1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
3
|
Qu J, Wu D, Ko CW, Zhu Q, Liu M, Tso P. Deficiency of apoA-IV in Female 129X1/SvJ Mice Leads to Diet-Induced Obesity, Insulin Resistance, and Decreased Energy Expenditure. Nutrients 2023; 15:4655. [PMID: 37960308 PMCID: PMC10650794 DOI: 10.3390/nu15214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is one of the main risk factors for cardiovascular diseases, type II diabetes, hypertension, and certain cancers. Obesity in women at the reproductive stage adversely affects contraception, fertility, maternal well-being, and the health of their offspring. Being a major protein component in chylomicrons and high-density lipoproteins, apolipoprotein A-IV (apoA-IV) is involved in lipid metabolism, food intake, glucose homeostasis, prevention against atherosclerosis, and platelet aggregation. The goal of the present study is to determine the impact of apoA-IV deficiency on metabolic functions in 129X1/SvJ female mouse strain. After chronic high-fat diet feeding, apoA-IV-/- mice gained more weight with a higher fat percentage than wild-type (WT) mice, as determined by measuring their body composition. Increased adiposity and adipose cell size were also observed with a microscope, particularly in periovarian fat pads. Based on plasma lipid and adipokine assays, we found that obesity in apoA-IV-/- mice was not associated with hyperlipidemia but with higher leptin levels. Compared to WT mice, apoA-IV deficiency displayed glucose intolerance and elevated insulin levels, according to the data of the glucose tolerance test, and increased HOMA-IR values at fasting, suggesting possible insulin resistance. Lastly, we found obesity in apoA-IV-/- mice resulting from reduced energy expenditure but not food intake. Together, we established a novel and excellent female mouse model for future mechanistic study of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Jie Qu
- Medpace Reference Laboratories, LLC, 5365 Medpace Way, Cincinnati, OH 45227, USA;
| | - Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Chih-Wei Ko
- Chroma Medicine, 201 Brookline Ave, Suite 1101, Boston, MA 02215, USA;
| | - Qi Zhu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| |
Collapse
|
4
|
Zhu Q, Qi N, Shen L, Lo CC, Xu M, Duan Q, Ollberding NJ, Wu Z, Hui DY, Tso P, Liu M. Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:2175. [PMID: 37432375 PMCID: PMC10180580 DOI: 10.3390/nu15092175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Zhe Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| |
Collapse
|
5
|
Chen J, Li K, Shao J, Lai Z, Feng Y, Liu B. The Correlation of Apolipoprotein B with Alterations in Specific Fat Depots Content in Adults. Int J Mol Sci 2023; 24:ijms24076310. [PMID: 37047284 PMCID: PMC10094599 DOI: 10.3390/ijms24076310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Body mass index (BMI) and blood biomarkers are not enough to predict cardiovascular disease risk. Apolipoprotein B was identified to be associated with cardiovascular disease (CVD) progression. The Dual-energy X-ray Absorption (DXA) results could be considered as a predictor for cardiovascular disease in a more refined way based on fat distribution. The prediction of CVD risk by simple indicators still cannot meet clinical needs. The association of ApoB with specific fat depot features remains to be explored to better co-predict cardiovascular disease risk. An amount of 5997 adults from National Health and Nutrition Examination Survey (NHANES) were enrolled. Their demographic information, baseline clinical condition, blood examination, and DXA physical examination data were collected. Multivariate regression was used to assess the correlation between ApoB and site-specific fat characteristics through different adjusted models. Smooth curve fittings and threshold analysis were used to discover the turning points with 95% confidence intervals. ApoB is positively correlated with arms percent fat, legs percent fat, trunk percent fat, android percent fat, gynoid percent fat, arm circumference and waist circumference after adjustment with covariates for age, gender, race, hypertension, diabetes, hyperlipidemia, coronary heart disease, smoking status and vigorous work activity. The smooth curve fitting and threshold analysis also showed that depot-specific fat had lower turning points of ApoB in both males and females within the normal reference range of ApoB. Meanwhile, females have a lower increase in ApoB per 1% total percent fat and android percent fat than males before the turning points, while females have a higher growth of ApoB per 1% gynoid percent fat than males. The combined specific fat-depot DXA and ApoB analysis could indicate the risk of CVD in advance of lipid biomarkers or DXA alone.
Collapse
|
6
|
Maric I, Krieger JP, van der Velden P, Börchers S, Asker M, Vujicic M, Wernstedt Asterholm I, Skibicka KP. Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents. Front Nutr 2022; 9:828522. [PMID: 35284452 PMCID: PMC8908889 DOI: 10.3389/fnut.2022.828522] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Prevalence and health consequences of obesity differ between men and women. Yet, most preclinical studies investigating the etiology of obesity have, to date, been conducted in male rodents. Notably, diet is a major determinant of obesity, but sex differences in rodent models of diet-induced obesity, and the mechanisms that underlie such differences, are still understudied. Here, we aim to determine whether time course and characteristics of diet-induced obesity differ between sexes in rats and mice, and to investigate the potential causes of the observed divergence. To achieve this, we offered the most commonly tested rodents of both sexes, SD rats and C57BL/6 mice, a free choice of 60 % high-fat diet (HFD) and regular chow; body weight, food intake, fat mass, brown adipose responses, locomotor activity and glucose tolerance were assessed in a similar manner in both species. Our results indicate that overall diet-induced hyperphagia is greater in males but that females display a higher preference for the HFD, irrespective of species. Female rats, compared to males, showed a delay in diet-induced weight gain and less metabolic complications. Although male rats increased brown adipose tissue thermogenesis in response to the HFD challenge, this was not sufficient to counteract increased adiposity. In contrast to rats, female and male mice presented with a dramatic adiposity and impaired glucose tolerance, and a decreased energy expenditure. Female mice showed a 5-fold increase in visceral fat, compared to 2-fold increase seen in male mice. Overall, we found that male and female rodents responded very differently to HFD challenge, and engaged different compensatory energy expenditure mechanisms. In addition, these sex differences are divergent in rats and mice. We conclude that SD rats have a better face validity for the lower prevalence of overweight in women, while C57BL/6 mice may better model the increased prevalence of morbid obesity in women.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pauline van der Velden
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Milica Vujicic
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Liu M, Shen L, Yang Q, Nauli AM, Bingamon M, Wang DQH, Ulrich-Lai YM, Tso P. Sexual dimorphism in intestinal absorption and lymphatic transport of dietary lipids. J Physiol 2021; 599:5015-5030. [PMID: 34648185 PMCID: PMC8595769 DOI: 10.1113/jp281621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Although the basic process of intestinal lipid absorption and transport is understood, many critical aspects remain unclear. One question in particular is whether intestinal lipid absorption and transport differ between the sexes. Using a well-established lymph fistula model, we found that intact female mice exhibited lower lymphatic output of triacylglycerol (TAG) than male mice. Further analysis revealed that the female mice segregated into two groups: the high group having similar lymphatic TAG transport to the males, and the low group having significantly less lymphatic output, implying the impact of cyclical variation of ovarian hormonal levels. These led us to examine whether oestradiol (E2) and progesterone (P) affect intestinal absorption and lymphatic transport of dietary lipids. In ovariectomized (OVX) rats, E2 treatment significantly reduced [3 H]-TAG lymphatic output through reducing TAG transport; and P treatment decreased [14 C]cholesterol (Chol) lymphatic output by inhibiting Chol absorption, compared to vehicle treatment. Gene expression data suggested that E2 enhances vascular endothelial growth factor-A (VEGF-A) signalling to reduce the permeability of lacteals, leading to reduced CM transport through the lymphatic system. Interestingly, E2 treatment also increased lymphatic output of apolipoprotein A-I (apoA-I), but not apoB-48 and apoA-IV, in the OVX rats. Collectively, these data suggested that ovarian hormone-induced reductions of intestinal lipid absorption and lymphatic transport, as well as increased lymphatic output of apoA-I, may contribute to a beneficial protection from atherosclerosis in females. KEY POINTS: Significant differences in intestinal lipid absorption and lymphatic transport were found between female and male animals. Oestrogen treatment significantly reduced [3 H]triacylglycerol (TAG) lymphatic output through suppressing TAG transport in ovariectomized (OVX) rats, and this effect is associated with enhanced vegfa gene expression in the intestine. Progesterone treatment significantly decreased the output of [14 C]cholesterol in lymph by inhibiting cholesterol absorption in the OVX rats. Oestrogen treatment also increased lymphatic output of apolipoprotein A-I (apoA-I) in the OVX rats, which may contribute to the reduced risk of atherosclerosis in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Qing Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Andromeda M. Nauli
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA
| | - Madison Bingamon
- Northern Kentucky University, Louie B Nunn Dr, Highland Heights, KY 41099, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yvonne M. Ulrich-Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| |
Collapse
|
8
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Liu M, Shen L, Xu M, Wang DQH, Tso P. Estradiol Enhances Anorectic Effect of Apolipoprotein A-IV through ERα-PI3K Pathway in the Nucleus Tractus Solitarius. Genes (Basel) 2020; 11:E1494. [PMID: 33322656 PMCID: PMC7764025 DOI: 10.3390/genes11121494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
Estradiol (E2) enhances the anorectic action of apolipoprotein A-IV (apoA-IV), however, the intracellular mechanisms are largely unclear. Here we reported that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was significantly activated by E2 and apoA-IV, respectively, in primary neuronal cells isolated from rat embryonic brainstem. Importantly, the combination of E2 and apoA-IV at their subthreshold doses synergistically activated the PI3K/Akt signaling pathway. These effects, however, were significantly diminished by the pretreatment with LY294002, a selective PI3K inhibitor. E2-induced activation of the PI3K/Akt pathway was through membrane-associated ERα, because the phosphorylation of Akt was significantly increased by PPT, an ERα agonist, and by E2-BSA (E2 conjugated to bovine serum albumin) which activates estrogen receptor on the membrane. Centrally administered apoA-IV at a low dose (0.5 µg) significantly suppressed food intake and increased the phosphorylation of Akt in the nucleus tractus solitarius (NTS) of ovariectomized (OVX) rats treated with E2, but not in OVX rats treated with vehicle. These effects were blunted by pretreatment with LY294002. These results indicate that E2's regulatory role in apoA-IV's anorectic action is through the ERα-PI3K pathway in the NTS. Manipulation of the PI3K/Akt signaling activation in the NTS may provide a novel therapeutic approach for the prevention and the treatment of obesity-related disorders in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| |
Collapse
|
10
|
Littlejohn EL, Fedorchak S, Boychuk CR. Sex-steroid-dependent plasticity of brain-stem autonomic circuits. Am J Physiol Regul Integr Comp Physiol 2020; 319:R60-R68. [PMID: 32493037 DOI: 10.1152/ajpregu.00357.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the central nervous system (CNS), nuclei of the brain stem play a critical role in the integration of peripheral sensory information and the regulation of autonomic output in mammalian physiology. The nucleus tractus solitarius of the brain stem acts as a relay center that receives peripheral sensory input from vagal afferents of the nodose ganglia, integrates information from within the brain stem and higher central centers, and then transmits autonomic efferent output through downstream premotor nuclei, such as the nucleus ambiguus, the dorsal motor nucleus of the vagus, and the rostral ventral lateral medulla. Although there is mounting evidence that sex and sex hormones modulate autonomic physiology at the level of the CNS, the mechanisms and neurocircuitry involved in producing these functional consequences are poorly understood. Of particular interest in this review is the role of estrogen, progesterone, and 5α-reductase-dependent neurosteroid metabolites of progesterone (e.g., allopregnanolone) in the modulation of neurotransmission within brain-stem autonomic neurocircuits. This review will discuss our understanding of the actions and mechanisms of estrogen, progesterone, and neurosteroids at the cellular level of brain-stem nuclei. Understanding the complex interaction between sex hormones and neural signaling plasticity of the autonomic nervous system is essential to elucidating the role of sex in overall physiology and disease.
Collapse
Affiliation(s)
- Erica L Littlejohn
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Shen L, Liu Y, Tso P, Wang DQH, Davidson WS, Woods SC, Liu M. Silencing steroid receptor coactivator-1 in the nucleus of the solitary tract reduces estrogenic effects on feeding and apolipoprotein A-IV expression. J Biol Chem 2017; 293:2091-2101. [PMID: 29263093 DOI: 10.1074/jbc.ra117.000237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
We previously found that 17β-estradiol (E2) stimulates apolipoprotein A-IV (apoA-IV) gene expression in the nucleus of the solitary tract (NTS) of lean ovariectomized (OVX) rodents. Here we report that in the NTS of high-fat diet-induced obese (DIO) rats, the apoA-IV mRNA level is significantly reduced and that the estrogenic effects on apoA-IV gene expression and food intake are impaired. E2 regulates apoA-IV gene expression through its nuclear receptor α (ERα), which requires co-activators, such as steroid receptor coactivator-1 (SRC-1), to facilitate the transcription of targeted genes. Interestingly, SRC-1 gene expression is significantly reduced in DIO OVX rats. SRC-1 is colocalized with apoA-IV in the cells of the NTS and E2 treatment enhances the recruitment of ERα and SRC-1 to the estrogen response element at the apoA-V promoter, implying the participation of SRC-1 in E2's stimulatory effect on apoA-IV gene expression. Using small hairpin RNA (shRNA), which was validated in cultured neuronal cells, we found that SRC-1 gene knockdown specifically in the NTS significantly diminished E2's anorectic action, leading to increased food intake and body weight. More importantly, the stimulatory effect of E2 on apoA-IV gene expression in the NTS was significantly attenuated in SRC-1 knockdown rats. These results collectively demonstrate the critical roles of NTS SRC-1 in mediating E2's actions on food intake and apoA-IV gene expression and suggest that reduced levels of endogenous SRC-1 and apoA-IV expression are responsible for the impaired E2's anorectic action in obese females.
Collapse
Affiliation(s)
- Ling Shen
- From the Departments of Pathology and Laboratory Medicine and
| | - Yin Liu
- From the Departments of Pathology and Laboratory Medicine and
| | - Patrick Tso
- From the Departments of Pathology and Laboratory Medicine and
| | - David Q-H Wang
- the Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - W Sean Davidson
- From the Departments of Pathology and Laboratory Medicine and
| | - Stephen C Woods
- Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237 and
| | - Min Liu
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
12
|
Shen L, Lo CC, Woollett LA, Liu M. Apolipoprotein A-IV exerts its anorectic action through a PI3K/Akt signaling pathway in the hypothalamus. Biochem Biophys Res Commun 2017; 494:152-157. [PMID: 29037812 DOI: 10.1016/j.bbrc.2017.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
Apolipoprotein A-IV (apoA-IV) is a satiation factor that acts in the hypothalamus, however, the intracellular mechanisms responsible for this action are still largely unknown. Here we report that apoA-IV treatment elicited a rapid activation of the phosphatidylinositol-3-kinase (PI3K) signaling pathway in cultured primary hypothalamic neurons, and this effect was significantly attenuated by pretreatment with LY294002, an inhibitor of the PI3K pathway. To determine if the activation of PI3K is required for apoA-IV's inhibitory effect on food intake, apoA-IV was administered intracerebroventricularly. We found that apoA-IV significantly reduced food intake and activated PI3K signaling in the hypothalamus, and these effects were abolished by icv pre-treatment with LY294002. To identify the distinct brain sites where apoA-IV exerts its anorectic action, apoA-IV was administered into the ventromedial hypothalamus (VMH) through implanted bilateral cannula. At a low dose (0.5 μg), apoA-IV significantly inhibited food intake and activated PI3K signaling pathway in the VMH of lean rats, but not in high-fat diet-induced obese (DIO) rats. These results collectively demonstrate a critical role of the PI3K/Akt pathway in apoA-IV's anorectic action in lean rats and suggest a defective PI3K pathway in the VMH is responsible for the impaired apoA-IV's anorectic action in the DIO animals.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences and Diabetes Institute, Ohio University, Athens, OH, USA
| | - Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
13
|
BDNF/TrkB signaling mediates the anorectic action of estradiol in the nucleus tractus solitarius. Oncotarget 2017; 8:84028-84038. [PMID: 29137402 PMCID: PMC5663574 DOI: 10.18632/oncotarget.21062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
Although compelling evidence indicates that estradiol (E2) acts in the nucleus tractus solitarius (NTS) to reduce food intake, the underlying mechanisms are largely unknown. We now report that estrogen's anorectic action occurs through enhancing the strength of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (TrkB) signaling in the NTS. Intra-4th-ventricular administration of a low dose of BDNF reduced food intake to a greater extent in ovariectomized (OVX) rats cyclically treated with E2 than in vehicle-treated OVX rats, implying that cyclic E2 replacement increases BDNF's satiating potency. OVX significantly decreased bdnf gene expression in the NTS, and this was reversed by cyclic replacement of E2. Treatment of cultured primary neuronal cells from embryonic rat brainstem with E2 or PPT (ERα agonist), but not with DPN (ERβ agonist), significantly increased bdnf mRNA levels, indicating that ERα is the primary receptor mediating E2's stimulatory effect on bdnf gene expression. Administration of the selective TrkB antagonist, ANA-12, directly into the NTS significantly attenuated E2-induced reductions of food intake and body weight gain in OVX rats, indicating that TrkB receptor activation is necessary for E2's anorectic effect. Finally, relative to controls, OVX mice with bdnf gene knockdown specifically in the NTS had a blunted feeding response to E2. These data collectively imply that BDNF/TrkB receptor signaling in the NTS is a downstream mediator of E2 in the control of energy intake.
Collapse
|
14
|
Woods SC, May AA, Liu M, Tso P, Begg DP. Using the cerebrospinal fluid to understand ingestive behavior. Physiol Behav 2017; 178:172-178. [PMID: 27923718 PMCID: PMC5944842 DOI: 10.1016/j.physbeh.2016.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023]
Abstract
The cerebrospinal fluid (CSF) offers a window into the workings of the brain and blood-brain barrier (BBB). Molecules that enter into the central nervous system (CNS) by passive diffusion or receptor-mediated transport through the choroid plexus often appear in the CSF prior to acting within the brain. Other molecules enter the CNS by passing through the BBB into the brain's interstitial fluid prior to appearing in the CSF. This pattern is also often observed for molecules synthesized by neurons or glia within the CNS. The CSF is therefore an important conduit for the entry and clearance of molecules into/from the CNS and thereby constitutes an important window onto brain activity and barrier function. Assessing the CSF basally, under experimental conditions, or in the context of challenges or metabolic diseases can provide powerful insights about brain function. Here, we review important findings made by our labs, as influenced by the late Randall Sakai, by interrogating the CSF.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Aaron A May
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Min Liu
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Patrick Tso
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Denovan P Begg
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA. Glial cells and energy balance. J Mol Endocrinol 2017; 58:R59-R71. [PMID: 27864453 DOI: 10.1530/jme-16-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Argente
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
May AA, Bedel ND, Shen L, Woods SC, Liu M. Estrogen and insulin transport through the blood-brain barrier. Physiol Behav 2016; 163:312-321. [PMID: 27182046 DOI: 10.1016/j.physbeh.2016.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/19/2023]
Abstract
Obesity is associated with insulin resistance and reduced transport of insulin through the blood-brain barrier (BBB). Reversal of high-fat diet-induced obesity (HFD-DIO) by dietary intervention improves the transport of insulin through the BBB and the sensitivity of insulin in the brain. Although both insulin and estrogen (E2), when given alone, reduce food intake and body weight via the brain, E2 actually renders the brain relatively insensitive to insulin's catabolic action. The objective of these studies was to determine if E2 influences the ability of insulin to be transported into the brain, since the receptors for both E2 and insulin are found in BBB endothelial cells. E2 (acute or chronic) was systemically administered to ovariectomized (OVX) female rats and male rats fed a chow or a high-fat diet. Food intake, body weight and other metabolic parameters were assessed along with insulin entry into the cerebrospinal fluid (CSF). Acute E2 treatment in OVX female and male rats reduced body weight and food intake, and chronic E2 treatment prevented or partially reversed high-fat diet-induced obesity. However, none of these conditions increased insulin transport into the CNS; rather, chronic E2 treatment was associated less-effective insulin transport into the CNS relative to weight-matched controls. Thus, the reduction of brain insulin sensitivity by E2 is unlikely to be mediated by increasing the amount of insulin entering the CNS.
Collapse
Affiliation(s)
- Aaron A May
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Nicholas D Bedel
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Ling Shen
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA
| | - Min Liu
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, OH, USA.
| |
Collapse
|
17
|
Abstract
The NIH has recently highlighted the importance of sexual dimorphisms and has mandated inclusion of both sexes in clinical trials and basic research. In this review we highlight new and novel ways sex hormones influence body adiposity and the metabolic syndrome. Understanding how and why metabolic processes differ by sex will enable clinicians to target and personalize therapies based on gender. Adipose tissue function and deposition differ by sex. Females differ with respect to distribution of adipose tissues, males tend to accrue more visceral fat, leading to the classic android body shape which has been highly correlated to increased cardiovascular risk; whereas females accrue more fat in the subcutaneous depot prior to menopause, a feature which affords protection from the negative consequences associated with obesity and the metabolic syndrome. After menopause, fat deposition and accrual shift to favor the visceral depot. This shift is accompanied by a parallel increase in metabolic risk reminiscent to that seen in men. A full understanding of the physiology behind why, and by what mechanisms, adipose tissues accumulate in specific depots and how these depots differ metabolically by sex is important in efforts of prevention of obesity and chronic disease. Estrogens, directly or through activation of their receptors on adipocytes and in adipose tissues, facilitate adipose tissue deposition and function. Evidence suggests that estrogens augment the sympathetic tone differentially to the adipose tissue depots favoring lipid accumulation in the subcutaneous depot in women and visceral fat deposition in men. At the level of adipocyte function, estrogens and their receptors influence the expandability of fat cells enhancing the expandability in the subcutaneous depot and inhibiting it in the visceral depot. Sex hormones clearly influence adipose tissue function and deposition, determining how to capture and utilize their function in a time of caloric surfeit, requires more information. The key will be harnessing the beneficial effects of sex hormones in such a way as to provide 'healthy' adiposity.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Beverly Hills, CA, USA.
| |
Collapse
|
18
|
Tagawa N, Kubota S, Kobayashi Y, Kato I. Genistein inhibits glucocorticoid amplification in adipose tissue by suppression of 11β-hydroxysteroid dehydrogenase type 1. Steroids 2015; 93:77-86. [PMID: 25447798 DOI: 10.1016/j.steroids.2014.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/15/2014] [Accepted: 11/18/2014] [Indexed: 11/20/2022]
Abstract
Excess glucocorticoids promote visceral obesity, hyperlipidemia, and insulin resistance. The main regulator of intracellular glucocorticoid levels is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into bioactive forms such as cortisol in humans and corticosterone in rodents. Hexose-6-phosphate dehydrogenase (H6PD), which is colocalized with 11β-HSD1 in the intralumen of the endoplasmic reticulum, supplies a crucial coenzyme, NADPH, for full reductase activity of 11β-HSD1. Therefore, it is possible that inhibition of 11β-HSD1 will become a considerable medical treatment for metabolic diseases including obesity and diabetes. Genistein, a soy isoflavone, has received attention for its therapeutic potential for obesity, diabetes, and cardiovascular disease, and has been proposed as a promising compound for the treatment of metabolic disorders. However, the mechanisms underlying the pleiotropic anti-obesity effects of genistein have not been fully clarified. Here, we demonstrate that genistein was able to inhibit 11β-HSD1 and H6PD activities within 10 or 20min, in dose- and time-dependent manners. Inhibition of 11β-HSD2 activity was not observed in rat kidney microsomes. The inhibition was not reversed by two estrogen receptor antagonists, tamoxifen and ICI182,780. A kinetic study revealed that genistein acted as a non-competitive inhibitor of 11β-HSD1, and its apparent Km value for 11-dehydrocorticosterone was 0.5μM. Genistein also acted as a non-competitive inhibitor of H6PD, and its apparent Km values for G6P and NADP were 0.9 and 3.3μM, respectively. These results suggest that genistein may exert its inhibitory effect by interacting with these enzymes.
Collapse
Affiliation(s)
- Noriko Tagawa
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | - Sayaka Kubota
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshiharu Kobayashi
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
19
|
Liu X, Shi H. Regulation of Estrogen Receptor α Expression in the Hypothalamus by Sex Steroids: Implication in the Regulation of Energy Homeostasis. Int J Endocrinol 2015; 2015:949085. [PMID: 26491443 PMCID: PMC4600542 DOI: 10.1155/2015/949085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs). ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS) as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement) or physiological stages (i.e., puberty, pregnancy, and menopause), lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.
Collapse
Affiliation(s)
- Xian Liu
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
20
|
Shen L, Liu Y, Wang DQH, Tso P, Woods SC, Liu M. Estradiol stimulates apolipoprotein A-IV gene expression in the nucleus of the solitary tract through estrogen receptor-α. Endocrinology 2014; 155:3882-90. [PMID: 25051443 PMCID: PMC5393319 DOI: 10.1210/en.2014-1239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although estrogens have been implicated in the regulation of apolipoprotein A-IV (apo A-IV) gene expression in the nucleus tractus solitarius, previous studies have not defined the molecular mechanism. The aim of this study was to examine the transcriptional mechanisms involved in regulation of apo A-IV gene expression. Using cultured primary neuronal cells from rat embryonic brainstems, we found that treatment with 10nM 17β-estradiol-3-benzoate (E2) or 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (an estrogen receptor [ER]α agonist), but not 2,3-bis(4-hydroxyphenyl)-propionitrile (an ERβ agonist), significantly increased apo A-IV gene expression, compared with vehicle treatment. This effect of E2 was abolished when the cells were incubated with E2 linked to BSA, which prevents E2 from entering cells, implying that a nongenomic mechanism of E2 is not involved. Two putative estrogen response elements were identified at the 5'-upstream region of the apo A-IV gene promoter, but only 1 of them was able to recruit ERα, leading to increased apo A-IV gene expression, as determined by chromatin immunoprecipitation assay and luciferase activity analysis. A cyclic regimen of E2 or 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol treatment for 8 cycles (4 d/cycle, mimicking the ovarian cycle of female rats) in ovariectomized female rats significantly reduced food intake and body weight gain and increased apo A-IV gene expression in the nucleus tractus solitarius, relative to vehicle. These data collectively demonstrate that nuclear ERα is the primary mediator of E2's action on apo A-IV gene expression and suggest that increased signaling of endogenous apo A-IV may at least partially mediate E2-induced inhibitory effect on feeding.
Collapse
Affiliation(s)
- Ling Shen
- Departments of Pathology and Laboratory Medicine (L.S., Y.L., P.T., M.L.) and Psychiatry and Behavioral Neuroscience (S.C.W.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45237-0507; and Department of Internal Medicine (D.Q.H.W.), St Louis University School of Medicine, St Louis, Missouri 63104-1008
| | | | | | | | | | | |
Collapse
|
21
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
22
|
Zhu Z, Liu X, Kumar SPDS, Zhang J, Shi H. Central expression and anorectic effect of brain-derived neurotrophic factor are regulated by circulating estradiol levels. Horm Behav 2013; 63:533-42. [PMID: 23376487 PMCID: PMC3624754 DOI: 10.1016/j.yhbeh.2013.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
Estrogens potently suppress food intake. Compelling evidence suggests that estradiol, the primary form of estrogens, reduces food intake by facilitating other anorectic signals. Brain-derived neurotrophic factor (BDNF), like estradiol, appears to suppress food intake by affecting meal size. We hypothesized that estradiol modulates Bdnf expression and the anorectic effect of BDNF. The first goal was to determine whether Bdnf expression was regulated by endogenous estradiol of cycling rats and by cyclic estradiol treatment using ovariectomized rats. Bdnf expression within the ventromedial nucleus of hypothalamus (VMH) was temporally elevated at estrus following the estradiol peak, which coincided with the decline in feeding at this phase of the ovarian cycle. Additionally, food intake and body weight were increased following ovariectomy with a parallel decrease in Bdnf expression in the VMH. All of these alterations were reversed by cyclic estradiol treatment, suggesting that Bdnf expression within the VMH was regulated in an estradiol-dependent manner. The second goal was to determine whether estradiol modulates the anorectic effect of BDNF. Sham-operated estrous rats and ovariectomized rats cyclically treated with estradiol responded to a lower dose of central administration of BDNF to decrease food intake than male rats and oil-treated ovariectomized rats, implying that endogenous estradiol or cyclic estradiol replacement increased the sensitivity to anorectic effect of BDNF. These data indicate that Bdnf expression within the VMH and the anorectic effect of BDNF varied depending on plasma estradiol levels, suggesting that estradiol may regulate BDNF signaling to regulate feeding.
Collapse
Affiliation(s)
- Zheng Zhu
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, Ohio, United States
| | - Xian Liu
- Cell, Molecular and Structural Biology, Miami University, Oxford, Ohio, United States
| | | | - Jing Zhang
- Department of Statistics, Miami University, Oxford, Ohio, United States
| | - Haifei Shi
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, Ohio, United States
- Cell, Molecular and Structural Biology, Miami University, Oxford, Ohio, United States
| |
Collapse
|
23
|
Shen L, Xiong Y, Wang DQH, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. J Lipid Res 2013; 54:1430-8. [PMID: 23434611 DOI: 10.1194/jlr.m035907] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ginsenoside Rb1 (Rb1), a natural compound extracted from ginseng, exerts anti-obesity activity and improves insulin sensitivity in high-fat diet (HFD)-induced obese rats. The objective of the current study was to evaluate the protective effect of Rb1 on fatty liver in HFD-induced obese rats and to elucidate underlying mechanisms. After chronic intraperitoneal administration, Rb1 (10 mg/kg) significantly ameliorated hepatic fat accumulation in HFD-induced obese rats, as demonstrated by reduced liver weight, hepatic triglyceride content, and histological evaluation of liver sections by hematoxylin and eosin and Oil Red O staining. Using primary cultured rat hepatic cells, we found that the rate of fatty acid oxidation and the activity of carnitine palmitoyltransferase 1 (CPT1), a key enzyme in fatty acid β-oxidation, were significantly elevated in Rb1-treated hepatocytes compared with those of vehicle-treated cells. HPLC analysis revealed that Rb1 increased the cellular AMP/ATP ratio, which is associated with elevated activation of hepatic AMP-activated protein kinase (AMPK) and phosphorylated acetyl-CoA carboxylase. Consistent with the activation of AMPK, Rb1 stimulated the expression of genes encoding fatty acid oxidative enzymes and proteins, and suppressed the expression of genes encoding enzymes or proteins that function in lipogenesis, assessed by quantitative PCR. We conclude that Rb1 has a potent ability to reduce hepatic fat accumulation and might be useful as a therapeutic agent for fatty liver disorder.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Diz-Chaves Y, Kwiatkowska-Naqvi A, Von Hülst H, Pernía O, Carrero P, Garcia-Segura LM. Behavioral effects of estradiol therapy in ovariectomized rats depend on the age when the treatment is initiated. Exp Gerontol 2012; 47:93-9. [DOI: 10.1016/j.exger.2011.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/22/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|