1
|
Luo J, Sun T, Jiang S, Yang Z, Xiao C, Deng J, Zhou B, Yang X. Comprehensive analysis of non-coding RNAs in the ovaries of high and low egg production hens. Anim Reprod Sci 2025; 276:107836. [PMID: 40220592 DOI: 10.1016/j.anireprosci.2025.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Egg production performance a critical economic trait in the poultry industry. The regulatory mechanisms underlying egg production performance mediated by non-coding RNAs remain to be characterized. To systematically investigate ovarian lncRNAs, circRNAs, and miRNAs associated with laying efficiency, we conducted comparative transcriptomic analyses using RNA sequencing (RNA-seq) of ovarian tissues from phenotypically divergent groups - high egg production (HEP) and low egg production (LEP) hens. In our study, we identified 675 lncRNAs, 140 circRNAs, and 10 miRNAs that were significantly differentially expressed (DE) between HEP and LEP. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that target genes of DE lncRNAs, DE miRNAs, and the source genes of DE circRNAs are involved in the MAPK signaling pathway, endocytosis, notch signaling pathway, among others. Furthermore, we identified five miRNA-mRNA interactions related to egg production including gga-miR-449c-3p, and five genes (GLI2, TAC1, EML6, THOC3, MMP9). These findings establish the first comprehensive ncRNA interactome driving ovarian efficiency, offering both biomarkers for breeding selection and mechanistic targets for reproductive enhancement.
Collapse
Affiliation(s)
- Jintang Luo
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Tiantian Sun
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Siyi Jiang
- From the Beijing Royal School, Beijing 102209, China
| | - Zhuliang Yang
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Cong Xiao
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jixian Deng
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Biyan Zhou
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiurong Yang
- From the College of Animal Science and Technology, Guangxi University, Nanning 530004, China; From the Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Naning 530004, China.
| |
Collapse
|
2
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Carver JJ, Amato CM, Hung-Chang Yao H, Zhu Y. Adamts9 is required for the development of primary ovarian follicles and maintenance of female sex in zebrafish†. Biol Reprod 2024; 111:1107-1128. [PMID: 39180722 PMCID: PMC11565245 DOI: 10.1093/biolre/ioae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Previous studies have suggested that adamts9 (a disintegrin and metalloprotease with thrombospondin type-1 motifs, member 9), an extracellular matrix (ECM) metalloprotease, participates in primordial germ cell (PGC) migration and is necessary for female fertility. In this study, we found that adamts9 knockout (KO) led to reduced body size, and female-to-male sex conversion in late juvenile or adult zebrafish; however, primary sex determination was not affected in early juveniles of adamts9 KO. Overfeeding and lowering the rearing density rescued growth defects in female adamts9 KO fish but did not rescue defects in ovarian development in adamts9 KO. Delayed PGC proliferation, significantly reduced number and size of Stage IB follicles (equivalent to primary follicles) in early juveniles of adamts9 KO, and arrested development at Stage IB follicles in mid- or late-juveniles of adamts9 KO are likely causes of female infertility and sex conversion. Via RNAseq, we found significant enrichment of differentially expressed genes involved in ECM organization during sexual maturation in ovaries of wildtype fish; and significant dysregulation of these genes in adamts9 KO ovaries. RNAseq analysis also showed enrichment of inflammatory transcriptomic signatures in adult ovaries of these adamts9 KO. Taken together, our results indicate that adamts9 is critical for development of primary ovarian follicles and maintenance of female sex, and loss of adamts9 leads to defects in ovarian follicle development, female infertility, and sex conversion in late juveniles and mature adults. These results show that the ECM and extracellular metalloproteases play major roles in maintaining ovarian follicle development in zebrafish.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Ciro M Amato
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
4
|
Shrestha K, Puttabyatappa M, Wynn MA, Hannon PR, Al-Alem LF, Rosewell KL, Akin J, Curry TE. Protease expression in the human and rat cumulus-oocyte complex during the periovulatory period: a role in cumulus-oocyte complex migration†. Biol Reprod 2024; 111:845-855. [PMID: 39018235 PMCID: PMC11473928 DOI: 10.1093/biolre/ioae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
The migratory and matrix-invading capacities of the cumulus-oocyte complex have been shown to be important for the ovulatory process. In metastatic cancers, these capacities are due to increased expression of proteases, however, there is limited information on protease expression in the cumulus-oocyte complexes. The present study examined cumulus-oocyte complex expression of plasmins, matrix metalloproteases, and A Disintegrin and Metalloproteinase with Thrombospondin Motifs family members in the rat and human. In the rat, human chorionic gonadotropin (hCG) administration increased cumulus-oocyte complex expression of Mmp2, Mmp9, Mmp13, Mmp14, Mmp16, Adamts1, and the protease inhibitors Timp1, Timp3, and Serpine1 by 8-12 h. This ovulatory induction of proteases in vivo could be mimicked by forskolin and ampiregulin treatment of cultured rat cumulus-oocyte complexes with increases observed in Mmp2, Mmp13, Mmp14, Mmp16, Mmp19, Plat, and the protease inhibitors Timp1, Timp3, and Serpine1. Comparison of expression between rat cumulus-oocyte complexes and granulosa cells at the time of ovulation showed decreased Mmp9 and increased Mmp13, Mmp14, Mmp16, Adamts1, Timp1, and Timp3 expression in the cumulus-oocyte complexes. In human, comparison of expression between cumulus and granulosa cells at the time of in vitro fertilization retrieval showed decreased MMP1, MMP2, MMP9, and ADAMTS1, while expression of MMP16, TIMP1, and TIMP3 were increased. Treatment of expanding rat cumulus-oocyte complexes with a broad spectrum matrix metalloproteases inhibitor, GM6001, significantly reduced the migration of cumulus cells in vitro. These data provide evidence that multiple proteases and their inhibitors are expressed in the cumulus-oocyte complex and play an important role in imparting the migratory phenotype of the cumulus-oocyte complex at the time of ovulation. Summary Sentence Multiple proteases and their inhibitors are induced in the cumulus-oocyte complex (COC) during the periovulatory period and potentially play an important role in imparting the migratory phenotype of the COC at the time of ovulation.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Michelle A Wynn
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Patrick R Hannon
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Linah F Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| | - James Akin
- Bluegrass Fertility Center, Lexington, KY, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Cordova-Gomez A, Wong AP, Sims LB, Doncel GF, Dorflinger LJ. Potential biomarkers to predict return to fertility after discontinuation of female contraceptives-looking to the future. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1210083. [PMID: 37674657 PMCID: PMC10477712 DOI: 10.3389/frph.2023.1210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023] Open
Abstract
Nowadays there are multiple types of contraceptive methods, from reversible to permanent, for those choosing to delay pregnancy. Misconceptions about contraception and infertility are a key factor for discontinuation or the uptake of family planning methods. Regaining fertility (the ability to conceive) after contraceptive discontinuation is therefore pivotal. Technical studies to date have evaluated return to fertility by assessing pregnancy as an outcome, with variable results, or return to ovulation as a surrogate measure by assessing hormone levels (such as progesterone, LH, FSH) with or without transvaginal ultrasound. In general, relying on time to pregnancy as an indicator of return to fertility following contraceptive method discontinuation can be problematic due to variable factors independent of contraceptive effects on fertility, hormone clearance, and fertility recovery. Since the ability to conceive after contraceptive method discontinuation is a critical factor influencing product uptake, it is important to have robust biomarkers that easily and accurately predict the timing of fertility return following contraception and isolate that recovery from extrinsic and circumstantial factors. The main aim of this review is to summarize the current approaches, existing knowledge, and gaps in methods of evaluating return-to-fertility as well as to provide insights into the potential of new biomarkers to more accurately predict fertility restoration after contraceptive discontinuation. Biomarker candidates proposed in this document include those associated with folliculogenesis, cumulus cell expansion, follicular rupture and ovulation, and endometrial transport and receptivity which have been selected and scored on predefined criteria meant to evaluate their probable viability for advancement. The review also describes limitations, regulatory requirements, and a potential path to clinically testing these selected biomarkers. It is important to understand fertility restoration after contraceptive method discontinuation to provide users and health providers with accurate evidence-based information. Predictive biomarkers, if easy and low-cost, have the potential to enable robust evaluation of RTF, and provide potential users the information they desire when selecting a contraceptive method. This could lead to expanded uptake and continuation of modern contraception and inform the development of new contraceptive methods to widen user's family planning choices.
Collapse
Affiliation(s)
- Amanda Cordova-Gomez
- Office of Population and Reproductive Health, USAID/Public Health Institute, Washington, DC, United States
| | - Andrew P. Wong
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lee B. Sims
- Office of Population and Reproductive Health, USAID/Public Health Institute, Washington, DC, United States
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Laneta J. Dorflinger
- Department of Product Development and Introduction, FHI 360, Durham, NC, United States
| |
Collapse
|
6
|
Zhang J, Goods BA, Pattarawat P, Wang Y, Haining T, Zhang Q, Shalek AK, Duncan FE, Woodruff TK, Xiao S. An ex vivo ovulation system enables the discovery of novel ovulatory pathways and nonhormonal contraceptive candidates†. Biol Reprod 2023; 108:629-644. [PMID: 36708230 PMCID: PMC10106841 DOI: 10.1093/biolre/ioad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Ovulation is an integral part of women's menstrual cycle and fertility. Understanding the mechanisms of ovulation has broad implications for the treatment of anovulatory diseases and the development of novel contraceptives. Now, few studies have developed effective models that both faithfully recapitulate the hallmarks of ovulation and possess scalability. We established a three-dimensional encapsulated in vitro follicle growth (eIVFG) system that recapitulates folliculogenesis and produces follicles that undergo ovulation in a controlled manner. Here, we determined whether ex vivo ovulation preserves molecular signatures of ovulation and demonstrated its use in discovering novel ovulatory pathways and nonhormonal contraceptive candidates through a high-throughput ovulation screening. Mature murine follicles from eIVFG were induced to ovulate ex vivo using human chorionic gonadotropin and collected at 0, 1, 4, and 8 hours post-induction. Phenotypic analyses confirmed key ovulatory events, including cumulus expansion, oocyte maturation, follicle rupture, and luteinization. Single-follicle RNA-sequencing analysis revealed the preservation of ovulatory genes and dynamic transcriptomic profiles and signaling. Soft clustering identified distinct gene expression patterns and new pathways that may critically regulate ovulation. We further used this ex vivo ovulation system to screen 21 compounds targeting established and newly identified ovulatory pathways. We discovered that proprotein convertases activate gelatinases to sustain follicle rupture and do not regulate luteinization and progesterone secretion. Together, our ex vivo ovulation system preserves molecular signatures of ovulation, presenting a new powerful tool for studying ovulation and anovulatory diseases as well as for establishing a high-throughput ovulation screening to identify novel nonhormonal contraceptives for women.
Collapse
Affiliation(s)
- Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Tessa Haining
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alex K Shalek
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- The Institute for Medical Science and Engineering, Department of Chemistry, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
8
|
Shi Y, Shi Y, He G, Wang G, Liu H, Shao X. Association of ADAMTS proteoglycanases downregulation with IVF-ET outcomes in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2022; 20:169. [PMID: 36510316 PMCID: PMC9745937 DOI: 10.1186/s12958-022-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) is involved in inflammation and fertility in women with polycystic ovary syndrome (PCOS). This study aims to assess the role of ADAMTS level in the outcomes of in vitro fertilization and embryo transfer (IVF-ET) in women with PCOS, using a meta-analytic approach. METHODS We systematically searched Web of Science, PubMed, EmBase, and the Cochrane library to identify potentially eligible studies from inception until December 2021. Study assess the role of ADAMTS levels in patients with PCOS was eligible in this study. The pooled effect estimates for the association between ADAMTS level and IVF-ET outcomes were calculated using the random-effects model. RESULTS Five studies involving a total of 181 patients, were selected for final analysis. We noted that ADAMTS-1 levels were positively correlated to oocyte maturity (r = 0.67; P = 0.004), oocyte recovery (r = 0.74; P = 0.006), and fertilization (r = 0.46; P = 0.041) rates. Moreover, ADAMTS-4 levels were positively correlated to oocyte recovery (r = 0.91; P = 0.001), and fertilization (r = 0.85; P = 0.017) rates. Furthermore, downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 was associated with elevated follicle puncture (ADAMTS-1: weighted mean difference [WMD], 7.24, P < 0.001; ADAMTS-4: WMD, 7.20, P < 0.001; ADAMTS-5: WMD, 7.20, P < 0.001; ADAMTS-9: WMD, 6.38, P < 0.001), oocytes retrieval (ADAMTS-1: WMD, 1.61, P < 0.001; ADAMTS-4: WMD, 3.63, P = 0.004; ADAMTS-5: WMD, 3.63, P = 0.004; ADAMTS-9: WMD, 3.20, P = 0.006), and Germinal vesicle oocytes levels (ADAMTS-1: WMD, 2.89, P < 0.001; ADAMTS-4: WMD, 2.19, P < 0.001; ADAMTS-5: WMD, 2.19, P < 0.001; ADAMTS-9: WMD, 2.89, P < 0.001). Finally, the oocytes recovery rate, oocyte maturity rate, fertilization rate, cleavage rate, good-quality embryos rate, blastocyst formation rate, and clinical pregnancy rate were not affected by the downregulation of ADAMTS-1, ADAMTS-4, ADAMTS-5, and ADAMTS-9 (P > 0.05). CONCLUSIONS This study found that the outcomes of IVF-EF in patients with PCOS could be affected by ADAMTS-1 and ADAMTS-4; further large-scale prospective studies should be performed to verify these results.
Collapse
Affiliation(s)
- Yanbin Shi
- School of Public Health, China Medical University, Shenyang, China
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Yang Shi
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guiyuan He
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Guang Wang
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China
| | - Hongbo Liu
- School of Public Health, China Medical University, Shenyang, China.
| | - Xiaoguang Shao
- Reproductive and Genetic Medicine Center, Dalian Women and Children's Medical Center, Dalian, China.
| |
Collapse
|
9
|
TGF-β1 induces type I collagen deposition in granulosa cells via the AKT/GSK-3β signaling pathway-mediated MMP1 down-regulation. Reprod Biol 2022; 22:100705. [DOI: 10.1016/j.repbio.2022.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
10
|
Yang B, Gong J, Jing J, Hao Y, Li S, Liu G, Feng Z, Zhao G. Effects of Zinc Methionine Hydroxy Analog Chelate on Laying Performance, Serum Hormone Levels, and Expression of Reproductive Axis Related Genes in Aged Broiler Breeders. Front Vet Sci 2022; 9:918283. [PMID: 35859808 PMCID: PMC9289673 DOI: 10.3389/fvets.2022.918283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inorganic zinc (Zn) supplements are commonly used in poultry feeds, but their low utilization results in the increase of Zn excretion. Thus, to provide a new perspective for the substitution of inorganic Zn, a novel Zn methionine hydroxy analog chelate (Zn-MHA) was studied in the present study to evaluate its effects on laying performance, serum hormone indexes and reproductive axis-related genes in broilers breeders. A total of 480 Hubbard breeders (56-week-old) were fed a basal diet (containing 27.81 mg Zn/kg) without Zn addition for 2 weeks, and then allocated to 4 groups with 6 replicates (each replicate consisting of 10 cages and 2 breeders per cage) for 10 weeks. Four treatment diets given to broiler breeders included the basal diet added with 25, 50, and 75 mg/kg of Zn-MHA and 100 mg/kg of Zn sulfate (ZnSO4). The laying rate, egg weight and feed conversation ratio increased in the 75 mg/kg Zn-MHA group compared to the ZnSO4 group. The eggshell thickness was not decreased with the addition of 50 mg/kg and 75 mg/kg Zn-MHA in the diet compared to the 100 mg/kg ZnSO4 group. There was a significant improvement in the reproductive performance of breeders in the 75 mg/kg Zn-MHA group, including the fertility and 1-day-old offspring weight. Besides, serum sex hormone levels including FSH and P4 increased significantly in 75 mg/kg Zn-MHA group. No significant effect on the ovarian weight or the number of follicles in broiler breeders was observed by supplementing Zn-MHA. Compared to the 100 mg/kg ZnSO4 group, dietary supplementation with 75 mg/kg of Zn-MHA showed an up-regulation of the FSHR mRNA in the granular layer of follicles. However, dietary supplementation of Zn-MHA had no effects on mRNA expressions of the ovarian LHR and PRLR genes. These findings reinforce the suggestion that Zn-MHA (75 mg/kg) could replace ZnSO4 (100 mg/kg) as a Zn supplement in diet of broiler breeders, which resulted in better laying and reproduction performances by regulating the expression levels of reproductive axis related genes and serum hormone levels.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jialin Jing
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shupeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guanzhong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhihua Feng
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Guoxian Zhao
| |
Collapse
|
11
|
Intraovarian, Isoform-Specific Transcriptional Roles of Progesterone Receptor in Ovulation. Cells 2022; 11:cells11091563. [PMID: 35563869 PMCID: PMC9105733 DOI: 10.3390/cells11091563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/05/2022] Open
Abstract
Progesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there is no established direct functional pathway explaining how progesterone receptor completely and specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific effects of the PGR within each cellular compartment of the ovary, using mice null for the PGR (PRKO), as well as isoform-specific null mice. The PGR was expressed in ovarian granulosa and stromal cells and although PRKO ovaries showed no visible histological changes in preovulatory ovarian morphology, follicle rupture did not occur. Reciprocal ovarian transplant experiments established the necessity of ovarian PGR expression for ovulation. Cumulus–oocyte complexes of PRKO mice exhibited normal morphology but showed some altered gene expression. The examination of mitochondrial activity showed subtle differences in PRKO oocytes but no differences in granulosa cell respiration, glycolysis or β-oxidation. Concurrently, RNA-seq identified novel functional pathways through which the PGR may regulate ovulation. PGR-A was the predominant transcriptionally active isoform in granulosa cells and 154 key PGR-dependent genes were identified, including a secondary network of transcription factors. In addition, the PGR regulated unique gene networks in the ovarian stroma. Collectively, we establish the effector pathways activated by the PGR across the ovarian cell types and conclude that PGR coordinates gene expression in the cumulus, granulosa and stromal cells at ovulation. Identifying these networks linking the PGR to ovulation provides novel targets for fertility therapeutics and nonhormonal contraceptive development.
Collapse
|
12
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
13
|
Baker SJC, Van Der Kraak G. ADAMTS1 is regulated by the EP4 receptor in the zebrafish ovary. Gen Comp Endocrinol 2021; 311:113835. [PMID: 34181931 DOI: 10.1016/j.ygcen.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Prostaglandins (PGs) are a class of fatty-acid derived hormones that are essential in ovulation of teleosts, but their exact role remains unknown. One putative target of PGs in ovulation is regulation of the expression of members of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family, which are implicated in follicular rupture. This study investigated the regulation of ADAMTS, other proteases, and their inhibitors in response to treatment with PGE2 or PGF2α. Four members of the ADAMTS family, ADAMTS1, ADAMTS5, ADAMTS9, and ADAMTS16 were shown to be expressed in the ovary of zebrafish, but only adamts1 was upregulated in full-grown follicles following treatment with PGE2. Inhibitors of the PG receptors EP1 and EP2 had no effect on PGE2-stimulated adamts1 expression, while treatment of full-grown follicles with both PGE2 and GW627368x, an inhibitor of EP4 function, prevented the PGE2-induced increase in adamts1 expression. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) in vitro had no effect on the expression of adamts1 mRNA. These findings suggest that expression of ADAMTS1 in zebrafish ovarian follicles is regulated by the prostaglandin PGE2 via the EP4 series prostaglandin receptor.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
14
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Ravisankar S, Hanna CB, Brooks KE, Murphy MJ, Redmayne N, Ryu J, Kinchen JM, Chavez SL, Hennebold JD. Metabolomics analysis of follicular fluid coupled with oocyte aspiration reveals importance of glucocorticoids in primate periovulatory follicle competency. Sci Rep 2021; 11:6506. [PMID: 33753762 PMCID: PMC7985310 DOI: 10.1038/s41598-021-85704-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin administration during infertility treatment stimulates the growth and development of multiple ovarian follicles, yielding heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. To determine how the intrafollicular environment affects oocyte competency, 74 individual rhesus macaque follicles were aspirated and the corresponding oocytes classified as failed to cleave, cleaved but arrested prior to blastulation, or those that formed blastocysts following in vitro fertilization. Metabolomics analysis of the follicular fluid (FF) identified 60 unique metabolites that were significantly different between embryo classifications, of which a notable increase in the intrafollicular ratio of cortisol to cortisone was observed in the blastocyst group. Immunolocalization of the glucocorticoid receptor (GR, NR3C1) revealed translocation from the cytoplasm to nucleus with oocyte maturation in vitro and, correlation to intrafollicular expression of the 11-hydroxy steroid dehydrogenases that interconvert these glucocorticoids was detected upon an ovulatory stimulus in vivo. While NR3C1 knockdown in oocytes had no effect on their maturation or fertilization, expansion of the associated cumulus granulosa cells was inhibited. Our findings indicate an important role for NR3C1 in the regulation of follicular processes via paracrine signaling. Further studies are required to define the means through which the FF cortisol:cortisone ratio determines oocyte competency.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental and Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Kelsey E Brooks
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Melinda J Murphy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nash Redmayne
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Shawn L Chavez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University School of Medicine, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA. .,Department of Obstetrics and Gynecology, Oregon Health & Science University School of Medicine, Portland, OR, USA.
| |
Collapse
|
16
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
17
|
Rojo JL, Jaworski JP, Peluffo MC. Direct role of the C-C motif chemokine receptor 2/monocyte chemoattractant protein 1 system in the feline cumulus oocyte complex†. Biol Reprod 2020; 100:1046-1056. [PMID: 30395163 DOI: 10.1093/biolre/ioy237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023] Open
Abstract
Studies were designed to (a) evaluate the mRNA expression of the C-C motif chemokine receptor 2 (CCR2) and its chemokine ligands, as well as genes related to periovulatory events, within the cumulus oocyte complex (COC) and follicle wall after a luteinizing hormone (LH) stimulus in cultured feline antral follicles; (b) assess the immunolocalization of CCR2 and its main ligand (monocyte chemoattractant protein 1, MCP1) within the feline COC; and (c) examine the direct effects of exogenous recombinant MCP1 on mRNA expression of the CCR2 receptor and MCP1 as well as key periovulatory genes in the COC, using a feline COC culture system. Both culture systems were developed by our laboratory and exhibit physiological response to gonadotropin stimuli. In summary, this study demonstrated mRNA expression of CCR2 receptor and its assessed ligands (MCP1, MCP2, MCP3, and MCP4) within the feline COC and follicle antral wall, and a significant increase in CCR2 mRNA by LH within the COC. Also, CCR2 and MCP1 immunoreactivity was observed in the oocyte and cumulus cells of the feline COC. Remarkably, this is the first report, in any species, describing a direct effect of the recombinant MCP1 in the CCR2/MCP1 system within the COC, by increasing the mRNA levels of key genes involved in the ovulatory cascade, as well as its own receptor CCR2. Together, these data suggest that CCR2 receptor signaling in the COC may regulate events critical for promoting cumulus oocyte expansion and/or oocyte maturation.
Collapse
Affiliation(s)
- Julieta Laura Rojo
- Centro de Investigaciones Endocrinológicas "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Pablo Jaworski
- National Institute of Agricultural Technology-Instituto Nacional de tecnología agropecuaria-CONICET, Castelar, Argentina
| | - Marina Cinthia Peluffo
- Centro de Investigaciones Endocrinológicas "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Mara JN, Zhou LT, Larmore M, Johnson B, Ayiku R, Amargant F, Pritchard MT, Duncan FE. Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY) 2020; 12:9686-9713. [PMID: 32407290 PMCID: PMC7288922 DOI: 10.18632/aging.103237] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Aging is associated with reduced tissue remodeling efficiency and increased fibrosis, characterized by excess collagen accumulation and altered matrix degradation. Ovulation, the process by which an egg is released from the ovary, is one of the most dynamic cycles of tissue wounding and repair. Because the ovary is one of the first organs to age, ovulation and ovarian wound healing is impaired with advanced reproductive age. To test this hypothesis, we induced superovulation in reproductively young and old mice and determined the numbers of eggs ovulated and corpora lutea (CLs), the progesterone producing glands formed post-ovulation. Reproductively old mice ovulated fewer eggs and had fewer CLs relative to young controls. Moreover, reproductively old mice exhibited a greater number of oocytes trapped within CLs and expanded cumulus oocyte complexes within unruptured antral follicles, indicative of failed ovulation. In addition, post-ovulatory tissue remodeling was compromised with age as evidenced by reduced CL vasculature, increased collagen, decreased hyaluronan, decreased cell proliferation and apoptosis, impaired wound healing capacity, and aberrant morphology of the ovarian surface epithelium (OSE). These findings demonstrate that ovulatory dysfunction is an additional mechanism underlying the age-related loss of fertility beyond the reduction of egg quantity and quality.
Collapse
Affiliation(s)
- Jamie N. Mara
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brian Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Ayiku
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Lei M, Chen R, Qin Q, Zhu H, Shi Z. Transcriptome analysis to unravel the gene expression profile of ovarian follicular development in Magang goose. J Reprod Dev 2020; 66:331-340. [PMID: 32281545 PMCID: PMC7470900 DOI: 10.1262/jrd.2019-110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Magang geese exhibit a unique characteristic of follicular development, with eight largest orderly arranged pre-ovulatory follicles in the abdominal cavity. However, little is
known about the mechanisms underlying this follicular development. This study aimed to compare gene expression profiles of granulosa cells (GCs) at different stages of follicular
development and provide comprehensive insights into follicle selection and the mechanisms underlying the well-defined follicle hierarchy in Magang geese. GCs of large white
follicles (LWFs), small yellow follicles (SYFs), F8, F4, and F1 were used for RNA-seq analysis; 374, 1117, 791, and 593 genes were differentially expressed in stages LWFs to SYFs,
SYFs to F8, F8 to F4, and F4 to F1, respectively, suggesting that these genes contribute to follicle selection and development. Reliability of sequencing data was verified through
qPCR analysis of 24 genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways revealed a complex mechanism that remodels the extracellular matrix and turnover of
extracellular matrix components in follicular development and ovulation and involves multiple pathway, such as focal adhesion, adherens junction, and extracellular matrix–receptor
interaction. Some unique characteristics were observed during the different follicular development stages. For instance, some differentially expressed genes were enriched in
progesterone-mediated oocyte maturation and steroid biosynthesis from stage SYFs to F8, whereas others were enriched in actin cytoskeleton regulation and vascular smooth muscle
contraction from stage F4 to F1. These findings enhance our current understanding of GC function and ovarian follicles during the key stages of follicular development.
Collapse
Affiliation(s)
- Mingming Lei
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rong Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingming Qin
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
20
|
Wu XJ, Zhu Y. Downregulation of nuclear progestin receptor (Pgr) and subfertility in double knockouts of progestin receptor membrane component 1 (pgrmc1) and pgrmc2 in zebrafish. Gen Comp Endocrinol 2020; 285:113275. [PMID: 31536721 PMCID: PMC6888933 DOI: 10.1016/j.ygcen.2019.113275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/01/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
The progestin receptor membrane components (Pgrmcs) contain two paralogs, Pgrmc1 and Pgrmc2. Our previous research into single knockout of Pgrmc1 or Pgrmc2 suggests that Pgrmc1 and Pgrmc2 regulate membrane progestin receptor or steroid synthesis and therefore female fertility in zebrafish. Additional roles of Pgrmcs may not be determined in using single Pgrmc knockouts due to compensatory roles between Pgrmc1 and Pgrmc2. To address this question, we crossed single knockout pgrmc1 (pgrmc1-/-) with pgrmc2 (pgrmc2-/-), and generated double knockouts for both pgrmc1 and pgrmc2 (pgrmc1/2-/-) in a vertebrate model, zebrafish. In addition to the delayed oocyte maturation and reduced female fertility, significant reduced ovulation was found in double knockout (pgrmc1/2-/-) in vivo, though not detected in either single knockout of Pgrmc (pgrmc1-/- or pgrmc2-/-). We also found significant down regulation of nuclear progestin receptor (Pgr) protein expression only in pgrmc1/2-/-, which was most likely the cause of reduced ovulation. Lower protein expression of Pgr also resulted in reduced expression of metalloproteinase in pgrmc1/2-/-. With this study, we have provided new evidence for the physiological functions of Pgrmcs in the regulation of female fertility by regulation of ovulation, likely via regulation of Pgr, which affects regulation of metalloproteinase expression and oocyte ovulation.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
21
|
Liu DT, Hong WS, Chen SX, Zhu Y. Upregulation of adamts9 by gonadotropin in preovulatory follicles of zebrafish. Mol Cell Endocrinol 2020; 499:110608. [PMID: 31586455 PMCID: PMC6878983 DOI: 10.1016/j.mce.2019.110608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
Previously we had identified adamts9 as a downstream target of Pgr, which is essential for ovulation in zebrafish. The primary goal of this study is to determine whether human chorionic gonadotropin (hCG, LH analog) also regulate adamts9 expression prior to ovulation. The expression of adamts9 was induced by hCG in a dose and time dependent manner in zebrafish preovulatory follicles in vitro. Interestingly, the stimulatory effect of hCG on adamts9 expression was not blocked in pgr-/- follicles but blocked in lhcgr-/-. This effect of hCG was via Lhcgr and its associated cAMP and PKC signaling pathways. Reduced fecundity and reduced expression of adamts9 were also found in lhcgr-/- females in vivo. Therefore, we have provided the first evidence of gonadotropin (hCG) regulated adamts9 in zebrafish, which could be important for ovulation.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China.
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China; Department of Biology, East Carolina University, 1000 5th Street, Greenville, NC, 27858, USA.
| |
Collapse
|
22
|
Carter NJ, Roach ZA, Byrnes MM, Zhu Y. Adamts9 is necessary for ovarian development in zebrafish. Gen Comp Endocrinol 2019; 277:130-140. [PMID: 30951722 DOI: 10.1016/j.ygcen.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
Expression of adamts9 (A disintegrin and metalloprotease with thrombospondin type-1 motif, member 9) increases dramatically in the somatic cells surrounding oocytes during ovulation in vertebrates from zebrafish to human. However, the function of Adamts9 during ovulation has not been determined due to the embryonic lethality of knockouts in mice and Drosophila. To identify the role of Adamts9 during ovulation we generated knockout (adamts9-/-) zebrafish using CRISPR/Cas9 and characterized the effects of the mutation. From 1047 fish generated by crossing adamts9+/- pairs, we found significantly fewer adult adamts9-/- fish (4%) than predicted by Mendelian ratios (25%). Of the mutants found, there was a significant male bias (82%). Only 3 female mutants were identified (7%), and they had small ovaries with few stage III and IV oocytes compared to wildtype (wt) counterparts of comparable size and age. Astoundingly, the remaining mutants (11%) did not appear to have normal testis or ovaries. Instead there was a pair of transparent, ovarian-like membranous shells that filled the abdominal cavity. Histological examination confirmed that shells were largely empty with no internal structure. Surprisingly, seminiferous tubules and various spermatocytes including mature spermatozoa were observed on the periphery of these transparent shells. No female or female like knockouts were observed to release eggs, and no ovulated oocytes were observed in histological sections. To our knowledge, this is the first report of an adamts9 global knockout model in any adult vertebrates and the first description of how gonadal sex and structure are affected- highlighting the importance of Adamts9 during gonadal development and the value of zebrafish as a model organism.
Collapse
Affiliation(s)
| | - Zachary Adam Roach
- Department of Biology, East Carolina University, Greenville 27858, NC, USA
| | | | - Yong Zhu
- Department of Biology, East Carolina University, Greenville 27858, NC, USA.
| |
Collapse
|
23
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
24
|
GohariTaban S, Amiri I, Soleimani Asl S, Saidijam M, Yavangi M, Khanlarzadeh E, Mohammadpour N, Shabab N, Artimani T. Abnormal expressions of ADAMTS-1, ADAMTS-9 and progesterone receptors are associated with lower oocyte maturation in women with polycystic ovary syndrome. Arch Gynecol Obstet 2018; 299:277-286. [PMID: 30446843 DOI: 10.1007/s00404-018-4967-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE ADAMTS-1 and 9 play a crucial role in the ovulation and their altered levels may play a role in the pathogenesis of polycystic ovary syndrome (PCOS). The aim of this study was to assess ADAMTS-1 and 9 expression and their correlation with the oocyte quality and maturity in the cumulus cells (CCs) of PCOS patients and normovulatory women during an IVF procedure. METHODS Expression of ADAMTS-1 and 9 and progesterone receptors (PRs) in the CCs containing MII and germinal vesicle (GV) oocytes of 37 PCOS patients and 37 women with normal ovulatory function who underwent IVF treatment was evaluated using qRT-PCR. Moreover, correlation between ADAMTS-1 and 9 expression and oocyte quality were also investigated. RESULTS mRNA expression levels of ADAMTS-1 and ADAMTS-9 were significantly reduced in the women with PCOS compared to the normovulatory women. ADAMTS-1 and ADAMTS-9 mRNA expression levels in the CCs showed a considerable correlation. Lower expression levels of ADAMTS-1 and ADAMTS-9 in PCOS patients were strongly correlated with diminished oocyte maturation. There was a remarkable association between ADAMTS-1 and ADAMTS-9 mRNA expression levels and oocyte quality. PRs (PRA and PRB) were dramatically decreased in PCOS patients when compared with the control group. CONCLUSIONS The results of the present study indicated that ADAMTS-1 and ADAMTS-9 as well as PRs are downregulated in the human CCs in PCOS patients, which could be associated with impaired oocyte maturation and may result in a lower oocyte recovery and oocyte maturity rates, as well as lower fertilization rate.
Collapse
Affiliation(s)
- Sepide GohariTaban
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahnaz Yavangi
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Nooshin Mohammadpour
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
25
|
Robker RL, Hennebold JD, Russell DL. Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. Endocrinology 2018; 159:3209-3218. [PMID: 30010832 PMCID: PMC6456964 DOI: 10.1210/en.2018-00485] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
Ovulation is the appropriately timed release of a mature, developmentally competent oocyte from the ovary into the oviduct, where fertilization occurs. Importantly, ovulation is tightly linked with oocyte maturation, demonstrating the interdependency of these two parallel processes, both essential for female fertility. Initiated by pituitary gonadotropins, the ovulatory process is mediated by intrafollicular paracrine factors from the theca, mural, and cumulus granulosa cells, as well as the oocyte itself. The result is the induction of cumulus expansion, proteolysis, angiogenesis, inflammation, and smooth muscle contraction, which are each required for follicular rupture. These complex intercellular communication networks and the essential ovulatory genes have been well defined in mouse models and are highly conserved in primates, including humans. Importantly, recent discoveries in regulation of ovulation highlight new areas of investigation.
Collapse
Affiliation(s)
- Rebecca L Robker
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
- Correspondence: Rebecca L. Robker, PhD, Robinson Research Institute, School of Medicine, University of Adelaide, South Australia 5005, Australia. E-mail:
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Darryl L Russell
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Altered expression of IL-1β, IL-1RI, IL-1RII, IL-1RA and IL-4 could contribute to anovulation and follicular persistence in cattle. Theriogenology 2018; 110:61-73. [DOI: 10.1016/j.theriogenology.2017.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022]
|
27
|
Abstract
The "ovarian cycle" is an exquisite and dynamic endocrine system that includes ovarian events, hypothalamic-pituitary interactions, uterine endometrial and myometrial changes during implantation and pregnancy, cervical alterations in structure, and breast development. The ovarian cycle and the steroid hormones produced by the ovary also impact epithelial cancer development in the ovary, uterus, cervix, and breast. This chapter provides a personal view of recent developments that occur in this complex endocrine environment.
Collapse
Affiliation(s)
- JoAnne S Richards
- Baylor College of Medicine, Houston, TX, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
28
|
Wu Y, Lin J, Han B, Wang L, Chen Y, Liu M, Huang J. Proteomic profiling of follicle fluids after superstimulation in one-month-old lambs. Reprod Domest Anim 2017; 53:186-194. [DOI: 10.1111/rda.13091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 09/09/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Y Wu
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - J Lin
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - B Han
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - L Wang
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - Y Chen
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - M Liu
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| | - J Huang
- Xinjiang Academy of Animal Science; Biotechnology Research Institute; Xinjiang China
| |
Collapse
|
29
|
Liu DT, Brewer MS, Chen S, Hong W, Zhu Y. Transcriptomic signatures for ovulation in vertebrates. Gen Comp Endocrinol 2017; 247:74-86. [PMID: 28111234 PMCID: PMC5410184 DOI: 10.1016/j.ygcen.2017.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/01/2023]
Abstract
The central roles of luteinizing hormone (LH), progestin and their receptors for initiating ovulation have been well established. However, signaling pathways and downstream targets such as proteases that are essential for the rupture of follicular cells are still unclear. Recently, we found anovulation in nuclear progestin receptor (Pgr) knockout (Pgr-KO) zebrafish, which offers a new model for examining genes and pathways that are important for ovulation and fertility. In this study, we examined expression of all transcripts using RNA-Seq in preovulatory follicular cells collected following the final oocyte maturation, but prior to ovulation, from wild-type (WT) or Pgr-KO fish. Differential expression analysis revealed 3567 genes significantly differentially expressed between WT and Pgr-KO fish (fold change⩾2, p<0.05). Among those, 1543 gene transcripts were significantly more expressed, while 2024 genes were significantly less expressed, in WT than those in Pgr-KO. We then retrieved and compared transcriptional data from online databases and further identified 661 conserved genes in fish, mice, and humans that showed similar levels of high (283 genes) or low (387) expression in animals that were ovulating compared to those with no ovulation. For the first time, ovulatory genes and their involved biological processes and pathways were also visualized using Enrichment Map and Cytoscape. Intriguingly, enrichment analysis indicated that the genes with higher expression were involved in multiple ovulatory pathways and processes such as inflammatory response, angiogenesis, cytokine production, cell migration, chemotaxis, MAPK, focal adhesion, and cytoskeleton reorganization. In contrast, the genes with lower expression were mainly involved in DNA replication, DNA repair, DNA methylation, RNA processing, telomere maintenance, spindle assembling, nuclear acid transport, catabolic processes, and nuclear and cell division. Our results indicate that a large set of genes (>3000) is differentially regulated in the follicular cells in zebrafish prior to ovulation, terminating programs such as growth and proliferation, and beginning processes including the inflammatory response and apoptosis. Further studies are required to establish relationships among these genes and an ovulatory circuit in the zebrafish model.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China; Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Shixi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China
| | - Wanshu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province 361102, People's Republic of China; Department of Biology, East Carolina University, Greenville, NC 27858, United States.
| |
Collapse
|
30
|
Puttabyatappa M, Al-Alem LF, Zakerkish F, Rosewell KL, Brännström M, Curry TE. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity. Endocrinology 2017; 158:109-120. [PMID: 27813674 PMCID: PMC5412983 DOI: 10.1210/en.2016-1544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Linah F. Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Farnosh Zakerkish
- Department of Obstetrics and Gynecology, University of Gothenburg, and Stockholm IVF, Gothenburg, Sweden SE 405 30
| | - Katherine L. Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, and Stockholm IVF, Gothenburg, Sweden SE 405 30
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| |
Collapse
|
31
|
Karakose M, Demircan K, Tutal E, Demirci T, Arslan MS, Sahin M, Celik HT, Kazanci F, Karakaya J, Cakal E, Delibasi T. Clinical significance of ADAMTS1, ADAMTS5, ADAMTS9 aggrecanases and IL-17A, IL-23, IL-33 cytokines in polycystic ovary syndrome. J Endocrinol Invest 2016; 39:1269-1275. [PMID: 27146815 DOI: 10.1007/s40618-016-0472-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/17/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women of reproductive age. A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) are involved in inflammation and fertility. The aim of this investigation was to evaluate the serum levels of ADAMTS1, ADAMTS5, ADAMTS9, IL-17, IL-23, IL-33 and to find out the relationship between these inflammatory cytokines and ADAMTSs in PCOS patients. METHODS A case-control study was performed in a training and research hospital. Eighty patients with PCOS and seventy-eight healthy female volunteers were recruited in the present study. Serum ADAMTS and IL levels were determined by a human enzyme-linked immunoassay (ELISA) in all subjects. RESULTS The IL-17A, IL-23 and IL-33 levels were significantly higher in the PCOS patients compared to the controls (p < 0.05). We could not find significant difference between the groups in terms of ADAMTS1, ADAMTS5 and ADAMTS9 levels. IL-17A had positive correlations with LDL cholesterol and IL-33 and negative correlations with ADAMTS1, ADAMTS5, and ADAMTS9. IL-33 had positive correlation with LDL cholesterol and IL-17A. In ROC curve analysis, PCOS can be predicted by the use of IL-17A, IL-23 and IL-33 which at a cut-off value of 8.37 pg/mL (44 % sensitivity, 83 % specificity), 26.75 pg/mL (36 % sensitivity, 64 % specificity) and 14.28 pg/mL (83 % sensitivity, 39 % specificity), respectively. CONCLUSIONS The results of the study might suggest that ADAMTS and IL molecules have a role in the pathogenesis of the PCOS. Further efforts are needed to establish causality for ADAMTS-IL axis.
Collapse
Affiliation(s)
- M Karakose
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Irfan Bastug Caddesi, 06110, Ankara, Turkey.
| | - K Demircan
- Department of Medical Biology, Turgut Ozal University School of Medicine, Gimat, Ankara, Turkey
| | - E Tutal
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Irfan Bastug Caddesi, 06110, Ankara, Turkey
| | - T Demirci
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Irfan Bastug Caddesi, 06110, Ankara, Turkey
| | - M S Arslan
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Irfan Bastug Caddesi, 06110, Ankara, Turkey
| | - M Sahin
- Department of Endocrinology and Metabolism, Ankara University, School of Medicine, Ankara, Turkey
| | - H T Celik
- Department of Biochemistry, Turgut Ozal University School of Medicine, Gimat, Ankara, Turkey
| | - F Kazanci
- Department of Biochemistry, Turgut Ozal University School of Medicine, Gimat, Ankara, Turkey
| | - J Karakaya
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey
| | - E Cakal
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Irfan Bastug Caddesi, 06110, Ankara, Turkey
| | - T Delibasi
- Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Irfan Bastug Caddesi, 06110, Ankara, Turkey
| |
Collapse
|
32
|
Murphy MJ, Halow NG, Royer PA, Hennebold JD. Leukemia Inhibitory Factor Is Necessary for Ovulation in Female Rhesus Macaques. Endocrinology 2016; 157:4378-4387. [PMID: 27571132 PMCID: PMC5086537 DOI: 10.1210/en.2016-1283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the requirement of pituitary-derived LH for ovulation is well documented, the intrafollicular paracrine and autocrine processes elicited by LH necessary for follicle rupture are not fully understood. Evaluating a published rhesus macaque periovulatory transcriptome database revealed that mRNA encoding leukemia inhibitory factor (LIF) and its downstream signaling effectors are up-regulated in the follicle after animals receive an ovulatory stimulus (human chorionic gonadotropin [hCG]). Follicular LIF mRNA and protein levels are below the limit of detection before the administration of hCG but increase significantly 12 hours thereafter. Downstream LIF receptor (LIFR) signaling components including IL-6 signal transducer, the receptor associated Janus kinase 1, and the transcription factor signal transducer and activator of transcription 3 also exhibit increased expression in the rhesus macaque follicle 12 hours after administration of an ovulatory hCG bolus. A laparoscopic ovarian evaluation 72 hours after the injection of a LIF antagonist (soluble LIFR) into the rhesus macaque preovulatory follicle and hCG administration revealed blocking LIF action prevented ovulation (typically occurs 36-44 h after hCG). Moreover, ovaries removed 52 hours after both hCG and intrafollicular soluble LIFR administration confirmed ovulation was blocked as evidenced by the presence of an intact follicle and a trapped cumulus-oocyte complex. These findings give new insight into the role of LIF in the primate ovary and could lead to the development of new approaches for the control of fertility.
Collapse
Affiliation(s)
- Melinda J Murphy
- Division of Reproductive and Developmental Sciences (M.J.M., N.G.H., P.A.R., J.D.H.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006; and Department of Obstetrics and Gynecology (P.A.R., J.D.H.), Oregon Health and Science University, Portland, Oregon 97239
| | - Nathan G Halow
- Division of Reproductive and Developmental Sciences (M.J.M., N.G.H., P.A.R., J.D.H.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006; and Department of Obstetrics and Gynecology (P.A.R., J.D.H.), Oregon Health and Science University, Portland, Oregon 97239
| | - Pamela A Royer
- Division of Reproductive and Developmental Sciences (M.J.M., N.G.H., P.A.R., J.D.H.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006; and Department of Obstetrics and Gynecology (P.A.R., J.D.H.), Oregon Health and Science University, Portland, Oregon 97239
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences (M.J.M., N.G.H., P.A.R., J.D.H.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006; and Department of Obstetrics and Gynecology (P.A.R., J.D.H.), Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
33
|
Protein pathways working in human follicular fluid: the future for tailored IVF? Expert Rev Mol Med 2016; 18:e9. [DOI: 10.1017/erm.2016.4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human follicular fluid (HFF) contains molecules and proteins that may affect follicle growth, oocyte maturation and competence acquiring. Despite the numerous studies, an integrated broad overview on biomolecular and patho/physiological processes that are proved or supposed to take place in HFF during folliculogenesis and oocyte development is still missing. In this review we report, for the first time, all the proteins unambiguously detected in HFF and, applying DAVID (Database for Annotation, Visualization and Integrated Discovery) and MetaCore bioinformatic resources, we shed new lights on their functional correlation, delineating protein patterns and pathways with reasonable potentialities for oocyte quality estimation in in vitro fertilisation (IVF) programs. Performing a rigorous PubMed search, we redacted a list of 617 unique proteins unambiguously-annotated as HFF components. Their functional processing suggested the occurrence in HFF of a tight and highly dynamic functional-network, which is balanced by specific effectors, primarily involved in extracellular matrix degradation and remodelling, inflammation and coagulation. Metalloproteinases, thrombin and vitamin-D-receptor/retinoid-X-receptor-alpha resulted as the main key factors in the nets and their differential activity may be indicative of ovarian health and oocyte quality. Despite future accurate clinical investigations are absolutely needed, the present analysis may provide a starting point for more accurate oocyte quality estimation and for defining personalised therapies in reproductive medicine.
Collapse
|
34
|
Bishop CV, Hennebold JD, Kahl CA, Stouffer RL. Knockdown of Progesterone Receptor (PGR) in Macaque Granulosa Cells Disrupts Ovulation and Progesterone Production. Biol Reprod 2016; 94:109. [PMID: 26985003 PMCID: PMC4939739 DOI: 10.1095/biolreprod.115.134981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Adenoviral vectors (vectors) expressing short-hairpin RNAs complementary to macaque nuclear progesterone (P) receptor PGR mRNA (shPGR) or a nontargeting scrambled control (shScram) were used to determine the role PGR plays in ovulation/luteinization in rhesus monkeys. Nonluteinized granulosa cells collected from monkeys (n = 4) undergoing controlled ovarian stimulation protocols were exposed to either shPGR, shScram, or no virus for 24 h; human chorionic gonadotropin (hCG) was then added to half of the wells to induce luteinization (luteinized granulosa cells [LGCs]; n = 4-6 wells/treatment/monkey). Cells/media were collected 48, 72, and 120 h postvector for evaluation of PGR mRNA and P levels. Addition of hCG increased (P < 0.05) PGR mRNA and medium P levels in controls. However, a time-dependent decline (P < 0.05) in PGR mRNA and P occurred in shPGR vector groups. Injection of shPGR, but not shScram, vector into the preovulatory follicle 20 h before hCG administration during controlled ovulation protocols prevented follicle rupture in five of six monkeys as determined by laparoscopic evaluation, with a trapped oocyte confirmed in three of four follicles of excised ovaries. Injection of shPGR also prevented the rise in serum P levels following the hCG bolus compared to shScram (P < 0.05). Nuclear PGR immunostaining was undetectable in granulosa cells from shPGR-injected follicles, compared to intense staining in shScram controls. Thus, the nuclear PGR appears to mediate P action in the dominant follicle promoting ovulation in primates. In vitro and in vivo effects of PGR knockdown in LGCs also support the hypothesis that P enhances its own synthesis in the primate corpus luteum by promoting luteinization.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Christoph A Kahl
- Molecular Virology Support Core, Oregon National Primate Research Center, Beaverton, Oregon
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
35
|
The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediators Inflamm 2015; 2015:801546. [PMID: 26696755 PMCID: PMC4677222 DOI: 10.1155/2015/801546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs. ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-α (TNF-α) form a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its structure, function, gene regulation, and inflammatory diseases involvement.
Collapse
|
36
|
Shahed A, Simmons JJ, Featherstone SL, Young KA. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters. Gen Comp Endocrinol 2015; 216:46-53. [PMID: 25910436 PMCID: PMC4457603 DOI: 10.1016/j.ygcen.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 11/25/2022]
Abstract
Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.
Collapse
Affiliation(s)
- Asha Shahed
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Jamie J Simmons
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Sydney L Featherstone
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Kelly A Young
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
37
|
Jensen JT. Present and future contraception: does discovery of targets lead to new contraceptives? Expert Opin Ther Targets 2015; 19:1429-32. [DOI: 10.1517/14728222.2015.1039939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Liechty ER, Bergin IL, Bell JD. Animal models of contraception: utility and limitations. Open Access J Contracept 2015; 6:27-35. [PMID: 29386922 PMCID: PMC5683139 DOI: 10.2147/oajc.s58754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development.
Collapse
Affiliation(s)
| | | | - Jason D Bell
- Program on Women's Health Care Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
ADAMTS proteases in fertility. Matrix Biol 2015; 44-46:54-63. [PMID: 25818315 DOI: 10.1016/j.matbio.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/11/2023]
Abstract
The reproductive organs are unique among adult organs in that they must undergo continual tissue remodelling as a key aspect of their normal function. The processes for persistent maturation and release of new gametes, as well as fertilisation, implantation, placentation, gestation and parturition involve cyclic development and regression of tissues that must continually regenerate to support fertility. The ADAMTS family of proteases has been shown to contribute to many aspects of the tissue morphogenesis required for development and function of each of the reproductive organs. Dysregulation or functional changes in ADAMTS family proteases have been associated with reproductive disorders such as polycystic ovarian syndrome (PCOS) and premature ovarian failure (POF). Likewise, proteolytic substrates of ADAMTS enzymes have also been linked to reproductive function. New insight into the roles of ADAMTS proteases has yielded a deeper understanding of the molecular mechanisms behind fertility with clinical potential to generate therapeutic targets to resolve infertility, develop biomarkers that predict dysfunction of the reproductive organs and potentially offer targets for development of non-hormonal male and female contraceptives.
Collapse
|
40
|
Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 2015; 36:65-91. [PMID: 25541635 PMCID: PMC4496428 DOI: 10.1210/er.2014-1079] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology (K.H., D.L.R., S.A.R., R.J.R.), School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia 5005; Medical Research Council Centre for Reproductive Health (R.A.A.), The University of Edinburgh, The Queens Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom; Department of Anatomy and Developmental Biology (D.W.), Monash University, Clayton, Victoria, Australia 3800; Bio-X Institutes (J.W.), Shanghai Jiao Tong University, Shanghai 200240, China; and Institute of Cell Biology and Centre for Integrative Physiology (E.E.T), The University of Edinburgh, Edinburgh EH8 9XE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Toms D, Xu S, Pan B, Wu D, Li J. Progesterone receptor expression in granulosa cells is suppressed by microRNA-378-3p. Mol Cell Endocrinol 2015; 399:95-102. [PMID: 25150622 DOI: 10.1016/j.mce.2014.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 02/05/2023]
Abstract
In developing ovarian follicles, the progesterone receptor (PGR) is essential for mediating transcription of key factors that coordinate cellular functions including follicular remodeling. With recent investigations examining the role of microRNA (miRNA) in regulating ovarian function we used a lentiviral approach to over express miR-378 in cultured primary porcine granulosa cells to study the role this miRNA may play in granulosa cell development. We revealed that miR-378-3p decreased protein levels and mRNA levels of PGR via targeting its 3'UTR. We observed that this regulation of PGR by miR-378-3p resulted in a corresponding decrease in gene transcripts of ADAMTS1, CTSL1, and PPARG, all known to be regulated by PGR and important for follicular maturation and remodeling. Our study provides the first evidence for post-transcriptional regulation of PGR and further elucidates the role of miR-378-3p in the ovary.
Collapse
Affiliation(s)
- Derek Toms
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Shengyu Xu
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1; Institute of Animal Nutrition, Sichuan Agricultural University, 625014, China
| | - Bo Pan
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, 625014, China.
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
42
|
Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin. Fertil Steril 2014; 103:826-33. [PMID: 25516084 DOI: 10.1016/j.fertnstert.2014.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To explore the temporal expression in granulosa and theca cells of key members of the MMP and ADAMTS families across the periovulatory period in women to gain insight into their possible roles during ovulation and early luteinization. DESIGN Experimental prospective clinical study and laboratory-based investigation. SETTING University medical center and private IVF center. ANIMAL AND PATIENT(S) Thirty-eight premenopausal women undergoing surgery for tubal ligation and six premenopausal women undergoing assisted reproductive techniques. INTERVENTION(S) Administration of hCG and harvesting of follicles by laparoscopy and collection of granulosa-lutein cells at oocyte retrieval. MAIN OUTCOME MEASURE(S) Expression of mRNA for matrix metalloproteinase (MMPs) and the A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) in human granulosa cells and theca cells collected across the periovulatory period of the menstrual cycle and in cultured granulosa-lutein cells after hCG. Localization of MMPs and ADAMTSs by immunohistochemistry. RESULT(S) Expression of MMP1 and MMP19 mRNA increased in both granulosa and theca cells after hCG administration. ADAMTS1 and ADAMTS9 mRNA increased in granulosa cells after hCG treatment, however, thecal cell expression for ADAMTS1 was unchanged, while ADAMTS9 expression was decreased. Expression of MMP8 and MMP13 mRNA was unchanged. Immunohistochemistry confirmed the localization of MMP1, MMP19, ADAMTS1, and ADAMTS9 to the granulosa and thecal cell layers. CONCLUSION(S) The collection of the dominant follicle throughout the periovulatory period has allowed the identification of proteolytic remodeling enzymes in the granulosa and theca compartments that may be critically involved in human ovulation. These proteinases may work in concert to regulate breakdown of the follicular wall and release of the oocyte.
Collapse
|
43
|
Zhu G, Jiang Y. Polymorphism, genetic effect and association with egg production traits of chicken matrix metalloproteinases 9 promoter. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1526-31. [PMID: 25358310 PMCID: PMC4213695 DOI: 10.5713/ajas.2014.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 07/17/2014] [Indexed: 11/27/2022]
Abstract
Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (−2,400 to −1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at −1954 C+/C−. Genetic association analysis indicated significant correlation between the deletion genotype (C−) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype (C−) had significantly lower promoter activity than the insertion genotype (C+) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance.
Collapse
Affiliation(s)
- Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China ; Department of Biology Science and Technology, Taishan University, Taian 271021, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
44
|
Donadeu FX, Fahiminiya S, Esteves CL, Nadaf J, Miedzinska K, McNeilly AS, Waddington D, Gérard N. Transcriptome profiling of granulosa and theca cells during dominant follicle development in the horse. Biol Reprod 2014; 91:111. [PMID: 25253738 DOI: 10.1095/biolreprod.114.118943] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Several aspects of equine ovarian physiology are unique among domestic species. Moreover, follicular growth patterns are very similar between horses and humans. This study aimed to characterize, for the first time, global gene expression profiles associated with growth and preovulatory (PO) maturation of equine dominant follicles. Granulosa cells (GCs) and theca interna cells (TCs) were harvested from follicles (n = 5) at different stages of an ovulatory wave in mares corresponding to early dominance (ED; diameter ≥22 mm), late dominance (LD; ≥33 mm) and PO stage (34 h after administration of crude equine gonadotropins at LD stage), and separately analyzed on a horse gene expression microarray, followed by validation using quantitative PCR and immunoblotting/immunohistochemistry. Numbers of differentially expressed transcripts (DETs; ≥2-fold; P < 0.05) during the ED-LD and LD-PO transitions were 546 and 2419 in GCs and 5 and 582 in TCs. The most prominent change in GCs was the down-regulation of transcripts associated with cell division during both ED-LD and LD-PO. In addition, DET sets during LD-PO in GCs were enriched for genes involved in cell communication/adhesion, antioxidation/detoxification, immunity/inflammation, and cholesterol biosynthesis. In contrast, the largest change in TCs during the LD-PO transition was an up-regulation of genes involved in immune activation, with other DET sets mapping to GPCR/cAMP signaling, lipid/amino acid metabolism, and cell proliferation/survival and differentiation. In conclusion, distinct expression profiles were identified between growing and PO follicles and, particularly, between GCs and TCs within each stage. Several DETs were identified that have not been associated with follicle development in other species.
Collapse
Affiliation(s)
- F Xavier Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Somayyeh Fahiminiya
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom INRA and CNRS, UMR 6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, UMR 6175 Physiologie de la Reproduction et des Comportements, Tours, France
| | - Cristina L Esteves
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Javad Nadaf
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Alan S McNeilly
- The Queen's Medical Research Institute, MRC Centre for Reproductive Health, Edinburgh, United Kingdom
| | - David Waddington
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Nadine Gérard
- INRA and CNRS, UMR 6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, UMR 6175 Physiologie de la Reproduction et des Comportements, Tours, France Haras Nationaux, UMR 6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
45
|
Liu Z, Zheng Q, Zhang X, Lu L. Microarray analysis of genes involved with shell strength in layer shell gland at the early stage of active calcification. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:609-24. [PMID: 25049830 PMCID: PMC4093333 DOI: 10.5713/ajas.2012.12398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/08/2012] [Accepted: 09/15/2012] [Indexed: 01/13/2023]
Abstract
The objective of this study was to get a comprehensive understanding of how genes in chicken shell gland modulate eggshell strength at the early stage of active calcification. Four 32-week old of purebred Xianju hens with consistent high or low shell breakage strength were grouped into two pairs. Using Affymetrix Chicken Array, a whole-transcriptome analysis was performed on hen’s shell gland at 9 h post oviposition. Gene ontology enrichment analysis for differentially expressed (DE) transcripts was performed using the web-based GOEAST, and the validation of DE-transcripts was tested by qRT-PCR. 1,195 DE-transcripts, corresponding to 941 unique genes were identified in hens with strong eggshell compared to weak shell hens. According to gene ontology annotations, there are 77 DE-transcripts encoding ion transporters and secreted extracellular matrix proteins, and at least 26 DE-transcripts related to carbohydrate metabolism or post-translation glycosylation modification; furthermore, there are 88 signaling DE-transcripts. GO term enrichment analysis suggests that some DE-transcripts mediate reproductive hormones or neurotransmitters to affect eggshell quality through a complex suite of biophysical processes. These results reveal some candidate genes involved with eggshell strength at the early stage of active calcification which may facilitate our understanding of regulating mechanisms of eggshell quality.
Collapse
Affiliation(s)
- Zhangguo Liu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Qi Zheng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Xueyu Zhang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Lizhi Lu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| |
Collapse
|
46
|
Puttabyatappa M, Jacot TA, Al-Alem LF, Rosewell KL, Duffy DM, Brännström M, Curry TE. Ovarian membrane-type matrix metalloproteinases: induction of MMP14 and MMP16 during the periovulatory period in the rat, macaque, and human. Biol Reprod 2014; 91:34. [PMID: 24920038 DOI: 10.1095/biolreprod.113.115717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
An intrafollicular increase in proteolytic activity drives ovulatory events. Surprisingly, the periovulatory expression profile of the membrane-type matrix metalloproteinases (MT-MMPs), unique proteases anchored to the cell surface, has not been extensively examined. Expression profiles of the MT-MMPs were investigated in ovarian tissue from well-characterized rat and macaque periovulatory models and naturally cycling women across the periovulatory period. Among the six known MT-MMPs, mRNA expression of Mmp14, Mmp16, and Mmp25 was increased after human chorionic gonadotropin (hCG) administration in rats. In human granulosa cells, mRNA expression of MMP14 and MMP16 increased following hCG treatment. In contrast, mRNA levels of MMP16 and MMP25 in human theca cells were unchanged before ovulation but declined by the postovulatory stage. In macaque granulosa cells, hCG increased mRNA for MMP16 but not MMP14. Immunoblotting showed that protein levels of MMP14 and MMP16 in rats increased, similar to their mRNA expression. In macaque granulosa cells, only the active form of the MMP14 protein increased after hCG, unlike its mRNA or the proprotein. By immunohistochemistry, both MMP14 and MMP16 localized to the different ovarian cell types in rats and humans. Treatment with hCG resulted in intense immunoreactivity of MMP14 and MMP16 proteins in the granulosa and theca cells. The present study shows that MMP14 and MMP16 are increased by hCG administration in the ovulating follicle, demonstrating that these MMPs are conserved among rats, macaques, and humans. These findings suggest that MT-MMPs could have an important role in promoting ovulation and remodeling of the ovulated follicle into the corpus luteum.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Terry A Jacot
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Linah F Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
47
|
Zhu G, Kang L, Wei Q, Cui X, Wang S, Chen Y, Jiang Y. Expression and regulation of MMP1, MMP3, and MMP9 in the chicken ovary in response to gonadotropins, sex hormones, and TGFB1. Biol Reprod 2014; 90:57. [PMID: 24451989 DOI: 10.1095/biolreprod.113.114249] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a specific class of proteolytic enzymes that play critical roles in follicular development and luteinization in mammals. However, the role of MMPs in avian ovary remains largely unknown. We found that three MMP genes (MMP1, MMP3, and MMP9) were significantly up-regulated in 23-wk-old (laying phase) chicken ovaries compared with 6-wk-old ovaries (prepubertal phase). In reproductively active chicken ovary, MMP1 expression (both mRNA and protein) remained low in prehierarchical and preovulatory follicles but increased in postovulatory follicles (POFs). Both MMP3 and MMP9 expression levels increased during follicular maturation. MMP3 reached maximal expression in the first largest follicle (F1), while MMP9 levels continued to rise in POF1 and POF2 after ovulation. Immunohistochemistry, Western blot analysis, and zymography experiments indicated that MMP1, MMP3, and MMP9 were synthesized and secreted by granulosa cells of different follicles in the chicken ovary. The mRNA expression of MMP1 and MMP3 in the granulosa cells was stimulated by follicle-stimulating hormone, luteinizing hormone, progesterone, and estrogen but not by transforming growth factor beta 1 (TGFB1). However, the mRNA of MMP9 was induced by TGFB1 but not follicle-stimulating hormone, luteinizing hormone, progesterone, or estrogen. Luciferase reporter and mutagenesis analysis indicated the AP1 and NFkappaB elements located in the promoter region from -1700 to -2400 bp were critical for both basal and TGFB1-induced MMP9 transcription. These data provide the first spatial-temporal expression analysis of MMP system in the chicken ovary.
Collapse
Affiliation(s)
- Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Wissing ML, Kristensen SG, Andersen CY, Mikkelsen AL, Høst T, Borup R, Grøndahl ML. Identification of new ovulation-related genes in humans by comparing the transcriptome of granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation cycle. Hum Reprod 2014; 29:997-1010. [PMID: 24510971 DOI: 10.1093/humrep/deu008] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Which genes and molecular mechanisms are involved in the human ovulatory cascade and final oocyte maturation? SUMMARY ANSWER Up-regulated genes in granulosa cells (GC) represented inflammation, angiogenesis, extracellular matrix, growth factors and genes previously associated with ovarian cancer, while down-regulated genes mainly represented cell cycle and proliferation. WHAT IS KNOWN ALREADY Radical changes occur in the follicle during final follicle maturation after the ovulatory trigger: these range from ensuring an optimal milieu for the oocyte in meiotic arrest to the release of a mature oocyte and remodeling into a corpus luteum. A wide range of mediators of final follicle maturation has been identified in rodents, non-human primates and cows. STUDY DESIGN, SIZE, DURATION Prospective cohort study including 24 women undergoing ovarian stimulation with the long gonadotrophin-releasing hormone agonist protocol during 2010-2012 at Holbæk Fertility Clinic. Nine paired samples of GC and 24 paired samples of follicular fluid (FF) were obtained before and after recombinant human chorionic gonadotrophin (rhCG) administration. PARTICIPANTS/MATERIALS, SETTING, METHODS Nine paired (nine arrays before rhCG and nine arrays after rhCG) samples of GC mRNA were amplified and hybridized to Affymetrix Human Gene 1.0 ST GeneChip arrays, compared and bioinformatically analyzed. Eleven selected genes were validated by quantitative reverse transcriptase PCR. FF hormones were analyzed by enzyme-linked immunosorbent assay. MAIN RESULTS AND THE ROLE OF CHANCE Eleven hundred and eighty-six genes were differentially expressed (>2-fold, P<0.0001, false discovery rate <0.0012) when comparing GC isolated before and 36 h after hCG, among those were genes known to be expressed at ovulation, i.e. ADAMTS1 and HAS2. Many new ovulation-related genes were revealed, such as CD24, ANKRD22, CLDN11 and FBXO32. FF estrogen, androstenedione and anti-Müllerian hormone decreased significantly while progesterone increased, accompanied by radical changes in the expression of steroidogenic genes (CYP17A, CYP19A, HSD11B1 and HSD11B2, StAR). Genes related to inflammation, angiogenesis, extracellular matrix formation, growth factors and cancer were up-regulated while cell cycle genes were massively down-regulated. Seventy-two genes previously described in connection with ovarian cancer were among the highly regulated genes. In silico analysis for top upstream regulators of the ovulatory trigger suggested--besides LH--TNF, IGF1, PGR, AR, EGR1 (early growth response 1), ERK1/2 (extracellular signal regulated kinase 1/2) and CDKN1A (cyclin-dependent kinase inhibitor 1A) as potential mediators of the LH/hCG response. LIMITATIONS, REASONS FOR CAUTION The present dataset was generated from women under hormonal stimulation. However, comparison with a macaque natural cycle whole follicle ovulation dataset revealed major overlap, supporting the idea that the ovulation-related genes found in this study are relevant in the human natural cycle. WIDER IMPLICATIONS OF THE FINDINGS These data will serve as a research resource for genes involved in human ovulation and final oocyte maturation. Ovulation-related genes might be good candidate biomarkers of follicle and oocyte health. Further, some of the ovulation-related genes may serve as future ovarian cancer biomarkers. STUDY FUNDING/COMPETING INTEREST(S) Grants from the Research Fund of Region Sjælland are gratefully acknowledged. None of the authors declared any conflict of interest. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- M L Wissing
- The Fertility Clinic, Holbæk Sygehus, Holbæk, Denmark
| | | | | | | | | | | | | |
Collapse
|
49
|
Brown HM, Russell DL. Blood and lymphatic vasculature in the ovary: development, function and disease. Hum Reprod Update 2013; 20:29-39. [PMID: 24097804 DOI: 10.1093/humupd/dmt049] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The remodelling of the blood vasculature has been the subject of much research while rapid progress in the understanding of the factors controlling lymphangiogenesis in the ovary has only been reported more recently. The ovary undergoes cyclic remodelling throughout each menstrual/estrous cycle. This process requires significant vascular remodelling to supply each new cohort of growing follicles. METHODS Literature searches were performed to review studies on the ovarian lymphatic vasculature that described spatial, temporal and functional data in human or animal species. The role of ovarian blood and lymphatic vasculature in the pathogenesis of ovarian disease and dysfunction was also explored. RESULTS Research in a number of species including zebrafish, rodents and primates has described the lymphatic vasculature within the remodelling ovary, while recent research in mouse has confirmed hormonal regulation of lymphangiogenic growth factors, their receptors and also a role for the protease, ADAMTS1 in the development of the lymphatic vasculature. With a critical role in the maintenence of fluid homeostasis, the ovarian lymphatic vasculature is important for normal ovarian function and has been linked to syndromes involving ovarian fluid imbalance, including ovarian hyperstimulation syndrome and massive ovarian edema. The lymphatic vasculature has also been heavily implicated in the metastatic cancer process. CONCLUSION The spatial and temporal regulation of the ovarian lymphatic vasculature has now been reported in a number of species and the data also implicate the ovarian lymphatic vasculature in ovarian pathologies, including cancer and those linked with use of artificial reproduction technologies.
Collapse
Affiliation(s)
- H M Brown
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Level 3, Medical School South, Frome Rd., Adelaide 5005, Australia
| | | |
Collapse
|
50
|
A methodological and functional proteomic approach of human follicular fluid en route for oocyte quality evaluation. J Proteomics 2013; 90:61-76. [DOI: 10.1016/j.jprot.2013.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/15/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
|