1
|
Zheng L, Cui X, Jiang Z, Li H, Zhu Z, Dai X, Liu X, Zhang L, Huang X, Ren Q. Differential expression of sNPF in male and female eyestalk leading to sex dimorphism of AMP expression in Procambarus clarkii intestine. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109735. [PMID: 38945414 DOI: 10.1016/j.fsi.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.
Collapse
Affiliation(s)
- Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xinyi Cui
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Zilin Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Hao Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xiaohan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China.
| |
Collapse
|
2
|
Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front Endocrinol (Lausanne) 2024; 15:1321323. [PMID: 38665261 PMCID: PMC11043478 DOI: 10.3389/fendo.2024.1321323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diabetes is estimated to reach almost 630 million cases worldwide by the year 2045; of current and projected cases, over 90% are type 2 diabetes. Air pollution exposure has been implicated in the onset and progression of diabetes. Increased exposure to fine particulate matter air pollution (PM2.5) is associated with increases in blood glucose and glycated hemoglobin (HbA1c) across the glycemic spectrum, including normoglycemia, prediabetes, and all forms of diabetes. Air pollution exposure is a driver of cardiovascular disease onset and exacerbation and can increase cardiovascular risk among those with diabetes. In this review, we summarize the literature describing the relationships between air pollution exposure, diabetes and cardiovascular disease, highlighting how airborne pollutants can disrupt glucose homeostasis. We discuss how air pollution and diabetes, via shared mechanisms leading to endothelial dysfunction, drive increased cardiovascular disease risk. We identify portable air cleaners as potentially useful tools to prevent adverse cardiovascular outcomes due to air pollution exposure across the diabetes spectrum, while emphasizing the need for further study in this particular population. Given the enormity of the health and financial impacts of air pollution exposure on patients with diabetes, a greater understanding of the interventions to reduce cardiovascular risk in this population is needed.
Collapse
Affiliation(s)
- Luke J. Bonanni
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Sharine Wittkopp
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Clarine Long
- Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - José O. Aleman
- Division of Endocrinology, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Jonathan D. Newman
- Division of Cardiovascular Disease, Grossman School of Medicine, New York University (NYU) Langone Health, New York, NY, United States
| |
Collapse
|
3
|
The Novel Peptide Chm-273s Has Therapeutic Potential for Metabolic Disorders: Evidence from In Vitro Studies and High-Sucrose Diet and High-Fat Diet Rodent Models. Pharmaceutics 2022; 14:pharmaceutics14102088. [PMID: 36297523 PMCID: PMC9611607 DOI: 10.3390/pharmaceutics14102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to develop a novel peptide potentially applicable for the treatment of metabolic conditions, such as obesity and type 2 diabetes (T2D). We identified CHM-273S from the list of peptides from milk hydrolysate obtained by HPLC/MS-MS. In vitro analysis of primary murine fibroblasts indicated the potential of CHM-273S to upregulate IRS2 mRNA expression. CHM-273S showed a prominent anorexigenic effect in mice with the induction of a key mechanism of leptin signaling via STAT3 in the hypothalamus as a possible effector. In the animal model of metabolic disease, CHM-273S alleviated glucose intolerance and insulin resistance, and induced phosphorylation of Akt at Ser473 and Thr308 in the hepatocytes of high-sucrose diet-fed rats. In a murine model of T2D, CHM-273S mitigated high-fat diet-induced hyperglycemia and insulin resistance and improved low-grade inflammation by diminishing serum TNFα. Mice treated with chronic CHM-273S had a significant reduction in body weight, with a lower visceral fat pad weight and narrow adipocytes. The effects of the peptide administration were comparable to those of metformin. We show the potential of CHM-273S to alleviate diet-induced metabolic alterations in rodents, substantiating its further development as a therapeutic for obesity, T2D, and other metabolic conditions.
Collapse
|
4
|
Vinaixa M, Canelles S, González-Murillo Á, Ferreira V, Grajales D, Guerra-Cantera S, Campillo-Calatayud A, Ramírez-Orellana M, Yanes Ó, Frago LM, Valverde ÁM, Barrios V. Increased Hypothalamic Anti-Inflammatory Mediators in Non-Diabetic Insulin Receptor Substrate 2-Deficient Mice. Cells 2021; 10:cells10082085. [PMID: 34440853 PMCID: PMC8391514 DOI: 10.3390/cells10082085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Insulin receptor substrate (IRS) 2 is a key mediator of insulin signaling and IRS-2 knockout (IRS2−/−) mice are a preclinical model to study the development of diabetes, as they develop peripheral insulin resistance and beta-cell failure. The differential inflammatory profile and insulin signaling in the hypothalamus of non-diabetic (ND) and diabetic (D) IRS2−/− mice might be implicated in the onset of diabetes. Because the lipid profile is related to changes in inflammation and insulin sensitivity, we analyzed whether ND IRS2−/− mice presented a different hypothalamic fatty acid metabolism and lipid pattern than D IRS2−/− mice and the relationship with inflammation and markers of insulin sensitivity. ND IRS2−/− mice showed elevated hypothalamic anti-inflammatory cytokines, while D IRS2−/− mice displayed a proinflammatory profile. The increased activity of enzymes related to the pentose-phosphate route and lipid anabolism and elevated polyunsaturated fatty acid levels were found in the hypothalamus of ND IRS2−/− mice. Conversely, D IRS2−/− mice have no changes in fatty acid composition, but hypothalamic energy balance and markers related to anti-inflammatory and insulin-sensitizing properties were reduced. The data suggest that the concurrence of an anti-inflammatory profile, increased insulin sensitivity and polyunsaturated fatty acids content in the hypothalamus may slow down or delay the onset of diabetes.
Collapse
Affiliation(s)
- María Vinaixa
- Metabolomics Platform, IISPV, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, E-43002 Tarragona, Spain; (M.V.); (Ó.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (Á.G.-M.); (M.R.-O.)
| | - Vítor Ferreira
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
| | - Diana Grajales
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
| | - Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ana Campillo-Calatayud
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
| | - Manuel Ramírez-Orellana
- Unidad de Terapias Avanzadas, Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (Á.G.-M.); (M.R.-O.)
| | - Óscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, E-43002 Tarragona, Spain; (M.V.); (Ó.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ángela M. Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, E-28029 Madrid, Spain; (V.F.); (D.G.)
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), E-28029 Madrid, Spain
- Correspondence: (Á.M.V.); (V.B.)
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (S.C.); (S.G.-C.); (A.C.-C.); (L.M.F.)
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Correspondence: (Á.M.V.); (V.B.)
| |
Collapse
|
5
|
He J, Zhang J, Dong L, Dang X, Wang L, Cheng L, Huang Y. Dihydromyricetin Attenuates Metabolic Syndrome And Improves Insulin Sensitivity By Upregulating Insulin Receptor Substrate-1 (Y612) Tyrosine Phosphorylation In db/db Mice. Diabetes Metab Syndr Obes 2019; 12:2237-2249. [PMID: 31802924 PMCID: PMC6830359 DOI: 10.2147/dmso.s218487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Dihydromyricetin (DHM), the main bioactive flavonoid in vine tea, exerts multiple health beneficial effects. This work aimed to identify whether a naturally derived flavonoid product, DHM, can significantly attenuate metabolic syndrome and improve insulin sensitivity. METHODS 10-week-old db/db mice were randomly assigned to receive the antidiabetic agent metformin (Met, 50 mg/kg BW), DHM (1.0 g and 0.5 g/kg BW) or placebo and were simultaneously fed a high-fat diet for 8 weeks. The general status of the animals was observed and recorded daily, body weight and blood glucose levels were measured weekly, during the experimental period. On day 55, the oral glucose tolerance test (OGTT) was performed. After OGTT, all animals were anesthetized and sacrificed by cervical decapitation. Blood samples were collected in tubes to detect plasma insulin and the biochemical parameters of lipid metabolism. Pancreas histological changes and islet fibrosis were demonstrated by H&E staining and Masson staining, respectively. Moreover, the expression of insulin receptor substrate-1 and phosphorylated insulin receptor substrate-1 in the insulin signaling pathway was detected by Western blot assay. RESULTS The oral administration of DHM (1.0 g and 0.5 g/kg BW) reduced the fasting blood glucose, serum insulin, and glycated hemoglobin levels and the insulin resistance (HOMA-IR) index. Furthermore, DHM intervention decreased body weight and the serum lipid profile. In addition, DHM treatment also markedly decreased the relative abdominal fat weight. Western blot analysis indicated that DHM upregulated the IRS-1 (Y612) tyrosine phosphorylation, improving insulin resistance. Treatment with dihydromyricetin attenuated the progression of insulin resistance and pancreatic fibrosis in fatty db/db mice. CONCLUSION In summary, we determined the antimetabolic syndrome effect of DHM in db/db obese mice. DHM upregulates the IRS-1 (Y612) tyrosine phosphorylation, improving insulin resistance. Therefore, DHM is a promising therapeutic candidate for the control of metabolic syndrome.
Collapse
Affiliation(s)
- Jidong He
- Department of Gastroenterology, Baoji People’s Hospital, Baoji, Shanxi721000, People’s Republic of China
| | - Junpeng Zhang
- Department of Gastroenterology, Baoji People’s Hospital, Baoji, Shanxi721000, People’s Republic of China
| | - Lijuan Dong
- Department of Gastroenterology, Baoji People’s Hospital, Baoji, Shanxi721000, People’s Republic of China
| | - Xuefeng Dang
- Department of Gastroenterology, Baoji People’s Hospital, Baoji, Shanxi721000, People’s Republic of China
| | - Li Wang
- Department of Diabetic Nephropathy, Baoji Central Hospital, Baoji, Shanxi721008, People’s Republic of China
- Correspondence: Li Wang Baoji Central Hospital, No. 8, Jiangtan Road, Baoji, Shanxi721008, People’s Republic of China Email
| | - Long Cheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
- Long Cheng Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road Haidian District, Beijing100094, People’s Republic of ChinaTel/Fax +86 10 57833013 Email
| | - Yunxiang Huang
- Department of R&D, Asparagus Engineering Research Center of Hebei Province, Qinhuangdao066008, People’s Republic of China
| |
Collapse
|
6
|
Carnagarin R, Matthews VB, Herat LY, Ho JK, Schlaich MP. Autonomic Regulation of Glucose Homeostasis: a Specific Role for Sympathetic Nervous System Activation. Curr Diab Rep 2018; 18:107. [PMID: 30232652 DOI: 10.1007/s11892-018-1069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Cardiometabolic disorders such as obesity, metabolic syndrome and diabetes are increasingly common and associated with adverse cardiovascular outcomes. The mechanisms driving these developments are incompletely understood but likely to include autonomic dysregulation. The latest evidence for such a role is briefly reviewed here. RECENT FINDINGS Recent findings highlight the relevance of autonomic regulation in glucose metabolism and identify sympathetic activation, in concert with parasympathetic withdrawal, as a major contributor to the development of metabolic disorders and an important mediator of the associated adverse cardiovascular consequences. Methods targeting sympathetic overactivity using pharmacological and device-based approaches are available and appear as logical additional approaches to curb the burden of metabolic disorders and alleviate the associated morbidity from cardiovascular causes. While the available data are encouraging, the role of therapeutic inhibition of sympathetic overdrive in the prevention of the metabolic disorders and the associated adverse outcomes requires adequate testing in properly sized randomised controlled trials.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
7
|
Burgos-Ramos E, Canelles S, Rodríguez A, Frago LM, Gómez-Ambrosi J, Chowen JA, Frühbeck G, Argente J, Barrios V. The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling. Mol Cell Endocrinol 2018; 470:48-59. [PMID: 28962893 DOI: 10.1016/j.mce.2017.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023]
Abstract
Insulin potentiates leptin effects on muscle accrual and glucose homeostasis. However, the relationship between leptin's central effects on peripheral insulin sensitivity and the associated structural changes remain unclear. We hypothesized that central leptin infusion modifies muscle size through activation of insulin signaling. Muscle insulin signaling, enzymes of fatty acid metabolism, mitochondrial respiratory chain complexes, proliferating cell nuclear antigen (PCNA) and fiber area were analyzed in the gastrocnemius of chronic central infused (L), pair-fed (PF) and control rats. PCNA-positive nuclei, fiber area, GLUT4 and glycogen levels and activation of Akt and mechanistic target of rapamycin were increased in L, with no changes in PF. Acetyl-CoA carboxylase-β mRNA levels and non-esterified fatty acid and triglyceride content were reduced and carnitine palmitoyltransferase-1b expression and mitochondrial complexes augmented in L. These results suggest that leptin promotes an increase in muscle size associated with improved insulin signaling favored by lipid profile.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, Universidad Castilla-La Mancha, E-45071, Toledo, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Amaia Rodríguez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain; IMDEA Food Institute, CEI UAM + CSIC, E-28049, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain.
| |
Collapse
|
8
|
Cyclocarya paliurus (Batal.) Ijinskaja Aqueous Extract (CPAE) Ameliorates Obesity by Improving Insulin Signaling in the Hypothalamus of a Metabolic Syndrome Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4602153. [PMID: 28684967 PMCID: PMC5480046 DOI: 10.1155/2017/4602153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/28/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
Abstract
Background Antiobesity drugs may not be optimal for treating obesity. However novel antiobesity agents, especially those derived from natural products, may be suitable. Therefore, we investigated the effects and mechanisms of Cyclocarya paliurus (CP) aqueous extract (CPAE) on obesity. Methods SHR.Cg-Leprcp/NDmcr (SHR/cp) rats were used as a model of obesity and metabolic syndrome. Experimental animals were allocated into two groups—control and CPAE (0.5 g/kg)—for a 7-week treatment period. Examinations were performed, including general physiological characteristics, obesity-related biochemical parameters, and insulin-signaling pathway-related proteins in the hypothalamus. Results Treatment with CPAE reduced food intake, body weight, organ weight, fat mass, and body mass index (BMI) in SHR/cp rats. Meanwhile, CPAE also decreased the levels of fasting serum glucose, fasting serum insulin, HOMA-IR, serum free fatty acids, serum malondialdehyde, serum superoxide dismutase, and serum total-glutathione. The levels of phosphorylation of target proteins—including InsR, IRS1, PI3Kp85, Akt, and FoXO1 as well as protein expression of POMC—were significantly upregulated in the hypothalamus, but NPY expression remarkably decreased. Conclusions CPAE has antiobesity, antihypoglycemic, antihypolipidemic, and antioxidant properties. The mechanism responsible for the antiobesity effect of CPAE may be related to suppression of energy intake via regulation of insulin-signaling pathway in the hypothalamus.
Collapse
|
9
|
Sasanuma H, Nakata M, Parmila K, Nakae J, Yada T. PDK1-FoxO1 pathway in AgRP neurons of arcuate nucleus promotes bone formation via GHRH-GH-IGF1 axis. Mol Metab 2017; 6:428-439. [PMID: 28462077 PMCID: PMC5404105 DOI: 10.1016/j.molmet.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 01/13/2023] Open
Abstract
Objective In the hypothalamic arcuate nucleus (ARC), orexigenic agouti-related peptide (AgRP) neurons regulate feeding behavior and energy homeostasis, functions connected to bone metabolism. The 3-phosphoinositide-dependent protein kinase-1 (PDK1) serves as a major signaling molecule particularly for leptin and insulin in AgRP neurons. We asked whether PDK1 in AGRP neurons also contributes to bone metabolism. Methods We generated AgRP neuron-specific PDK1 knockout (Agrp Pdk1−/−) mice and those with additional AgRP neuron-specific expression of transactivation-defective FoxO1 (Agrp Pdk1−/−Δ256Foxo1). Bone metabolism in KO and WT mice was analyzed by quantitative computed tomography (QCT), bone histomorphometry, measurement of plasma biomarkers, and qPCR analysis of peptides. Results In Agrp Pdk1−/− female mice aged 6 weeks, compared with Agrp Cre mice, both stature and femur length were shorter while body weight was unchanged. Cortical bone mineral density (BMD) and cancellous BMD in the femur decreased, and bone formation was delayed. Furthermore, plasma GH and IGF-1 levels were reduced in parallel with decreased mRNA expressions for GH in pituitary and GHRH in ARC. Osteoblast activity was suppressed and osteoclast activity was enhanced. These changes in stature, BMD and GH level were rescued in Agrp Pdk1−/−Δ256Foxo1 mice, suggesting that the bone abnormalities and impaired GH release were mediated by enhanced Foxo1 due to deletion of PDK1. Conclusions This study reveals a novel role of PDK1-Foxo1 pathway of AgRP neurons in controlling bone metabolism primarily via GHRH-GH-IGF-1 axis. Agrp neuron-selective Pdk1 knockout mice exhibit short stature, shortened limbs and decreased bone density in both cortical and cancellous bones. In Agrp Pdk1 knockout mice, GHRH-GH-IGF1 axis was markedly down-regulated. Retarded bone growth and reduced GH in Agrp Pdk1 knockout mice were rescued by additional expression of dominant negative FoxO1 in AgRP neurons. Pdk1-FoxO1 signaling in AgRP neurons is linked to regulation of GHRH-GH-IGF1 axis and bone metabolism.
Collapse
Affiliation(s)
- Hideyuki Sasanuma
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke, 329-0498, Japan; Department of Orthopaedic Surgery, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke, 329-0498, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke, 329-0498, Japan.
| | - Kumari Parmila
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke, 329-0498, Japan
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke, 329-0498, Japan.
| |
Collapse
|
10
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
11
|
Baquedano E, Burgos-Ramos E, Canelles S, González-Rodríguez A, Chowen JA, Argente J, Barrios V, Valverde AM, Frago LM. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model. Dis Model Mech 2016; 9:573-83. [PMID: 27013528 PMCID: PMC4892662 DOI: 10.1242/dmm.023515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/11/2016] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus.
Collapse
Affiliation(s)
- Eva Baquedano
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Emma Burgos-Ramos
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Sandra Canelles
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Agueda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid E-28029, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Julie A Chowen
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Jesús Argente
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Vicente Barrios
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid E-28029, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid E-28029, Spain
| | - Laura M Frago
- Department of Paediatrics, Universidad Autónoma de Madrid, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid 28009, Spain Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid E-28006, Spain Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid E-28029, Spain
| |
Collapse
|
12
|
Valdearcos M, Xu AW, Koliwad SK. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 2015; 77:131-60. [PMID: 25668019 DOI: 10.1146/annurev-physiol-021014-071656] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.
Collapse
|
13
|
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne) 2014; 5:161. [PMID: 25346723 PMCID: PMC4191295 DOI: 10.3389/fendo.2014.00161] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022] Open
Abstract
Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
Collapse
Affiliation(s)
- Enrique Blázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
- *Correspondence: Enrique Blázquez, Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain e-mail:
| | - Esther Velázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Verónica Hurtado-Carneiro
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| |
Collapse
|
14
|
Chowen JA, Argente J, Horvath TL. Uncovering novel roles of nonneuronal cells in body weight homeostasis and obesity. Endocrinology 2013; 154:3001-7. [PMID: 23798599 PMCID: PMC3749483 DOI: 10.1210/en.2013-1303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glial cells, which constitute more than 50% of the mass of the central nervous system and greatly outnumber neurons, are at the vanguard of neuroendocrine research in metabolic control and obesity. Historically relegated to roles of structural support and protection, diverse functions have been gradually attributed to this heterogeneous class of cells with their protagonism in crescendo in all areas of neuroscience during the past decade. However, this dramatic increase in attention bestowed upon glial cells has also emphasized our vast lack of knowledge concerning many aspects of their physiological functions, let alone their participation in numerous pathologies. This minireview focuses on the recent advances in our understanding of how glial cells participate in the physiological regulation of appetite and systemic metabolism as well as their role in the pathophysiological response to poor nutrition and secondary complications associated with obesity. Moreover, we highlight some of the existing lagoons of knowledge in this increasingly important area of investigation.
Collapse
Affiliation(s)
- Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, 28009 Madrid, Spain.
| | | | | |
Collapse
|
15
|
Fuente-Martín E, García-Cáceres C, Díaz F, Argente-Arizón P, Granado M, Barrios V, Argente J, Chowen JA. Hypothalamic inflammation without astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats. Endocrinology 2013; 154:2318-30. [PMID: 23671260 DOI: 10.1210/en.2012-2196] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic inflammation and gliosis are proposed to participate in the pathogenesis of high-fat diet-induced obesity. Because other factors and nutrients also induce weight gain and adiposity, we analyzed the inflammatory and glial responses to a sucrose (S)-enriched diet. Neonatal overnutrition (NON) exacerbates weight gain in response to metabolic challenges; thus, we compared the inflammatory response of male Wistar rats with NON (4 pups/litter) and controls (12 pups/litter) to increased S intake. At weaning rats received water or a 33% sucrose solution and normal chow ad libitum for 2 months. Sucrose increased serum IL-1β and -6 and hypothalamic IL-6 mRNA levels in NON and TNFα mRNA levels in control and NON rats, whereas NON alone had no effect. The astrocyte marker glial fibrillary acidic protein was increased by NON but decreased by S. This was associated with hypothalamic nuclei specific changes in glial fibrillary acidic protein-positive cell number and morphology. Sucrose increased the number of microglia and phosphorylation of inhibitor of -κB and c-Jun N-terminal kinase in control but not NON rats, with no effect on microglia activation markers. Proteins highly expressed in astrocytes (glutamate, glucose, and lactate transporters) were increased by NON but not S, with no increase in vimentin expression in astrocytes, further suggesting that S-induced adiposity is not associated with hypothalamic astrogliosis. Hence, activation of hypothalamic inflammatory processes and gliosis depend not only on weight gain but also on the diet inducing this weight gain and the early nutritional status. These diverse inflammatory processes could indicate a differential disposition to obesity-induced pathologies.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, 28009 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|