1
|
Unal S, Mi R, Musicki B, Hoke A, Burnett AL. Mapping of functional erectogenic nerves on the rat prostate. J Sex Med 2025; 22:217-224. [PMID: 39657061 DOI: 10.1093/jsxmed/qdae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Preservation of erectogenic nerves during radical prostatectomy (RP) is hampered by limited understanding of their precise localization, due to their complex, intertwined paths, and the inherent individual variations across patients. Because erection utilizes a subset of cavernous nerves (CNs) that in response to sexual stimuli reveal phosphorylation of neuronal nitric oxide synthase (nNOS) on its stimulatory site Ser-1412, we hypothesized that delineation of nerves containing phosphorylated (P)-nNOS on Ser-1412 would establish the location of functional erectogenic nerves within the periprostatic region. AIM To identify the distribution and quantity of functional erection-relevant ([P-nNOS]-containing) nerves in the periprostatic area and discriminate them among the CNs distribution. We further evaluated whether functional communication exists between contralateral CNs. METHODS Young adult male Sprague-Dawley rats underwent electrical stimulation of the CNs to induce penile erection via phosphorylation of nNOS on Ser-1412 (6 V for 2 min, n = 6). No stimulation group served as control (n = 6). The prostate and adjacent structures were collected and processed for whole-mount double-staining with TuJ1 antibody (a pan-axonal marker) and P-nNOS (n = 3 for stimulation, n = 3 for no stimulation), or total nNOS and P-nNOS (n = 3 for stimulation, n = 3 for no stimulation), followed by modified optical clearing and microscopic examination. Nerve quantification was done by systematic counting. OUTCOMES Location and quantification of functional erectogenic nerves. RESULTS In the male rat, we obtained a map of P-nNOS-containing nerves in the periprostatic area, which are relevant for penile erection. Only 17.5% of all nerves, and only 28.4% of the total nNOS-containing nerves in the periprostatic region are functionally erectogenic nerves. Furthermore, there is no functional innervation between contralateral (stimulated and non-stimulated) CNs. CLINICAL IMPLICATIONS This basic science study is expected to provide a foundation for subsequent studies at the human level. Understanding the erection-relevant nerve distribution in the periprostatic area is expected to advance nerve-sparing RP at the human level to improve sexual function outcomes. STRENGTHS AND LIMITATIONS This is the first study to describe and quantitate a subset of functional erection-relevant (P-nNOS-containing) nerves in the periprostatic area. Our study differs from previous studies where nerves containing total nNOS were localized without specifying which nerves produce erection. However, because this study comprised a relatively small number of rats, further studies with a bigger sample size or other model animals are warranted. CONCLUSION Only a subset of nerve fibers in the periprostatic region represent functional erectogenic nerves, characterized by the expression of P-nNOS (Ser-1412).
Collapse
Affiliation(s)
- Selman Unal
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- Department of Urology, Ankara Yildirim Beyazit University School of Medicine, Ankara, 06800, Turkey
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Situmorang JH, Lin HH, Islam MS, Lai CC. Ovariectomy Exacerbates Acute Ethanol-Induced Tachycardia: Role of Nitric Oxide and NMDA Receptors in the Rostral Ventrolateral Medulla. Int J Mol Sci 2023; 24:5087. [PMID: 36982161 PMCID: PMC10049173 DOI: 10.3390/ijms24065087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Ethanol consumption influences cardiovascular functions. In humans, acute consumption of ethanol causes dose-dependent tachycardia. Our previous study showed that ethanol-induced tachycardia might involve decreased nitric oxide (NO) signaling in the brain's medulla. NMDA receptors, another important target of ethanol, are one of the upstream signals of nitric oxide. Reports showed the modulation of NMDA receptor function by estrogen or estrogen receptors. The present study aims to examine the hypothesis that depletion of estrogen by ovariectomy (OVX) might modulate ethanol-induced tachycardia by regulating NMDA receptor function and NO signaling in the cardiovascular regulatory nucleus of the brain. Ethanol (3.2 g/kg, 40% v/v, 10 mL/kg) or saline (10 mL/kg) was administered by oral gavage in sham or OVX female Sprague-Dawley (SD) rats. The blood pressure (BP) and heart rate (HR) were measured using the tail-cuff method. The levels of phosphoserine 896 of the GluN1 subunit (pGluN1-serine 896) and NMDA GluN1 subunits (GluN1) were determined by immunohistochemistry. The expressions of nitric oxide synthase (NOS) and estrogen receptors in the tissue were measured by Western blotting. Nitric oxide contents were measured as total nitrate-nitrite by colorimetric assay kit. In a 2-h observation, there was no significant change in BP between the saline and ethanol groups. However, compared with saline, ethanol caused an increase in HR (tachycardia) in sham control or OVX rats. Interestingly, ethanol produced more significant tachycardia in the OVX group than in the sham control group. Nitric oxide levels were lower in the area of the rostral ventrolateral medulla (RVLM) 60 min following ethanol administration in OVX compared with sham control, without significant changes in the expression of NOS and estrogen receptors (ERα and ERβ). In addition, a decrease in the immunoreactivity of pGluN1-serine 896, without significant changes in GluN1, was found in neurons of RVLM 40 min following ethanol administration in OVX compared with sham control. Our results suggest that depletion of estradiol (E2) by OVX might exacerbate the tachycardia following ethanol administration, the underlying mechanism of which might be associated with decreased NMDA receptor function and NO level in the RVLM.
Collapse
Affiliation(s)
- Jiro Hasegawa Situmorang
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong 16915, Indonesia
| | - Hsun-Hsun Lin
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Md Sharyful Islam
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Chih-Chia Lai
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
3
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod Sci 2023; 30:802-822. [PMID: 35799018 DOI: 10.1007/s43032-022-01027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
4
|
Delli V, Dehame J, Franssen D, Rasika S, Parent AS, Prevot V, Chachlaki K. Male minipuberty involves the gonad-independent activation of preoptic nNOS neurons. Free Radic Biol Med 2023; 194:199-208. [PMID: 36470319 DOI: 10.1016/j.freeradbiomed.2022.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The maturation of the hypothalamic-pituitary-gonadal (HPG) axis is crucial for the establishment of reproductive function. In female mice, neuronal nitric oxide synthase (nNOS) activity appears to be key for the first postnatal activation of the neural network promoting the release of gonadotropin-releasing hormone (GnRH), i.e. minipuberty. However, in males, the profile of minipuberty as well as the role of nNOS-expressing neurons remain unexplored. METHODS nNOS-deficient and wild-type mice were studied during postnatal development. The expression of androgen (AR) and estrogen receptor alpha (ERα) as well as nNOS phosphorylation were evaluated by immunohistochemistry in nNOS neurons in the median preoptic nucleus (MePO), where most GnRH neuronal cell bodies reside, and the hormonal profile of nNOS-deficient male mice was assessed using previously established radioimmunoassay and ELISA methods. Gonadectomy and pharmacological manipulation of ERα were used to elucidate the mechanism of minipubertal nNOS activation and the maturation of the HPG axis. RESULTS In male mice, minipubertal FSH release occurred at P23, preceding the LH surge at P30, when balanopreputial separation occurs. Progesterone and testosterone remained low during minipuberty, increasing around puberty, whereas estrogen levels were high throughout postnatal development. nNOS neurons showed a sharp increase in Ser1412 phosphorylation of nNOS at P23, a phenomenon that occurred even in the absence of the gonads. In male mice, nNOS neurons did not appear to express AR, but abundantly expressed ERα throughout postnatal development. Selective pharmacological blockade of ERα during the infantile period blunted Ser1412 phosphorylation of nNOS at P23. CONCLUSIONS Our results show that the timing of minipuberty differs in male mice when compared to females, but as in the latter, nNOS activity in the preoptic region plays a role in this process. Additionally, akin to male non-human primates, the profile of minipuberty in male mice is shaped by sex-independent mechanisms, and possibly involves extragonadal estrogen sources.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, F-59000, Lille, France; FHU 1,000 Days for Health, School of Medicine, F-59000, Lille, France
| | - Julien Dehame
- Univ. Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, F-59000, Lille, France; FHU 1,000 Days for Health, School of Medicine, F-59000, Lille, France
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - S Rasika
- Univ. Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, F-59000, Lille, France; FHU 1,000 Days for Health, School of Medicine, F-59000, Lille, France
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium; Department of Pediatrics, University Hospital Liège, Liège, Belgium
| | - Vincent Prevot
- Univ. Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, F-59000, Lille, France; FHU 1,000 Days for Health, School of Medicine, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, F-59000, Lille, France; FHU 1,000 Days for Health, School of Medicine, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
5
|
Chachlaki K, Messina A, Delli V, Leysen V, Maurnyi C, Huber C, Ternier G, Skrapits K, Papadakis G, Shruti S, Kapanidou M, Cheng X, Acierno J, Rademaker J, Rasika S, Quinton R, Niedziela M, L'Allemand D, Pignatelli D, Dirlewander M, Lang-Muritano M, Kempf P, Catteau-Jonard S, Niederländer NJ, Ciofi P, Tena-Sempere M, Garthwaite J, Storme L, Avan P, Hrabovszky E, Carleton A, Santoni F, Giacobini P, Pitteloud N, Prevot V. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci Transl Med 2022; 14:eabh2369. [PMID: 36197968 PMCID: PMC7613826 DOI: 10.1126/scitranslmed.abh2369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.,University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens 115 27, Greece
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Csilla Maurnyi
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Chieko Huber
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Gaëtan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Georgios Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sonal Shruti
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Maria Kapanidou
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xu Cheng
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Jesse Rademaker
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Richard Quinton
- Translational and Clinical Research Institute and the Royal Victoria Infirmary, University of Newcastle , Tyne NE1 3BZ, UK
| | - Marek Niedziela
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan 61-701, Poland
| | - Dagmar L'Allemand
- Department of Endocrinology, Children's Hospital of Eastern Switzerland, St. Gallen 9000, Switzerland
| | - Duarte Pignatelli
- Department of Endocrinology, Hospital S João; Department of Biomedicine, Faculty of Medicine of the University of Porto; IPATIMUP Research Institute, Porto 4200-319, Portugal
| | - Mirjam Dirlewander
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva CH1205, Switzerland
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zürich 8032, Switzerland
| | - Patrick Kempf
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Gynaecology and Obstretic, Jeanne de Flandres Hospital, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Philippe Ciofi
- Inserm, U1215, Neurocentre Magendie, Université de Bordeaux, Bordeaux F-33077, France
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba 14004, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba 14004, Spain
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6DH, UK
| | - Laurent Storme
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Neonatology, Hôpital Jeanne de Flandre, CHU of Lille, Lille F-59000, France
| | - Paul Avan
- Université de Clerremont-Ferrand, Clermont-Ferrand F-63000, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| |
Collapse
|
6
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Interplay of KNDy and nNOS neurons: A new possible mechanism of GnRH secretion in the adult brain. Reprod Biol 2021; 21:100558. [PMID: 34509713 DOI: 10.1016/j.repbio.2021.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023]
Abstract
Reproduction in mammals is favoured when there is sufficient energy available to permit the survival of offspring. Neuronal nitric oxide synthase expressing neurons produce nitric oxide in the proximity of the gonadotropin-releasing hormone neurons in the preoptic region. nNOS neurons are an integral part of the neuronal network controlling ovarian cyclicity and ovulation. Nitric oxide can directly regulate the activity of the GnRH neurons and play a vital role neuroendocrine axis. Kisspeptin neurons are essential for the GnRH pulse and surge generation. The anteroventral periventricular nucleus (AVPV), kisspeptin neurons are essential for GnRH surge generation. KNDy neurons are present in the hypothalamus's arcuate nucleus (ARC), co-express NKB and dynorphin, essential for GnRH pulse generation. Kisspeptin-neurokinin B-dynorphin (KNDy) neuroendocrine molecules of the hypothalamus are key components in the central control of GnRH secretion. The hypothalamic neurons kisspeptin, KNDy, nitric oxide synthase (NOS), and other mediators such as leptin, adiponectin, and ghrelin, play an active role in attaining puberty. Kisspeptin signalling is mediated by NOS, which further results in the secretion of GnRH. Neuronal nitric oxide is critical for attaining puberty, but its direct role in adult GnRH secretion is poorly understood. This review mainly focuses on the role of nNOS and its interplay with KNDy neurons in the hormonal regulation of reproduction.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic and Applied Sciences, Central University Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
7
|
Delli V, Silva MSB, Prévot V, Chachlaki K. The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Mol Cell Endocrinol 2021; 532:111302. [PMID: 33964320 DOI: 10.1016/j.mce.2021.111302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the master regulator of the hypothalamic-pituitary-gonadal (HPG) axis, and therefore of fertility and reproduction. The release pattern of GnRH by the hypothalamus includes both pulses and surges. However, despite a considerable body of evidence in support of a determinant role for kisspeptin, the mechanisms regulating a GnRH pulse and surge remain a topic of debate. In this review we challenge the view of kisspeptin as an absolute "monarch", and instead present the idea of a Kisspeptin-nNOS-GnRH or "KiNG" network that is responsible for generating the "GnRH pulse" and "GnRH surge". In particular, the neuromodulator nitric oxide (NO) has opposite effects to kisspeptin on GnRH secretion in many respects, acting as the Yin to kisspeptin's Yang and creating a dynamic system in which kisspeptin provides the "ON" signal, promoting GnRH release, while NO mediates the "OFF" signal, acting as a tonic brake on GnRH secretion. This interplay between an activator and an inhibitor, which is in turn fine-tuned by the gonadal steroid environment, thus leads to the generation of GnRH pulses and surges and is crucial for the proper development and function of the reproductive axis.
Collapse
Affiliation(s)
- Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France
| | - Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, F-59000, Lille, France; FHU, 1000 Days for Health, F-59000, Lille, France; University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
8
|
Guerra DD, Bok R, Cari EL, Nicholas C, Orlicky DJ, Johnson J, Hurt KJ. Effect of neuronal nitric oxide synthase serine-1412 phosphorylation on hypothalamic-pituitary-ovarian function and leptin response. Biol Reprod 2020; 102:1281-1289. [PMID: 32101284 DOI: 10.1093/biolre/ioaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Hypothalamic neuronal nitric oxide synthase (nNOS) potentiates adult female fertility in rodents by stimulating gonadotropin releasing hormone (GnRH) secretion, which in turn promotes luteinizing hormone (LH) release and ovulation. The mechanism of hypothalamic nNOS activation is not clear but could be via nNOS serine1412 (S1412) phosphorylation, which increases nNOS activity and physiologic NO effects in other organ systems. In female rodents, hypothalamic nNOS S1412 phosphorylation reportedly increases during proestrus or upon acute leptin exposure during diestrus. To determine if nNOS S1412 regulates female reproduction in mice, we compared the reproductive anatomy, estrous cycle duration and phase proportion, and fecundity of wild-type and nNOS serine1412➔alanine (nNOSS1412A) knock-in female mice. We also measured hypothalamic GnRH and serum LH, follicle stimulating hormone (FSH), estradiol, and progesterone in diestrus mice after intraperitoneal leptin injection. Organ weights and histology were not different by genotype. Ovarian primordial follicles, antral follicles, and corpora lutea were similar for wild-type and nNOSS1412A mice. Likewise, estrous cycle duration and phase length were not different, and fecundity was unremarkable. There were no differences among genotypes for LH, FSH, estradiol, or progesterone. In contrast to prior studies, our work suggests that nNOS S1412 phosphorylation is dispensable for normal hypothalamic-pituitary-ovarian function and regular estrous cycling. These findings have important implications for current models of fertility regulation by nNOS phosphorylation.
Collapse
Affiliation(s)
- Damian D Guerra
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Evelyn Llerena Cari
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Cari Nicholas
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Denver, Aurora, CO, USA and
| | - Joshua Johnson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
9
|
Sharma NM, Liu X, Llewellyn TL, Katsurada K, Patel KP. Exercise training augments neuronal nitric oxide synthase dimerization in the paraventricular nucleus of rats with chronic heart failure. Nitric Oxide 2019; 87:73-82. [PMID: 30878404 PMCID: PMC6527363 DOI: 10.1016/j.niox.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Exercise training (ExT) is an established non-pharmacological therapy that improves the health and quality of life in patients with chronic heart failure (CHF). Exaggerated sympathetic drive characterizes CHF due to an imbalance of the autonomic nervous system. Neuronal nitric oxide synthase (nNOS) in the paraventricular nucleus (PVN) produce nitric oxide (NO•), which is known to regulate the sympathetic tone. Previously we have shown that during CHF, the catalytically active dimeric form of nNOS is significantly decreased with a concurrent increase in protein inhibitor of nNOS (PIN) expression, a protein that dissociates dimeric nNOS to monomers and facilitates its degradation. Dimerization of nNOS also requires (6R)-5,6,7,8-tetrahydrobiopterin (BH4) for stability and activity. Previously, we have shown that ExT improves NO-mediated sympathetic inhibition in the PVN; however, the molecular mechanism remains elusive. We hypothesized; ExT restores the sympathetic drive by increasing the levels and catalytically active form of nNOS by abrogating changes in the PIN in the PVN of CHF rats. CHF was induced in adult male Sprague-Dawley rats by coronary artery ligation, which reliably mimics CHF in patients with myocardial infarction. After 4 weeks of surgery, Sham and CHF rats were subjected to 3 weeks of progressive treadmill exercise. ExT significantly (p < 0.05) decreased PIN expression and increased dimer/monomer ratio of nNOS in the PVN of rats with CHF. Moreover, we found decreased GTP cyclohydrolase 1(GCH1) expression: a rate-limiting enzyme for BH4 biosynthesis in the PVN of CHF rats suggesting that perhaps reduced BH4 availability may also contribute to decreased nNOS dimers. Interestingly, CHF induced decrease in GCH1 expression was increased with ExT. Our findings revealed that ExT rectified decreased PIN and GCH1 expression and increased dimer/monomer ratio of nNOS in the PVN, which may lead to increase NO• bioavailability resulting in amelioration of activated sympathetic drive during CHF.
Collapse
Affiliation(s)
- Neeru M Sharma
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA.
| | - Xuefei Liu
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| | - Tamra L Llewellyn
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE 68198-5850, USA
| |
Collapse
|
10
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
11
|
Chachlaki K, Garthwaite J, Prevot V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 2017. [PMID: 28621341 DOI: 10.1038/nrendo.2017.69] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemical signalling molecule nitric oxide (NO), which freely diffuses through aqueous and lipid environments, subserves an array of functions in the mammalian central nervous system, such as the regulation of synaptic plasticity, blood flow and neurohormone secretion. In this Review, we consider the cellular and molecular mechanisms by which NO evokes short-term and long-term changes in neuronal activity. We also highlight recent studies showing that discrete populations of neurons that synthesize NO in the hypothalamus constitute integrative systems that support life by relaying metabolic and gonadal signals to the neuroendocrine brain, and thus gate the onset of puberty and adult fertility. The putative involvement and therapeutic potential of NO in the pathophysiology of brain diseases, for which hormonal imbalances during postnatal development could be risk factors, is also discussed.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, F-59000 Lille, France
- University of Lille, University Hospital Federations (FHU) 1,000 days for Health, School of Medicine, 1 place de Verdun, F-59000 Lille, France
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, F-59000 Lille, France
- University of Lille, University Hospital Federations (FHU) 1,000 days for Health, School of Medicine, 1 place de Verdun, F-59000 Lille, France
| |
Collapse
|
12
|
Chachlaki K, Malone SA, Qualls-Creekmore E, Hrabovszky E, Münzberg H, Giacobini P, Ango F, Prevot V. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J Comp Neurol 2017; 525:3177-3189. [PMID: 28577305 DOI: 10.1002/cne.24257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/01/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFPVglut2 , EYFPVgat , and GFPGad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| | - Samuel A Malone
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| | - Emily Qualls-Creekmore
- Departments of Central Leptin Signaling, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Erik Hrabovszky
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Heike Münzberg
- Departments of Central Leptin Signaling, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| | - Fabrice Ango
- Inserm, Laboratory of Development of GABAergic circuit, IGF, U1191, Montpellier, France.,University of Montpellier, CNRS UMR5203, Montpellier, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172, Lille, France.,University of Lille, FHU 1000 days for Health, School of Medicine, Lille, France
| |
Collapse
|
13
|
Del Bianco-Borges B, Franci C. Estrogen-dependent post-translational change in the nitric oxide system may mediate the leptin action on LH and prolactin secretion. Brain Res 2015; 1604:62-73. [DOI: 10.1016/j.brainres.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 11/25/2022]
|
14
|
Borgquist A, Meza C, Wagner EJ. Role of neuronal nitric oxide synthase in the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis. J Neurophysiol 2014; 113:904-14. [PMID: 25392169 DOI: 10.1152/jn.00615.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since estradiol attenuates cannabinoid-induced increases in energy intake, energy expenditure, and transmission at proopiomelanocortin (POMC) synapses in the hypothalamic arcuate nucleus (ARC), we tested the hypothesis that neuronal nitric oxide synthase (nNOS) plays an integral role. To this end, whole animal experiments were carried out in gonadectomized female guinea pigs. Estradiol benzoate (EB; 10 μg sc) decreased incremental food intake as well as O2 consumption, CO2 production, and metabolic heat production as early as 2 h postadministration. This was associated with increased phosphorylation of nNOS (pnNOS), as evidenced by an elevated ratio of pnNOS to nNOS in the ARC. Administration of the cannabinoid receptor agonist WIN 55,212-2 (3 μg icv) into the third ventricle evoked hyperphagia as early as 1 h postadministration, which was blocked by EB and restored by the nonselective NOS inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μg icv) when the latter was combined with the steroid. Whole cell patch-clamp recordings showed that 17β-estradiol (E2; 100 nM) rapidly diminished cannabinoid-induced decreases in miniature excitatory postsynaptic current frequency, which was mimicked by pretreatment with the NOS substrate L-arginine (30 μM) and abrogated by L-NAME (300 μM). Furthermore, E2 antagonized endocannabinoid-mediated depolarization-induced suppression of excitation, which was nullified by the nNOS-selective inhibitor N5-[imino(propylamino)methyl]-L-ornithine hydrochloride (10 μM). These effects occurred in a sizable number of identified POMC neurons. Taken together, the estradiol-induced decrease in energy intake is mediated by a decrease in cannabinoid sensitivity within the ARC feeding circuitry through the activation of nNOS. These findings provide compelling evidence for the need to develop rational, gender-specific therapies to help treat metabolic disorders such as cachexia and obesity.
Collapse
Affiliation(s)
- Amanda Borgquist
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Cecilia Meza
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Edward J Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| |
Collapse
|
15
|
Estrogen, but not progesterone, induces the activity of nitric oxide synthase within the medial preoptic area in female rats. Brain Res 2014; 1578:23-9. [PMID: 25044408 DOI: 10.1016/j.brainres.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022]
Abstract
The control of gonadotropin-releasing hormone (GnRH) secretion depends on the action of ovarian steroids and several substances, including nitric oxide (NO). NO in the medial preoptic area (MPOA) stimulates the proestrus surge of luteinizing hormone (LH). We studied the effect of estrogen (Tamoxifen-TMX) and progesterone (RU-486) antagonists on mRNA and protein expression of NO synthase (NOS), the enzyme that produces NO, as well as its activity within MPOA. Female rats received s.c. injections of TMX (3mg/animal) on first and second days of the estrous cycle (9 am), RU-486 (2mg/animal) on first, second, (8 am and 5 pm) and third days of the estrous cycle (8 am) or oil (controls) and were killed on the third day (5 pm). Real time-PCR and western blotting were performed to study NOS mRNA and protein expressions. The NOS activity was indirectly assessed by measuring the conversion from [(14)C]-L-arginine into [(14)C]-L-citrulline. TMX significantly decreased neuronal NOS (nNOS) mRNA expression (90%), and the activity of NOS, but did not alter nNOS protein expression. Also, TMX significantly decreased LH, FSH, estrogen and progesterone plasma levels. RU-486 nor affected NOS mRNA and protein expressions neither the NOS activity in the MPOA, but reduced FSH levels. The nitrergic system in the MPOA can be stimulated by estrogen whereas TMX decreased NOS activity and mRNA expression. In conclusion, the involvement of the nitrergic system in the MPOA to induce the surge of LH on proestrus depends on the estrogen action to stimulate the mRNA-nNOS expression and the activity of nNOS but it does not seem to depend on progesterone action.
Collapse
|
16
|
Will RG, Hull EM, Dominguez JM. Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacol Biochem Behav 2014; 121:115-23. [DOI: 10.1016/j.pbb.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/13/2014] [Accepted: 02/05/2014] [Indexed: 11/25/2022]
|
17
|
Bellefontaine N, Chachlaki K, Parkash J, Vanacker C, Colledge W, d'Anglemont de Tassigny X, Garthwaite J, Bouret SG, Prevot V. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J Clin Invest 2014; 124:2550-9. [PMID: 24812663 DOI: 10.1172/jci65928] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/20/2014] [Indexed: 01/28/2023] Open
Abstract
The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.
Collapse
|
18
|
Grassi D, Lagunas N, Amorim M, Pinos H, Panzica G, Garcia-Segura LM, Collado P. Role of oestrogen receptors on the modulation of NADPH-diaphorase-positive cell number in supraoptic and paraventricular nuclei of ovariectomised female rats. J Neuroendocrinol 2013; 25:244-50. [PMID: 22967140 DOI: 10.1111/j.1365-2826.2012.02387.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/06/2012] [Accepted: 09/08/2012] [Indexed: 01/24/2023]
Abstract
Modulation of the nitric oxide producing system (demonstrated via the NADPH-diaphorase histochemical reaction) by oestradiol has been established in several structures of the rat brain. The present study aimed to explore the possible regulation of NADPH-diaphorase activity by oestradiol in neurones of the supraoptic (SON) and paraventricular (PVN) nuclei and the role of oestrogen receptors (ERα and ERβ) in this regulation. Adult ovariectomised rats were divided into six groups and injected either with vehicle or a single dose of oestradiol, a selective ERα agonist-PPT [4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol], a selective ERβ agonist-DPN [2,3-bis(4-hydroxyphenyl)-propionitrile], a selective ERα antagonist-MPP [1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride] or a selective ERβ antagonist-PHTPP (4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol). The number of NADPH-diaphorase positive elements in the SON and the PVN was modulated by both ERs but, depending on the nucleus, ERα and ERβ ligands induced different effects. These results suggest that the regulation of nitrergic system by ERs may play a role in the control of oestrogen-dependent physiological mechanisms regulated by the SON and the PVN.
Collapse
Affiliation(s)
- D Grassi
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J Neurosci 2012; 32:932-45. [PMID: 22262891 DOI: 10.1523/jneurosci.4765-11.2012] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Reproduction is controlled in the brain by a neural network that drives the secretion of gonadotropin-releasing hormone (GnRH). Various permissive homeostatic signals must be integrated to achieve ovulation in mammals. However, the neural events controlling the timely activation of GnRH neurons are not completely understood. Here we show that kisspeptin, a potent activator of GnRH neuronal activity, directly communicates with neurons that synthesize the gaseous transmitter nitric oxide (NO) in the preoptic region to coordinate the progression of the ovarian cycle. Using a transgenic Gpr54-null IRES-LacZ knock-in mouse model, we demonstrate that neurons containing neuronal NO synthase (nNOS), which are morphologically associated with kisspeptin fibers, express the kisspeptin receptor GPR54 in the preoptic region, but not in the tuberal region of the hypothalamus. The activation of kisspeptin signaling in preoptic neurons promotes the activation of nNOS through its phosphorylation on serine 1412 via the AKT pathway and mimics the positive feedback effects of estrogens. Finally, we show that while NO release restrains the reproductive axis at stages of the ovarian cycle during which estrogens exert their inhibitory feedback, it is required for the kisspeptin-dependent preovulatory activation of GnRH neurons. Thus, interactions between kisspeptin and nNOS neurons may play a central role in regulating the hypothalamic-pituitary-gonadal axis in vivo.
Collapse
|
20
|
Briz V, Parkash J, Sánchez-Redondo S, Prevot V, Suñol C. Allopregnanolone prevents dieldrin-induced NMDA receptor internalization and neurotoxicity by preserving GABA(A) receptor function. Endocrinology 2012; 153:847-60. [PMID: 22166974 DOI: 10.1210/en.2011-1333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dieldrin is an endocrine disruptor that accumulates in mammalian adipose tissue and brain. It induces convulsions due to its antagonism of the γ-aminobutyric acid A receptor (GABA(A)R). We have previously reported that long-term exposure to dieldrin causes the internalization of the N-methyl-D-aspartate receptor (NMDAR) as a result of persistent GABA(A)R inhibition. Because the neurosteroids 17β-estradiol (E2) and allopregnanolone are known to modulate the function and trafficking of GABA(A)R and NMDAR, we examined the effects of E2 and allopregnanolone on dieldrin-induced GABA(A)R inhibition, NMDAR internalization, and neuronal death in cortical neurons. We found that 1 nM E2 increased the membrane expression of NR1/NR2B receptors and postsynaptic density 95 but did not induce their physical association. In contrast, 10 nM E2 had no effect on these proteins but reduced NR2A membrane expression. We also found that exposure to 60 nM dieldrin for 6 d in vitro caused the internalization of NR1 and NR2B but not NR2A. Treatment with either 1 nM E2 or 10 μM allopregnanolone prevented the dieldrin-induced reduction in membrane levels of the NR1/NR2B receptors. Furthermore, prolonged exposure to 200 nM dieldrin down-regulated the expression of NR2A; this was inhibited only by allopregnanolone. Although both hormones restored NMDAR function, as measured by the NMDA-induced rise in intracellular calcium, allopregnanolone (but not E2) reversed the inhibition of GABA(A)R and neuronal death caused by prolonged exposure to dieldrin. Our results indicate that allopregnanolone protects cortical neurons against the neurotoxicity caused by long-term exposure to dieldrin by maintaining GABA(A)R and NMDAR functionality.
Collapse
Affiliation(s)
- Víctor Briz
- Department of Neurochemistry and Neuropharmacology, Consejo Superior de Investigaciones Científicas-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), Centro de Investigación Biomédica en Red Epidemiology and Public Health (CIBERESP), E-08036, Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
El Ghazi F, Desfeux A, Brasse-Lagnel C, Roux C, Lesueur C, Mazur D, Remy-Jouet I, Richard V, Jégou S, Laudenbach V, Marret S, Bekri S, Prevot V, Gonzalez BJ. NO-dependent protective effect of VEGF against excitotoxicity on layer VI of the developing cerebral cortex. Neurobiol Dis 2011; 45:871-86. [PMID: 22209711 DOI: 10.1016/j.nbd.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/13/2011] [Accepted: 12/04/2011] [Indexed: 01/07/2023] Open
Abstract
In industrialized countries, cerebral palsy affects 2.5‰ of preterm and term infants. At a neurochemical level, the massive release of glutamate constitutes a major process leading to excitotoxicity and neonatal brain lesions. Previous studies, conducted in the laboratory, revealed that, in (δ/δ)VEGF(A) transgenic mice, glutamate-induced brain lesions are exacerbated suggesting that VEGF(A) could play a protective action against excitotoxicity. Using a model of cultured cortical brain slices, the aim of the study was to characterize the central effects of VEGF against glutamate-induced excitotoxicity in neonates. Exposure of brain slices to glutamate induced a strong increase of necrotic cell death in the deep cortical layer VI and a decrease of apoptotic death in superficial layers II-IV. When administered alone, a 6-h treatment with VEGF(A) had no effect on both apoptotic and necrotic deaths. In contrast, VEGF(A) abolished the glutamate-induced necrosis observed in layer VI. While MEK and PI3-K inhibitors had no effect on the protective action of VEGF(A), L-NAME, a pan inhibitor of NOS, abrogated the effect of VEGF(A) and exacerbated the excitotoxic action of glutamate. Calcimetry experiments performed on brain slices revealed that VEGF(A) reduced the massive calcium influx induced by glutamate in layer VI and this effect was blocked by L-NAME. Neuroprotective effect of VEGF(A) was also blocked by LNIO and NPLA, two inhibitors of constitutive NOS, while AGH, an iNOS inhibitor, had no effect. Nitrite measurements, electron paramagnetic resonance spectroscopy and immunohistochemistry indicated that glutamate was a potent inducer of NO production via activation of nNOS in the cortical layer VI. In vivo administration of nNOS siRNA promoted excitotoxicity and mimicked the effects of L-NAME, LNIO and NPLA. A short-term glutamate treatment increased nNOS Ser1412 phosphorylation, while a long-term exposure inhibited nNOS/NR2B protein-protein interactions. Altogether, these findings indicate that, in deep cortical layers of mice neonates, glutamate stimulates nNOS activity. Contrasting with mature brain, NO production induced by high concentrations of glutamate is neuroprotective and is required for the anti-necrotic effect of VEGF(A).
Collapse
Affiliation(s)
- Faiza El Ghazi
- EA NeoVasc 4309, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Rouen Institute for Biomedical Research, European Institute for Peptide Research (IFR 23), University of Rouen, Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Donato J, Elias CF. The ventral premammillary nucleus links metabolic cues and reproduction. Front Endocrinol (Lausanne) 2011; 2:57. [PMID: 22649378 PMCID: PMC3355867 DOI: 10.3389/fendo.2011.00057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022] Open
Abstract
The amount of body fat and the energy balance are important factors that influence the timing of puberty and the normal reproductive function. Leptin is a key hormone that conveys to the central nervous system information about the individual energy reserve and modulates the hypothalamus-pituitary-gonad (HPG) axis. Recent findings suggest that the ventral premammillary nucleus (PMV) mediates the effects of leptin as a permissive factor for the onset of puberty and the coordinated secretion of luteinizing hormone during conditions of negative energy balance. In this review, we will summarize the existing literature about the potential role played by PMV neurons in the regulation of the HPG axis.
Collapse
Affiliation(s)
- Jose Donato
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
- *Correspondence: Jose Donato Jr., Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6.206, Dallas, TX 75390, USA. e-mail:
| | - Carol Fuzeti Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
23
|
Bellefontaine N, Hanchate NK, Parkash J, Campagne C, de Seranno S, Clasadonte J, d'Anglemont de Tassigny X, Prevot V. Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 2011; 93:74-89. [PMID: 21335953 DOI: 10.1159/000324147] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/04/2011] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a peculiar chemical transmitter that freely diffuses through aqueous and lipid environments and plays a role in major aspects of brain function. Within the hypothalamus, NO exerts critical effects upon the gonadotropin-releasing hormone (GnRH) network to maintain fertility. Here, we review recent evidence that NO regulates major aspects of the GnRH neuron physiology. Far more active than once thought, NO powerfully controls GnRH neuronal activity, GnRH release and structural plasticity at the neurohemal junction. In the preoptic region, neuronal nitric oxide synthase (nNOS) activity is tightly regulated by estrogens and is found to be maximal at the proestrus stage. Natural fluctuations of estrogens control both the differential coupling of this Ca²+-activated enzyme to glutamate N-methyl-D-aspartic acid receptor channels and phosphorylation-mediated nNOS activation. Furthermore, NO endogenously produced by neurons expressing nNOS acutely and directly suppresses spontaneous firing in GnRH neurons, which suggests that neuronal NO may serve as a synchronizing switch within the preoptic region. At the median eminence, NO is spontaneously released from an endothelial source and follows a pulsatile and cyclic pattern of secretion. Importantly, GnRH release appears to be causally related to endothelial NO release. NO is also highly involved in mediating the dialogue set in motion between vascular endothelial cells and tanycytes that control the direct access of GnRH neurons to the pituitary portal blood during the estrous cycle. Altogether, these data raise the intriguing possibility that the neuroendocrine brain uses NO to coordinate both GnRH neuronal activity and GnRH release at key stages of reproductive physiology.
Collapse
Affiliation(s)
- Nicole Bellefontaine
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, U837, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Donato J, Frazão R, Fukuda M, Vianna CR, Elias CF. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 2010; 151:5415-27. [PMID: 20881244 PMCID: PMC2954713 DOI: 10.1210/en.2010-0651] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptin's effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO synthase (nNOS) activity. Nicotinamide adenine dinucleotide phosphate diaphorase activity and leptin-induced phosphorylation of signal transducer and activator of transcription-3 immunoreactivity were coexpressed in subsets of neurons of the medial preoptic area, the paraventricular nucleus of the thalamus, the arcuate nucleus (Arc), the dorsomedial nucleus of the hypothalamus (DMH), the posterior hypothalamic area, the ventral premammillary nucleus (PMV), the parabrachial nucleus, and the dorsal motor nucleus of the vagus nerve. Fasting blunted nNOS mRNA expression in the medial preoptic area, Arc, DMH, PMV, and posterior hypothalamic area, and this effect was not restored by acute leptin administration. No difference in the number of neurons expressing nNOS immunoreactivity was noticed comparing hypothalamic sections of fed (wild type and ob/ob), fasted, and fasted leptin-treated mice. However, we found that in states of low leptin levels, as in fasting, or lack of leptin, as in ob/ob mice, the number of neurons expressing the phosphorylated form of nNOS is decreased in the Arc, DMH, and PMV. Notably, acute leptin administration to fasted wild-type mice restored the number of phosphorylated form of nNOS neurons to that observed in fed wild-type mice. Herein we identified the first-order neurons potentially involved in NO-mediated effects of leptin and demonstrate that leptin regulates nNOS activity predominantly through posttranslational mechanisms.
Collapse
Affiliation(s)
- Jose Donato
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|