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospital Leuven, Leuven, Belgium
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
| | - Thomas M D'Hooghe
- 2 Department of Development and Regeneration, Laboratory of Endometrium, Endometriosis & Reproductive Medicine, KU Leuven, Leuven, Belgium
- 4 Global Medical Affairs Fertility, Research and Development, Merck, Darmstadt, Germany
| |
Collapse
|
9
|
Sojka DK, Yang L, Plougastel-Douglas B, Higuchi DA, Croy BA, Yokoyama WM. Cutting Edge: Local Proliferation of Uterine Tissue-Resident NK Cells during Decidualization in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:2551-2556. [PMID: 30275046 DOI: 10.4049/jimmunol.1800651] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
NK cells accumulate in adult murine and human uteri during decidualization induced physiologically, pathologically, or experimentally. Adoptive transfer studies indicate that uterine NK (uNK) cells arise from circulating progenitors. However, virgin uteri contain few circulating NK1.1+CD49a- conventional NK cells, whereas NK1.1+CD49a+ tissue-resident NK (trNK) cells are abundant. In this study, we employed a novel, immune-competent NK cell-specific reporter mouse to track accumulation of uNK cells during unmanipulated pregnancies. We identified conventional NK and trNK cells accumulating in both decidua basalis and myometrium. Only trNK cells showed evidence of proliferation. In parabiosis studies using experimentally induced deciduomata, the accumulated uNK cells were proliferating trNK cells; migrating NK cells made no contribution. Together, these data suggest proliferating trNK cells are the source of uNK cells during endometrial decidualization.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Liping Yang
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| | | | - Darryl A Higuchi
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| | - B Anne Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wayne M Yokoyama
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
10
|
Liu R, Li Y, Miao Y, Wei Y, Guan M, Zhou R, Li X. Intrauterine air impairs embryonic postimplantation development in mice. Eur J Obstet Gynecol Reprod Biol 2017; 219:20-27. [PMID: 29031908 DOI: 10.1016/j.ejogrb.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Although most embryologists load air bubbles into the catheter along with embryos during embryo transfer, the effects of these air bubbles on embryo transfer success rate are not clear. STUDY DESIGN Air bubbles were nonsurgically injected into unilateral uterine horns of mice to demonstrate the negative effects of intrauterine air bubbles on embryonic development. RESULTS Our data showed that when air bubbles are nonsurgically injected into unilateral uterine horns of pregnant 4days mice the litter size is significantly decreased. Four days after the introduction of air, abnormal decidua and dead conceptuses were detected in the uterine horns receiving the air bubbles. In addition, intrauterine air also significantly impaired murine embryo transfer success rates, and induced an increase in endometrial capillary permeability and decidualization in mice on day 4 of pseudopregnancy. These results strongly indicated that the air bubbles loaded into embryo transfer catheters to bracket the embryo-containing medium may have negative effect on embryonic implantation and development. CONCLUSIONS Intrauterine air impaired murine embryonic postimplantation development, and this provided some clues for improving embryo transfer techniques in human.
Collapse
Affiliation(s)
- Ruonan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yimeng Li
- College of Basic Medical Science, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yanping Miao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yanhui Wei
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Mo Guan
- MRC Harwell Institute, Harwell Campus, Mary Lyon Centre, Oxfordshire, OX11 0RD, UK
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Xiangyun Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
11
|
Liu J, Gao F, Liu YF, Dou HT, Yan JQ, Fan ZM, Yang ZM. HB-EGF regulates Prss56 expression during mouse decidualization via EGFR/ERK/EGR2 signaling pathway. J Endocrinol 2017; 234:247-254. [PMID: 28611210 DOI: 10.1530/joe-16-0636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/09/2017] [Indexed: 01/17/2023]
Abstract
Embryo implantation and decidualization are key steps for successful reproduction. Although numerous factors have been identified to be involved in embryo implantation and decidualization, the mechanisms underlying these processes are still unclear. Based on our preliminary data, Prss56, a trypsin-like serine protease, is strongly expressed at implantation site in mouse uterus. However, the expression, regulation and function of Prss56 during early pregnancy are still unknown. In mouse uterus, Prss56 is strongly expressed in the subluminal stromal cells at implantation site on day 5 of pregnancy compared to inter-implantation site. Under delayed implantation, Prss56 expression is undetected. After delayed implantation is activated by estrogen, Prss56 is obviously induced at implantation site. Under artificial decidualization, Prss56 signal is seen at the primary decidual zone at the initial stage of artificial decidualization. When stromal cells are induced for in vitro decidualization, Prss56 expression is significantly elevated. Dtprp expression under in vitro decidualization is suppressed by Prss56 siRNA. In cultured stromal cells, HB-EGF markedly stimulates Prss56 expression through EGFR/ERK pathway. Based on promoter analysis, we also showed that Egr2 is involved in Prss56 regulation by HB-EGF. Collectively, Prss56 expression at implantation site is modulated by HB-EGF/EGFR/ERK signaling pathway and involved in mouse decidualization.
Collapse
Affiliation(s)
- Jie Liu
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
- Department of BiologyShantou University, Shantou, China
| | - Fei Gao
- Department of BiologyShantou University, Shantou, China
| | - Yue-Fang Liu
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Hai-Ting Dou
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Jia-Qi Yan
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Zong-Min Fan
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- College of Veterinary MedicineSouth China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Jones-Paris CR, Paria S, Berg T, Saus J, Bhave G, Paria BC, Hudson BG. Embryo implantation triggers dynamic spatiotemporal expression of the basement membrane toolkit during uterine reprogramming. Matrix Biol 2017; 57-58:347-365. [PMID: 27619726 PMCID: PMC5328942 DOI: 10.1016/j.matbio.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 01/08/2023]
Abstract
Basement membranes (BMs) are specialized extracellular scaffolds that influence behaviors of cells in epithelial, endothelial, muscle, nervous, and fat tissues. Throughout development and in response to injury or disease, BMs are fine-tuned with specific protein compositions, ultrastructure, and localization. These features are modulated through implements of the BM toolkit that is comprised of collagen IV, laminin, perlecan, and nidogen. Two additional proteins, peroxidasin and Goodpasture antigen-binding protein (GPBP), have recently emerged as potential members of the toolkit. In the present study, we sought to determine whether peroxidasin and GPBP undergo dynamic regulation in the assembly of uterine tissue BMs in early pregnancy as a tractable model for dynamic adult BMs. We explored these proteins in the context of collagen IV and laminin that are known to extensively change for decidualization. Electron microscopic analyses revealed: 1) a smooth continuous layer of BM in between the epithelial and stromal layers of the preimplantation endometrium; and 2) interrupted, uneven, and progressively thickened BM within the pericellular space of the postimplantation decidua. Quantification of mRNA levels by qPCR showed changes in expression levels that were complemented by immunofluorescence localization of peroxidasin, GPBP, collagen IV, and laminin. Novel BM-associated and subcellular spatiotemporal localization patterns of the four components suggest both collective pericellular functions and distinct functions in the uterus during reprogramming for embryo implantation.
Collapse
Affiliation(s)
- Celestial R Jones-Paris
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Aspirnaut, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sayan Paria
- Aspirnaut, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Taloa Berg
- Aspirnaut, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Juan Saus
- Valencia University Medical School, Valencia, Spain; Fibrostatin, SL, Valencia, Spain
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bibhash C Paria
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Billy G Hudson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Valencia University Medical School, Valencia, Spain; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology Nashville, TN, United States.
| |
Collapse
|
13
|
Mori M, Bogdan A, Balassa T, Csabai T, Szekeres-Bartho J. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol 2016; 38:635-649. [PMID: 27287066 PMCID: PMC5065593 DOI: 10.1007/s00281-016-0574-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/26/2016] [Indexed: 12/16/2022]
Abstract
The decidua has been known as maternal uterine tissue, which plays essential roles in protecting the embryo from being attacked by maternal immune cells and provides nutritional support for the developing embryo prior to placenta formation. However, there are questions that still remain to be answered: (1) How does the decidua supply nutrition and provide a physical scaffold for the growing embryo, before placental vascular connection is established? (2) How is the balance between preventing an anti-embryo immune response and protecting both embryo and mother from infections established? To understand basic personas in decidual tissues, we review the structure of the decidua composed of terminally differentiated uterine stromal cells, blood vessels, and a number of repertoire of uterine local immune cells, including the well-known uterine natural killer (uNK) cells and recently discovered innate lymphoid cells (ILCs). Decidual macrophages and uterine dendritic cells (DCs) are supposed to modulate adaptive immunity via balancing cytokines and promoting generation of regulatory T (Treg) cells. During decidualization, vascular and tissue remodeling in the uterus provide nutritional and physical support for the developing embryo. Secretion of various cytokines and chemokines from both the embryo and the decidual cells activates multiple signaling network between the mother and the embryo upon implantation. Defects in the decidual development during early pregnancy result in loss of pregnancy or complications in later gestational stage.
Collapse
Affiliation(s)
- Mayumi Mori
- Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Agnes Bogdan
- Department of Medical Biology, Medical School, Pécs University, János Szentágothai Research Centre, University of Pécs, Szigeti Str. 12, H-7643, Pécs, Hungary
| | - Timea Balassa
- Department of Medical Biology, Medical School, Pécs University, János Szentágothai Research Centre, University of Pécs, Szigeti Str. 12, H-7643, Pécs, Hungary
| | - Timea Csabai
- Department of Medical Biology, Medical School, Pécs University, János Szentágothai Research Centre, University of Pécs, Szigeti Str. 12, H-7643, Pécs, Hungary
| | - Júlia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pécs University, János Szentágothai Research Centre, University of Pécs, Szigeti Str. 12, H-7643, Pécs, Hungary
- MTA - PTE Human Reproduction Research Group, Pécs, Hungary
| |
Collapse
|
14
|
Robles TG, Fernández RAG, García-Palencia P, Arrabal MD, Maldonado BS, Pérez MAS, Rollan E, Caballero JM, Flores JM. Hoxa-10 and Cyclin D3 Overexpression in the Decidual Reaction in a Superovulation Protocol in Young Adult C57BL/6J Mice. Vet Pathol 2016; 54:328-335. [PMID: 27511308 DOI: 10.1177/0300985816660748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Following the performance of a superovulation protocol, multiple nodules were observed bilaterally in the uterine horns of 31 of 276 (11.2%) C57BL/6 J female mice aged 8.5 ± 0.6 (mean and standard error of mean) weeks. These lesions prevented embryo collection, and the uterine decidual reaction was suspected. Samples of pathological uteri (n = 20) and the normal genital tracts of donors treated with a similar superovulation protocol (control group, n = 10) were collected. Immunohistochemistry was performed to evaluate pancytokeratin, desmin, vimentin, progesterone receptor (PR), estrogen receptor α (ERα), Ki-67, cyclin D3 and c-Myc expression, as well as quantitative polymerase chain reaction to assess cyclin D3, Hoxa-10 and heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA expression. The uterine decidual reaction presented a high degree of structural organization and specifically affected the antimesometrial region of the endometrium. The abnormal decidual cells were large polygonal cells that were frequently polyploid or binucleated and strongly positive for desmin. Immunohistochemistry showed higher Ki-67 proliferation index and higher expression of PR and cyclin D3 in decidual cells in the antimesometrial aspect of the endometrium, compared to nondecidualized endometrial stromal cells in the mesometrial aspect of affected uteri, and compared to endometrial stromal cells in healthy uteri. High expression of cyclin D3 and Hoxa-10 mRNA was also observed in uteri affected by the decidual reaction. These results suggest that PR overexpression in endometrial stromal cells, likely due to high progesterone levels, triggers cyclin D3 and Hoxa-10 overexpression, which may be involved in the pathological mechanisms of the mouse uterine decidual reaction.
Collapse
Affiliation(s)
| | - R A García Fernández
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - P García-Palencia
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - M D Arrabal
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - B Sánchez Maldonado
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - M A Sánchez Pérez
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - E Rollan
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - J M Flores
- 1 Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Covarrubias AEC, Barrence FC, Zorn TMT. The absence of the embryo in the pseudopregnant uterus alters the deposition of some ECM molecules during decidualization in mice. Connect Tissue Res 2015; 56:253-63. [PMID: 25738597 DOI: 10.3109/03008207.2015.1023432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The embryo-implantation promotes deep changes in the uterus resulting in the formation of a new structure at the maternal-fetal interface, the decidua. Decidualization can also be induced in pseudopregnant rodents resulting in a structure called deciduoma that is morphologically and functionally similar to the decidua. Previous studies from our and other laboratories demonstrate that in rodents, decidualization of the endometrium requires remarkable remodeling of the endometrial extracellular matrix (ECM) that is mainly coordinated by estradiol and progesterone. The influence of the embryo in this process, however, has not yet been investigated. To enlarge the knowledge on this subject, the present study investigates the behavior of a set of ECM molecules, in the absence of paracrine cues originated from the embryo. For that deciduoma was induced in pseudopregnant Swiss mice, and the distribution of collagen types I, III, IV, V and the proteoglycans decorin and biglycan was investigated by immunolabeling from the fifth to the eighth day of pseudopregnancy. It was observed the deposition of collagen types III and IV as well as decorin and biglycan was similar to that previously described by our group in the decidua. However, in the absence of the embryo, some differences occur in the distribution of collagen types I and V, suggesting that beside the major role of ovarian hormones on the endometrial ECM remodeling, molecular signals originated from the conceptus may influence this process.
Collapse
Affiliation(s)
- Ambart E C Covarrubias
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil and
| | | | | |
Collapse
|
16
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Implantation failure is a major hurdle to a successful pregnancy. The high rate of postimplantation fetal loss in nonobese diabetic (NOD) mice is believed to be related to an abnormal decidual production of interferon (IFN)gamma. To address whether diabetes alters the natural events associated with successful implantation, certain morphological and molecular features of uterine receptivity in diabetic NOD (dNOD) mice were examined in normally mated pregnancy and in concanavalin A (ConA)-induced pseudopregnancy. As opposed to normoglycemic NOD (cNOD) mice, dNOD mice expressed retarded maturation of their uterine pinopodes and overexpressed MUC1 mucin at implantation sites (P < 0.001). Uterine production of leukemia inhibitory factor (LIF) and phosphorylation of uterine NFkappaBp65 and STAT3-Ty705 were found to be low (P < 0.01) during Day 4.5 postcoitum, whereas IFNgamma was aberrantly overexpressed. Loss of temporal regulation of progesterone receptor A (PR A) and PR B, together with aberrantly increased expression of the protein inhibitor of activated STAT-y (PIASy) (P < 0.01) and reduced recruitment (P < 0.01) of the latter to nuclear progesterone receptor sites were prominent features of decidualization failure occurring at peri-implantation in dNOD mice. In conclusion, the aberrant expression of endometrial IFNgamma in dNOD mice is associated with a nonreceptive endometrial milieu contributing to peri-implantation embryo loss in type 1 diabetes.
Collapse
Affiliation(s)
- Ahmad J.H. Albaghdadi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Frederick W.K. Kan
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
18
|
Barrette VF, Adams MA, Croy BA. Endometrial decidualization does not trigger the blood pressure decline of normal early pregnancy in mice. Biol Reprod 2012; 86:66. [PMID: 22156477 DOI: 10.1095/biolreprod.111.096958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A drop in mean arterial pressure (MAP) characterizes early, normal pregnancies of humans and of inbred mice, species with hemochorial placentation. Murine MAP, assessed by continuous radiotelemetry, falls from implantation to Gestation Day 9 (GD9) and then recovers. The change in the trajectory of mouse MAP after GD9 coincides with full maturity of the placenta and onset of its circulation. To identify whether these early gestational changes in hemodynamic function are conceptus and/or maternally regulated, pseudopregnancy (conceptus absent) with endometrial decidualization was established in radio transmitter-implanted, randomly bred CD1 mice. To avoid destabilization of MAP by anesthesia and surgery, decidualization was induced by transcervical infusion of concanavalin A-coated Sepharose beads 48 h after the female had copulated with a vasectomized male. In comparison to the postimplantation drop in MAP recorded in CD1 females mated by fertile males, pseudopregnancy MAP was stable to Gestation-Equivalent Day 10 in mice with confirmed endometrial decidualization at euthanasia. Thus, decidualization, with its accompanying pregnancy-like endocrine environment and uterine neoangiogensis and immune cell recruitment, is inadequate to depress early postimplantation MAP. These data suggest that the physiological modulation of early gestational MAP is not driven by maternal changes but is altered through conceptus-based mechanisms.
Collapse
Affiliation(s)
- Valérie F Barrette
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
19
|
Bany BM, Torry DS. Regulation of Maternal Blood Pressure by the Conceptus During Early Pregnancy. Biol Reprod 2012; 86:61. [DOI: 10.1095/biolreprod.112.098921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Angiopoietin-like gene expression in the mouse uterus during implantation and in response to steroids. Cell Tissue Res 2012; 348:199-211. [PMID: 22350948 DOI: 10.1007/s00441-012-1337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this work was to determine if and where Angiopoietin-like genes are expressed in the mouse uterus during the implantation period of pregnancy and to determine if uterine expression of such genes is controlled by estrogen or progesterone. We found that all six known murine angiopoietin-like genes were expressed in the mouse uterus during implantation. The expression of four genes was controlled by either estrogen or progesterone. Only the levels of angiopoietin-like 4 (Angptl4) mRNA dramatically increased in implantation segments of the uterus during decidualization and was conceptus-independent. Due to this increased expression and the fact that angiopoietin-like 4 protein plays a role in lipid metabolism and angiogenesis in other tissues, only the expression of Angptl4 was further examined in the uterus and developing placenta. Angptl4 mRNA was localized to subpopulations of the endometrial stromal fibroblast and endothelial cell populations during decidualization. It was also localized to the ectoplacental cone, trophoblast giant cells and parietal endoderm of the conceptus at this time. By mid-pregnancy, Angptl4 mRNA was localized mainly to the mesometrial lymphoid aggregate region plus mesometrial endothelial cells of the uterus, as well as in various cell types of the conceptus. Additional work showed that Angptl4 expression increases in mouse endometrial stromal cells as they undergo decidualization in vitro. As in other cell types, the expression of Angptl4 in endometrial stromal cells was increased in response to an agonist of the peroxisome proliferator activated receptors. Taken together, the results of this work support the hypothesis that locally expressed Angptl4 might play a role in local uterine/placental lipid metabolism and vascular changes during implantation and thus provide a basis for future research.
Collapse
|
21
|
Scott CA, Eckstrum KS, Bany BM. Localization of C-Fos-Induced Growth Factor ( Figf) mRNA Expression in the Mouse Uterus during Implantation. REPRODUCTIVE SYSTEM & SEXUAL DISORDERS : CURRENT RESEARCH 2012; Suppl 1:003. [PMID: 26918199 PMCID: PMC4764100 DOI: 10.4172/2161-038x.s1-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to characterize the localization of Figf mRNA in the mouse uterus during embryo implantation. Strong Figf mRNA hybridization signals were seen in the primary decidual zone just after the onset of implantation from Days 4.5–6.5. On Day 7.5, this expression continued around the concept us, but in addition we observed high expression of Figf mRNA in the endothelial cells that line the forming vascular sinusoids in the lateral me some trial decidua. Interestingly, on Days 8.5 this high expression continued in the endothelial cells of sinusoids in the lateral me some trial decidual tissue but not in the decidual cells surrounding the concept us. As implantation and placental development finished, Figf mRNA expression remained in the endothelial cells of the sinusoids and spiral arterioles of the decidua basalis. Interestingly, Flt4 mRNA was localized to the endothelial cells lining the sinusoids that form during implantation. Since the endothelial cells of the me some trial sinusoids exhibit a high level of proliferation, we speculate that FIGF-FLT4 signaling may play a role in their formation and function during implantation. This work will provide a basis for further research on the potential role of FIGF-FLT4 signaling in endometrial angiogenesis during implantation in mice.
Collapse
Affiliation(s)
- Charles A Scott
- Departments of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kirsten S Eckstrum
- Departments of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Brent M Bany
- Departments of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA; Departments of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
22
|
Bany BM, Scott CA, Eckstrum KS. Analysis of uterine gene expression in interleukin-15 knockout mice reveals uterine natural killer cells do not play a major role in decidualization and associated angiogenesis. Reproduction 2011; 143:359-75. [PMID: 22187674 DOI: 10.1530/rep-11-0325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During decidualization, uterine natural killer (uNK) cells are the most abundant immune cell types found in the uterus. Although it is well known that they play key roles in spiral arteriole modification and the maintenance of decidual integrity seen after mid-pregnancy, their roles in the differentiation of decidual cells and accompanying angiogenesis during the process of decidualization is less well characterized. To address this, we used whole-genome Illumina BeadChip analysis to compare the gene expression profiles in implantation segments of the uterus during decidualization on day 7.5 of pregnancy between wild-type and uNK cell-deficient (interleukin-15-knockout) mice. We found almost 300 differentially expressed genes and verified the differential expression of ~60 using quantitative RT-PCR. Notably, there was a lack of differential expression of genes involved in decidualization and angiogenesis and this was also verified by quantitative RT-PCR. Similar endothelial cell densities and proliferation indices were also found in the endometrium between the implantation site tissues of wild-type and knockout mice undergoing decidualization. Overall, the results of this study reveal that uNK cells likely do not play a major role in decidualization and accompanying angiogenesis during implantation. In addition, the study identifies a large number of genes whose expression in implantation-site uterine tissue during decidualization depends on interleukin-15 expression in mice.
Collapse
Affiliation(s)
- Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|
23
|
Huyen DV, Bany BM. Evidence for a conserved function of heart and neural crest derivatives expressed transcript 2 in mouse and human decidualization. Reproduction 2011; 142:353-68. [PMID: 21527398 PMCID: PMC3141103 DOI: 10.1530/rep-11-0060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previously, we showed that heart and neural crest derivatives expressed transcript 2 (Hand2) mRNA levels dramatically increase in mouse uterine endometrial stromal cells (ESCs) as they undergo decidualization in vivo. However, to date, little is known about the expression and function of this transcription factor in mouse or human uterus decidualization. Therefore, this study was conducted to provide a more detailed assessment of Hand2 gene expression and function in the mouse uterus during the peri-implantation period and also in mouse plus human ESCs during decidualization in vitro. The results show that Hand2 mRNA and protein levels increase in the mouse uterus during decidualization and this does not depend on the presence of a conceptus. Interestingly, Hand2 mRNA and protein are present in ESCs adjacent to the luminal epithelium in the uterus prior to the onset of implantation. We find that progesterone is likely a regulator of Hand2 expression during uterine sensitization of the mouse uterus. Finally, Hand2 expression increases in mouse and human fibroblast cells as they undergo decidualization in vitro. This expression is significantly increased in response to prostaglandin E(2). In particular, reduction of Hand2 expression in these cells using small hairpin RNA or small interfering RNA approaches results in the reduced extent of decidualization as shown by the reduced expression of a subset of decidualization markers. The results of this study support the hypothesis that Hand2 expression not only plays an important role in decidualization but may also play a role in obtaining proper progesterone-dependent uterine sensitization required for implantation to begin.
Collapse
Affiliation(s)
- DV Huyen
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - BM Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
24
|
Eckstrum K, Bany BM. Tumor necrosis factor receptor subfamily 9 (Tnfrsf9) gene is expressed in distinct cell populations in mouse uterus and conceptus during implantation period of pregnancy. Cell Tissue Res 2011; 344:567-76. [PMID: 21560035 PMCID: PMC3104000 DOI: 10.1007/s00441-011-1171-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor receptor subfamily 9 (TNFRSF9) plays a potentially important general role in immune function. Tnfrsf9 gene expression has previously been characterized in late pregnant mouse uterus and placenta. However, little is known about its expression in the uterus during the implantation phase of early pregnancy. We have assessed the levels and localization of Tnfrsf9 expression in the mouse uterus and conceptus during implantation. Relative Tnfrsf9 mRNA levels were significantly higher in implantation than in non-implantation site tissue on days 6.5-8.5 of pregnancy. This increase did not depend on the presence of the conceptus, as mRNA levels were not significantly different between pregnant implantation sites and artificially induced deciduomas. Localization by in situ hybridization revealed a subpopulation of endothelial and uterine natural killer cells expressing Tnfrsf9 in the endometrium during implantation. In the developing conceptus, primary trophoblast giant and ectoplacental cells expressed Tnfrsf9 on days 6.5-8.5, followed by expression in the trophoblast giant cell layers surrounding the conceptus on day 9.5 of pregnancy. Two main splice forms of Tnfrsf9 mRNA exist and encode proteins with distinct biological functions; both mRNA splice forms were present in uterine and conceptus tissues as determined by reverse transcription with the polymerase chain reaction. Thus, both membrane and soluble forms of Tnfrsf9 are expressed in specific cell types of the uterus and conceptus during the progression of implantation in mice and possibly have an important function in this process.
Collapse
Affiliation(s)
- Kirsten Eckstrum
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA, 62901
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA, 62901
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA, 62901
| |
Collapse
|
25
|
McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM. Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 2011; 141:511-27. [PMID: 21300692 PMCID: PMC3076716 DOI: 10.1530/rep-10-0358] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During pregnancy in several species including humans and rodents, the endometrium undergoes decidualization. This process of differentiation from endometrial to decidual tissue occurs only after the onset of implantation in mice. It can also be artificially induced causing the formation of deciduomal tissue. The purpose of this study was to compare the gene expression profile of the developing decidua in pregnant mice with the deciduoma formed after artificial induction in an effort to identify conceptus-influenced changes in uterine gene expression during decidualization. We induced decidualization artificially by transferring blastocyst-sized ConA-coated agarose beads into the uterus on day 2.5 of pseudopregnancy. Recently published work has found this model to be more 'physiological' than other methods. Total RNA was isolated from blastocyst and bead-induced 'implantation' sites of the uteri of day 7.5 pregnant (decidua) and pseudopregnant (deciduoma) mice respectively. This RNA was then used for microarray analysis using Mouse Illumina BeadArray chips. This analysis revealed potential differential mRNA levels of only 45 genes between the decidua and bead-induced deciduoma tissues. We confirmed the differential mRNA levels of 31 of these genes using quantitative RT-PCR. Finally, the level and localization of some of the mRNAs for select genes (Aldh3a1, Bcmo1, Guca2b, and Inhbb) identified by our microarray analysis were examined in more detail. This study provides the identity of a small set of genes whose expression in the uterus during decidualization may be influenced by molecular signals from the conceptus.
Collapse
Affiliation(s)
- ME McConaha
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - K Eckstrum
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - J An
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - JJ Steinle
- Department of Ophthalmology, University of Tennessee School of Medicine, Memphis, TN, USA
| | - BM Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
26
|
Zhang J, Chen Z, Smith GN, Croy BA. Natural killer cell-triggered vascular transformation: maternal care before birth? Cell Mol Immunol 2011; 8:1-11. [PMID: 20711229 PMCID: PMC3079746 DOI: 10.1038/cmi.2010.38] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are found in lymphoid and non-lymphoid organs. In addition to important roles in immune surveillance, some NK cells contribute to angiogenesis and circulatory regulation. The uterus of early pregnancy is a non-lymphoid organ enriched in NK cells that are specifically recruited to placental attachment sites. In species with invasive hemochorial placentation, these uterine natural killer (uNK) cells, via secretion of cytokines, chemokines, mucins, enzymes and angiogenic growth factors, contribute to the physiological change of mesometrial endometrium into the unique stromal environment called decidua basalis. In humans, uNK cells have the phenotype CD56(bright)CD16(dim) and they appear in great abundance in the late secretory phase of the menstrual cycle and early pregnancy. Gene expression studies indicate that CD56(bright)CD16(dim) uterine and circulating cells are functionally distinct. In humans but not mice or other species with post-implantation decidualization, uNK cells may contribute to blastocyst implantation and are of interest as therapeutic targets in female infertility. Histological and genetic studies in mice first identified triggering of the process of gestation spiral arterial modification as a major uNK cell function, achieved via interferon (IFN)-γ secretion. During spiral arterial modification, branches from the uterine artery that traverse the endometrium/decidua transiently lose their muscular coat and ability to vasoconstrict. The expression of vascular markers changes from arterial to venous as these vessels dilate and become low-resistance, high-volume channels. Full understanding of the vascular interactions of human uNK cells is difficult to obtain because endometrial time-course studies are not possible in pregnant women. Here we briefly review key information concerning uNK cell functions from studies in rodents, summarize highlights concerning human uNK cells and describe our preliminary studies on development of a humanized, pregnant mouse model for in vivo investigations of human uNK cell functions.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
27
|
Bany BM, Hamilton GS. Assessment of permeability barriers to macromolecules in the rodent endometrium at the onset of implantation. Methods Mol Biol 2011; 763:83-94. [PMID: 21874445 DOI: 10.1007/978-1-61779-191-8_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In rodents, embryo implantation is an invasive process, which begins with its attachment to the uterine wall and culminates in the formation of the definitive placenta several days later. It is critical that the endometrium provide a supportive environment for the implanting embryo during this process, as the placenta is not yet established. The concept of changing permeability barriers to macromolecules between different extracellular compartments in the rodent uterus at the onset of implantation has been established. This chapter provides protocols that can be used to assess this changing permeability barrier and the associated redistribution of macromolecules during the early phases of implantation in rodents. An increased permeability of the endometrial vasculature to plasma proteins occurs in areas adjacent to the implanting blastocyst. In addition, alterations in the extracellular matrix enhance the accumulation of fluid and extravasated macromolecules. We describe several protocols proven to be effective in studying and quantifying early vascular and extravascular responses to natural and artificial "implantation stimuli." The first three protocols represent qualitative and quantitative methods to assess the early endometrial "vascular permeability" response. On the contrary, the fourth protocol addresses the onset of decidualization and the arising permeability barrier, which restricts the movement of macromolecules through the extracellular space. This barrier is believed to provide transient protection for the implanting embryo against potentially harmful maternal serum proteins. This protocol describes assessment of resistance of the primary decidual zone to the movement of macromolecules across the compartments of the extracellular space.
Collapse
Affiliation(s)
- Brent M Bany
- Department of Physiology and Obstetrics and Gynecology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| | | |
Collapse
|
28
|
Burke SD, Barrette VF, Gravel J, Carter ALI, Hatta K, Zhang J, Chen Z, Leno-Durán E, Bianco J, Leonard S, Murrant C, Adams MA, Croy BA. Uterine NK cells, spiral artery modification and the regulation of blood pressure during mouse pregnancy. Am J Reprod Immunol 2010; 63:472-81. [PMID: 20175772 DOI: 10.1111/j.1600-0897.2010.00818.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reproductive success in mammals involves coordinated changes in the immune and cardiovascular as well as in the neuroendocrine and reproductive systems. This review addresses studies that identify potential links for NK cells and T cells with the local and systemic cardiovascular adaptations of pregnancy. The studies reviewed have utilized immunohistochemisty and in vivo analyses of vascular parameters by ultrasound, chronic monitoring of hemodynamics via radiotelemetric recording and intravital microscopy. At the uterine level, functional subsets of uterine natural killer cells were identified. These included subsets expressing molecules important for vasoregulation, in addition to those previously identified for angiogenesis. Spiral arteries showed conducted responses that could account for conceptus control of vasoactivity and mouse gestational blood pressure 5-phase pattern. Vascular immunology is an emerging transdisciplinary field, critical for both reproductive immunology and cardiovascular disease.
Collapse
Affiliation(s)
- Suzanne D Burke
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|