1
|
Akter R, Hogan MF, Esser N, Barrow BM, Castillo JJ, Boyko EJ, Templin AT, Hull RL, Zraika S, Kahn SE. Increased Steroidogenic Acute Regulatory Protein Contributes to Cholesterol-induced β-Cell Dysfunction. Endocrinology 2025; 166:bqaf027. [PMID: 39928527 PMCID: PMC11833471 DOI: 10.1210/endocr/bqaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 02/12/2025]
Abstract
Hypercholesterolemia is often observed in individuals with type 2 diabetes. Cholesterol accumulation in subcellular compartments within islet β-cells can result in insulin secretory dysfunction, which is a key pathological feature of diabetes. Previously, we demonstrated that expression of the mitochondrial cholesterol transport protein, steroidogenic acute regulatory protein (StAR), is induced in islets under conditions of β-cell dysfunction. However, whether it contributes to mitochondrial cholesterol accumulation in β-cells and cholesterol-induced β-cell dysfunction has not been determined. Thus, we sought to examine the role of StAR in isolated mouse islets under conditions of excess exogenous cholesterol. Cholesterol treatment of islets upregulated StAR expression, which was associated with cholesterol accumulation in mitochondria, decreased mitochondrial membrane potential and impaired mitochondrial oxidative phosphorylation. Impaired insulin secretion and reduced islet insulin content were also observed in cholesterol-laden islets. To determine the impact of StAR overexpression in β-cells per se, a lentivirus was used to increase StAR expression in INS-1 cells. Under these conditions, StAR overexpression was sufficient to increase mitochondrial cholesterol content, impair mitochondrial oxidative phosphorylation, and reduce insulin secretion. These findings suggest that elevated cholesterol in diabetes may contribute to β-cell dysfunction via increases in StAR-mediated mitochondrial cholesterol transport and accumulation.
Collapse
Affiliation(s)
- Rehana Akter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, CHU Liège, University of Liège, Liège 4000, Belgium
| | - Breanne M Barrow
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Edward J Boyko
- Epidemiologic Research and Information Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, Roudebush Veterans Affairs Medical Center and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
2
|
Mineo C, Shaul PW. New Player in an Old Field? Ecto-F 1-ATPase in Antidiabetic Actions of HDL in Pancreatic β-Cells. Arterioscler Thromb Vasc Biol 2024; 44:419-422. [PMID: 38095108 PMCID: PMC10842905 DOI: 10.1161/atvbaha.123.320426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
3
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
4
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
5
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
6
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
7
|
Manandhar B, Cochran BJ, Rye KA. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2019; 9:e013531. [PMID: 31888429 PMCID: PMC6988162 DOI: 10.1161/jaha.119.013531] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bikash Manandhar
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Blake J Cochran
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Kerry-Anne Rye
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
8
|
Perego C, Da Dalt L, Pirillo A, Galli A, Catapano AL, Norata GD. Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2149-2156. [DOI: 10.1016/j.bbadis.2019.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
|
9
|
Abstract
PURPOSE OF REVIEW Type 2 diabetes is associated with a characteristic dyslipidemia that may exacerbate cardiovascular risk. The causes of, and the effects of new antihyperglycemia medications on, this dyslipidemia, are under investigation. In an unexpected reciprocal manner, lowering LDL-cholesterol with statins slightly increases the risk of diabetes. Here we review the latest findings. RECENT FINDINGS The inverse relationship between LDL-cholesterol and diabetes has now been confirmed by multiple lines of evidence. This includes clinical trials, genetic instruments using aggregate single nucleotide polymorphisms, as well as at least eight individual genes - HMGCR, NPC1L1, HNF4A, GCKR, APOE, PCKS9, TM6SF2, and PNPLA3 - support this inverse association. Genetic and pharmacologic evidence suggest that HDL-cholesterol may also be inversely associated with diabetes risk. Regarding the effects of diabetes on lipoproteins, new evidence suggests that insulin resistance but not diabetes per se may explain impaired secretion and clearance of VLDL-triglycerides. Weight loss, bariatric surgery, and incretin-based therapies all lower triglycerides, whereas SGLT2 inhibitors may slightly increase HDL-cholesterol and LDL-cholesterol. SUMMARY Diabetes and lipoproteins are highly interregulated. Further research is expected to uncover new mechanisms governing the metabolism of glucose, fat, and cholesterol. This topic has important implications for treating type 2 diabetes and cardiovascular disease.
Collapse
MESH Headings
- Animals
- Cholesterol, HDL/genetics
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/genetics
- Cholesterol, LDL/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Dyslipidemias/genetics
- Dyslipidemias/metabolism
- Dyslipidemias/therapy
- Humans
- Lipoproteins, VLDL/genetics
- Lipoproteins, VLDL/metabolism
- Polymorphism, Single Nucleotide
- Triglycerides/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Sei Higuchi
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| | - M Concepción Izquierdo
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| | - Rebecca A Haeusler
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| |
Collapse
|
10
|
Andrews AM, Muzorewa TT, Zaccheo KA, Buerk DG, Jaron D, Barbee KA. Cholesterol Enrichment Impairs Capacitative Calcium Entry, eNOS Phosphorylation & Shear Stress-Induced NO Production. Cell Mol Bioeng 2016; 10:30-40. [PMID: 28138348 DOI: 10.1007/s12195-016-0456-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Endothelial dysfunction, characterized by decreased production or availability of nitric oxide (NO), is widely believed to be the hallmark of early-stage atherosclerosis. In addition, hypercholesterolemia is considered a major risk factor for development of atherosclerosis and is associated with impaired flow-induced dilation. However, the mechanism by which elevated cholesterol levels leads to decreased production of NO is unclear. NO is released in response to shear stress and agonist-evoked changes in intracellular calcium. Although calcium signaling is complex, we have previously shown that NO production by endothelial nitric oxide synthase (eNOS) is preferentially activated by calcium influx via store-operated channels. We hypothesized that cholesterol enrichment altered this signaling pathway (known as capacitive calcium entry; CCE) ultimately leading to decreased NO. Our results show that cholesterol enrichment abolished ATP-induced eNOS phosphorylation and attenuated the calcium response by the preferential inhibition of CCE. Furthermore, cholesterol enrichment also inhibited shear stress-induced NO production and eNOS phosporylation, consistent with our previous results showing a significant role for ATP autocrine stimulation and subsequent activation of CCE in the endothelial flow response.
Collapse
Affiliation(s)
- Allison M Andrews
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, 3500N. Broad St., Philadelphia, PA 19140, USA
| | - Tenderano T Muzorewa
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Kelly A Zaccheo
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Liu Z, Jeppesen PB, Gregersen S, Bach Larsen L, Hermansen K. Chronic Exposure to Proline Causes Aminoacidotoxicity and Impaired Beta-Cell Function: Studies In Vitro. Rev Diabet Stud 2016; 13:66-78. [PMID: 27563695 DOI: 10.1900/rds.2016.13.66] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Pancreatic islet-cell dysfunction is a hallmark in the development of diabetes, but the reasons for the primary β-cell defect are still elusive. Elevated circulating proline levels have been found in subjects with insulin resistance, obesity, and type 2 diabetes. Therefore, we assessed β-cell function, gene expressions, and cell death after long-term exposure of pancreatic β-cells to excess proline in vitro. METHODS Isolated mouse islets and INS-1E cells were incubated with and without excess proline. After 72 h, we examined: (1) β-cell function, including basal insulin secretion (BIS) and glucose-stimulated insulin secretion (GSIS), (2) transcription factors related to insulin gene expression and enzymes involved in the tricarboxylic acid cycle and cholesterol biogenesis, (3) cellular triglycerides (TG) and cholesterol content, (4) the death of INS-1E cells and 3H thymidine incorporation, and (5) protein expression of INS-1E cells in response to proline by proteomics. RESULTS We found that high doses of proline increased BIS and decreased GSIS in both isolated mouse islets and INS-1E cells. MafA, insulin 1, and the cytochrome c oxidase subunit VIa polypeptide 2 mRNA expressions were all downregulated, indicating that proline impaired insulin gene transcription and mitochondrial oxidative phosphorylation. In contrast, mevalonate decarboxylase gene expression was upregulated, and simultaneously, cholesterol content in INS-1E cells was enhanced. Protein profiling of INS-1E cells revealed that cytosolic non-specific dipeptidase and α enolase were differentially expressed. CONCLUSIONS Our results indicate that proline-induced insulin transcription and mitochondrial oxidative phosphorylation impairment may contribute to the β-cell dysfunction observed in type 2 diabetes. Caution should be applied in interpreting the pathophysiological role of proline since very high proline concentrations were used in the experiments.
Collapse
Affiliation(s)
- Zhenping Liu
- Department of Medicine and Endocrinology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark
| | - Per B Jeppesen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark
| | - Søren Gregersen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Faculty of Agricultural Sciences, Aarhus University, DK-8230 Tjele, Denmark
| | - Kjeld Hermansen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Yang G, Shi Y, Yu J, Li Y, Yu L, Welling A, Hofmann F, Striessnig J, Juntti-Berggren L, Berggren PO, Yang SN. CaV1.2 and CaV1.3 channel hyperactivation in mouse islet β cells exposed to type 1 diabetic serum. Cell Mol Life Sci 2015; 72:1197-207. [PMID: 25292336 PMCID: PMC11113900 DOI: 10.1007/s00018-014-1737-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
The voltage-gated Ca(2+) (CaV) channel acts as a key player in β cell physiology and pathophysiology. β cell CaV channels undergo hyperactivation subsequent to exposure to type 1 diabetic (T1D) serum resulting in increased cytosolic free Ca(2+) concentration and thereby Ca(2+)-triggered β cell apoptosis. The present study was aimed at revealing the subtypes of CaV1 channels hyperactivated by T1D serum as well as the biophysical mechanisms responsible for T1D serum-induced hyperactivation of β cell CaV1 channels. Patch-clamp recordings and single-cell RT-PCR analysis were performed in pancreatic β cells from CaV1 channel knockout and corresponding control mice. We now show that functional CaV1.3 channels are expressed in a subgroup of islet β cells from CaV1.2 knockout mice (CaV1.2(-/-)). T1D serum enhanced whole-cell CaV currents in islet β cells from CaV1.3 knockout mice (CaV1.3(-/-)). T1D serum increased the open probability and number of functional unitary CaV1 channels in CaV1.2(-/-) and CaV1.3(-/-) β cells. These data demonstrate that T1D serum hyperactivates both CaV1.2 and CaV1.3 channels by increasing their conductivity and number. These findings suggest CaV1.2 and CaV1.3 channels as potential targets for anti-diabetes therapy.
Collapse
Affiliation(s)
- Guang Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
- Jilin Academy of Traditional Chinese Medicine, Changchun, 130021 China
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jia Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024 China
| | - Lina Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Andrea Welling
- Forschergruppe, Institut für Pharmakologie und Toxikologie, Technische Universität München, 80802 München, Germany
| | - Franz Hofmann
- Forschergruppe, Institut für Pharmakologie und Toxikologie, Technische Universität München, 80802 München, Germany
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
13
|
Zhou J, Wu J, Zheng F, Jin M, Li H. Glucagon-like peptide-1 analog-mediated protection against cholesterol-induced apoptosis via mammalian target of rapamycin activation in pancreatic βTC-6 cells -1mTORβTC-6. J Diabetes 2015; 7:231-9. [PMID: 24909811 DOI: 10.1111/1753-0407.12177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/20/2014] [Accepted: 06/01/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic β-cells against glucolipotoxicity via activation of the Akt pathway. The present study investigated the protective effects of the GLP-1 analog liraglutide against cholesterol-induced lipotoxicity and the mechanisms involved. METHODS The mouse βTC-6 pancreatic β-cell line was preincubated for 30 min with 10 nmol/L liraglutide alone or in combination with the mammalian target of rapamycin (mTOR) inhibitor rapamycin (1 μmol/L) before being exposed to 5 mmol/L cholesterol for 6 h. 4',6'-Diamidino-2-phenylindole (DAPI) staining and Western blot analyses were used to assess the effects of liraglutide on cholesterol-induced apoptosis and the phosphorylation of Akt and mTOR. RESULTS Cholesterol significantly promoted cell apoptosis and attenuated the phosphorylation of Akt and mTOR, effects that were significantly reversed by liraglutide. Furthermore, rapamycin pretreatment alone significantly increased cholesterol-induced apoptosis compared with cholesterol-treated cells without any other pretreatment. CONCLUSIONS The data indicate that mTOR signaling is an essential mediator in the protection of pancreatic β-cells against cholesterol-induced apoptosis by a GLP-1 analog.
Collapse
Affiliation(s)
- Jiaqiang Zhou
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
14
|
Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Ionic mechanisms in pancreatic β cell signaling. Cell Mol Life Sci 2014; 71:4149-77. [PMID: 25052376 PMCID: PMC11113777 DOI: 10.1007/s00018-014-1680-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K(+), Na(+), Ca(2+) and Cl(-) across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K(+) efflux through ATP-sensitive K(+) (KATP) channels, the voltage-gated Ca(2+) (CaV) channel-mediated Ca(2+) influx and K(+) efflux through voltage-gated K(+) (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K(+) efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca(2+) influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K(+) efflux mediated by KV2.1 delayed rectifier K(+) channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca(2+) entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
15
|
Ochi R, Chettimada S, Gupte SA. Poly(ethylene glycol)-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells. PLoS One 2014; 9:e107049. [PMID: 25197984 PMCID: PMC4157810 DOI: 10.1371/journal.pone.0107049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol) cholesteryl ether (PEG-cholesterol) is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca2+ channel currents (ICa,L) recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD) is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD)) caused inhibition of ICa,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased ICa,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased ICa,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window ICa,L more strongly as compared with cholesterol (MβCD). Poly(ethylene glycol) conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of ICa,L.
Collapse
Affiliation(s)
- Rikuo Ochi
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| | - Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Sachin A. Gupte
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (RO); (SAG)
| |
Collapse
|
16
|
Abstract
The failure of pancreatic β‐cells to supply insulin in quantities sufficient to maintain euglycemia is a hallmark of type 2 diabetes. Perturbation of β‐cell cholesterol homeostasis, culminating in elevated intracellular cholesterol levels, impairs insulin secretion and has therefore been proposed as a mechanism contributing to β‐cell dysfunction. The manner in which this occurs, however, is unclear. Cholesterol is an essential lipid, as well as a major component of membrane rafts, and numerous proteins critical for the regulation of insulin secretion have been reported to associate with these domains. Although this suggests that alterations in membrane rafts could partially account for the reduction in insulin secretion observed when β‐cell cholesterol accumulates, this has not yet been demonstrated. In this review, we provide a brief overview of recent work implicating membrane rafts in some of the basic molecular mechanisms of insulin secretion, and discuss the insight it provides into the β‐cell dysfunction characteristic of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00200.x, 2012)
Collapse
Affiliation(s)
- Ronald Dirkx
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic "Carl Gustav Carus", Dresden University of Technology
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic "Carl Gustav Carus", Dresden University of Technology ; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
17
|
Brault M, Ray J, Gomez YH, Mantzoros CS, Daskalopoulou SS. Statin treatment and new-onset diabetes: a review of proposed mechanisms. Metabolism 2014; 63:735-45. [PMID: 24641882 DOI: 10.1016/j.metabol.2014.02.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/09/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022]
Abstract
New-onset diabetes has been observed in clinical trials and meta-analyses involving statin therapy. To explain this association, three major mechanisms have been proposed and discussed in the literature. First, certain statins affect insulin secretion through direct, indirect or combined effects on calcium channels in pancreatic β-cells. Second, reduced translocation of glucose transporter 4 in response to treatment results in hyperglycemia and hyperinsulinemia. Third, statin therapy decreases other important downstream products, such as coenzyme Q10, farnesyl pyrophosphate, geranylgeranyl pyrophosphate, and dolichol; their depletion leads to reduced intracellular signaling. Other possible mechanisms implicated in the effect of statins on new-onset diabetes are: statin interference with intracellular insulin signal transduction pathways via inhibition of necessary phosphorylation events and reduction of small GTPase action; inhibition of adipocyte differentiation leading to decreased peroxisome proliferator activated receptor gamma and CCAAT/enhancer-binding protein which are important pathways for glucose homeostasis; decreased leptin causing inhibition of β-cells proliferation and insulin secretion; and diminished adiponectin levels. Given that the magnitude of the risk of new-onset diabetes following statin use remains to be fully clarified and the well-established beneficial effect of statins in reducing cardiovascular risk, statins remain the first-choice treatment for prevention of CVD. Elucidation of the mechanisms underlying the development of diabetes in association with statin use may help identify novel preventative or therapeutic approaches to this problem and/or help design a new generation statin without such side-effects.
Collapse
Affiliation(s)
- Marilyne Brault
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jessica Ray
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Yessica-Haydee Gomez
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stella S Daskalopoulou
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Cholesterol reduction ameliorates glucose-induced calcium handling and insulin secretion in islets from low-density lipoprotein receptor knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:769-75. [PMID: 23298460 DOI: 10.1016/j.bbalip.2012.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/10/2012] [Accepted: 12/27/2012] [Indexed: 01/17/2023]
Abstract
AIMS/HYPOTHESIS Changes in cellular cholesterol level may contribute to beta cell dysfunction. Islets from low density lipoprotein receptor knockout (LDLR(-/-)) mice have higher cholesterol content and secrete less insulin than wild-type (WT) mice. Here, we investigated the association between cholesterol content, insulin secretion and Ca(2+) handling in these islets. METHODS Isolated islets from both LDLR(-/-) and WT mice were used for measurements of insulin secretion (radioimmunoassay), cholesterol content (fluorimetric assay), cytosolic Ca(2+) level (fura-2AM) and SNARE protein expression (VAMP-2, SNAP-25 and syntaxin-1A). Cholesterol was depleted by incubating the islets with increasing concentrations (0-10mmol/l) of methyl-beta-cyclodextrin (MβCD). RESULTS The first and second phases of glucose-stimulated insulin secretion (GSIS) were lower in LDLR(-/-) than in WT islets, paralleled by an impairment of Ca(2+) handling in the former. SNAP-25 and VAMP-2, but not syntaxin-1A, were reduced in LDLR(-/-) compared with WT islets. Removal of excess cholesterol from LDLR(-/-) islets normalized glucose- and tolbutamide-induced insulin release. Glucose-stimulated Ca(2+) handling was also normalized in cholesterol-depleted LDLR(-/-) islets. Cholesterol removal from WT islets by 0.1 and 1.0mmol/l MβCD impaired both GSIS and Ca(2+) handling. In addition, at 10mmol/l MβCD WT islet showed a loss of membrane integrity and higher DNA fragmentation. CONCLUSION Abnormally high (LDLR(-/-) islets) or low cholesterol content (WT islets treated with MβCD) alters both GSIS and Ca(2+) handling. Normalization of cholesterol improves Ca(2+) handling and insulin secretion in LDLR(-/-) islets.
Collapse
|
19
|
Liu Z, Jeppesen PB, Gregersen S, Larsen LB, Hermansen K. Chronic exposure to leucine in vitro induces β-cell dysfunction in INS-1E cells and mouse islets. J Endocrinol 2012; 215:79-88. [PMID: 22798014 DOI: 10.1530/joe-12-0148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic hyperglycemia and hyperlipidemia cause deleterious effects on β-cell function. Interestingly, increased circulating amino acid (AA) levels are also a characteristic of the prediabetic and diabetic state. The chronic effects of AAs on β-cell function remain to be determined. Isolated mouse islets and INS-1E cells were incubated with or without excess leucine. After 72 h, leucine increased basal insulin secretion and impaired glucose-stimulated insulin secretion in both mouse islets and INS-1E cells, corroborating the existence of aminoacidotoxicity-induced β-cell dysfunction. This took place concomitantly with alterations in proteins and genes involved in insulin granule transport, trafficking (e.g. collapsin response mediator protein 2 and GTP-binding nuclear protein Ran), insulin signal transduction (proteasome subunit α type 6), and the oxidative phosphorylation pathway (cytochrome c oxidase). Leucine downregulated insulin 1 gene expression but upregulated pancreas duodenum homeobox 1 and insulin 2 mRNA expressions. Importantly, cholesterol (CH) accumulated in INS-1E cells concomitantly with upregulation of enzymes involved in CH biosynthesis (e.g. 3-hydroxy-3-methylglutaryl-CoA reductase, mevalonate (diphospho) decarboxylase, and squalene epoxidase) and LDL receptor, whereas triglyceride content was decreased. Our findings indicate that chronic exposure to elevated levels of leucine may have detrimental effects on both β-cell function and insulin sensitivity. Aminoacidotoxicity may play a pathogenic role in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Zhenping Liu
- Department of Medicine and Endocrinology, Aarhus University Hospital, Aarhus Sygehus THG, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Exocytosis is impaired in mucopolysaccharidosis IIIA mouse chromaffin cells. Neuroscience 2012; 227:110-8. [PMID: 23022219 DOI: 10.1016/j.neuroscience.2012.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disorder caused by a deficiency in the activity of the lysosomal hydrolase, sulphamidase, an enzyme involved in the degradation of heparan sulphate. MPS IIIA patients exhibit progressive mental retardation and behavioural disturbance. While neuropathology is the major clinical problem in MPS IIIA patients, there is little understanding of how lysosomal storage generates this phenotype. As reduced neuronal communication can underlie cognitive deficiencies, we investigated whether the secretion of neurotransmitters is altered in MPS IIIA mice; utilising adrenal chromaffin cells, a classical model for studying secretion via exocytosis. MPS IIIA chromaffin cells displayed heparan sulphate storage and electron microscopy revealed large electron-lucent storage compartments. There were also increased numbers of large/elongated chromaffin granules, with a morphology that was similar to immature secretory granules. Carbon fibre amperometry illustrated a significant decrease in the number of exocytotic events for MPS IIIA, when compared to control chromaffin cells. However, there were no changes in the kinetics of release, the amount of catecholamine released per exocytotic event, or the amount of Ca(2+) entry upon stimulation. The increased number of large/elongated granules and reduced number of exocytotic events suggests that either the biogenesis and/or the cell surface docking and fusion potential of these vesicles is impaired in MPS IIIA. If this also occurs in central nervous system neurons, the reduction in neurotransmitter release could help to explain the development of neuropathology in MPS IIIA.
Collapse
|
21
|
Howles PN, Hui DY. Physiological role of hepatic NPC1L1 in human cholesterol and lipoprotein metabolism: new perspectives and open questions. J Lipid Res 2012; 53:2253-5. [PMID: 22941774 DOI: 10.1194/jlr.e031823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Philip N Howles
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
22
|
Tse A, Lee AK, Yan L, Tse FW. Influence of cholesterol on cellular signaling and fusion pore kinetics. J Mol Neurosci 2012; 48:395-401. [PMID: 22467040 DOI: 10.1007/s12031-012-9760-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/19/2012] [Indexed: 12/12/2022]
Abstract
Cholesterol is an important lipid component of cellular membranes. Recent studies have shown that changes in cellular cholesterol level can affect cellular functions. Here, we summarize our recent findings on the impact of cholesterol on the glucose-stimulated Ca(2+) signaling in rat pancreatic β cells and the fusion pore kinetics of large dense core granules in rat chromaffin cells. In mouse pancreatic β cells, pharmacological elevation of cellular cholesterol (but not cholesterol extraction) reduced the current density of the delayed rectifier K(+) channels, the ATP-dependent K(+) channels, and voltage-gated Ca(2+) channels. Importantly, cholesterol enrichment impaired glucose-stimulated Ca(2+) signaling in mouse pancreatic β cells via a suppression of voltage-gated Ca(2+) channels and a decrease in mitochondrial ATP production, which in turn led to a reduction in the glucose-evoked depolarization. In rat chromaffin cells, we found that the persistence of the semi-stable fusion pore was increased by cholesterol enrichment, and acute cholesterol extraction from the cytosolic side of the cell destabilized the semi-stable fusion pore. Overall, our findings highlight the importance of cholesterol in the regulation of cellular signaling and exocytosis.
Collapse
Affiliation(s)
- Amy Tse
- Department of Pharmacology, University of Alberta, Edmonton, Canada T6G 2H7
| | | | | | | |
Collapse
|
23
|
Kruit JK, Wijesekara N, Fox JEM, Dai XQ, Brunham LR, Searle GJ, Morgan GP, Costin AJ, Tang R, Bhattacharjee A, Johnson JD, Light PE, Marsh BJ, MacDonald PE, Verchere CB, Hayden MR. Islet cholesterol accumulation due to loss of ABCA1 leads to impaired exocytosis of insulin granules. Diabetes 2011; 60:3186-96. [PMID: 21998401 PMCID: PMC3219942 DOI: 10.2337/db11-0081] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) is essential for normal insulin secretion from β-cells. The aim of this study was to elucidate the mechanisms underlying the impaired insulin secretion in islets lacking β-cell ABCA1. RESEARCH DESIGN AND METHODS Calcium imaging, patch clamp, and membrane capacitance were used to assess the effect of ABCA1 deficiency on calcium flux, ion channel function, and exocytosis in islet cells. Electron microscopy was used to analyze β-cell ultrastructure. The quantity and distribution of proteins involved in insulin-granule exocytosis were also investigated. RESULTS We show that a lack of β-cell ABCA1 results in impaired depolarization-induced exocytotic fusion of insulin granules. We observed disturbances in membrane microdomain organization and Golgi and insulin granule morphology in β-cells as well as elevated fasting plasma proinsulin levels in mice in the absence of β-cell ABCA1. Acute cholesterol depletion rescued the exocytotic defect in β-cells lacking ABCA1, indicating that elevated islet cholesterol accumulation directly impairs granule fusion and insulin secretion. CONCLUSIONS Our data highlight a crucial role of ABCA1 and cellular cholesterol in β-cells that is necessary for regulated insulin granule fusion events. These data suggest that abnormalities of cholesterol metabolism may contribute to the impaired β-cell function in diabetes.
Collapse
Affiliation(s)
- Janine K. Kruit
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nadeeja Wijesekara
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn E. Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Liam R. Brunham
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gavin J. Searle
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Garry P. Morgan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Adam J. Costin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Renmei Tang
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alpana Bhattacharjee
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter E. Light
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Brad J. Marsh
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick E. MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - C. Bruce Verchere
- Departments of Pathology & Laboratory Medicine and Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R. Hayden
- Departments of Medical Genetics, Centre for Molecular Medicine, and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Michael R. Hayden,
| |
Collapse
|