1
|
Hu R, Huang Y, Liu Z, Dong H, Ma W, Song K, Xu X, Wu X, Geng Y, Li F, Zhang M, Song Y. Characteristics of polycystic ovary syndrome rat models induced by letrozole, testosterone propionate and high-fat diets. Reprod Biomed Online 2025; 50:104296. [PMID: 39626468 DOI: 10.1016/j.rbmo.2024.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 01/29/2025]
Abstract
RESEARCH QUESTION What are the long-term effects of different models of polycystic ovary syndrome (PCOS), and which model could be used in future research? DESIGN PCOS models induced by letrozole, letrozole plus high-fat diet (LE+HFD), testosterone propionate (TP) or testosterone propionate plus HFD (TP+HFD) were established in rats. Body weight, energy intake, blood glucose, sex hormone concentrations, lipid profiles and the oestrus cycle were observed. Histology of ovaries, large intestine and fat was displayed. Protein and mRNA levels relating to hormone synthesis, oocyte maturation, the gut barrier, lipid metabolism and inflammation were evaluated using western blotting, immunohistochemistry and PCR. The composition of the microbial community was measured using 16S RNA sequencing. RESULTS Letrozole treatment induced hyperandrogenaemia, polycystic ovarian morphology, a disrupted oestrus cycle and impaired ovarian function, which could be restored within 42 days. Concurrently, letrozole disturbed glucose, fat, and energy metabolism, affected the inflammatory state and compromised intestinal homeostasis. HFD could amplify the disturbances in the metabolism and intestinal microenvironment, and the pituitary-ovarian axis was more efficiently and consistently affected by testosterone propionate. Testosterone propionate and TP+HFD treatment also disturbed the intestinal microenvironment. Although the metabolic effects of testosterone propionate were not as profound as those of letrozole, they were enhanced by HFD. CONCLUSIONS Letrozole is useful for studies on metabolic disturbances in PCOS, and LE+HFD treatment is suitable for investigations on PCOS metabolic abnormalities and the gut-PCOS link. Testosterone propionate injection is appropriate for studying reproductive abnormalities in PCOS, while TP+HFD treatment is the most comprehensive for studying PCOS reproductive abnormalities, metabolic disturbances and the gut-PCOS link.
Collapse
Affiliation(s)
- Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohu Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Pich K, Rajewska J, Kamińska K, Tchurzyk M, Szlaga A, Sambak P, Błasiak A, Grzesiak M, Rak A. Effect of Vitamin D 3 on Chemerin and Adiponectin Levels in Uterus of Polycystic Ovary Syndrome Rats. Cells 2023; 12:2026. [PMID: 37626836 PMCID: PMC10453942 DOI: 10.3390/cells12162026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disorder with disrupted uterus structure and function. A positive effect of vitamin D3 (VD3) in female reproduction was observed. Chemerin (RARRES2) and adiponectin (ADIPOQ) are the main adipokines whose levels are altered in PCOS patients. Therefore, the aim of this study was to investigate the impact of VD3 supplementation on RARRES2 and ADIPOQ levels in the uterus of PCOS rats. METHODS We analyzed the plasma levels and uterine transcript and protein expression of RARRES2 and ADIPOQ and their receptors (CCRL2, CMKLR1, GPR1, and ADIPOR1 and ADIPOR2, respectively) in rats with letrozole-induced PCOS. RESULTS In control animals, VD3 did not change plasma levels of both adipokines, while in PCOS rats supplemented with VD3, they returned to control levels. The expression of RARRES2 and all investigated receptors increased in the uterus of VD3-treated rats; however, the levels of Rarres2 and Gpr1 genes remained unchanged. VD3 supplementation decreased RARRES2, CMKLR1, and GPR1 but increased CCRL2 level to the control value. In the uterus of VD3-treated rats, the transcript and protein levels of ADIPOQ and both receptors ADIPOR1 increased. At the same time, VD3 supplementation induced an increase in Adipoq, Adipor1, and Adipor2 gene expression and restored protein levels to control level values. CONCLUSIONS our findings indicate a new mechanism of VD3 action in the uterine physiology of PCOS rats.
Collapse
Affiliation(s)
- Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (K.P.); (J.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland; (K.K.); (P.S.)
| | - Jesika Rajewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (K.P.); (J.R.)
| | - Kinga Kamińska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland; (K.K.); (P.S.)
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (M.T.); (M.G.)
| | - Marcelina Tchurzyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (M.T.); (M.G.)
| | - Agata Szlaga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (A.B.)
| | - Patryk Sambak
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland; (K.K.); (P.S.)
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (A.B.)
| | - Anna Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (A.S.); (A.B.)
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (M.T.); (M.G.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland; (K.P.); (J.R.)
| |
Collapse
|
3
|
Peng F, Hu Y, Peng S, Zeng N, Shi L. Apigenin exerts protective effect and restores ovarian function in dehydroepiandrosterone induced polycystic ovary syndrome rats: a biochemical and histological analysis. Ann Med 2022; 54:578-587. [PMID: 35152800 PMCID: PMC8843206 DOI: 10.1080/07853890.2022.2034933] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is one of the major causes encouraging the elevation of androgens, obesity along with menstrual complications. Here we study the effect of Apigenin in rat model of polycystic ovarian syndrome. METHODS Female Sprague Dawley (SD) rats were treated with Dehydroepiandrosterone (DHEA) (6 mg/100g) opting the post-pubertal approach for developing rat model of polycystic ovarian syndrome, Metformin was used as standard. The treatments were given for 21 days along with coloproctological analysis. After the treatment regimen, the biochemical analysis was carried in plasma samples, whereas the ovaries were submitted for histopathological analysis. RESULTS The treatment of DHEA resulted in disturbed lipid profile and anti-oxidant status along with increased weight, ovarian diameter and cysts in rats confirming the development of PCOS. However, treatment of Apigenin showed ameliorative effect by improving the lipid profile and anti-oxidant status, the treatment also normalised the body weight, reduced ovarian diameter, cysts and restored the healthy follicles compared to control rats. The treatment of Apigenin also suppressed the levels of oestradiol and testosterone compared to control group, also, levels of progesterone were increased in Apigenin treated group of rats. The treatment of Apigenin suppressed the levels of inflammatory cytokines TNF-α and IL-6. It was observed that the effect of Apigenin were to some extent parallel to standard drug Metformin. CONCLUSION The findings confirmed that Apigenin ameliorates the disturbed hormonal levels, lipid profile and antioxidant status in PCOS rats.
Collapse
Affiliation(s)
- Fangxin Peng
- Department of Reproductive Medicine, Maternal and Child Health Hospital of HuBei Province, Hubei, China
| | - Yichuan Hu
- Department of Anaesthesiology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shu Peng
- Department of Reproductive Medicine, Maternal and Child Health Hospital of HuBei Province, Hubei, China
| | - Ni Zeng
- Department of Reproductive Medicine, Maternal and Child Health Hospital of HuBei Province, Hubei, China
| | - Lei Shi
- Department of Reproductive Medicine, Maternal and Child Health Hospital of HuBei Province, Hubei, China
| |
Collapse
|
4
|
Kumar GS, Tirgar P, Dalal M. Development and evaluation of novel rodent model of PCOS mimicking clinical phenotype in human disease. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polycystic ovary syndrome is a most common female reproductive disorder, involving endocrine and metabolic disorders with unclear etiology. Androgen-based rodent animal models like DHEA and DHT are most suitable for PCOS induction, but still, these models fail to produce non-lean PCOS phenotypes such as hyperandrogenism, hyperinsulinemia, elevated estrogen levels, and ovary weight. Excess fructose consumption leads to hyperandrogenism, hyperinsulinemia, and insulin resistance. The purpose of this study is to investigate, whether fructose consumption along with androgens in rats, could develop all metabolic and endocrine phenotypes of non-lean human PCOS disease.
Methods
Prepubertal SD rats were administered with DHT (83ug, s.c.) and fructose (20%, p.o.) for 90 days whereas DHEA (7 mg/kg, s.c) and fructose (20%, p.o.) for 30 days. During study duration, the blood glucose level for oral glucose tolerance test, estrus cyclicity, and ultrasonography was observed. Reproductive hormones LH, FSH, insulin, testosterone, and estradiol levels were assessed using ELISA. The ovary, uterus, abdominal fat, and subcutaneous fat were collected and weighed, and histopathology was done for any anomaly’s findings.
Results
DHT + fructose-treated rats showed significant (p < 0.05) increase in serum testosterone, LH, estradiol, decreased FSH levels, and caused multiple cystic follicles. Abdominal fat, subcutaneous fat, ovary, and uterine weight were higher in DHT + F and DHEA + F when compared to control groups. OGTT reveals impaired insulin sensitivity and glucose tolerance in both model groups. Ovarian histopathology of DHT + F shows more cysts than the DHEA + F groups. No significant changes in uterine histology of DHT + F and DHEA + F-treated rats.
Conclusion
DHT + F-treated rats mimic all clinical phenotypes and could be used as novel rodent model for non-lean type PCOS.
Collapse
|
5
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
6
|
Fatemi Abhari SM, Khanbabaei R, Hayati Roodbari N, Parivar K, Yaghmaei P. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone - A molecular and stereological study. Life Sci 2020; 249:117515. [PMID: 32147428 DOI: 10.1016/j.lfs.2020.117515] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023]
Abstract
AIMS This study investigated the effects of curcumin-loaded super-paramagnetic iron oxide (Fe3O4) nanoparticles (NPs) (SPIONs) on histological parameters and apoptosis-inducing factors (AIFs) in an experimental mouse model of polycystic ovary syndrome (PCOS). MATERIALS AND METHODS A total number of 40 female prepuberal BALB/c mice were randomly divided into four groups. Group 1 was selected as control and Group 2 was considered as a vehicle taking sesame oil, in the form of a curcumin carrier. Moreover, Group 3 was administered with dehydroepiandrosterone (DHEA) at 6 mg/100 g of the body weight and Group 4 received the DHEA plus the NPs of curcumin (5.4 mg/100 g) for twenty consecutive days. Finally, histology, stereology, and apoptosis of the ovary were evaluated. KEY FINDINGS The results revealed that the NPs of curcumin had reduced ovarian volume (p < 0.05) and a total number of primary, secondary, antral, and primordial follicles in comparison with the PCOS and vehicle groups (p < 0.05). Furthermore, curcumin treatment following administration of the DHEA resulted in a significant decrease in BAX (p < 0.001) and levels of expression of Caspase3 (CASP3) protein, increased levels of B-cell lymphoma 2 (Bcl2) expression (p < 0.05), and moderated apoptosis in granulosa cells in comparison with the ones seen in the PCOS group. SIGNIFICANCE Ovarian injuries and DHEA-induced apoptosis were efficiently suppressed by curcumin, indicating the probable protective property of NPs of curcumin against PCOS.
Collapse
Affiliation(s)
| | - Ramzan Khanbabaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Kalhori Z, Soleimani Mehranjani M, Azadbakht M, Shariaatzadeh MA. Ovary stereological features and serum biochemical factors following induction of polycystic ovary syndrome with testosterone enanthate in mice: An experimental study. Int J Reprod Biomed 2018. [DOI: 10.29252/ijrm.16.4.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Wang Z, Shen M, Xue P, DiVall SA, Segars J, Wu S. Female Offspring From Chronic Hyperandrogenemic Dams Exhibit Delayed Puberty and Impaired Ovarian Reserve. Endocrinology 2018; 159:1242-1252. [PMID: 29315373 PMCID: PMC5793796 DOI: 10.1210/en.2017-03078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/28/2017] [Indexed: 11/19/2022]
Abstract
Female offspring of many species exposed to high doses of androgens in utero experience endocrine dysfunction during adulthood. The phenotype of offspring from females with prepregnancy hyperandrogenemia and impaired ovulation, however, has not been examined. We developed a mouse model of hyperandrogenemia by implanting a low-dose dihydrotestosterone (DHT) pellet 15 days before conception. Female offspring born to dams with hyperandrogenemia (DHT daughters) had delayed puberty (P < 0.05) with first estrus on postnatal day (PND) 41 compared with daughters from dams with physiological levels of DHT (non-DHT daughters, PND37.5). Serum follicle-stimulating hormone (FSH) levels in the DHT daughters were fourfold higher (P < 0.05) on PND21, and anti-Müllerian hormone levels were higher (P < 0.05) on PND26 than in non-DHT daughters (controls). DHT daughters showed an extended time in metestrus/diestrus and a shorter time in the proestrus/estrus phase compared with non-DHT daughters (P < 0.05). To examine ovarian response to gonadotropins, superovulation was induced and in vitro fertilization (IVF) was performed. Fewer numbers of oocytes were retrieved from the DHT daughters compared with non-DHT daughters (P < 0.05). At IVF, there was no difference in rates of fertilization or cleavage of oocytes from either group. There were fewer (P < 0.01) primordial follicles (6.5 ± 0.8 vs 14.5 ± 2.1 per ovary) in the ovaries of DHT daughters compared with non-DHT daughters. Daughters from hyperandrogenemic females exhibited elevated prepubertal FSH levels, diminished ovarian response to superovulation, impaired estrous cyclicity, delayed onset of puberty, and reduced ovarian reserve, suggesting that fetal androgen exposure had lasting effects on female reproductive function.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Mingjie Shen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Department of Gynecology/Obstetrics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 21203, People’s Republic of China
| | - Ping Xue
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sara A. DiVall
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, Washington 98105
| | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
9
|
Kim EJ, Jang M, Choi JH, Park KS, Cho IH. An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): Post-pubertal Improve PCOS's Features. Front Endocrinol (Lausanne) 2018; 9:735. [PMID: 30564195 PMCID: PMC6288467 DOI: 10.3389/fendo.2018.00735] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Complete animal models investigating the pathogenesis and treatment of polycystic ovarian syndrome (PCOS) are not completely established. Although dehydroepiandrosterone (DHEA)-induced pre-pubertal rat model for PCOS has been widely used, the model exhibits weaknesses such as decreased ovary weight. Here, we report an innovative DHEA-induced PCOS model that addresses limitations of the pre-pubertal model. The 21-day-old (pre-pubertal) and 42-day-old (post-pubertal) female rats were subcutaneously injected with DHEA (60 mg/kg body weight) daily for up to 20-30 days. The post-pubertal model showed a steady increase in ovary weight and the number of ovarian cysts as well as uterine weight and thickness, which may be key features of PCOS, compared with the pre-pubertal model. Therefore, a post-pubertal PCOS model induced by DHEA may be an improved model to investigate the etiology of PCOS and development of therapeutic interventions.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong Hee Choi
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyoung Sun Park
- Department of Korean Medicine Obstetrics and Gynecology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Ik-Hyun Cho
| |
Collapse
|
10
|
Hormone-induced rat model of polycystic ovary syndrome: A systematic review. Life Sci 2017; 191:259-272. [DOI: 10.1016/j.lfs.2017.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
|
11
|
Abstract
Pre-natal and early post-natal ovarian development has become a field of increasing importance over recent years. The full effects of perturbations of ovarian development on adult fertility, through environmental changes or genetic anomalies, are only now being truly appreciated. Mitigation of these perturbations requires an understanding of the processes involved in the development of the ovary. Herein, we review some recent findings from mice, sheep, and cattle on the key events involved in ovarian development. We discuss the key process of germ cell migration, ovigerous cord formation, meiosis, and follicle formation and activation. We also review the key contributions of mesonephric cells to ovarian development and propose roles for these cells. Finally, we discuss polycystic ovary syndrome, premature ovarian failure, and pre-natal undernutrition; three key areas in which perturbations to ovarian development appear to have major effects on post-natal fertility.
Collapse
Affiliation(s)
- Peter Smith
- AgResearch InvermayPuddle Alley, Mosgiel 9053, New ZealandDepartment of AnatomyUniversity of Otago, Dunedin 9054, New ZealandDepartment of Anatomy and Developmental BiologyMonash University, Clayton, Victoria 3800, AustraliaRobinson Research InstituteDiscipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, AustraliaAgResearch InvermayPuddle Alley, Mosgiel 9053, New ZealandDepartment of AnatomyUniversity of Otago, Dunedin 9054, New ZealandDepartment of Anatomy and Developmental BiologyMonash University, Clayton, Victoria 3800, AustraliaRobinson Research InstituteDiscipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dagmar Wilhelm
- AgResearch InvermayPuddle Alley, Mosgiel 9053, New ZealandDepartment of AnatomyUniversity of Otago, Dunedin 9054, New ZealandDepartment of Anatomy and Developmental BiologyMonash University, Clayton, Victoria 3800, AustraliaRobinson Research InstituteDiscipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Raymond J Rodgers
- AgResearch InvermayPuddle Alley, Mosgiel 9053, New ZealandDepartment of AnatomyUniversity of Otago, Dunedin 9054, New ZealandDepartment of Anatomy and Developmental BiologyMonash University, Clayton, Victoria 3800, AustraliaRobinson Research InstituteDiscipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
12
|
Tehrani FR, Noroozzadeh M, Zahediasl S, Piryaei A, Azizi F. Introducing a rat model of prenatal androgen-induced polycystic ovary syndrome in adulthood. Exp Physiol 2014; 99:792-801. [DOI: 10.1113/expphysiol.2014.078055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences; Faculty of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Fereidoun Azizi
- Endocrine Research Center; Research Institute for Endocrine Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
13
|
Yang M, Du J, Lu D, Ren C, Shen H, Qiao J, Chen X, Zhang H. Increased expression of kindlin 2 in luteinized granulosa cells correlates with androgen receptor level in patients with polycystic ovary syndrome having hyperandrogenemia. Reprod Sci 2013; 21:696-703. [PMID: 24336678 DOI: 10.1177/1933719113512536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hyperandrogenemia is the leading defect in patients with polycystic ovary syndrome (PCOS) and considered to be involved in the ovulation dysfunction of PCOS. During the process of ovulation, granulosa cells (GCs) undergo epithelial-mesenchymal transition (EMT), and integrin-interacting protein kindlin 2 is a well-known regulator in EMT. Therefore, our objective here was to compare the expression levels of kindlin 2 in luteinized GCs between patients with PCOS and control women and the relationship between kindlin 2 and PCOS pathogenesis. In this study, kindlin 2 expression was significantly increased in luteinized GCs from patients with PCOS, and kindlin 2 could be induced by testosterone both in vitro and in vivo. Meanwhile, kindlin 2 was positively correlated with androgen receptor (AR) in PCOS GCs. Taken together, kindlin 2 may play a role in luteinized GCs, especially in the case of excess androgen. Further studies are required to assess the specific role of kindlin 2 in follicular development and PCOS pathogenesis.
Collapse
Affiliation(s)
- Mei Yang
- 1Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and Laboratory of Stem Cell, Development and Reproductive Medicine, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Johansson J, Stener-Victorin E. Polycystic ovary syndrome: effect and mechanisms of acupuncture for ovulation induction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:762615. [PMID: 24073009 PMCID: PMC3773899 DOI: 10.1155/2013/762615] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/23/2013] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder among women of reproductive age, is characterized by the coexistence of hyperandrogenism, ovulatory dysfunction, and polycystic ovaries (PCO). PCOS also represents the largest part of female oligoovulatory infertility, and the management of ovulatory and menstrual dysfunction, comprises a third of the high costs of PCOS treatment. Current pharmacological and surgical treatments for reproductive symptoms are effective, however, associated with negative side effects, such as cardiovascular complications and multiple pregnancies. For menstrual irregularities and ovulation induction in women with PCOS, acupuncture has indicated beneficial effects. This review will focus on the results from randomized controlled acupuncture trials for regulation of menstrual dysfunction and for inducing ovulation in women with PCOS although there are uncontrolled trials with nonetheless interesting results. Animal experimental studies will be further discussed when they can provide a more mechanistic explanatory view.
Collapse
Affiliation(s)
- Julia Johansson
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 434, 405 30 Gothenburg, Sweden
| | - Elisabet Stener-Victorin
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 434, 405 30 Gothenburg, Sweden
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
15
|
Duncan WC, Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary. Reprod Fertil Dev 2013; 25:362-71. [PMID: 22951108 DOI: 10.1071/rd12112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
The ovary is a key tissue in the study of physiological neo-vascularisation in the adult and its study has highlighted important molecules involved in the regulation of angiogenesis in vivo. These include vascular endothelial growth factor, delta-like ligand 4, thrombospondin-1, prokineticin-1 and prostaglandin E2. Targeting these molecular pathways has therapeutic potential and their manipulation has an increasing preclinical and clinical role in the management of the pathological ovary. Targeting angiogenic pathways has utility in the promotion of ovarian angiogenesis to improve tissue and follicle survival and function as well as the prevention and management of ovarian hyperstimulation syndrome. There is a theoretical possibility that targeting angiogenesis may improve the function of the polycystic ovary and a real role for targeting angiogenesis in ovarian cancer.
Collapse
Affiliation(s)
- W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
16
|
Kim JY, Xue K, Cao M, Wang Q, Liu JY, Leader A, Han JY, Tsang BK. Chemerin suppresses ovarian follicular development and its potential involvement in follicular arrest in rats treated chronically with dihydrotestosterone. Endocrinology 2013; 154:2912-23. [PMID: 23696570 DOI: 10.1210/en.2013-1001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we have investigated the cellular mechanisms of androgen-induced antral follicular growth arrest and the possible involvement of chemerin and its receptor chemokine-like receptor 1 (CMKLR1) in this process, using a chronically androgenized rat model. We hypothesize that hyperandrogenism induces antral follicle growth arrest via the action of chemerin and ovarian structural changes, resulting from granulosa cell and oocyte apoptosis and theca cell survival. Dihydrotestosterone (DHT) treatment resulted in increased expression of chemerin and CMKLR1 in antral follicles, absence of corpus luteum, and increased atypical follicles. Addition of chemerin to follicle cultures induced granulosa cell apoptosis and suppressed basal, FSH- and growth differentiation factor-9-stimulated follicular growth. DHT down-regulated aromatase expression and increased active caspase-3 content and DNA fragmentation in granulosa cells in vivo. These changes were accompanied by higher phosphatase and tensin homolog and lower phospho-Akt (Ser473) content in antral follicles and higher calpain expression and down-regulation of cytoskeletal proteins in atypical follicles, which were constituted predominantly of theca cells. DHT also activated granulosa cell caspase-3, decreased X-linked inhibitor of apoptosis protein, poly(ADP-ribose) polymerase, and phospho-Akt contents and induced apoptosis in vitro, responses readily attenuated by forced X-linked inhibitor of apoptosis protein expression. These findings are consistent with our hypothesis that antral follicular growth arrest in DHT-treated rats results from increased chemerin expression and action, as well as changes in follicular cell fate and structure, which are a consequence of dysregulated interactions of pro-survival and pro-apoptotic modulators in a cell-specific manner. Our observations suggest that this chronically androgenized rat model may be useful for studies on the long-term effects of androgens on folliculogenesis and may have implications for the female reproductive disorders associated with hyperandrogenism.
Collapse
Affiliation(s)
- Ji Young Kim
- Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Prenatal hyperandrogenism and lipid profile during different age stages: an experimental study. Fertil Steril 2013; 99:551-7. [DOI: 10.1016/j.fertnstert.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/12/2022]
|
18
|
Marino JS, Iler J, Dowling AR, Chua S, Bruning JC, Coppari R, Hill JW. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS): evidence of adipocyte hypertrophy and tissue-specific inflammation. PLoS One 2012; 7:e48643. [PMID: 23119079 PMCID: PMC3485364 DOI: 10.1371/journal.pone.0048643] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023] Open
Abstract
Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC) mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC) mice showed reduced or absent ovulation. IR/LepR(POMC) mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC) mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC) mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joseph S. Marino
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Jeffrey Iler
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Streamson Chua
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Jens C. Bruning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases, and Center for Molecular Medicine Cologne, 2nd Department for Internal Medicine, University of Cologne, and Max Planck Institute for the Biology of Aging, Cologne, Germany
| | - Roberto Coppari
- Departments of Internal Medicine, Division of Hypothalamic Research, Pharmacology, and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| |
Collapse
|
19
|
Mohler ML, Coss CC, Duke CB, Patil SA, Miller DD, Dalton JT. Androgen receptor antagonists: a patent review (2008-2011). Expert Opin Ther Pat 2012; 22:541-65. [PMID: 22583332 DOI: 10.1517/13543776.2012.682571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Androgen receptor (AR) antagonists are predominantly used as chemical castration to treat prostate cancer (i.e., in conjunction with androgen deprivation therapy (ADT)). Unfortunately, castration-resistant prostate cancer (CRPC) typically develops that is refractory to targeted therapy. Insights into CRPC biology have led to the emergence of a promising clinical candidate MDV3100 (1) and a resurgence in this field. A pipeline of preclinical competitive (C-terminally directed) antagonists was discovered using a variety of innovative screening paradigms. Some inhibit nuclear translocation, selectively downregulate or degrade AR (SARD), antagonize wild-type and escape mutant AR (pan-antagonists) and/or antagonize AR target organs in vivo. Separately, the N-terminal domain has emerged as a promising novel target for noncompetitive antagonists. AREAS COVERED AR antagonists whose patents published between 2008 and 2011 are reviewed. Antagonists are organized based on the screening paradigm reported as discussed above. EXPERT OPINION Novel mechanisms provide a more informed basis for selecting a competitive antagonist; however, high potency and favorable in vivo properties remain paramount. Noncompetitive antagonists have theoretical advantages suggestive of improved clinical efficacy, but no clinical proof of concept as of yet.
Collapse
Affiliation(s)
- Michael L Mohler
- Preclinical Research and Development, GTx, Inc., 3 North Dunlap Street, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nugent BM, Tobet SA, Lara HE, Lucion AB, Wilson ME, Recabarren SE, Paredes AH. Hormonal programming across the lifespan. Horm Metab Res 2012; 44:577-86. [PMID: 22700441 PMCID: PMC3756611 DOI: 10.1055/s-0032-1312593] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Hormones influence countless biological processes across an animal's lifespan. Many hormone-mediated events occur within developmental sensitive periods, during which hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous selective critical periods in development with different targets being affected during different periods. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal steroid hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of critical hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be an important mediator of sexual differentiation of the neonatal brain. Brain targets of hormonal programming, such as the paraventricular nucleus of the hypothalamus, may be critical in influencing the development of peripheral targets, such as the ovary. Exposure to excess hormones can cause abnormalities in the ovary during development leading to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased activity of the sympathetic nerve and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function.
Collapse
Affiliation(s)
- B M Nugent
- University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Franks S. Animal models and the developmental origins of polycystic ovary syndrome: increasing evidence for the role of androgens in programming reproductive and metabolic dysfunction. Endocrinology 2012; 153:2536-8. [PMID: 22610962 DOI: 10.1210/en.2012-1366] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN United Kingdom.
| |
Collapse
|
22
|
Wang F, Yu B, Yang W, Liu J, Lu J, Xia X. Polycystic ovary syndrome resembling histopathological alterations in ovaries from prenatal androgenized female rats. J Ovarian Res 2012; 5:15. [PMID: 22607720 PMCID: PMC3406938 DOI: 10.1186/1757-2215-5-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 05/18/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The polycystic ovary syndrome (PCOS) affects approximately 6-10% of women of reproductive age and is characterized by chronic anovulation and hyperandrogenism. However, a comprehensive understanding of the mechanisms that dictate androgen overproduction is lacking, which may account for inconsistencies between measures of androgen excess and clinical presentation in individual cases. METHODS A rat model of PCOS was established by injecting dehydroepiandrosterone sulfoconjugate (DHEAS) into pregnant females. Rats were administered with DHEAS (60 mg/kg/d) subcutaneously (s.c.) for all 20 days of pregnancy (Group A), or for the first 10 days (Group B), or from day 11 to day 20 (Group C). Controls were administered with injection oil (0.2 ml/day) s.c. throughout pregnancy (Group D). The litter rate, abortion rate, and offspring survival rate in each group were recorded. Serum androgen and estrogen were measured and the morphological features of the ovaries were examined by light and electron microscopy in the offspring of each group. RESULTS We found that rats injected with DHEAS throughout pregnancy (group A) lost fertility. Rats injected with DHEAS during early pregnancy (group B) exhibited more serious aberrations in fertility than both Group C, in which rats were injected with DHEAS during late pregnancy (P < 0.05), and Group D (controls). There was a statistical difference of ovarian weight among female offspring in Group B, C and D (P < 0.01). By light and electron microscopy, a significant morphological difference among the female offspring in the three groups was observed. CONCLUSIONS Our results indicate that androgen excess during pregnancy can decrease rat fertility. Excess androgen at the early stage of pregnancy causes high reproductive toxicity, leading to abnormality of ovarian morphology and functions in female offspring.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Gynecology and Obstetrics, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | | | | | | | | | | |
Collapse
|
23
|
Tyndall V, Broyde M, Sharpe R, Welsh M, Drake AJ, McNeilly AS. Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction 2012; 143:21-33. [PMID: 22016380 PMCID: PMC3245827 DOI: 10.1530/rep-11-0239] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/19/2011] [Indexed: 11/08/2022]
Abstract
We investigated the effects of different windows of testosterone propionate (TP) treatment during foetal and neonatal life in female rats to determine whether and when excess androgen exposure would cause disruption of adult reproductive function. Animals were killed prepubertally at d25 and as adults at d90. Plasma samples were taken for hormone analysis and ovaries serial sectioned for morphometric analyses. In prepubertal animals, only foetal+postnatal and late postnatal TP resulted in increased body weights, and an increase in transitory, but reduced antral follicle numbers without affecting total follicle populations. Treatment with TP during both foetal+postnatal life resulted in the development of streak ovaries with activated follicles containing oocytes that only progressed to a small antral (smA) stage and inactive uteri. TP exposure during foetal or late postnatal life had no effect upon adult reproductive function or the total follicle population, although there was a reduction in the primordial follicle pool. In contrast, TP treatment during full postnatal life (d1-25) resulted in anovulation in adults (d90). These animals were heavier, had a greater ovarian stromal compartment, no differences in follicle thecal cell area, but reduced numbers of anti-Mullerian hormone-positive smA follicles when compared with controls. Significantly reduced uterine weights lead reduced follicle oestradiol production. These results support the concept that androgen programming of adult female reproductive function occurs only during specific time windows in foetal and neonatal life with implications for the development of polycystic ovary syndrome in women.
Collapse
Affiliation(s)
- Victoria Tyndall
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Marie Broyde
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Richard Sharpe
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Michelle Welsh
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Amanda J Drake
- Endocrinology Unit University/BHF Centre for Cardiovascular ScienceThe Queens Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | - Alan S McNeilly
- MRC Human Reproductive Sciences UnitUniversity/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| |
Collapse
|
24
|
Congenital and acquired pathology of ovary and tubular genital organs in ewes: a review. Theriogenology 2010; 75:393-410. [PMID: 21111461 DOI: 10.1016/j.theriogenology.2010.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 11/22/2022]
Abstract
Advances in our understanding of ovarian cyclicity, pathogenesis of subfertility and/or infertility and reproductive pathology in food animals have frequently entailed examination of abattoir material. Despite the fact that most lesions in ewes are likely to be of relatively minor significance to fertility, results of previous studies suggest that lesions of the female reproductive system may represent a significant source of loss to sheep husbandry. The objective of this paper is to review the pathophysiology, the effects on reproductive efficiency and the key gross and histological diagnostic features of congenital and acquired pathology of ovary and tubular genital organs in ewes.
Collapse
|
25
|
Abbott DH, Bruns CR, Barnett DK, Dunaif A, Goodfriend TL, Dumesic DA, Tarantal AF. Experimentally induced gestational androgen excess disrupts glucoregulation in rhesus monkey dams and their female offspring. Am J Physiol Endocrinol Metab 2010; 299:E741-51. [PMID: 20682841 PMCID: PMC2980359 DOI: 10.1152/ajpendo.00058.2010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Discrete fetal androgen excess during early gestation in rhesus monkeys (Macaca mulatta) promotes endocrine antecedents of adult polycystic ovary syndrome (PCOS)-like traits in female offspring. Because developmental changes promoting such PCOS-like metabolic dysfunction remain unclear, the present study examined time-mated, gravid rhesus monkeys with female fetuses, of which nine gravid females received 15 mg of testosterone propionate (TP) subcutaneously daily from 40 to 80 days (first to second trimesters) of gestation [term, mean (range): 165 (155-175) days], whereas an additional six such females received oil vehicle injections over the same time interval. During gestation, ultrasonography quantified fetal growth measures and was used as an adjunct for fetal blood collections. At term, all fetuses were delivered by cesarean section for postnatal studies. Blood samples were collected from dams and infants for glucose, insulin, and total free fatty acid (FFA) determinations. TP injections transiently accelerated maternal weight gain in dams, very modestly increased head diameter of prenatally androgenized (PA) fetuses, and modestly increased weight gain in infancy compared with concurrent controls. Mild to moderate glucose intolerance, with increased area-under-the-curve circulating insulin values, occurred in TP-injected dams during an intravenous glucose tolerance test in the early second trimester. Moreover, reduced circulating FFA levels occurred in PA fetuses during a third trimester intravenous glucagon-tolbutamide challenge (140 days gestation), whereas excessive insulin sensitivity and increased insulin secretion relative to insulin sensitivity occurred in PA infants during an intravenous glucose-tolbutamide test at ∼1.5 mo postnatal age. Data from these studies suggest that experimentally induced fetal androgen excess may result in transient hyperglycemic episodes in the intrauterine environment that are sufficient to induce relative increases in pancreatic function in PA infants, suggesting in this nonhuman primate model that differential programming of insulin action and secretion may precede adult metabolic dysfunction.
Collapse
Affiliation(s)
- David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Anderson H, Fogel N, Grebe SK, Singh RJ, Taylor RL, Dunaif A. Infants of women with polycystic ovary syndrome have lower cord blood androstenedione and estradiol levels. J Clin Endocrinol Metab 2010; 95:2180-6. [PMID: 20228162 PMCID: PMC2869542 DOI: 10.1210/jc.2009-2651] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/19/2010] [Indexed: 11/19/2022]
Abstract
CONTEXT Prenatal androgen excess can cause a phenocopy of polycystic ovary syndrome (PCOS) in mammals. Retrospective studies have suggested that girls at risk for PCOS have low birth weight, and prospective studies have suggested an increased prevalence of small-for-gestational-age offspring in women with PCOS. OBJECTIVE The objective of the study was to determine whether infants of women with PCOS have reduced birth weight or increased intrauterine androgen levels. DESIGN This was a prospective case-control study. PARTICIPANTS Thirty-nine PCOS and 31 control women and their infants participated in the study. MAIN OUTCOME MEASURES Birth weight and mixed cord blood testosterone, androstenedione (A), dehydroepiandrosterone, 17-hydroxyprogesterone, estradiol (E2), and dihydrotestosterone levels were measured. RESULTS Mean birth weight did not differ, but there was a significant increase in the prevalence of large-for-gestational-age infants in the PCOS group. Cord blood E2 and A levels were lower (P < 0.05), but testosterone to E2 ratios did not differ in female PCOS compared with control offspring. There was no difference in E2 and A levels in the male PCOS and control offspring. There was no difference in 17-hydroxyprogesterone or other androgen levels in either male or female PCOS offspring compared with their respective control group. CONCLUSION Infants of women with PCOS were more likely to be large for gestational age. Female offspring of affected women have lower cord blood A levels; other cord blood androgen levels do not differ compared with female control offspring. Cord blood E2 levels are also significantly decreased in PCOS, without any difference in the testosterone to E2 ratio, suggesting decreased fetal or placental production of steroids.
Collapse
Affiliation(s)
- Helen Anderson
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|