1
|
Stagikas D, Simos YV, Lakkas L, Filis P, Peschos D, Tsamis KI. The role of the hypothalamus in the development of cancer cachexia. Physiol Behav 2025; 295:114909. [PMID: 40194732 DOI: 10.1016/j.physbeh.2025.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Cachexia is a complex multiorgan syndrome associated with various chronic diseases, characterized by anorexia and increased tissue wasting in the context of chronic inflammation. A specific form of this syndrome, known as cancer cachexia (CC), occurs alongside different types of tumors. The pathogenesis of CC is multifactorial. Inflammatory mediators and hormones released by both tumor and host cells have a relevant role in driving the peripheral catabolic process through several direct mechanisms. Accumulating evidence indicates that the central nervous system (CNS) plays an integral role in the pathogenesis of CC. The hypothalamus has emerged as a critical brain region that senses and amplifies peripheral stimuli, generating inappropriate neuronal signaling and leading to the dysregulation of energy homeostasis under cachexia conditions. Circulating cytokines may act in concert with hormones and neurotransmitters and perturb critical hypothalamic neurocircuits shifting their activity towards the anorexigenic pathway and increase of energy expenditure. This review discusses the mechanisms mediating the hypothalamic homeostatic imbalance in the context of anorexia and cachexia associated with cancer.
Collapse
Affiliation(s)
- Dimitrios Stagikas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Yannis Vasileios Simos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Lampros Lakkas
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Panagiotis Filis
- Department of Medical Oncology, School of Medicine, University of Ioannina, 45110, Ioannina, Greece; Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Dimitrios Peschos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Konstantinos Ioannis Tsamis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
2
|
He Y, Zhang C, Wu S, Li K, Zhang S, Tian M, Chen C, Liu D, Yang G, Li L, Yang M. Central NUCB2/nesfatin-1 signaling ameliorates liver steatosis through suppression of endoplasmic reticulum stress in the hypothalamus. Metabolism 2025; 162:156046. [PMID: 39389418 DOI: 10.1016/j.metabol.2024.156046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIMS Nucleobindin-2 (NUCB2)/nesfatin-1, a signal with recognized anorexigenic and insulin-sensitizing properties in peripheral tissues, is expressed within the hypothalamus. However, the potential involvement of central nesfatin-1 signaling in the pathophysiology of hepatic steatosis remains unknown. This study aimed to determine whether and how central NUCB2/nesfatin-1 plays a role in liver steatosis. METHODS We generated Nucb2 knockout (Nucb2-/-) rats and administered continuous intracerebroventricular (ICV) nesfatin-1 infusion, while observing its effect on liver steatosis. The molecular mechanism of action of nesfatin-1 was elucidated via proteomics, phosphoproteomics and molecular biology methods. RESULTS Herein, we present compelling evidence indicating diminished NUCB2 expression in the hypothalamus of obese rodents. We demonstrated that chronic ICV infusion of nesfatin-1 mitigated both diet-induced obesity and liver steatosis in high-fat diet (HFD)-fed Nucb2-/- rats by regulating hypothalamic endoplasmic reticulum (ER) stress and Akt phosphorylation. Furthermore, we revealed that the increase in hypothalamic insulin resistance (IR) and ER stress induced by tunicamycin infusion or Ero1α overexpression exacerbated hepatic steatosis and offset the favorable influence of central nesfatin-1 on hepatic steatosis. The metabolic action of central nesfatin-1 is contingent upon vagal nerve transmission to the liver. Mechanistically, nesfatin-1 impedes ER stress and interacts with Ero1α to repress its Ser106 phosphorylation. This leads to the enhancement of Akt activity in the hypothalamus, culminating in the inhibition of hepatic lipogenesis. CONCLUSIONS These findings underscore the importance of hypothalamic NUCB2/nesfatin-1 as a key mediator in the top-down neural mechanism that combats diet-induced liver steatosis.
Collapse
Affiliation(s)
- Yirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shaobo Wu
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siliang Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Steffen TL, Stafford JD, Samson WK, Yosten GLC. Nesfatin-1 is a regulator of inflammation with implications during obesity and metabolic syndrome. Appetite 2024; 203:107669. [PMID: 39251090 DOI: 10.1016/j.appet.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nesfatin-1, derived from the nucleobindin 2 (NUCB2) precursor, is a potent anorexigenic peptide that was discovered in 2006. Since its identification in the hypothalamus, it has been shown to have wide ranging actions within and outside of the central nervous system. One of these actions is the regulation of inflammation, which could potentially be exploited therapeutically in the context of obesity-associated inflammation in adipose tissue. Here, we review recent advances in our knowledge about the ability of nesfatin-1 to control inflammation by regulating NFκB signaling, which likely attenuates pro-inflammatory cytokine production and inhibits apoptosis.
Collapse
Affiliation(s)
- Tara L Steffen
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA.
| | - Joshua D Stafford
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Willis K Samson
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Gina L C Yosten
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| |
Collapse
|
4
|
Rybska M, Skrzypski M, Billert M, Wojciechowicz T, Łukomska A, Pawlak P, Nowak T, Pusiak K, Wąsowska B. Nesfatin-1 expression and blood plasma concentration in female dogs suffering from cystic endometrial hyperplasia and pyometra and its possible interaction with phoenixin-14. BMC Vet Res 2024; 20:486. [PMID: 39455994 PMCID: PMC11520108 DOI: 10.1186/s12917-024-04336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Nesfatin-1 is a neuropeptide that regulates the hypothalamic-pituitary-gonadal axis and may play a role in uterus function. It is co-expressed with other peptides, such as phoenixin, which can influence sex hormone secretion. Our previous research has confirmed that phoenixin-14 is involved in the development of cystic endometrial hyperplasia (CEH) and pyometra in dogs. Therefore, based on the similarities and interactions between these neuropeptides, we hypothesized that nesfatin-1 might also regulate the reproductive system in dogs. This study aimed to determine the expression of nesfatin-1 and its interaction with phoenixin-14 in dogs with CEH or pyometra compared to healthy females, and concerning animals' body condition score (BCS 4-5/9 vs. BCS > 5/9). RESULTS The analysis of nesfatin-1 in the uterus of bitches consisted of qPCR, western blot and immunofluorescence assays, and ELISAs. The results showed significantly higher nesfatin-1 encoding gene, nucleobindin-2 mRNA (Nucb2) and nesfatin-1 protein expression in overweight females and those suffering from CEH or pyometra compared to healthy animals. The immunoreactivity of nesfatin-1 was elevated in the uteri of bitches with higher BCS > 5/9. Moreover, nesfatin-1 blood concentrations increased in all examined overweight bitches. In the case of phoenixin signals, we found opposite results, regardless of the female body condition score. CONCLUSION The etiology of CEH and pyometra are not fully known, although we have expanded the level of knowledge with respect to the possible interaction of nesfatin-1 and phoenixin in female dogs' uteri. They interact oppositely. With increasing female body weight, the expression of nesfatin-1 in the uterus and its peripheral blood concentration increased. However, for female dogs affected by CEH and pyometra, a decreased level of phoenixin-14, irrespective of their body condition score is characteristic. This knowledge could be crucial in the development of biomarkers for these conditions, which may lead to earlier recognition.
Collapse
Affiliation(s)
- Marta Rybska
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland.
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Anna Łukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, Poznań, 60-637, Poland
| | - Tomasz Nowak
- Department of Internal Diseases and Diagnostics, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Karolina Pusiak
- Department of Preclinical Sciences and Infectious Diseases, Poznań University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Barbara Wąsowska
- Department of Physiology and Toxicology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-747, Poland
| |
Collapse
|
5
|
Guvenc-Bayram G, Semen Z, Yalcin M. Investigation of the Relationship between Plasma Nesfatin-1 Levels and Neutering in Dogs. Animals (Basel) 2024; 14:2854. [PMID: 39409803 PMCID: PMC11475216 DOI: 10.3390/ani14192854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Neutering of dogs, whether male or female, provides various benefits such as contraception, population control, and the prevention of reproductive disorders and undesirable sexual behaviors. However, it is also associated with an increased risk of obesity, which may be directly linked to post-neutering hormonal changes. Our study aims to determine the effects of neutering on plasma levels of nesfatin-1, serotonin, dopamine, TSH, and T4-hormones implicated in obesity and metabolic regulation. Fourteen dogs (seven males and seven females), aged between 1 and 3 years, were included in this study. Male dogs underwent orchiectomy and females underwent ovariohysterectomy. Blood samples were collected before surgery and on days 7 and 14 post-operatively to measure the plasma levels of these hormones using ELISA. The results showed a significant decrease in nesfatin-1, serotonin, and T4 levels, along with a significant increase in TSH levels in both male and female dogs post-neutering. While these hormonal changes are likely part of the body's adaptive response to neutering, they may represent a potential mechanism that contributes to the long-term tendency toward obesity in neutered dogs.
Collapse
Affiliation(s)
- Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir 35890, Turkey
| | - Zeynep Semen
- Department of Biochemistry, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir 35890, Turkey;
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| |
Collapse
|
6
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
7
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
8
|
Cao Y, Wang W. Research progress on the relationship between Nesfatin-1 and glucose metabolism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:832-838. [PMID: 39311778 PMCID: PMC11420965 DOI: 10.11817/j.issn.1672-7347.2024.240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nesfatin-1 is a neuropeptide hormone known for its biological functions, including inhibiting food intake, regulating glucose and lipid metabolism, promoting apoptosis, and providing anti-inflammatory and anti-tumor effects. Glucose metabolism is a crucial pathway for the body's energy supply. Current research has demonstrated that Nesfatin-1 can affect glucose metabolism through various mechanisms, such as inhibiting food intake, regulating enzyme activity, and improving insulin resistance, though the findings are not entirely consistent. Investigating the relationship between Nesfatin-1 and glucose metabolism may offer new insights into the diagnosis and treatment of diseases related to glucose metabolism disorders.
Collapse
Affiliation(s)
- Yunting Cao
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
| | - Wei Wang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
| |
Collapse
|
9
|
Nasri A, Sands J, Unniappan S. Suppressive action of nesfatin-1 and nesfatin-1-like peptide on cortisol synthesis in human adrenal cortex cells. Sci Rep 2024; 14:3985. [PMID: 38368491 PMCID: PMC10874440 DOI: 10.1038/s41598-024-54758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2024] [Indexed: 02/19/2024] Open
Abstract
Nucleobindin-derived peptides, nesfatin-1 [NESF-1] and nesfatin-1-like-peptide [NLP] have diverse roles in endocrine and metabolic regulation. While both peptides showed a stimulatory effect on the synthesis of proopiomelanocortin (POMC), the adrenocorticotropic hormone (ACTH) precursor in mouse corticotrophs, whether NESF-1 and NLP have any direct effect on glucocorticoid [GC] synthesis in the adrenal cortex remains unknown. The main aim of this study was to determine if NESF-1 and/or NLP act directly on adrenal cortex cells to regulate cortisol synthesis in vitro. Whether NLP injection affects stress-hormone gene expression in the adrenal gland and pituitary in vivo in mice was also assessed. In addition, cortisol synthetic pathway in Nucb1 knockout mice was studied. Human adrenal cortical [H295R] cells showed immunoreactivity for both NUCB1/NLP and NUCB2/NESF-1. NLP and NESF-1 decreased the abundance of steroidogenic enzyme mRNAs, and cortisol synthesis and release through the AC/PKA/CREB pathway in H295R cells. Similarly, intraperitoneal injection of NLP in mice decreased the expression of enzymes involved in glucocorticoid (GC) synthesis in the adrenal gland while increasing the expression of Pomc, Pcsk1 and Crhr1 in the pituitary. Moreover, the melanocortin 2 receptor (Mc2r) mRNA level was enhanced in the adrenal gland samples of NLP injected mice. However, the global genetic disruption in Nucb1 did not affect most steroidogenic enzyme mRNAs, and Pomc, Pcsk2 and Crhr1 mRNAs in mice adrenal gland and pituitary gland, respectively. Collectively, these data provide the first evidence for a direct inhibition of cortisol synthesis and secretion by NLP and NESF-1. NUCB peptides might still elicit a net stimulatory effect on GC synthesis and secretion through their positive effects on ACTH-MC2R pathway in the pituitary.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Jade Sands
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
10
|
Pelczyńska M, Miller-Kasprzak E, Piątkowski M, Mazurek R, Klause M, Suchecka A, Bucoń M, Bogdański P. The Role of Adipokines and Myokines in the Pathogenesis of Different Obesity Phenotypes-New Perspectives. Antioxidants (Basel) 2023; 12:2046. [PMID: 38136166 PMCID: PMC10740719 DOI: 10.3390/antiox12122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a characteristic disease of the twenty-first century that is affecting an increasing percentage of society. Obesity expresses itself in different phenotypes: normal-weight obesity (NWO), metabolically obese normal-weight (MONW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). A range of pathophysiological mechanisms underlie the occurrence of obesity, including inflammation, oxidative stress, adipokine secretion, and other processes related to the pathophysiology of adipose tissue (AT). Body mass index (BMI) is the key indicator in the diagnosis of obesity; however, in the case of the NWO and MONW phenotypes, the metabolic disturbances are present despite BMI being within the normal range. On the other hand, MHO subjects with elevated BMI values do not present metabolic abnormalities. The MUO phenotype involves both a high BMI value and an abnormal metabolic profile. In this regard, attention has been focused on the variety of molecules produced by AT and their role in the development of obesity. Nesfatin-1, neuregulin 4, myonectin, irisin, and brain-derived neurotrophic factor (BDNF) all seem to have protective effects against obesity. The primary mechanism underlying the action of nesfatin-1 involves an increase in insulin sensitivity and reduced food intake. Neuregulin 4 sup-presses lipogenesis, decreases lipid accumulation, and reduces chronic low-grade inflammation. Myonectin lowers the amount of fatty acids in the bloodstream by increasing their absorption in the liver and AT. Irisin stimulates the browning of white adipose tissue (WAT) and consequently in-creases energy expenditure, additionally regulating glucose metabolism. Another molecule, BDNF, has anorexigenic effects. Decorin protects against the development of hyperglycemia, but may also contribute to proinflammatory processes. Similar effects are shown in the case of visfatin and chemerin, which may predispose to obesity. Visfatin increases adipogenesis, causes cholesterol accumulation in macrophages, and contributes to the development of glucose intolerance. Chemerin induces angiogenesis, which promotes the expansion of AT. This review aims to discuss the role of adipokines and myokines in the pathogenesis of the different obesity phenotypes.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Ewa Miller-Kasprzak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Marcin Piątkowski
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Roksana Mazurek
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Mateusz Klause
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Suchecka
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Magdalena Bucoń
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| |
Collapse
|
11
|
BaHammam AS, Pirzada A. Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism-A Narrative Review. Clocks Sleep 2023; 5:507-535. [PMID: 37754352 PMCID: PMC10528427 DOI: 10.3390/clockssleep5030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Achieving synchronization between the central and peripheral body clocks is essential for ensuring optimal metabolic function. Meal timing is an emerging field of research that investigates the influence of eating patterns on our circadian rhythm, metabolism, and overall health. This narrative review examines the relationship between meal timing, circadian rhythm, clock genes, circadian hormones, and metabolic function. It analyzes the existing literature and experimental data to explore the connection between mealtime, circadian rhythms, and metabolic processes. The available evidence highlights the importance of aligning mealtime with the body's natural rhythms to promote metabolic health and prevent metabolic disorders. Specifically, studies show that consuming meals later in the day is associated with an elevated prevalence of metabolic disorders, while early time-restricted eating, such as having an early breakfast and an earlier dinner, improves levels of glucose in the blood and substrate oxidation. Circadian hormones, including cortisol and melatonin, interact with mealtimes and play vital roles in regulating metabolic processes. Cortisol, aligned with dawn in diurnal mammals, activates energy reserves, stimulates appetite, influences clock gene expression, and synchronizes peripheral clocks. Consuming meals during periods of elevated melatonin levels, specifically during the circadian night, has been correlated with potential implications for glucose tolerance. Understanding the mechanisms of central and peripheral clock synchronization, including genetics, interactions with chronotype, sleep duration, and hormonal changes, provides valuable insights for optimizing dietary strategies and timing. This knowledge contributes to improved overall health and well-being by aligning mealtime with the body's natural circadian rhythm.
Collapse
Affiliation(s)
- Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia
| | - Abdulrouf Pirzada
- North Cumbria Integrated Care (NCIC), National Health Service (NHS), Carlisle CA2 7HY, UK;
| |
Collapse
|
12
|
Safikhani A, Zendehdel M, Khodadadi M, Rahmani B, Ghashghayi E, Mahdavi K. Hypophagia induced by intracerebroventricular injection of apelin-13 is mediated via CRF1/CRF2 and MC3/MC4 receptors in neonatal broiler chicken. Behav Brain Res 2023; 452:114536. [PMID: 37295613 DOI: 10.1016/j.bbr.2023.114536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Previous studies have shown the role of apelin and its receptors in the regulation of food intake. In the present study, we investigate the mediating role of melanocortin, corticotropin, and neuropeptide Y systems in apelin-13- induced food intake in broilers. Eight trials were run in the current investigation to ascertain the relationships between the aforementioned systems and apelin-13 on food intake and behavioral changes after apelin-13 administration. In experiment 1, hens were given an intracerebroventricular administration of a solution for control in addition to apelin-13 (0.25, 0.5, and 1 µg). Astressin-B (a CRF1/CRF2 receptor antagonist, 30 µg), apelin-13 (1 µg), and administration of astressin-B and apelin-13 concurrently, were all injected into the birds in experiment 2. Experiments 3 through 8 were quite similar to experiment 2, with the exception of astressin2-B (CRF2 receptor antagonist, 30 µg), SHU9119 (MC3/MC4 receptor antagonist, 0.5 nmol), MCL0020 (MC4 receptor antagonist, 0.5 nmol), BIBP-3226 (NPY1 receptor antagonist, 1.25 nmol), BIIE 0246 (NPY2 receptor antagonist, 1.25 nmol), and CGP71683A (NPY5 receptor antagonist, 1.25 nmol) were injected instead of astressin-B. After then, total food consumption was monitored for 6 h. Apelin-13 injections of 0.5 and 1 µg decreased feeding (P < 0.05). The hypophagic effects of apelin were attenuated following the simultaneous administration of Astressin-B and Astressin2-B with apelin-13 (P > 0.05). Co-infusion of SHU9119 and apelin-13 reduced the appetite-decreasing effects of apelin-13 (P > 0.05). When MCL0020 and apelin-13 were injected at the same time, the hypophagia that apelin-13 induced was eliminated (P > 0.05). BIBP-3226, BIIE 0246, and CGP71683A had no effect on the hypophagia brought on by apelin-13 (P > 0.05). Also, apelin-13 significantly increased number of steps, jumps, exploratory food, pecks and standing time while decreased siting time (P < 0.05). These findings suggest that apelin-13-induced hypophagia in hens may involve the CRF1/CRF2 and MC3/MC4 receptors.
Collapse
Affiliation(s)
- Amin Safikhani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Mina Khodadadi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Behrouz Rahmani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2 Canada
| | - Elham Ghashghayi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
13
|
Schaper SJ, Wölk E, Hofmann T, Friedrich T, Römer M, de Punder K, Rose M, Stengel A. NUCB2/nesfatin-1 in the acute stress response of obese women with high and low anxiety. Psychoneuroendocrinology 2023; 155:106325. [PMID: 37385089 DOI: 10.1016/j.psyneuen.2023.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
NUCB2/nesfatin-1 is an anorexigenic peptide hormone first known for its effects on energy homeostasis. More recently, a growing evidence suggests a role of NUCB2/nesfatin-1 in emotion regulation, particularly in the modulation of anxiety, depression and emotional stress response. Since stress-related mood disorders are often comorbid with obesity, we investigated the effect of acute psychosocial stress on circulating NUCB2/nesfatin-1 in obese women and normal-weight controls and its association with symptoms of anxiety. Forty women, 20 obese and 20 normal-weight controls, (aged between 27 and 46 years) were exposed to the Trier Social Stress Test (TSST). We assessed changes of plasma NUCB2/nesfatin-1, salivary cortisol, heart rate and subjective emotional state. Symptoms of anxiety (GAD-7), depressiveness (PHQ-9), perceived stress (PSQ-20), disordered eating (EDE-Q, EDI-2) and health-related quality of life (SF-8) were measured psychometrically. Obese women were further subdivided in a high and low anxiety group. Women with obesity displayed higher psychopathology compared to normal-weight controls. The TSST induced a biological and psychological stress response in both groups (p < 0.001). In normal-weight controls NUCB2/nesfatin-1 increased in response to stress (p = 0.011) and decreased during recovery (p < 0.050), while in obese women only the decrease during recovery was significant (p = 0.002). Obese women with high anxiety displayed higher NUCB2/nesfatin-1 levels than those in the low anxiety group (TSST: +34 %, p = 0.008; control condition: +52 %, p = 0.013). Our data substantiate the involvement of NUCB2/nesfatin-1 in the modulation of stress and anxiety. It remains unclear whether the attenuated stress response in obese subjects is due to metabolic changes or mental comorbidity.
Collapse
Affiliation(s)
- Selina Johanna Schaper
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany
| | - Ellen Wölk
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany
| | - Tobias Hofmann
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, DRK Kliniken Berlin Wiegmann Klinik, Berlin, Germany
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany
| | - Marthe Römer
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany
| | - Karin de Punder
- Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Institute of Psychology, Department of Clinical Psychology-II, University of Innsbruck, Austria
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
14
|
Zheng Q, Han Y, Fan M, Gao X, Ma M, Xu J, Liu S, Ge J. Potential role of TREM2 in high cholesterol‑induced cell injury and metabolic dysfunction in SH‑SY5Y cells. Exp Ther Med 2023; 25:205. [PMID: 37090086 PMCID: PMC10119670 DOI: 10.3892/etm.2023.11904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/01/2023] [Indexed: 04/25/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an important member of the immunoglobulin family of inflammatory stimulating receptors and is involved in a number of pathophysiological processes. The present study aimed to investigate the role of TREM2 in neurotoxicity induced by high cholesterol levels in SH-SY5Y cells and explore the potential mechanism. SH-SY5Y cells were routinely cultured and stimulated with a range of cholesterol concentrations. Cell viability was assessed using an MTT assay, morphological changes were observed, and the cell cycle distribution was measured using flow cytometry. Lipid deposition was measured by Oil red O staining, and the mRNA and protein expression levels of SRBEP-1 and SRBEP-2 were detected by quantitative PCR and western blotting, respectively. Moreover, the protein expression levels of BDNF, Copine-6, TREM1, TREM2, and key molecules of the Wnt signaling pathways were detected by western blotting. Finally, TREM2 was overexpressed to investigate its potential role in high cholesterol-induced neurotoxicity. The results showed that cell viability was significantly decreased in SH-SY5Y cells stimulated with cholesterol (0.1~100 µM) in a dose- and time-dependent manner. Stimulation with 100 µM cholesterol for 24 h resulted in morphological injuries, increased the proportion of SH-SY5Y cells at G0/G1, the degree of lipid accumulation, and the protein expression levels of sterol regulatory element binding protein (SREBP)1 and SREBP2, markedly decreased the protein expression levels of BDNF, Copine-6, and TREM2, and the p-β-catenin/β-catenin ratio, and increased the expression levels of nesfatin-1, TREM1 and the p-GSK3β/GSK3β ratio. Furthermore, the imbalanced expression of BDNF, Copine-6, nesfatin-1, and p-GSK3β induced by high cholesterol levels was reversed after overexpression of TREM2. These results suggest that a high concentration of cholesterol could induce cell injury and lipid deposition in SH-SY5Y cells and that the underlying mechanism may be associated with imbalanced TREM2 expression.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yinxiu Han
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinran Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingxian Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Correspondence to: Dr Jinfang Ge, School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
15
|
Abstract
INTRODUCTION Anorexia nervosa is a frequent eating disorder that affects predominantly young women and may take a severe and chronically worsening course of disease contributing to its high mortality rate. Although a multitude of treatment options exist, this disease still bears a high relapse rate. In light of these facts, an improvement of existing and development of new treatment targets and options is warranted. AREAS COVERED The present review article covers recent developments in psychotherapy associated with the respective neuropsychological and brain alterations as well as highlights current and future pharmacotherapeutic options. EXPERT OPINION Several encouraging developments in the field of psychotherapy such as interventions targeting neurocognitive profiles or addressing reward processing, brain stimulation as well as pharmacological modulation of hormones, namely leptin, oxytocin, ghrelin and nesfatin-1 signaling might be - most likely as part of a multimodal treatment approach - efficacious in order to improve treatment of patients with anorexia nervosa, especially those with a severe course of disease as well as comorbidities. As anorexia nervosa represents a complex and severe mental disorder, it seems most likely that a combination and integration of different evidence-based treatment approaches and settings will contribute to an improved prognosis of this eating disorder. This should be further explored in future studies.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Internal Medicine, Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Center for Excellence in Eating Disorders Tübingen (KOMET)
- Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Katrin Giel
- Department of Internal Medicine, Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Center for Excellence in Eating Disorders Tübingen (KOMET)
| |
Collapse
|
16
|
Friedrich T, Goebel-Stengel M, Schalla MA, Kobelt P, Rose M, Stengel A. Abdominal surgery increases activity in several phoenixin immunoreactive nuclei. Neurosci Lett 2023; 792:136938. [PMID: 36341925 DOI: 10.1016/j.neulet.2022.136938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Research on the peptide phoenixin has increased in recent years and greatly widened the known scope of its functions since its discovery in 2013. Involvement of phoenixin has since been shown in anxiety, food intake, reproduction as well as emotional and immunological stress. To further evaluate its involvement in stress reactions, this study aims to investigate the effects of abdominal surgery, a well-established physical stressor, on the activity of phoenixin-immunoreactive brain nuclei. METHODS Male Sprague-Dawley rats (n = 6/group) were subjected to either an abdominal surgery stress protocol or a sham operation. Animals in the verum group were anesthetized, the abdominal cavity opened and the cecum palpated, followed by closing of the abdomen and recovery. Sham operated animals only received inhalation anesthesia and time for recovery. All animals were subsequently sacrificed and brains processed and evaluated for c-Fos activity as well as phoenixin density. RESULTS Compared to control, abdominal surgery significantly increased c-Fos activity in the paraventricular nucleus (PVN, 6.4-fold, p < 0.001), the medial part of the nucleus of the solitary tract (mNTS, 3.8-fold, p < 0.001), raphe pallidus (RPa, 3.6-fold, p < 0.001), supraoptic nucleus (SON, 3.2-fold, p < 0.001), ventrolateral medulla (VLM, also called A1C1, 3.0-fold, p < 0.001), dorsal motor nucleus of vagus (DMN, 2.9-fold, p < 0.001), locus coeruleus (LC, 1.8-fold, p < 0.01) and Edinger-Westphal nucleus (EW, 1.6-fold, p < 0.05), while not significantly altering c-Fos activity in the amygdala (CeM, 1.3-fold, p > 0.05). Phoenixin immunoreactivity was not significantly affected by abdominal surgery (p > 0.05). CONCLUSION The observed abdominal surgery-related increase in activity in phoenixin immunoreactive nuclei compared to sham surgery controls supports the hypothesis of an involvement of phoenixin in stress reactions. Interestingly, various psychological and physical stressors lead to specific changes in activity and immunoreactivity in phoenixin-containing nuclei, giving rise to a stressor-specific involvement of phoenixin.
Collapse
Affiliation(s)
- Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Lu Z, Cui D, Liu JYH, Jiang B, Ngan MP, Sakata I, Takemi S, Sakai T, Lin G, Chan SW, Rudd JA. The Actions of Centrally Administered Nesfatin-1 on Emesis, Feeding, and Locomotor Activity in Suncus murinus (House Musk Shrew). Front Pharmacol 2022; 13:858522. [PMID: 35462894 PMCID: PMC9019301 DOI: 10.3389/fphar.2022.858522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Nesfatin-1 is an anorectic peptide expressed in both peripheral tissues and brain areas involved in the regulation of feeding, emotion and emesis. The aim of the present study is to characterize the distribution of NUCB2/nesfatin-1 in Suncus murinus and to investigate the actions of nesfatin-1 to affect gastrointestinal contractility, emesis, food and water intake, and locomotor activity. The deduced amino acid sequence of S. murinus nesfatin-1 using in silico cloning showed high homology with humans and rodents. NUCB2 mRNA was detected throughout the entire brain and in the gastrointestinal tract, including the stomach and gut. Western blot analysis and immunohistochemistry confirmed the expression of nesfatin-1 protein in these regions. The NUCB2 mRNA levels in the hypothalamus, hippocampus and brainstem were significantly decreased, whereas that in the striatum were increased after 24 h starvation compared to ad libitum-fed animals (p < 0.05). In in vitro studies, nesfatin-1 (0.3–1,000 pM) failed to contract or relax the isolated gastric antrum and intestinal segments. In conscious, freely moving animals, intracerebroventricular administration of nesfatin-1 (1–50 pmol) induced emesis (p < 0.05) and suppressed 6-h cumulative food intake (p < 0.05), without affecting the latency to feeding. Nesfatin-1 (25 pmol, i.c.v.) decreased 24-h cumulative food and water intake by 28.3 and 35.4%, respectively (p < 0.01). No significant differences in locomotor activity were observed. In conclusion, NUCB2/nesfatin-1 might be a potent regulator of feeding and emesis in S. murinus. Further studies are required to elucidate the mechanism of actions of this peptide as a mediator linking the brainstem NUCB2/nesfatin-1 to forebrain system.
Collapse
Affiliation(s)
- Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
| | - Dexuan Cui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Julia Yuen Hang Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bin Jiang
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
| | - Man Piu Ngan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ichiro Sakata
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shota Takemi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takafumi Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ge Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
- *Correspondence: Sze Wa Chan,
| | - John A. Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
20
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
21
|
Rupp SK, Stengel A. Interactions between nesfatin-1 and the autonomic nervous system-An overview. Peptides 2022; 149:170719. [PMID: 34953946 DOI: 10.1016/j.peptides.2021.170719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Nesfatin-1, an 82-amino acid polypeptide derived from the precursor protein nucleobindin-2 (NUCB2), was first discovered in 2006 in the rat hypothalamus. The effects and distribution of nesfatin-1 immunopositive neurons in the brain and spinal cord point towards a role of NUCB2/nesfatin-1 in autonomic regulation. Therefore, studies which have been conducted to investigate the interplay between nesfatin-1 and the autonomic nervous system were examined, and the outcomes of this research were summarized. NUCB2/nesfatin-1 immunoreactivity is widely distributed in autonomic centers of the brain and spinal cord in both rodents and humans. In several regions of the hypothalamus, midbrain and brainstem, nesfatin-1 modulates autonomic functions. On the other hand, the autonomic nervous system also influences the activity of nesfatin-1 neurons. Here, the vagus nerve seems to be a crucial factor in the regulation of nesfatin-1. In summary, although data here is still sparse, there is a clear interplay between nesfatin-1 and the autonomic nervous system, the precise clarification of which still requires further research to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
22
|
Yuan PQ, Wu SV, Stengel A, Sato K, Taché Y. Activation of CRF 1 receptors expressed in brainstem autonomic nuclei stimulates colonic enteric neurons and secreto-motor function in male rats. Neurogastroenterol Motil 2021; 33:e14189. [PMID: 34215021 DOI: 10.1111/nmo.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypothalamic corticotropin-releasing factor (CRF) receptor 1 (CRF1 ) plays a role in acute stress-related stimulation of colonic motor function. Less is known on CRF1 signaling in the brainstem. METHODS We investigate CRF1 expression in the brainstem and the colonic response to 4th ventricle (4V) injection of CRF and urocortin (Ucn) 2 (3 µg/rat) in chronically cannulated male rats. KEY RESULTS Transcripts of CRF1 wild-type 1a and splice variants 1c, 1e, 1f, 1o along with three novel variants 1a-2 (desK-110 in exon 5), 1p (-exon 7), and 1q (exon 5 extension) were identified in the pons and medulla. The area postrema, nucleus tractus solitarius, dorsal motor nucleus of the vagus, locus coeruleus, and Barrington's nucleus isolated by laser capture microdissection expressed 1a, 1a-2, and 1p but not 1q. Compared to 4V vehicle, 4V CRF induced fecal pellet output (FPO) and diarrhea that were blocked by the CRF antagonist, astressin-B. CRF2 agonist, Ucn2 had no effect on basal or CRF-induced FPO. CRF actions were correlated with the induction of c-Fos immunoreactivity in myenteric neurons of the proximal and distal colon (pC, dC) and submucosal neurons of dC. c-Fos immunoreactivity occurred in 39% and 37% of myenteric cholinergic and 7% and 58% of nitrergic neurons in the pC and dC, respectively. CONCLUSIONS & INFERENCES CRF1a and its splice variants are expressed in brainstem nuclei, and activation of CRF1 signaling at the level of the brainstem stimulates colonic secretory-motor function through activation of colonic enteric neurons.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - S Vincent Wu
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Andreas Stengel
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ken Sato
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- Sato Clinic 13-14 Choei Moriyamaku, Nagoya City, Japan
| | - Yvette Taché
- David Geffen School of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
23
|
Pham V, Pemberton JG, Chang JP, Blanco AM, Nasri A, Unniappan S. Nesfatin-1 stimulates the hypothalamus-pituitary-interrenal axis hormones in goldfish. Am J Physiol Regul Integr Comp Physiol 2021; 321:R603-R613. [PMID: 34405712 DOI: 10.1152/ajpregu.00063.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stress in vertebrates is mediated by the hypothalamus-pituitary-adrenal (in mammals)/interrenal (in fish) (HPA/I) axis, which produces the corticotropin-releasing factor (CRF), adrenocorticotropic hormone (ACTH), and corticosteroids, respectively. Nesfatin-1, a novel anorexigenic peptide encoded in the precursor nucleobindin-2 (NUCB2), is increasingly acknowledged as a peptide that influences the stress axis in mammals. The primary aim of this study was to characterize the putative effects of nesfatin-1 on the fish HPI axis, using goldfish (Carassius auratus) as an animal model. Our results demonstrated that nucb2/nesfatin-1 transcript abundance was detected in the HPI tissues of goldfish, with most abundant expression in the pituitary. NUCB2/nesfatin-1-like immunoreactivity was found in the goldfish hypothalamus, pituitary, and interrenal cells of the head kidney. GPCR12, a putative receptor for nesfatin-1, was also detected in the pituitary and interrenal cells. NUCB2/nesfatin-1-like immunoreactivity was observed in ACTH-expressing pituitary corticotrophs. Acute netting and restraint stress upregulated nucb2/nesfatin-1 mRNA levels in the forebrain, hypothalamus, and pituitary, as well as crf and crf-r1 expression in the forebrain and hypothalamus. Intraperitoneal and intracerebroventricular administration of nesfatin-1 increased cortisol release and hypothalamic crf mRNA levels, respectively. Finally, we found that nesfatin-1 significantly stimulated ACTH secretion from dispersed pituitary cells in vitro. Collectively, our data provide the first evidence showing that nesfatin-1 is a stress responsive peptide, which modulates the stress axis hormones in fish.
Collapse
Affiliation(s)
- Vi Pham
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayelen Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
25
|
Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021; 22:ijms22179156. [PMID: 34502065 PMCID: PMC8431171 DOI: 10.3390/ijms22179156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin’s role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.
Collapse
|
26
|
Luo JJ, Wen FJ, Qiu D, Wang SZ. Nesfatin-1 in lipid metabolism and lipid-related diseases. Clin Chim Acta 2021; 522:23-30. [PMID: 34389280 DOI: 10.1016/j.cca.2021.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022]
Abstract
Nesfatin-1, an anorexic neuropeptide discovered in 2006, is widely distributed in the central nervous system and peripheral tissues. It has been shown to be involved in the regulation of food intake and lipid metabolism, inhibiting fat accumulation, accelerating lipid decomposition, and in general, inhibiting the development of lipid-related diseases, such as obesity and metabolic syndrome. Potential mechanisms of Nesfatin-1 action in lipid metabolism and lipid-related diseases will be discussed as well as its role as a biomarker in cardiovascular disease. This review expected to provide a new strategy for the diagnosis and prevention of clinically related diseases.
Collapse
Affiliation(s)
- Jing-Jing Luo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Feng-Jiao Wen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Cell Biology and Geneties, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Dan Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
27
|
Özdemir-Kumral ZN, Koyuncuoğlu T, Arabacı-Tamer S, Çilingir-Kaya ÖT, Köroğlu AK, Yüksel M, Yeğen BÇ. High-fat Diet Enhances Gastric Contractility, but Abolishes Nesfatin-1-induced Inhibition of Gastric Emptying. J Neurogastroenterol Motil 2021; 27:265-278. [PMID: 33795544 PMCID: PMC8026381 DOI: 10.5056/jnm20206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Gastrointestinal motility changes contribute to development and maintenance of obesity. Nesfatin-1 (NES-1) is involved in central appetite control. The aim is to elucidate effects of NES-1 and high-fat diet (HFD) on gastrointestinal motility and to explore myenteric neuron expressions of tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and neuronal nitric oxide synthase (nNOS) in HFDinduced oxidative injury. METHODS Sprague-Dawley rats were fed with normal diet (ND) or HFD. Gastric emptying rate was measured following NES-1 (5 pmol/rat, intracerebroventricular) preceded by subcutaneous injections of glucagon-like peptide 1 (GLP-1), cholecystokinin 1 (CCK-1), and gastrin/CCK-2 receptor antagonists. In carbachol-contracted gastric and ileal strips, contractile changes were recorded by adding NES- 1 (0.3 nmol/L), GLP-1, CCK-1, and gastrin/CCK-2 antagonists. RESULTS Neither HFD nor NES-1 changed methylcellulose emptying, but NES-1 delayed saline emptying in cannulated ND-rats. Inhibitory effect of NES-1 on gastric emptying in ND-rats was reversed by all antagonists, and abolished in HFD-rats. In HFD-rats, carbachol-induced contractility was enhanced in gastric, but inhibited in ileal strips. HFD increased body weight, while serum triglycerides, alanine transaminase, aspartate aminotransferase, glucose, and levels of malondialdehyde, glutathione, myeloperoxidase activity, and luminolchemiluminescence in hepatic, ileal, and adipose tissues were similar in ND- and HFD-rats, but only lucigenin-chemiluminescence was increased in HFD-rats. Vasoactive intestinal peptide (VIP) and TH immunoreactivities were depressed and nNOS immunoreactivity was increased in gastric tissues of HFD-rats, while VIP and TH were enhanced, but nNOS was reduced in their intestines. CONCLUSIONS HFD caused mild systemic inflammation, disrupted enteric innervation, enhanced gastric contractility, inhibited ileal contractility, and eliminated inhibitory effect of NES-1 on gastric motility.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Sevil Arabacı-Tamer
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özlem T Çilingir-Kaya
- Departments of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ayça K Köroğlu
- Departments of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University Faculty of Medicine; Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Sciences, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
28
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Ahmed KS, Esbhani UA, Naseem Z, Lalani S, Fatima SS. Molecular basis of non-alcoholic fatty liver disease and metabolic syndrome in a subset of South Asians. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-020-00906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
31
|
Rupp SK, Wölk E, Stengel A. Nesfatin-1 Receptor: Distribution, Signaling and Increasing Evidence for a G Protein-Coupled Receptor - A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:740174. [PMID: 34566899 PMCID: PMC8461182 DOI: 10.3389/fendo.2021.740174] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nesfatin-1 is an 82-amino acid polypeptide, cleaved from the 396-amino acid precursor protein nucleobindin-2 (NUCB2) and discovered in 2006 in the rat hypothalamus. In contrast to the growing body of evidence for the pleiotropic effects of the peptide, the receptor mediating these effects and the exact signaling cascades remain still unknown. METHODS This systematic review was conducted using a search in the Embase, PubMed, and Web of Science databases. The keywords "nesfatin-1" combined with "receptor", "signaling", "distribution", "pathway", g- protein coupled receptor", and "binding" were used to identify all relevant articles reporting about potential nesfatin-1 signaling and the assumed mediation via a Gi protein-coupled receptor. RESULTS Finally, 1,147 articles were found, of which 1,077 were excluded in several steps of screening, 70 articles were included in this systematic review. Inclusion criteria were studies investigating nesfatin-1's putative receptor or signaling cascade, observational preclinical and clinical studies, experimental studies, registry-based studies, cohort studies, population-based studies, and studies in English language. After screening for eligibility, the studies were assigned to the following subtopics and discussed regarding intracellular signaling of nesfatin-1 including the potential receptor mediating these effects and downstream signaling of the peptide. CONCLUSION The present review sheds light on the various effects of nesfatin-1 by influencing several intracellular signaling pathways and downstream cascades, including the peptide's influence on various hormones and their receptors. These data point towards mediation via a Gi protein-coupled receptor. Nonetheless, the identification of the nesfatin-1 receptor will enable us to better investigate the exact mediating mechanisms underlying the different effects of the peptide along with the development of agonists and antagonists.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Ellen Wölk
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Andreas Stengel,
| |
Collapse
|
32
|
Schalla MA, Goebel-Stengel M, Friedrich T, Kühne SG, Kobelt P, Rose M, Stengel A. Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology 2020; 122:104906. [PMID: 33059202 DOI: 10.1016/j.psyneuen.2020.104906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
The two peptides phoenixin and nesfatin-1 are colocalized in hypothalamic nuclei involved in the mediation of food intake and behavior. Phoenixin stimulates food intake and is anxiolytic, while nesfatin-1 is an anorexigenic peptide shown to increase anxiety and anhedonia. Interestingly, central activation of both peptides can be stimulated by restraint stress giving rise to a role in the mediation of stress. Thus, the aim of the study was to test whether also peripheral circulating levels of NUCB2/nesfatin-1 and phoenixin are altered by restraint stress. Male ad libitum fed Sprague Dawley rats equipped with a chronic intravenous catheter were subjected to restraint stress and plasma levels of NUCB2/nesfatin-1, phoenixin and cortisol were measured over a period of 240 min and compared to levels of freely moving rats. Peripheral cortisol levels were significantly increased in restrained rats at 30, 60, 120 and 240 min compared to controls (p < 0.05). In contrast, restraint stress decreased plasma phoenixin levels at 15 min compared to unstressed conditions (0.8-fold, p < 0.05). Circulating NUCB2/nesfatin-1 levels were increased only at 240 min in restrained rats compared to those in unstressed controls (1.3-fold, p < 0.05). In addition, circulating NUCB2/nesfatin-1 levels correlated positively with phoenixin levels (r = 0.378, p < 0.001), while neither phoenixin nor nesfatin-1 were associated with cortisol levels (r = 0.0275, and r=-0.143, p> 0.05). These data suggest that both peptides, NUCB2/nesfatin-1 and phoenixin, are affected by restraint stress, although less pronounced than circulating cortisol.
Collapse
Affiliation(s)
- M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, HELIOS Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - T Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - S G Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - P Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
33
|
Ekizceli G, Halk KZ, Minbay Z, Eyigor O. Nesfatin-1 and neuronostatin neurons are co-expressed with glucocorticoid receptors in the hypothalamus. Biotech Histochem 2020; 96:555-561. [PMID: 33054452 DOI: 10.1080/10520295.2020.1832703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Nesfatin-1 and neuronostatin in the central nervous system participate in regulating stress responses. Glucocorticoid hormones affect the brain through glucocorticoid receptors (GR). We investigated in the rat the possibility of co-localizing nesfatin-1 and neuronostatin neurons in hypothalamic areas with GR. using immunohistochemistry. We counted nesfatin-1 and neuronostatin stained neurons. We counted GR positive nesfatin-1 neurons in the arcuate nucleus (ARC) and paraventricular nucleus (PVN) and GR positive neuronostatin neurons in the periventricular nucleus (PeN). The percentage of nesfatin-1 neurons that expressed GR was 38.4% in female rats and 21.9% in male rats in the ARC, and 33.3% in female rats and 29.2% in male rats in the PVN. The percentage of neuronostatin neurons that expressed GR was 39.1% in female rats and 39.9% in male rats in the PeN. We found that a substantial portion of nesfatin-1 and neuronostatin neurons were stained for GR. We speculate that the pattern of GR might permit secretion of neuropeptides to be stimulated by peripheral glucocorticoid signals. Stress can suppress food intake, in part, through the GR in neurons that express nesfatin-1, which is a satiety molecule, and in neurons that express neuronostatin, which is an anorexigenic peptide.
Collapse
Affiliation(s)
- G Ekizceli
- Department of Histology and Embryology, Istanbul Health and Technology University, School of Medicine, Istanbul, Turkey.,Department of Histology and Embryology, Bursa Uludag University, Institute of Health Science, Bursa, Turkey
| | - K Z Halk
- Department of Histology and Embryology, Bursa Uludag University, Institute of Health Science, Bursa, Turkey
| | - Z Minbay
- Department of Histology and Embryology, Bursa Uludag University, School of Medicine, Bursa, Turkey
| | - O Eyigor
- Department of Histology and Embryology, Bursa Uludag University, School of Medicine, Bursa, Turkey
| |
Collapse
|
34
|
Wilz AM, Wernecke K, Appel L, Kahrs J, Dore R, Jöhren O, Lehnert H, Schulz C. Endogenous NUCB2/Nesfatin-1 Regulates Energy Homeostasis Under Physiological Conditions in Male Rats. Horm Metab Res 2020; 52:676-684. [PMID: 32722818 DOI: 10.1055/a-1196-2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is the proteolytic cleavage product of Nucleobindin 2, which is expressed both in a number of brain nuclei (e. g., the paraventricular nucleus of the hypothalamus) and peripheral tissues. While Nucleobindin 2 acts as a calcium binding protein, nesfatin-1 was shown to affect energy homeostasis upon central nervous administration by decreasing food intake and increasing thermogenesis. In turn, Nucleobindin 2 mRNA expression is downregulated in starvation and upregulated in the satiated state. Still, knowledge about the physiological role of endogenous Nucleobindin 2/nesfatin-1 in the control of energy homeostasis is limited and since its receptor has not yet been identified, rendering pharmacological blockade impossible. To overcome this obstacle, we tested and successfully established an antibody-based experimental model to antagonize the action of nesfatin-1. This model was then employed to investigate the physiological role of endogenous Nucleobindin 2/nesfatin-1. To this end, we applied nesfatin-1 antibody into the paraventricular nucleus of satiated rats to antagonize the presumably high endogenous Nucleobindin 2/nesfatin-1 levels in this feeding condition. In these animals, nesfatin-1 antibody administration led to a significant decrease in thermogenesis, demonstrating the important role of endogenous Nucleobindin 2/nesfatin-1in the regulation of energy expenditure. Additionally, food and water intake were significantly increased, confirming and complementing previous findings. Moreover, neuropeptide Y was identified as a major downstream target of endogenous Nucleobindin 2/nesfatin-1.
Collapse
Affiliation(s)
- Anna-Maria Wilz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Kerstin Wernecke
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Lena Appel
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Johanna Kahrs
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Dore R, Krotenko R, Reising JP, Murru L, Sundaram SM, Di Spiezio A, Müller-Fielitz H, Schwaninger M, Jöhren O, Mittag J, Passafaro M, Shanabrough M, Horvath TL, Schulz C, Lehnert H. Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 2020; 45:1645-1655. [PMID: 32353862 PMCID: PMC7419560 DOI: 10.1038/s41386-020-0682-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways. The endogenous levels of this peptide are regulated by the feeding state, with reduced levels following fasting and normalized by refeeding. The fasting state is associated with biochemical and behavioral adaptations ultimately leading to enhanced sensitization of reward circuitries towards food reward. Although NUCB2/nesfatin-1 is expressed in reward-related brain areas, its role in regulating motivation and preference for nutrients has not yet been investigated. We here report that both dopamine and GABA neurons express NUCB2/nesfatin-1 in the VTA. Ex vivo electrophysiological recordings show that nesfatin-1 hyperpolarizes dopamine, but not GABA, neurons of the VTA by inducing an outward potassium current. In vivo, central administration of nesfatin-1 reduces motivation for food reward in a high-effort condition, sucrose intake and preference. We next adopted a 2-bottle choice procedure, whereby the reward value of sucrose was compared with that of a reference stimulus (sucralose + optogenetic stimulation of VTA dopamine neurons) and found that nesfatin-1 fully abolishes the fasting-induced increase in the reward value of sucrose. These findings indicate that nesfatin-1 reduces energy intake by negatively modulating dopaminergic neuron activity and, in turn, hedonic aspects of food intake. Since nesfatin-1´s actions are preserved in conditions of leptin resistance, the present findings render the NUCB2/nesfatin-1 system an appealing target for the development of novel therapeutical treatments towards obesity.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Regina Krotenko
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan Philipp Reising
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4714.60000 0004 1937 0626Present Address: Department of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Luca Murru
- grid.418879.b0000 0004 1758 9800CNR, Institute of Neuroscience, 20129 Milan, Italy
| | - Sivaraj Mohana Sundaram
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Alessandro Di Spiezio
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.9764.c0000 0001 2153 9986Present Address: Department of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Helge Müller-Fielitz
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Markus Schwaninger
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olaf Jöhren
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Maria Passafaro
- grid.418879.b0000 0004 1758 9800CNR, Institute of Neuroscience, 20129 Milan, Italy
| | - Marya Shanabrough
- grid.47100.320000000419368710Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Tamas L. Horvath
- grid.47100.320000000419368710Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, H-1078 Hungary
| | - Carla Schulz
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hendrik Lehnert
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
36
|
Psilopanagioti A, Makrygianni M, Nikou S, Logotheti S, Papadaki H. Nucleobindin 2/nesfatin-1 expression and colocalisation with neuropeptide Y and cocaine- and amphetamine-regulated transcript in the human brainstem. J Neuroendocrinol 2020; 32:e12899. [PMID: 32902020 DOI: 10.1111/jne.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
Feeding is a complex behaviour entailing elaborate interactions between forebrain, hypothalamic and brainstem neuronal circuits via multiple orexigenic and anorexigenic neuropeptides. Nucleobindin-2 (NUCB2)/nesfatin-1 is a negative regulator of food intake and body weight with a widespread distribution in rodent brainstem nuclei. However, its localisation pattern in the human brainstem is unknown. The present study aimed to explore NUCB2/nesfatin-1 immunoexpression in human brainstem nuclei and its possible correlation with body weight. Sections of human brainstem from 20 autopsy cases (13 males, seven females; eight normal weight, six overweight, six obese) were examined using immunohistochemistry and double immunofluorescence labelling. Strong immunoreactivity for NUCB2/nesfatin-1 was displayed in various brainstem areas, including the locus coeruleus, medial and lateral parabrachial nuclei, pontine nuclei, raphe nuclei, nucleus of the solitary tract, dorsal motor nucleus of vagus (10N), area postrema, hypoglossal nucleus, reticular formation, inferior olive, cuneate nucleus, and spinal trigeminal nucleus. NUCB2/nesfatin-1 was shown to extensively colocalise with neuropeptide Y and cocaine- and amphetamine-regulated transcript in the locus coeruleus, dorsal raphe nucleus and solitary tract. Interestingly, in the examined cases, NUCB2/nesfatin-1 protein expression was lower in obese than normal weight subjects in the solitary tract (P = 0.020). The findings of the present study provide neuroanatomical support for a role for NUCB2/nesfatin-1 in feeding behaviour and energy balance. The widespread distribution of NUCB2/nesfatin-1 in the human brainstem nuclei may be indicative of its pleiotropic effects on autonomic, neuroendocrine and behavioural processes. In the solitary tract, a key integrator of energy status, altered neurochemistry may contribute to obesity. Further research is necessary to decipher human brainstem energy homeostasis circuitry, which, despite its importance, remains inadequately characterised.
Collapse
Affiliation(s)
- Aristea Psilopanagioti
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Makrygianni
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Souzana Logotheti
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
37
|
Schalla MA, Kühne SG, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Mori M, Rose M, Stengel A. Central blockage of nesfatin-1 has anxiolytic effects but does not prevent corticotropin-releasing factor-induced anxiety in male rats. Biochem Biophys Res Commun 2020; 529:773-777. [DOI: 10.1016/j.bbrc.2020.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
|
38
|
Schalla MA, Unniappan S, Lambrecht NWG, Mori M, Taché Y, Stengel A. NUCB2/nesfatin-1 - Inhibitory effects on food intake, body weight and metabolism. Peptides 2020; 128:170308. [PMID: 32229144 DOI: 10.1016/j.peptides.2020.170308] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2006 by Oh-I and colleagues, NUCB2/nesfatin-1 encoded by nucleobindin-2 (NUCB2) has drawn sustained attention as reflected in over 500 publications. Among those, more than half focused on the alterations of food intake, body weight and metabolism (glucose, fat) induced by nesfatin-1 and/or NUCB2/nesfatin-1. In the current review we discuss the existing literature focusing on NUCB2/nesfatin-1's influence on food intake, body weight and glucose as well as fat metabolism and highlight gaps in knowledge.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils W G Lambrecht
- Department of Pathology and Laboratory Medicine, VA Medical Center, Long Beach, California, USA
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yvette Taché
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA; Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
39
|
Moosadoost Y, Zendehdel M, Khodadadi M. The Effect of RFamide-Related Peptide-3 (RFRP-3 or NPVF) on Food Intake in Neonatal Chickens: The Role of MC3/MC4 and CRF1/CRF2 Receptors. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Friedrich T, Schalla MA, Lommel R, Goebel-Stengel M, Kobelt P, Rose M, Stengel A. Restraint stress increases the expression of phoenixin immunoreactivity in rat brain nuclei. Brain Res 2020; 1743:146904. [PMID: 32474019 DOI: 10.1016/j.brainres.2020.146904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Phoenixin is a recently discovered peptide, which has been associated with reproduction, anxiety and food intake. Based on a considerable co-localization it has been linked to nesfatin-1, with a possible antagonistic mode of action. Since nesfatin-1 is known to play a role in anxiety and the response to stress, this study aims to investigate the effects of a well-established psychological stress model, restraint stress, on phoenixin-expressing brain nuclei and phoenixin expression in rats. Male Sprague-Dawley rats were subjected to restraint stress (n = 8) or left undisturbed (control, n = 6) and the brains processed for c-Fos- and phoenixin immunohistochemistry. The number of c-Fos expressing cells was counted and phoenixin expression assessed semiquantitatively. Restraint stress significantly increased c-Fos expression in the dorsal motor nucleus of vagus nerve (DMN, 52-fold, p < 0.001), raphe pallidus (RPa, 15-fold, p < 0.001), medial part of the nucleus of the solitary tract (mNTS, 16-fold, p < 0.001), central amygdaloid nucleus, medial division (CeM, 9-fold, p = 0.01), supraoptic nucleus (SON, 9-fold, p < 0.001) and the arcuate nucleus (Arc, 2.5-fold, p < 0.03) compared to control animals. Also phoenixin expression significantly increased in the DMN (17-fold, p < 0.001), RPa (2-fold, p < 0.001) and mNTS (1.6-fold, p < 0.001) with positive correlations between c-Fos and phoenixin (r = 0.74-0.85; p < 0.01) in these nuclei. This pattern of activation suggests an involvement of phoenixin in response to restraint stress. Whether phoenixin mediates stress effects or is activated in a counterbalancing fashion will have to be further investigated.
Collapse
Affiliation(s)
- T Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - R Lommel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - P Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Georgescu T, Lyons D, Doslikova B, Garcia AP, Marston O, Burke LK, Chianese R, Lam BYH, Yeo GSH, Rochford JJ, Garfield AS, Heisler LK. Neurochemical Characterization of Brainstem Pro-Opiomelanocortin Cells. Endocrinology 2020; 161:bqaa032. [PMID: 32166324 PMCID: PMC7102873 DOI: 10.1210/endocr/bqaa032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.
Collapse
Affiliation(s)
- Teodora Georgescu
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Centre for Neuroendocrinology & Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David Lyons
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | - Ana Paula Garcia
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Oliver Marston
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | | | | | - Lora K Heisler
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Wang XQ, Zheng Y, Fang PF, Song XB. Nesfatin-1 is a potential diagnostic biomarker for gastric cancer. Oncol Lett 2019; 19:1577-1583. [PMID: 31966083 DOI: 10.3892/ol.2019.11200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
The lack of reliable plasma biomarkers limits their use in the diagnosis of gastric cancer (GC). The current study aimed to determine whether plasma nesfatin-1 can be used as a novel non-invasive biomarker for the diagnosis of GC. The levels of nesfatin-1 in 40 patients with GC and 40 healthy individuals, who were selected from the Chaohu Hospital Affiliated to Anhui Medical University, were assessed. ELISA was used for the measurement of plasma nesfatin-1 levels, while immunohistochemistry was applied to determine Ki67 protein expression in GC and normal gastric tissues. The diagnostic value of plasma nesfatin-1 for GC was further assessed using receiver operating characteristic (ROC) curve analysis. The results revealed that, compared with the controls, the mean nesfatin-1 levels in patients with GC were significantly increased. Furthermore, the protein expression of Ki67 in GC tissue was significantly upregulated compared with that in normal gastric tissue. Plasma nesfatin-1 levels were also demonstrated to be correlated with Ki67 protein expression in GC tissues. Additionally, ROC curve analysis indicated the potential diagnostic value of nesfatin-1, and the area under the ROC curve (AUC) for nesfatin-1 was 0.857 (95% confidence interval, 0.769-0.946). At a threshold nesfatin-1 level of 1.075 ng/ml, the optimal sensitivity and specificity were 70.0 and 95.0%, respectively, in discriminating patients with GC from healthy controls. These results indicated that plasma nesfatin-1 may serve as a novel biomarker for the diagnosis of GC and determination of GC cell proliferation.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Pathology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Yan Zheng
- Department of Pathology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, Anhui 238000, P.R. China
| | - Pei-Fei Fang
- Department of Pathology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Xian-Bing Song
- Department of Pathology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
43
|
de Dios O, Herrero L, Gavela-Pérez T, Soriano-Guillén L, Garcés C. Sex-specific association of plasma nesfatin-1 concentrations with obesity in children. Pediatr Obes 2019; 14:e12567. [PMID: 31507101 DOI: 10.1111/ijpo.12567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/31/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nesfatin-1, an anorexigenic peptide, has been associated with food intake and thermogenesis, with discordant findings in humans and scarce studies in children to date. OBJECTIVES The aim of this study was to analyze the relationship of obesity with nesfatin-1 levels in two cohorts of children. METHODS Plasma nesfatin-1 concentrations were analyzed in 6- to 9-year-olds (n = 140) and 12- to 16-year-old children (n = 96), including children with obesity and their sex- and age-matched normal-weight counterparts. Anthropometric measurements were assessed. Cholesterol and triglycerides were determined enzymatically, insulin concentrations were measured by radioimmunoassay using a commercial kit and nesfatin-1, leptin and hs-CRP concentrations were determined using commercial ELISA kits. RESULTS Nesfatin-1 concentrations were significantly lower in younger (P = .001) and older (P = .009) girls with obesity than in their normal-weight counterparts, without showing significant differences in boys. Nesfatin-1 showed a negative significant (P < .010) correlation with weight and BMI in girls but not in boys. A significant positive correlation of nesfatin-1 levels with insulin, HOMA, and leptin levels appears in girls after adjusting by age and BMI. A significant positive correlation (P = .003) was observed between nesfatin-1 and fat mass in older children. CONCLUSIONS Our study shows lower concentrations of nesfatin-1 related to obesity in girls but not in boys at two different ages. The existence of a sex-specific association between nesfatin-1 concentrations and presence of obesity highlights the need of an analysis by gender of the relationship of nesfatin-1 with obesity.
Collapse
Affiliation(s)
- Olaya de Dios
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Leticia Herrero
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Carmen Garcés
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
44
|
Zhang T, Wang M, Liu L, He B, Hu J, Wang Y. Hypothalamic nesfatin-1 mediates feeding behavior via MC3/4R-ERK signaling pathway after weight loss in obese Sprague-Dawley rats. Peptides 2019; 119:170080. [PMID: 31260713 DOI: 10.1016/j.peptides.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
Nesfatin-1 is an anorexic peptide derived from nucleobindin 2 (NUCB2). An increase in hypothalamic nesfatin-1 inhibits feeding behavior and promotes weight loss. However, the effects of weight loss on hypothalamic nesfatin-1 levels are unclear. In this study, obese rats lost weight in three ways: Calorie Restriction diet (CRD), Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). We found an increase in nesfatin-1 serum and cerebrospinal fluid levels after weight loss in obese Sprague-Dawley (SD) rats. Moreover, weight loss also increased hypothalamic melanocortin 3/4 receptor (MC3/4R) and extracellular regulated kinase phosphorylation (p-ERK) signaling. Third ventricle administration of antisense morpholino oligonucleotide (MON) against the gene encoding NUCB2 inhibited hypothalamic nesfatin-1 and p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. Third ventricle administration of SHU9119 (MC3/4R blocker) blocked hypothalamic MC3/4R, inhibited p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. These findings indicate that weight loss leads to an increase in hypothalamic nesfatin-1. The increase in hypothalamic nesfatin-1 participates in regulating feeding behavior through the MC3/4R-ERK signaling especially after SG and RYGB.
Collapse
Affiliation(s)
- Tianyi Zhang
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| | - Mofei Wang
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| | - Lei Liu
- Shengjing Hospital Affiliated to China Medical University, China.
| | - Bing He
- Shengjing Hospital Affiliated to China Medical University, China.
| | - Jingyao Hu
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| | - Yong Wang
- Fourth Affiliated Hospital of China Medical University, Chong Shan Road, Huanggu District, 110032, Shenyang, China.
| |
Collapse
|
45
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Res 2019; 1715:188-195. [DOI: 10.1016/j.brainres.2019.03.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/20/2023]
|
47
|
Guillebaud F, Roussel G, Félix B, Troadec JD, Dallaporta M, Abysique A. Interaction between nesfatin-1 and oxytocin in the modulation of the swallowing reflex. Brain Res 2019; 1711:173-182. [DOI: 10.1016/j.brainres.2019.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
|
48
|
Leung AKW, Ramesh N, Vogel C, Unniappan S. Nucleobindins and encoded peptides: From cell signaling to physiology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:91-133. [PMID: 31036300 DOI: 10.1016/bs.apcsb.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nucleobindins (NUCBs) are DNA and calcium binding, secreted proteins with various signaling functions. Two NUCBs, nucleobindin-1 (NUCB1) and nucleobindin-2 (NUCB2), were discovered during the 1990s. These two peptides are shown to have diverse functions, including the regulation of inflammation and bone formation, among others. In 2006, Oh-I and colleagues discovered that three peptides encoded within the NUCB2 could be processed by prohormone convertases. These peptides were named nesfatin-1, 2 and 3, mainly due to the satiety and fat influencing properties of nesfatin-1. However, it was found that nesfatin-2 and -3 have no such effects. Nesfatin-1, especially its mid-segment, is very highly conserved across vertebrates. Although the receptor(s) that mediate nesfatin-1 effects are currently unknown, it is now considered an endogenous peptide with multiple functions, affecting central and peripheral tissues to regulate metabolism, reproduction, endocrine and other functions. We recently identified a nesfatin-1-like peptide (NLP) encoded within the NUCB1. Like nesfatin-1, NLP suppressed feed intake in mice and fish, and stimulated insulin secretion from pancreatic beta cells. There is considerable evidence available to indicate that nucleobindins and its encoded peptides are multifunctional regulators of cell biology and whole animal physiology. This review aims to briefly discuss the structure, distribution, functions and mechanism of action nucleobindins and encoded peptides.
Collapse
Affiliation(s)
- Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Naresh Ramesh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, United States
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada.
| |
Collapse
|
49
|
Weibert E, Hofmann T, Stengel A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology 2019; 100:58-66. [PMID: 30292960 DOI: 10.1016/j.psyneuen.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 01/20/2023]
Abstract
Nesfatin-1 has been discovered a decade ago and since then drawn a lot of attention. The initially proposed anorexigenic effect was followed by the description of several other involvements such as a role in gastrointestinal motility, glucose homeostasis, cardiovascular functions and thermoregulation giving rise to a pleiotropic action of this peptide. The recent years witnessed mounting evidence on the involvement of nesfatin-1 in emotional processes as well. The present review will describe the peptide's relations to anxiety, depressiveness and stress in animal models and humans and also discuss existing gaps in knowledge in order to stimulate further research.
Collapse
Affiliation(s)
- Elena Weibert
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tobias Hofmann
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
Saito R, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Ueno H, Motojima Y, Yoshimura M, Maruyama T, Yamamoto Y, Kusuhara K, Ueta Y. Centrally administered kisspeptin suppresses feeding via nesfatin-1 and oxytocin in male rats. Peptides 2019; 112:114-124. [PMID: 30562556 DOI: 10.1016/j.peptides.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/23/2022]
Abstract
Kisspeptin (KP), known as a hypothalamic neuropeptide, plays a critical role in the regulation of not only reproduction but also food intake. The anorectic neuropeptides, nesfatin-1 and oxytocin (OXT), are expressed in central nervous system, particulaly in various hypothalamic nuclei, and peripheral tissue. We examined the effects of the intracerebroventricular (icv) administration of KP-10 on feeding and nesfatin-1-immunoreactive (ir) or OXT-ir neurons in the rat hypothalamus, using Fos double immunohistochemistry in male rats. Cumulative food intake was remarkably decreased 0.5-3 h after icv administration of KP-10 (6.0 μg) compared to the vehicle treated and the KP-10 (3.8 μg) treated group. The icv administration of KP-10 significantly increased the number of nesfatin-1-ir neurons expressing Fos in the supraoptic nucleus (SON), paraventricular nucleus (PVN), arcuate nucleus (ARC), dorsal raphe nucleus, locus coeruleus, and nucleus tractus solitarius. The decreased food intake induced by KP-10 was significantly attenuated by pretreatment with the icv administration of antisense RNA against nucleobindin-2. After icv administration of KP-10, the percentages of OXT-ir neurons expressing FOS were remarkably higher in the SON and PVN than for vehicle treatment. The KP-10-induced anorexia was partially abolished by pretreatment with OXT receptor antagonist (OXTR-A). The percentage of nesfatin-1-ir neurons expressing Fos-ir in the ARC was also decreased by OXTR-A pretreatment. These results indicate that central administration of KP-10 activates nesfatin-1- and OXT neurons, and may play an important role in the suppression of feeding in male rats.
Collapse
Affiliation(s)
- Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yukiyo Yamamoto
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|