1
|
Ding G, Li Y, Cheng C, Tan K, Deng Y, Pang H, Wang Z, Dang P, Wu X, Rushworth E, Yuan Y, Yang Z, Song W. A tumor-secreted protein utilizes glucagon release to cause host wasting. Cell Discov 2025; 11:11. [PMID: 39924534 PMCID: PMC11808122 DOI: 10.1038/s41421-024-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Tumor‒host interaction plays a critical role in malignant tumor-induced organ wasting across multiple species. Despite known regulation of regional wasting of individual peripheral organs by tumors, whether and how tumors utilize critical host catabolic hormone(s) to simultaneously induce systemic host wasting, is largely unknown. Using the conserved yki3SA-tumor model in Drosophila, we discovered that tumors increase the production of adipokinetic hormone (Akh), a glucagon-like catabolic hormone, to cause systemic host wasting, including muscle dysfunction, lipid loss, hyperglycemia, and ovary atrophy. We next integrated RNAi screening and Gal4-LexA dual expression system to show that yki3SA-gut tumors secrete Pvf1 to remotely activate its receptor Pvr in Akh-producing cells (APCs), ultimately promoting Akh production. The underlying molecular mechanisms involved the Pvf1-Pvr axis that triggers Mmp2-dependent ECM remodeling of APCs and enhances innervation from the excitatory cholinergic neurons. Interestingly, we also confirmed the similar mechanisms governing tumor-induced glucagon release and organ wasting in mammals. Blockade of either glucagon or PDGFR (homolog of Pvr) action efficiently ameliorated organ wasting in the presence of malignant tumors. Therefore, our results demonstrate that tumors remotely promote neural-associated Akh/glucagon production via Pvf1-Pvr axis to cause systemic host wasting.
Collapse
Affiliation(s)
- Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yifei Deng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Huiwen Pang
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhongyuan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peixuan Dang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Elisabeth Rushworth
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mitochondrial DNA expression require motor neuron to muscle TGF-β/Activin signaling in Drosophila. iScience 2025; 28:111611. [PMID: 39850360 PMCID: PMC11754121 DOI: 10.1016/j.isci.2024.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, loss of Actβ reduces levels of nuclearly encoded genes required for mtDNA replication, transcription, and translation and mtDNA levels. Direct RNAi knockdown of nuclearly encoded mtDNA expression factors in muscle also results in decreased glycogen stores. Lastly, expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis, and mtDNA expression factors.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Meijboom FS, Hasch A, Ruiz de Azua I, Cologna CT, Loopmans S, Lutz B, Müller MB, Ghesquière B, van der Kooij MA. Adaptations in hepatic glucose metabolism after chronic social defeat stress in mice. Sci Rep 2024; 14:25511. [PMID: 39462137 PMCID: PMC11513145 DOI: 10.1038/s41598-024-76310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress has been shown to induce hyperglycemia in both peripheral blood and the brain, yet the detailed mechanisms of glucose metabolism under stress remain unclear. Utilizing 13C6-labeled glucose to trace metabolic pathways, our study investigated the impact of stress by chronic social defeat (CSD) on glucose metabolites in the liver and brain one week post-stress. We observed a reduction in 13C6-enrichment of glucose metabolites in the liver, contrasting with unchanged levels in the brain. Notably, hepatic glycogen levels were reduced while lactate concentrations were elevated, suggesting lactate as an alternative energy source during stress. Long-term effects were also examined, revealing normalized blood glucose levels and restored glycogen stores in the liver three weeks post-CSD, despite sustained increases in food intake. This normalization is hypothesized to result from diminished glucagon levels leading to reduced glycogen phosphorylase activity. Our findings highlight a temporal shift in glucose metabolism, with hyperglycemia and glycogen depletion in the liver early after CSD, followed by a later phase of metabolic stabilization. These results underscore the liver's critical role in adapting to CSD and provide insights into the metabolic adjustments that maintain glucose homeostasis under prolonged stress conditions.
Collapse
Affiliation(s)
- Fabiënne S Meijboom
- Department for Developmental Origins of Disease (DDOD), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Annika Hasch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Camila Takeno Cologna
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Shauni Loopmans
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Translational Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Michael A van der Kooij
- Department for Developmental Origins of Disease (DDOD), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
4
|
Wang T, Wang H, Chu Y, Bao M, Li X, Zhang G, Feng J. Daily Brain Metabolic Rhythms of Wild Nocturnal Bats. Int J Mol Sci 2024; 25:9850. [PMID: 39337348 PMCID: PMC11432702 DOI: 10.3390/ijms25189850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are found in a wide range of organisms and have garnered significant research interest in the field of chronobiology. Under normal circadian function, metabolic regulation is temporally coordinated across tissues and behaviors within a 24 h period. Metabolites, as the closest molecular regulation to physiological phenotype, have dynamic patterns and their relationship with circadian regulation remains to be fully elucidated. In this study, untargeted brain metabolomics was employed to investigate the daily rhythms of metabolites at four time points corresponding to four typical physiological states in Vespertilio sinensis. Key brain metabolites and associated physiological processes active at different time points were detected, with 154 metabolites identified as rhythmic. Analyses of both metabolomics and transcriptomics revealed that several important physiological processes, including the pentose phosphate pathway and oxidative phosphorylation, play key roles in regulating rhythmic physiology, particularly in hunting and flying behaviors. This study represents the first exploration of daily metabolic dynamics in the bat brain, providing insights into the complex regulatory network of circadian rhythms in mammals at a metabolic level. These findings serve as a valuable reference for future studies on circadian rhythms in nocturnal mammals.
Collapse
Affiliation(s)
- Tianhui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Guoting Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
5
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mtDNA expression require motor neuron to muscle TGFβ/Activin Signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600699. [PMID: 39131342 PMCID: PMC11312462 DOI: 10.1101/2024.06.25.600699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, Actβ loss reduces levels of mtDNA and nuclearly encoded genes required for mtDNA replication, transcription and translation. Direct RNAi mediated knockdown of these same nuclearly encoded mtDNA expression factors also results in decreased glycogen stores. Lastly, we find that expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis and mtDNA expression.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Millanes PM, Pérez-Rodríguez L, Rubalcaba JG, Gil D, Jimeno B. Corticosterone and glucose are correlated and show similar response patterns to temperature and stress in a free-living bird. J Exp Biol 2024; 227:jeb246905. [PMID: 38949462 PMCID: PMC11418182 DOI: 10.1242/jeb.246905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Glucocorticoid (GC) hormones have traditionally been interpreted as indicators of stress, but the extent to which they provide information on physiological state remains debated. GCs are metabolic hormones that amongst other functions ensure increasing fuel (i.e. glucose) supply on the face of fluctuating energetic demands, a role often overlooked by ecological studies investigating the consequences of GC variation. Furthermore, because energy budget is limited, in natural contexts where multiple stimuli coexist, the organisms' ability to respond physiologically may be constrained when multiple triggers of metabolic responses overlap in time. Using free-living spotless starling (Sturnus unicolor) chicks, we experimentally tested whether two stimuli of different nature known to trigger a metabolic or GC response, respectively, cause a comparable increase in plasma GCs and glucose. We further tested whether response patterns differed when both stimuli occurred consecutively. We found that both experimental treatments caused increases in GCs and glucose of similar magnitude, suggesting that both variables fluctuate along with variation in energy expenditure, independently of the trigger. Exposure to the two stimuli occurring subsequently did not cause a difference in GC or glucose responses compared with exposure to a single stimulus, suggesting a limited capacity to respond to an additional stimulus during an ongoing acute response. Lastly, we found a positive and significant correlation between plasma GCs and glucose after the experimental treatments. Our results add to the increasing research on the role of energy expenditure on GC variation, by providing experimental evidence on the association between plasma GCs and energy metabolism.
Collapse
Affiliation(s)
- Paola M. Millanes
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Juan G. Rubalcaba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences. Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain
| | - Diego Gil
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Pyrenean Institute of Ecology (IPE-CSIC), Avda Nuestra Señora de la Victoria, s/n, 22700 Jaca, Huesca, Spain
| |
Collapse
|
7
|
Piñera-Moreno R, Reyes-López FE, Goldstein M, Santillán-Araneda MJ, Robles-Planells B, Arancibia-Carvallo C, Vallejos-Vidal E, Cuesta A, Esteban MÁ, Tort L. Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream ( Sparus aurata L.) Subjected to Mechanical Damage. Animals (Basel) 2024; 14:1815. [PMID: 38929434 PMCID: PMC11200434 DOI: 10.3390/ani14121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The skin of bony fish is the first physical barrier and is responsible for maintaining the integrity of the fish. Lesions make the skin vulnerable to potential infection by pathogens present in the aquatic environment. In this way, wound repair has barely been studied in gilthead sea bream. Thus, this study investigated the modulation of peripheral neuro-endocrine and tissue repair markers at the transcriptional level in the skin of teleost fish subjected to mechanical damage above or below the lateral line (dorsal and ventral lesions, respectively). Samples were evaluated using RT-qPCR at 2-, 4-, and 20-days post-injury. Fish with a ventral lesion presented a trend of progressive increase in the expressions of corticotropin-releasing hormone (crh), pro-opiomelanocortin-A (pomca), proenkephalin-B (penkb), cholecystokinin (cck), oxytocin (oxt), angiotensinogen (agt), and (less pronounced) somatostatin-1B (sst1b). By contrast, fish with a dorsal lesion registered no significant increase or biological trend for the genes evaluated at the different sampling times. Collectively, the results show a rapid and more robust response of neuro-endocrine and tissue repair markers in the injuries below than above the lateral line, which could be attributable to their proximity to vital organs.
Collapse
Affiliation(s)
- Rocío Piñera-Moreno
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Felipe E. Reyes-López
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Merari Goldstein
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - María Jesús Santillán-Araneda
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Bárbara Robles-Planells
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Camila Arancibia-Carvallo
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Eva Vallejos-Vidal
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, La Florida 8250122, Chile
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
8
|
Mathyk BA, Tabetah M, Karim R, Zaksas V, Kim J, Anu RI, Muratani M, Tasoula A, Singh RS, Chen YK, Overbey E, Park J, Cope H, Fazelinia H, Povero D, Borg J, Klotz RV, Yu M, Young SL, Mason CE, Szewczyk N, St Clair RM, Karouia F, Beheshti A. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun Biol 2024; 7:692. [PMID: 38862620 PMCID: PMC11166981 DOI: 10.1038/s42003-023-05213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 06/13/2024] Open
Abstract
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species.
Collapse
Affiliation(s)
- Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rashid Karim
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - R I Anu
- Department of Cancer Biology & Therapeutics, Precision Oncology and Multi-omics clinic, Genetic counseling clinic. Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Alexia Tasoula
- Department of Life Science Engineering, FH Technikum, Vienna, Austria
| | | | - Yen-Kai Chen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eliah Overbey
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics and Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Davide Povero
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, Msida, MSD2090, Malta
| | - Remi V Klotz
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven L Young
- Division of Reproductive Endocrinology and Infertility, Duke School of Medicine, Durham, NC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Riley M St Clair
- Department of Life Sciences, Quest University, Squamish, BC, Canada
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
9
|
McGlone ER, Bloom SR, Tan TMM. Glucagon resistance and metabolic-associated steatotic liver disease: a review of the evidence. J Endocrinol 2024; 261:e230365. [PMID: 38579751 PMCID: PMC11067060 DOI: 10.1530/joe-23-0365] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
10
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
11
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
12
|
Peppa M, Manta A, Mavroeidi I, Asimakopoulou A, Syrigos A, Nastos C, Pikoulis E, Kollias A. Changes in Cardiovascular and Renal Biomarkers Associated with SGLT2 Inhibitors Treatment in Patients with Type 2 Diabetes Mellitus. Pharmaceutics 2023; 15:2526. [PMID: 38004506 PMCID: PMC10675228 DOI: 10.3390/pharmaceutics15112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Type 2 diabetes mellitus is a major health problem worldwide with a steadily increasing prevalence reaching epidemic proportions. The major concern is the increased morbidity and mortality due to diabetic complications. Traditional but also nontraditional risk factors have been proposed to explain the pathogenesis of type 2 diabetes mellitus and its complications. Hyperglycemia has been considered an important risk factor, and the strict glycemic control can have a positive impact on microangiopathy but not macroangiopathy and its related morbidity and mortality. Thus, the therapeutic algorithm has shifted focus from a glucose-centered approach to a strategy that now emphasizes target-organ protection. Sodium-glucose transporter 2 inhibitors is an extremely important class of antidiabetic medications that, in addition to their glucose lowering effect, also exhibit cardio- and renoprotective effects. Various established and novel biomarkers have been described, reflecting kidney and cardiovascular function. In this review, we investigated the changes in established but also novel biomarkers of kidney, heart and vascular function associated with sodium-glucose transporter 2 inhibitors treatment in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Aspasia Manta
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Athina Asimakopoulou
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Alexandros Syrigos
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| | - Constantinos Nastos
- 3rd Department of Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Emmanouil Pikoulis
- 3rd Department of Surgery, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Anastasios Kollias
- 3rd Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (A.S.); (A.K.)
| |
Collapse
|
13
|
Sakr S, Rashad WA. Lambda-cyhalothrin-induced pancreatic toxicity in adult albino rats. Sci Rep 2023; 13:11562. [PMID: 37463968 DOI: 10.1038/s41598-023-38661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Lambda-cyhalothrin (LCT) is one of the most frequently utilized pyrethroids. This study aimed to explore the toxic effects of subacute exposure to LCT on the pancreas and the hepatic glucose metabolism in adult male albino rats. 20 rats were equally grouped into; Control group and LCT group. The latter received LCT (61.2 mg/kg b.wt.), orally on a daily basis for 28 days. At the end of experiment, blood samples were collected for the determination of serum glucose and insulin levels. Pancreases were harvested and levels of malondialdehyde (MDA); catalase (CAT); superoxide dismutase (SOD); reduced glutathione (GSH); tumor necrosis factor-α (TNF-α); interleukin-6 (IL-6); nuclear factor erythroid 2-related factor 2 (Nrf2); heme oxygenase 1 (HO-1); and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were assessed. Also, liver samples were analyzed for the activity of glucose metabolism enzymes, glycogen content, and pyruvate and lactate concentrations. Histopathological and immunohistochemical examinations of pancreatic tissues were undertaken as well. Results revealed hyperglycemia, hypoinsulinemia, increased MDA, TNF-α, IL-6, and NF-κB levels, in association with reduced CAT, SOD, GSH, Nrf2, and HO-1 levels in LCT group. Liver analyses demonstrated a clear disturbance in the hepatic enzymes of glucose metabolism, diminished glycogen content, decreased pyruvate, and increased lactate concentrations. Besides, pancreatic islets displayed degenerative changes and β-cells loss. Immunohistochemistry revealed diminished area percentage (%) of insulin and Nrf2 and increased TNF-α immunoreaction. In conclusion, subacute exposure to LCT induces pancreatic toxicity, mostly via oxidative and inflammatory mechanisms, and dysregulates hepatic glucose metabolism in albino rats.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Walaa A Rashad
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Feris F, McRae A, Kellogg TA, McKenzie T, Ghanem O, Acosta A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2023; 19:37-49. [PMID: 36243547 PMCID: PMC9797451 DOI: 10.1016/j.soard.2022.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
The aim of this study was to perform a comprehensive literature review regarding the relevant hormonal and histologic changes observed after Roux-en-Y gastric bypass (RYGB). We aimed to describe the relevant hormonal (glucagon-like peptides 1 and 2 [GLP-1 and GLP-2], peptide YY [PYY], oxyntomodulin [OXM], bile acids [BA], cholecystokinin [CCK], ghrelin, glucagon, gastric inhibitory polypeptide [GIP], and amylin) profiles, as well as the histologic (mucosal cellular) adaptations happening after patients undergo RYGB. Our review compiles the current evidence and furthers the understanding of the rationale behind the food intake regulatory adaptations occurring after RYGB surgery. We identify gaps in the literature where the potential for future investigations and therapeutics may lie. We performed a comprehensive database search without language restrictions looking for RYGB bariatric surgery outcomes in patients with pre- and postoperative blood work hormonal profiling and/or gut mucosal biopsies. We gathered the relevant study results and describe them in this review. Where human findings were lacking, we included animal model studies. The amalgamation of physiologic, metabolic, and cellular adaptations following RYGB is yet to be fully characterized. This constitutes a fundamental aspiration for enhancing and individualizing obesity therapy.
Collapse
Affiliation(s)
- Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Travis McKenzie
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Omar Ghanem
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Díaz-Balzac CA, Pillinger D, Wittlin SD. Continuous subcutaneous insulin infusions: Closing the loop. J Clin Endocrinol Metab 2022; 108:1019-1033. [PMID: 36573281 DOI: 10.1210/clinem/dgac746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/29/2022]
Abstract
CONTEXT Continuous subcutaneous insulin infusions (CSIIs) and continuous glucose monitors (CGMs) have revolutionized the management of diabetes mellitus (DM). Over the last two decades the development of advanced, small, and user-friendly technology has progressed substantially, essentially closing the loop in the fasting and post-absorptive state, nearing the promise of an artificial pancreas. The momentum was mostly driven by the diabetes community itself, to improve its health and quality of life. EVIDENCE ACQUISITION Literature regarding CSII and CGM was reviewed. EVIDENCE SYNTHESIS Management of DM aims to regulate blood glucose to prevent long term micro and macrovascular complications. CSIIs combined with CGMs provide an integrated system to maintain tight glycemic control in a safe and uninterrupted fashion, while minimizing hypoglycemic events. Recent advances have allowed to 'close the loop' by better mimicking endogenous insulin secretion and glucose level regulation. Evidence supports sustained improvement in glycemic control with reduced episodes of hypoglycemia using these systems, while improving quality of life. Ongoing work in delivery algorithms with or without counterregulatory hormones will allow for further layers of regulation of the artificial pancreas. CONCLUSION Ongoing efforts to develop an artificial pancreas have created effective tools to improve the management of DM. CSIIs and CGMs are useful in diverse populations ranging from children to the elderly, as well as in various clinical contexts. Individually and more so together, these have had a tremendous impact in the management of DM, while avoiding treatment fatigue. However, cost and accessibility are still a hindrance to its wider application.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | - David Pillinger
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | - Steven D Wittlin
- Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Špiljak B, Vilibić M, Glavina A, Crnković M, Šešerko A, Lugović-Mihić L. A Review of Psychological Stress among Students and Its Assessment Using Salivary Biomarkers. Behav Sci (Basel) 2022; 12:bs12100400. [PMID: 36285968 PMCID: PMC9598334 DOI: 10.3390/bs12100400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Numerous psychoneuroimmune factors participate in complex bodily reactions to psychological stress, and some of them can be easily and non-invasively measured in saliva (cortisol, alpha-amylase, proinflammatory cytokines). Cortisol plays a crucial role in the stress response; thus, stressful events (academic examinations, cardiac surgery, dental procedures) are accompanied by an increase in cortisol levels. (A correlation between cortisol blood levels and salivary values has already been confirmed, particularly during stress). Academic stress is defined as everyday stress among students that has an impact on aspects of their psychological and physiological well-being. For example, exams are considered one of the most acute stressful experiences for students. The strength of the association between academic self-efficacy, psychological stress, and anxiety depends on a variety of factors: the type of academic challenge (e.g., oral exam), the presence of an audience, etc. Higher stress levels were predominantly recorded among younger students, primarily regarding their academic tasks and concerns (grades, exams, competing with peers for grades, fear of failing the academic year, etc.). The measurement of stress levels during academic stress can improve our understanding of the character and influence of stressful events in populations of students, preventing adverse reactions to long-term stress, such as a decreased immune response and increased anxiety.
Collapse
Affiliation(s)
- Bruno Špiljak
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Dermatovenerology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Maja Vilibić
- Department of Psychiatry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Ana Glavina
- Department of Oral Medicine and Periodontology, Dental Clinic Split, School of Medicine, University of Split, 21000 Split, Croatia
| | - Marija Crnković
- Center for Child and Youth Protection, 10000 Zagreb, Croatia
| | - Ana Šešerko
- Department of Gynecology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Dermatovenerology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-3787-422
| |
Collapse
|
17
|
Frampton J, Izzi-Engbeaya C, Salem V, Murphy KG, Tan TM, Chambers ES. The acute effect of glucagon on components of energy balance and glucose homoeostasis in adults without diabetes: a systematic review and meta-analysis. Int J Obes (Lond) 2022; 46:1948-1959. [PMID: 36123404 PMCID: PMC9584822 DOI: 10.1038/s41366-022-01223-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Objective Using a systematic review and meta-analysis, we aimed to estimate the mean effect of acute glucagon administration on components of energy balance and glucose homoeostasis in adults without diabetes. Methods CENTRAL, CINAHL, Embase, MEDLINE, PubMed, and Scopus databases were searched from inception to May 2021. To be included, papers had to be a randomised, crossover, single- or double-blind study, measuring ad libitum meal energy intake, energy expenditure, subjective appetite, glucose, and/or insulin following acute administration of glucagon and an appropriate comparator in adults without diabetes. Risk of bias was assessed using the Revised Cochrane Risk of Bias Tool for Randomized trials with additional considerations for cross-over trials. Certainty of evidence was assessed using the GRADE approach. Random-effect meta-analyses were performed for outcomes with at least five studies. This study is registered on PROSPERO (CRD42021269623). Results In total, 13 papers (15 studies) were considered eligible: energy intake (5 studies, 77 participants); energy expenditure (5 studies, 59 participants); subjective appetite (3 studies, 39 participants); glucose (13 studies, 159 participants); insulin (12 studies, 147 participants). All studies had some concerns with regards to risk of bias. Mean intervention effect of acute glucagon administration on energy intake was small (standardised mean difference [SMD]: –0.19; 95% CI, –0.59 to 0.21; P = 0.345). Mean intervention effect of acute glucagon administration on energy expenditure (SMD: 0.72; 95% CI, 0.37–1.08; P < 0.001), glucose (SMD: 1.11; 95% CI, 0.60–1.62; P < 0.001), and insulin (SMD: 1.33; 95% CI, 0.88–1.77; P < 0.001) was moderate to large. Conclusions Acute glucagon administration produces substantial increases in energy expenditure, and in circulating insulin and glucose concentrations. However, the effect of acute glucagon administration on energy intake is unclear. Insufficient evidence was available to evaluate the acute effect of glucagon on subjective appetite.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Victoria Salem
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, SW7 2BX, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
18
|
Meyhöfer S, Dembinski K, Schultes B, Born J, Wilms B, Lehnert H, Hallschmid M, Meyhöfer SM. Sleep deprivation prevents counterregulatory adaptation to recurrent hypoglycaemia. Diabetologia 2022; 65:1212-1221. [PMID: 35445819 PMCID: PMC9174142 DOI: 10.1007/s00125-022-05702-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Attenuated counterregulation after recurrent hypoglycaemia is a major complication of diabetes treatment. As there is previous evidence for the relevance of sleep in metabolic control, we assessed the acute contribution of sleep to the counterregulatory adaptation to recurrent hypoglycaemia. METHODS Within a balanced crossover design, 15 healthy, normal-weight male participants aged 18-35 years underwent three hyperinsulinaemic-hypoglycaemic clamps with a glucose nadir of 2.5 mmol/l, under two experimental conditions, sleep and sleep deprivation. Participants were exposed to two hypoglycaemic episodes, followed by a third hypoglycaemic clamp after one night of regular 8 h sleep vs sleep deprivation. The counterregulatory response of relevant hormones (glucagon, growth hormone [GH], ACTH, cortisol, adrenaline [epinephrine] and noradrenaline [norepinephrine]) was measured, and autonomic and neuroglycopenic symptoms were assessed. RESULTS Sleep deprivation compared with sleep dampened the adaptation to recurrent hypoglycaemia for adrenaline (p=0.004), and this pattern also emerged in an overall analysis including adrenaline, GH and glucagon (p=0.064). After regular sleep, the counterregulatory responses of adrenaline (p=0.005), GH (p=0.029) and glucagon (p=0.009) were attenuated during the 3rd clamp compared with the 1st clamp, but were preserved after sleep deprivation (all p>0.225). Neuroglycopenic and autonomic symptoms during the 3rd clamp compared with the 1st clamp were likewise reduced after sleep (p=0.005 and p=0.019, respectively). In sleep deprivation, neuroglycopenic symptoms increased (p=0.014) and autonomic symptoms were unchanged (p=0.859). CONCLUSIONS/INTERPRETATION The counterregulatory adaptation to recurrent hypoglycaemia is compromised by sleep deprivation between hypoglycaemic episodes, indicating that sleep is essential for the formation of a neurometabolic memory, and may be a potential target of interventions to treat hypoglycaemia unawareness syndrome.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany.
| | - Katharina Dembinski
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Bernd Schultes
- Metabolic Center St Gallen, FriendlyDocs Ltd, St Gallen, Switzerland
| | - Jan Born
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Deparment of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Britta Wilms
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Manfred Hallschmid
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Deparment of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
19
|
Chandler T, Westhoff T, Overton T, Lock A, Van Amburgh M, Sipka A, Mann S. Lipopolysaccharide challenge following intravenous amino acid infusion in postpartum dairy cows: I. Production, metabolic, and hormonal responses. J Dairy Sci 2022; 105:4593-4610. [DOI: 10.3168/jds.2021-21226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
|
20
|
Tomar M, Somvanshi PR, Kareenhalli V. Physiological significance of bistable circuit design in metabolic homeostasis: role of integrated insulin-glucagon signalling network. Mol Biol Rep 2022; 49:5017-5028. [DOI: 10.1007/s11033-022-07175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
21
|
Hinds CE, Owen BM, Hope DCD, Pickford P, Jones B, Tan TM, Minnion JS, Bloom SR. A glucagon analogue decreases body weight in mice via signalling in the liver. Sci Rep 2021; 11:22577. [PMID: 34799628 PMCID: PMC8604983 DOI: 10.1038/s41598-021-01912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Glucagon receptor agonists show promise as components of next generation metabolic syndrome pharmacotherapies. However, the biology of glucagon action is complex, controversial, and likely context dependent. As such, a better understanding of chronic glucagon receptor (GCGR) agonism is essential to identify and mitigate potential clinical side-effects. Herein we present a novel, long-acting glucagon analogue (GCG104) with high receptor-specificity and potent in vivo action. It has allowed us to make two important observations about the biology of sustained GCGR agonism. First, it causes weight loss in mice by direct receptor signalling at the level of the liver. Second, subtle changes in GCG104-sensitivity, possibly due to interindividual variation, may be sufficient to alter its effects on metabolic parameters. Together, these findings confirm the liver as a principal target for glucagon-mediated weight loss and provide new insights into the biology of glucagon analogues.
Collapse
Affiliation(s)
- Charlotte E Hinds
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Bryn M Owen
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - David C D Hope
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Philip Pickford
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James S Minnion
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stephen R Bloom
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
22
|
van Heerden PV, Abutbul A, Sviri S, Zlotnick E, Nama A, Zimro S, El-Amore R, Shabat Y, Reicher B, Falah B, Mevorach D. Apoptotic Cells for Therapeutic Use in Cytokine Storm Associated With Sepsis- A Phase Ib Clinical Trial. Front Immunol 2021; 12:718191. [PMID: 34659208 PMCID: PMC8515139 DOI: 10.3389/fimmu.2021.718191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sepsis has no proven specific pharmacologic treatment and reported mortality ranges from 30%–45%. The primary aim of this phase IB study was to determine the safety profile of Allocetra™-OTS (early apoptotic cell) infusion in subjects presenting to the emergency room with sepsis. The secondary aims were to measure organ dysfunction, intensive care unit (ICU) and hospital stays, and mortality. Exploratory endpoints included measuring immune modulator agents to elucidate the mechanism of action. Methods Ten patients presenting to the emergency room at the Hadassah Medical Center with sepsis were enrolled in this phase Ib clinical study. Enrolled patients were males and females aged 51–83 years, who had a Sequential Organ Failure Assessment (SOFA) score ≥2 above baseline and were septic due to presumed infection. Allocetra™-OTS was administered as a single dose (day +1) or in two doses of 140×106 cells/kg on (day +1 and +3), following initiation of standard-of-care (SOC) treatment for septic patients. Safety was evaluated by serious adverse events (SAEs) and adverse events (AEs). Organ dysfunction, ICU and hospital stays, and mortality, were compared to historical controls. Immune modulator agents were measured using Luminex® multiplex analysis. Results All 10 patients had mild-to-moderate sepsis with SOFA scores ranging from 2–6 upon entering the study. No SAEs and no related AEs were reported. All 10 study subjects survived, while matched historical controls had a mortality rate of 27%. The study subjects exhibited rapid resolution of organ dysfunction and had significantly shorter ICU stays compared to matched historical controls (p<0.0001). All patients had both elevated pro- and anti-inflammatory cytokines, chemokines, and additional immune modulators that gradually decreased following treatment. Conclusion Administration of apoptotic cells to patients with mild-to-moderate sepsis was safe and had a significant immuno-modulating effect, leading to early resolution of the cytokine storm. Clinical Trial Registration ClinicalTrials.gov Identifier: NCT03925857. (https://clinicaltrials.gov/ct2/show/study/NCT03925857).
Collapse
Affiliation(s)
| | - Avraham Abutbul
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sigal Sviri
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Zlotnick
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Ahmad Nama
- Department of Emergency Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Sebastian Zimro
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raja El-Amore
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Yehudit Shabat
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Barak Reicher
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Batla Falah
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel.,Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Pickford P, Lucey M, Rujan RM, McGlone ER, Bitsi S, Ashford FB, Corrêa IR, Hodson DJ, Tomas A, Deganutti G, Reynolds CA, Owen BM, Tan TM, Minnion J, Jones B, Bloom SR. Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Mol Metab 2021; 51:101242. [PMID: 33933675 PMCID: PMC8163982 DOI: 10.1016/j.molmet.2021.101242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 and glucagon receptor (GLP-1R/GCGR) co-agonism can maximise weight loss and improve glycaemic control in type 2 diabetes and obesity. In this study, we investigated the cellular and metabolic effects of modulating the balance between G protein and β-arrestin-2 recruitment at GLP-1R and GCGR using oxyntomodulin (OXM)-derived co-agonists. This strategy has been previously shown to improve the duration of action of GLP-1R mono-agonists by reducing target desensitisation and downregulation. METHODS Dipeptidyl dipeptidase-4 (DPP-4)-resistant OXM analogues were generated and assessed for a variety of cellular readouts. Molecular dynamic simulations were used to gain insights into the molecular interactions involved. In vivo studies were performed in mice to identify the effects on glucose homeostasis and weight loss. RESULTS Ligand-specific reductions in β-arrestin-2 recruitment were associated with slower GLP-1R internalisation and prolonged glucose-lowering action in vivo. The putative benefits of GCGR agonism were retained, with equivalent weight loss compared to the GLP-1R mono-agonist liraglutide despite a lesser degree of food intake suppression. The compounds tested showed only a minor degree of biased agonism between G protein and β-arrestin-2 recruitment at both receptors and were best classified as partial agonists for the two pathways measured. CONCLUSIONS Diminishing β-arrestin-2 recruitment may be an effective way to increase the therapeutic efficacy of GLP-1R/GCGR co-agonists. These benefits can be achieved by partial rather than biased agonism.
Collapse
Affiliation(s)
- Phil Pickford
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Maria Lucey
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK
| | - Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Giuseppe Deganutti
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK
| | - Christopher A Reynolds
- Centre for Sport, Exercise, and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, CV1 5FB, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Bryn M Owen
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - James Minnion
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
24
|
A Role for SGLT-2 Inhibitors in Treating Non-diabetic Chronic Kidney Disease. Drugs 2021; 81:1491-1511. [PMID: 34363606 DOI: 10.1007/s40265-021-01573-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, inhibitors of the sodium-glucose co-transporter 2 (SGLT2 inhibitors) have been shown to have significant protective effects on the kidney and the cardiovascular system in patients with diabetes. This effect is also manifested in chronic kidney disease (CKD) patients and is minimally due to improved glycaemic control. Starting from these positive findings, SGLT2 inhibitors have also been tested in patients with non-diabetic CKD or heart failure with reduced ejection fraction. Recently, the DAPA-CKD trial showed a significantly lower risk of CKD progression or death from renal or cardiovascular causes in a mixed population of patients with diabetic and non-diabetic CKD receiving dapagliflozin in comparison with placebo. In patients with heart failure and reduced ejection fraction, two trials (EMPEROR-Reduced and DAPA-HF) also found a significantly lower risk of reaching the secondary renal endpoint in those treated with an SGLT2 inhibitor in comparison with placebo. This also applied to patients with CKD. Apart from their direct mechanism of action, SGLT2 inhibitors have additional effects that could be of particular interest for patients with non-diabetic CKD. Among these, SGLT2 inhibitors reduce blood pressure and serum acid uric levels and can increase hemoglobin levels. Some safety issues should be further explored in the CKD population. SGLT2 inhibitors can minimally increase potassium levels, but this has not been shown by the CREDENCE trial. They also increase magnesium and phosphate reabsorption. These effects could become more significant in patients with advanced CKD and will need monitoring when these agents are used more extensively in the CKD population. Conversely, they do not seem to increase the risk of acute kidney injury.
Collapse
|
25
|
Petersen KF, Rothman DL, Shulman GI. Point: An alternative hypothesis for why exposure to static magnetic and electric fields treats type 2 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E999-E1000. [PMID: 33843279 DOI: 10.1152/ajpendo.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Theilade S, Christensen MB, Vilsbøll T, Knop FK. An overview of obesity mechanisms in humans: Endocrine regulation of food intake, eating behaviour and common determinants of body weight. Diabetes Obes Metab 2021; 23 Suppl 1:17-35. [PMID: 33621414 DOI: 10.1111/dom.14270] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Obesity is one of the biggest health challenges of the 21st century, already affecting close to 700 million people worldwide, debilitating and shortening lives and costing billions of pounds in healthcare costs and loss of workability. Body weight homeostasis relies on complex biological mechanisms and the development of obesity occurs on a background of genetic susceptibility and an environment promoting increased caloric intake and reduced physical activity. The pathophysiology of common obesity links neuro-endocrine and metabolic disturbances with behavioural changes, genetics, epigenetics and cultural habits. Also, specific causes of obesity exist, including monogenetic diseases and iatrogenic causes. In this review, we provide an overview of obesity mechanisms in humans with a focus on energy homeostasis, endocrine regulation of food intake and eating behavior, as well as the most common specific causes of obesity.
Collapse
Affiliation(s)
- Simone Theilade
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Kinsella HM, Hostnik LD, Rings LM, Swink JM, Burns TA, Toribio RE. Glucagon, insulin, adrenocorticotropic hormone, and cortisol in response to carbohydrates and fasting in healthy neonatal foals. J Vet Intern Med 2021; 35:550-559. [PMID: 33415818 PMCID: PMC7848351 DOI: 10.1111/jvim.16024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022] Open
Abstract
Background The endocrine pancreas and hypothalamic‐pituitary‐adrenal axis (HPAA) are central to energy homeostasis, but information on their dynamics in response to energy challenges in healthy newborn foals is lacking. Objectives To evaluate glucagon, insulin, ACTH, and cortisol response to fasting and carbohydrate administration in healthy foals. Animals Twenty‐two healthy Standardbred foals ≤4 days of age. Methods Foals were assigned to fasted (n = 6), IV glucose (IVGT; n = 5), PO glucose (OGT; n = 5), and PO lactose (OLT; n = 6) test groups. Blood samples were collected frequently for 210 minutes. Nursing was allowed from 180 to 210 minutes. Plasma glucagon, ACTH, serum insulin, and cortisol concentrations were measured using immunoassays. Results Plasma glucagon concentration decreased relative to baseline at 45, 90, and 180 minutes during the OLT (P = .03), but no differences occurred in other test groups. Nursing stimulated marked increases in plasma glucagon, serum insulin, and glucose concentrations in all test groups (P < .001). Plasma ACTH concentration increased relative to baseline at 180 minutes (P < .05) during fasting and OLT, but no differences occurred in other test groups. Serum cortisol concentration increased relative to baseline during OLT at 180 minutes (P = .04), but no differences occurred in other test groups. Nursing resulted in decreased plasma ACTH and serum cortisol concentrations in all test groups (P < .01). Conclusions and Clinical Importance The endocrine response to enterally and parenterally administered carbohydrates, including the major endocrine response to nursing, suggests that factors in milk other than carbohydrates are strong stimulators (directly or indirectly) of the endocrine pancreas and HPAA.
Collapse
Affiliation(s)
- Hannah M Kinsella
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Laura D Hostnik
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Lindsey M Rings
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Jacob M Swink
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Teresa A Burns
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| | - Ramiro E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine
| |
Collapse
|
28
|
Keith L, Seo CA, Rowsemitt C, Pfeffer M, Wahi M, Staggs M, Dudek J, Gower B, Carmody M. Ketogenic diet as a potential intervention for lipedema. Med Hypotheses 2020; 146:110435. [PMID: 33303304 DOI: 10.1016/j.mehy.2020.110435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Lipedema (LI) is a common yet misdiagnosed condition, often misconstrued with obesity. LI affects women almost exclusively, and its painful and life-changing symptoms have long been thought to be resistant to the lifestyle interventions such as diet and exercise. In this paper, we discuss possible mechanisms by which patients adopting a ketogenic diet (KD) can alleviate many of the unwanted clinical features of LI. This paper is also an effort to provide evidence for the hypothesis of the potency of this dietary intervention for addressing the symptoms of LI. Specifically, we examine the scientific evidence of effectiveness of adopting a KD by patients to alleviate clinical features associated with LI, including excessive and disproportionate lower body adipose tissue (AT) deposition, pain, and reduction in quality of life (QoL). We also explore several clinical features of LI currently under debate, including the potential existence and nature of edema, metabolic and hormonal dysfunction, inflammation, and fibrosis. The effectiveness of a KD on addressing clinical features of LI has been demonstrated in human studies, and shows promise as an intervention for LI. We hope this paper leads to an improved understanding of optimal nutritional management for patients with LI and stimulates future research in this area of study.
Collapse
Affiliation(s)
- L Keith
- The Lipedema Project, Boston, MA, USA; Lipedema Simplified, Boston, MA, USA.
| | - C A Seo
- The Lipedema Project, Boston, MA, USA; Lipedema Simplified, Boston, MA, USA
| | - C Rowsemitt
- Lipedema Simplified, Boston, MA, USA; Comprehensive Weight Management, Templeton, CA and Providence, RI, USA; The Lipedema Project: Medical Advisory Board, Boston, MA, USA
| | - M Pfeffer
- Lipedema Simplified, Boston, MA, USA; The Lipedema Project: Medical Advisory Board, Boston, MA, USA; I Choose Health, Metung, Australia
| | - M Wahi
- DethWench Professional Services, Boston, MA, USA
| | - M Staggs
- Lipedema Simplified, Boston, MA, USA
| | - J Dudek
- The Lipedema Project: Medical Advisory Board, Boston, MA, USA; SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - B Gower
- University of Alabama at Birmingham, Department of Nutrition Sciences, Birmingham, AL, USA
| | - M Carmody
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L. Minireview: are SGLT2 inhibitors heart savers in diabetes? Heart Fail Rev 2020; 25:899-905. [PMID: 31410757 DOI: 10.1007/s10741-019-09849-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a class of drugs that promote urinary glucose excretion in the treatment of diabetes, have provoked large interest of scientific and professional community due to their positive and, somehow, unexpected results in the three major cardiovascular outcome trials (EMPA-REG OUTCOME trial with empagliflozin, CANVAS Program with canagliflozin, and DECLARE-TIMI 58 with dapagliflozin). In fact, along with the reduction of major adverse cardiovascular events, SGLT2 inhibitors reduced significantly hospitalization for heart failure regardless of existing atherosclerotic cardiovascular disease or a history of heart failure. The latter have reminded us of the frequent but neglected entity of diabetic cardiomyopathy which is currently poorly understood despite its great clinical importance. Physiological mechanisms responsible for the benefits of SGLT2 inhibitors are complex and multifactorial and still not well defined. Interestingly, the time frame of their effect excludes a glucose- and antiatherosclerotic-mediated effect. It would be of great importance to better understand SGLT2 inhibitor mechanisms of action since they could have a potential to be used in early stages of diabetes as cardioprotective agents. There are widely available biomarkers as well as echocardiography that are used in everyday clinical practice and could elucidate physiological mechanisms in the heart protection with SGLT2 inhibitors treatment but studies are still lacking. The purpose of this minireview is to summarize the latest concepts about SGLT2 inhibitors and its benefits regarding diabetic cardiomyopathy especially on its early stage development and to discuss controversies and potential future developments in the field.
Collapse
Affiliation(s)
| | - Maja Cigrovski Berković
- Department of Endocrinology, Diabetes, and Metabolism, University Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
- Department for Medicine of Sports and Exercise, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Nikola Bulj
- Department of Cardiology, University Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Luka Rotkvić
- Department of Cardiology, Magdalena Clinic for Cardiovascular Disease, Krapinske Toplice, Croatia
| |
Collapse
|
30
|
Charbonnel N, Galan M, Tatard C, Loiseau A, Diagne C, Dalecky A, Parrinello H, Rialle S, Severac D, Brouat C. Differential immune gene expression associated with contemporary range expansion in two invasive rodents in Senegal. Sci Rep 2020; 10:18257. [PMID: 33106535 PMCID: PMC7589499 DOI: 10.1038/s41598-020-75060-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/28/2020] [Indexed: 01/09/2023] Open
Abstract
Biological invasions are major anthropogenic changes associated with threats to biodiversity and health. However, what determines the successful establishment and spread of introduced populations remains unclear. Here, we explore several hypotheses linking invasion success and immune phenotype traits, including those based on the evolution of increased competitive ability concept. We compared gene expression profiles between anciently and recently established populations of two major invading species, the house mouse Mus musculus domesticus and the black rat Rattus rattus, in Senegal (West Africa). Transcriptome analyses identified differential expression between anciently and recently established populations for 364 mouse genes and 83 rat genes. All immune-related genes displaying differential expression along the mouse invasion route were overexpressed at three of the four recently invaded sites studied. Complement activation pathway genes were overrepresented among these genes. By contrast, no particular immunological process was found to be overrepresented among the differentially expressed genes of black rat. Changes in transcriptome profiles were thus observed along invasion routes, but with different specific patterns between the two invasive species. These changes may be driven by increases in infection risks at sites recently invaded by the house mouse, and by stochastic events associated with colonization history for the black rat. These results constitute a first step toward the identification of immune eco-evolutionary processes potentially involved in the invasion success of these two rodent species.
Collapse
Affiliation(s)
- Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Maxime Galan
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Christophe Diagne
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- Départment de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Fann, Dakar, Senegal
| | | | - Hugues Parrinello
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Stephanie Rialle
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Carine Brouat
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
31
|
An C, Zhang K, Zhu W, Bi Y, Wu T, Tao C, Wang Y, Yang S. Molecular cloning, sequence characteristics, and tissue expression analysis of glucagon receptor gene in Bama minipig. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that the glucagon receptor (GCGR) plays an important role in the development of type 2 diabetes mellitus. Both pigs and humans exhibit significantly similar behaviors in their glucose and lipid metabolism. In this study, the obtained Bama minipig GCGR coding sequence was 1437 bp encoding 479 amino acids (AA), which demonstrated higher sequence homology with humans than other species. It showed the highest expression profile in the liver, followed by the lung and kidney. In addition, the three-dimensional structure analysis showed that the porcine GCGR protein also had a classic sevenfold transmembrane region and a stalk region at the N-terminus for ligand binding. The stalk region of GCGR possessed five AA variations. The ligand binding pocket of GCGR has one AA variation in the key region, none of which affected the glucagon binding verified by the crystal structure mutagenesis in humans. There was no variation found in the region of membrane anchoring, hydrophobic bond, salt bridge, and hydrogen bond. However, the Gly40Ser mutation in mice resulted in major diseases, meaning that pigs are more suitable for the evaluation of GCGR-related drugs than mice.
Collapse
Affiliation(s)
- Cuiping An
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Yanzhen Bi
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, People’s Republic of China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| |
Collapse
|
32
|
Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L, Ćelap I. Sodium-glucose cotransporter 2 inhibitors' mechanisms of action in heart failure. World J Diabetes 2020; 11:269-279. [PMID: 32843930 PMCID: PMC7415232 DOI: 10.4239/wjd.v11.i7.269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Three major cardiovascular outcome trials (CVOTs) with a new class of antidiabetic drugs - sodium-glucose cotransporter 2 (SGLT2) inhibitors (EMPA-REG OUTCOME trial with empagliflozin, CANVAS Program with canagliflozin, DECLARE-TIMI 58 with dapagliflozin) unexpectedly showed that cardiovascular outcomes could be improved possibly due to a reduction in heart failure risk, which seems to be the most sensitive outcome of SGLT2 inhibition. No other CVOT to date has shown any significant benefit on heart failure events. Even more impressive findings came recently from the DAPA-HF trial in patients with confirmed and well-treated heart failure: Dapagliflozin was shown to reduce heart failure risk for patients with heart failure with reduced ejection fraction regardless of diabetes status. Nevertheless, despite their possible wide clinical implications, there is much doubt about the mechanisms of action and a lot of questions to unravel, especially now when their benefits translated to non-diabetic patients, rising doubts about the validity of some current mechanistic assumptions.The time frame of their cardiovascular benefits excludes glucose-lowering and antiatherosclerotic-mediated effects and multiple other mechanisms, direct cardiac as well as systemic, are suggested to explain their early cardiorenal benefits. These are: Anti-inflammatory, antifibrotic, antioxidative, antiapoptotic properties, then renoprotective and hemodynamic effects, attenuation of glucotoxicity, reduction of uric acid levels and epicardial adipose tissue, modification of neurohumoral system and cardiac fuel energetics, sodium-hydrogen exchange inhibition. The most logic explanation seems that SGLT2 inhibitors timely target various mechanisms underpinning heart failure pathogenesis. All the proposed mechanisms of their action could interfere with evolution of heart failure and are discussed separately within the main text.
Collapse
Affiliation(s)
| | - Maja Cigrovski Berković
- Department of Endocrinology, Diabetes, Metabolism and Clinical Pharmacology, University Hospital, Zagreb 10000, Croatia
- Department for Medicine of Sports and Exercise, Faculty of Kinesiology University of Zagreb, Zagreb 10000, Croatia
| | - Nikola Bulj
- Department of Cardiology, University Hospital Centre, Zagreb 10000, Croatia
| | - Luka Rotkvić
- Department of Cardiology, Magdalena Clinic for Cardiovascular Disease, Krapinske Toplice 49217, Croatia
| | - Ivana Ćelap
- Department of Clinical Chemistry, University Hospital Centre, Zagreb 10000, Croatia
| |
Collapse
|
33
|
Zaigham M, Helfer S, Kristensen KH, Isberg PE, Wiberg N. Maternal arterial blood gas values during delivery: Effect of mode of delivery, maternal characteristics, obstetric interventions and correlation to fetal umbilical cord blood. Acta Obstet Gynecol Scand 2020; 99:1674-1681. [PMID: 32524582 DOI: 10.1111/aogs.13936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Obstetricians routinely use biochemical parameters from non-pregnant women to assess the condition of the laboring mother. However, it is well known that pregnancy leads to significant physiological changes in most organ systems. The aim of this study was to determine normal values for maternal arterial blood gases during vaginal deliveries as compared with control values from planned cesarean sections. We also wanted to elucidate the effect of various maternal characteristics, mode of delivery and obstetric interventions on blood gas values. MATERIAL AND METHODS We carried out a randomly selected, prospective-observational cohort study of 250 women undergoing vaginal delivery and 58 women undergoing planned cesarean section at the Department of Obstetrics and Gynecology, Skåne University Hospital, Malmö, Sweden. RESULTS We found significant differences for gestational age, parity, umbilical venous blood pH, pCO2 and lactate values between the two study groups (P < .005). Significantly lower pH, pCO2 , pO2 and sO2 were found in mothers delivering vaginally. Higher base deficit, hemoglobin, bilirubin, potassium, glucose and lactate were found in vaginal deliveries than in planned cesarean sections (P < .02). Maternal body mass index (BMI), smoking and hypertension were not significantly correlated to acid base parameters in women with vaginal deliveries. On the other hand, multiple regression showed significant associations for the use of epidural anesthesia on maternal pH (P < .05) and pO2 (P < .01); and synthetic oxytocin on pCO2 (P = .08), glucose (P < .00) and lactate (P < .02) levels in maternal arterial blood. Maternal arterial pH, pCO2 and lactate values correlated significantly to values in venous umbilical cord blood (P < .000). CONCLUSIONS Maternal arterial blood gas parameters varied significantly according to mode of delivery, the use of epidural anesthesia and synthetic oxytocin.
Collapse
Affiliation(s)
- Mehreen Zaigham
- Department of Obstetrics and Gynecology, Institution of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sara Helfer
- Department of Obstetrics and Gynecology, Institution of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Karl Heby Kristensen
- Department of Obstetrics and Gynecology, Institution of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | | | - Nana Wiberg
- Department of Obstetrics and Gynecology, Institution of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Gynecology and Obstetrics, Skåne University Hospital, Ystad, Sweden
| |
Collapse
|
34
|
|
35
|
Petrák O, Klímová J, Mráz M, Haluzíková D, Doležalová RP, Kratochvílová H, Lacinová Z, Novák K, Michalský D, Waldauf P, Holaj R, Widimský J, Zelinka T, Haluzík M. Pheochromocytoma With Adrenergic Biochemical Phenotype Shows Decreased GLP-1 Secretion and Impaired Glucose Tolerance. J Clin Endocrinol Metab 2020; 105:5813460. [PMID: 32222768 DOI: 10.1210/clinem/dgaa154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT Impaired glucose homeostasis is a common finding in pheochromocytoma (PHEO), especially with adrenergic phenotype. The possible contribution of incretin dysfunction to dysglycemia in PHEO patients has not been studied. OBJECTIVE To compare changes in pancreatic endocrine function and gut hormones' production during a liquid meal test before and 1 year after adrenalectomy. METHODS In a prospective study, we included 18 patients with PHEO (13 females) with adrenergic biochemical phenotype. A liquid meal test with predefined isocaloric enteral nutrition was performed to evaluate dynamic changes in pancreatic hormones and incretins. RESULTS During the meal test, insulin levels were significantly lower before adrenalectomy only in the early phase of insulin secretion, but changes in area under the curve (AUC) did not reach statistical significance (AUC = 0.07). Plasma glucagon (AUC < 0.01) and pancreatic polypeptide levels (AUC < 0.01) were suppressed in comparison with the postoperative state. Impaired response to the meal was found preoperatively for glucagon-like peptide-1 (GLP-1; AUC P < 0.05), but not glucose-dependent insulinotropic polypepide (GIP; AUC P = 0.21). No significant changes in insulin resistance indices were found, except for the homeostatic model assessment-beta index, an indicator of the function of islet β cells, which negatively correlated with plasma metanephrine (R = -0.66, P < 0.01). CONCLUSIONS Our study shows suppression of pancreatic α and β cell function and impaired GLP-1 secretion during a dynamic meal test in patients with PHEO, which is improved after its surgical treatment. These data demonstrate a novel and potentially significant interconnection between excessive catecholamine production and the secretion of glucoregulatory hormones.
Collapse
Affiliation(s)
- Ondřej Petrák
- Center of Hypertension, Third Department of Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Judita Klímová
- Center of Hypertension, Third Department of Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Center for Experimental Medicine and Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute for Medical Biochemistry and Laboratory Diagnostics, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Denisa Haluzíková
- Institute of Sport Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Radka Petráková Doležalová
- Institute of Sport Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Helena Kratochvílová
- Institute for Medical Biochemistry and Laboratory Diagnostics, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Zdeňka Lacinová
- Institute for Medical Biochemistry and Laboratory Diagnostics, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Květoslav Novák
- Department of Urology, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - David Michalský
- First Department of Surgery, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Petr Waldauf
- Department of Anesthesiology, University Hospital Královské Vinohrady and Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Robert Holaj
- Center of Hypertension, Third Department of Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Jiří Widimský
- Center of Hypertension, Third Department of Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Tomáš Zelinka
- Center of Hypertension, Third Department of Medicine, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Center for Experimental Medicine and Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute for Medical Biochemistry and Laboratory Diagnostics, Charles University, First Faculty of Medicine and General Faculty Hospital, Prague, Czech Republic
| |
Collapse
|
36
|
Zhang L, Sun W, Chen H, Zhang Z, Cai W. Transcriptomic Changes in Liver of Juvenile Cynoglossus semilaevis following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:556-564. [PMID: 31726483 DOI: 10.1002/etc.4633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an increasingly important environmental pollutant that is pervasive in the environment. A number of studies have focused on the toxicological effects of PFOS on model fish species (zebrafish and medaka), but little is known about the impact of PFOS on commercially important marine fish. Thus, the present study examined transcriptome responses to PFOS exposure in the liver of juvenile Cynoglossus semilaevis, an important farmed flatfish in China. Then, in response to PFOS challenges, 1695 and 5244 genes were identified as significantly increased and depressed, respectively. Significant expression changes were observed in immune-related genes (cytokine-cytokine receptor interaction, T-helper [Th]17 cell differentiation, and the chemokine nuclear factor-kappa B and T-cell receptor signaling pathways), indicating that immunotoxicity is a key aspect of the effects of PFOS on C. semilaevis. Exposure to PFOS also altered the gene expression levels of hormones (inhibin, insulin, somatostatin, and glucagon), which could lead to severe metabolic and endocrine dysfunction. As expected from previous studies, several phase I and phase II detoxification enzymes were significantly up-regulated, which could facilitate the biotransformation and detoxification of PFOS in C. semilaevis. The present study provides new insights into the molecular toxicology of PFOS in a commercially important fish species. Environ Toxicol Chem 2020;39:556-564. © 2019 SETAC.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Wei Sun
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Zhe Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
38
|
Mécanismes possibles des effets bénéfiques cardiovasculaires des inhibiteurs SGLT2. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2019. [DOI: 10.1016/s1878-6480(19)30961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. Glucagon Regulation of Energy Expenditure. Int J Mol Sci 2019; 20:ijms20215407. [PMID: 31671603 PMCID: PMC6862306 DOI: 10.3390/ijms20215407] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stephan Sachs
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Division of Metabolic Diseases, Technische Universität München, 85740 Munich, Germany.
| | - Kirk M Habegger
- Department of Medicine-Endocrinology and Comprehensive Diabetes Center, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35899, USA.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, 80336 München, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
40
|
Somvanshi PR, Tomar M, Kareenhalli V. Computational Analysis of Insulin-Glucagon Signalling Network: Implications of Bistability to Metabolic Homeostasis and Disease states. Sci Rep 2019; 9:15298. [PMID: 31653897 PMCID: PMC6814820 DOI: 10.1038/s41598-019-50889-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin and glucagon control plasma macronutrient homeostasis through their signalling network composed of multiple feedback and crosstalk interactions. To understand how these interactions contribute to metabolic homeostasis and disease states, we analysed the steady state response of metabolic regulation (catabolic or anabolic) with respect to structural and input perturbations in the integrated signalling network, for varying levels of plasma glucose. Structural perturbations revealed: the positive feedback of AKT on IRS is responsible for the bistability in anabolic zone (glucose >5.5 mmol); the positive feedback of calcium on cAMP is responsible for ensuring ultrasensitive response in catabolic zone (glucose <4.5 mmol); the crosstalk between AKT and PDE3 is responsible for efficient catabolic response under low glucose condition; the crosstalk between DAG and PKC regulates the span of anabolic bistable region with respect to plasma glucose levels. The macronutrient perturbations revealed: varying plasma amino acids and fatty acids from normal to high levels gradually shifted the bistable response towards higher glucose range, eventually making the response catabolic or unresponsive to increasing glucose levels. The analysis reveals that certain macronutrient composition may be more conducive to homeostasis than others. The network perturbations that may contribute to disease states such as diabetes, obesity and cancer are discussed.
Collapse
Affiliation(s)
- Pramod R Somvanshi
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.,Bioengineering Division, John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, USA
| | - Manu Tomar
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Venkatesh Kareenhalli
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.
| |
Collapse
|
41
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
42
|
Liang X, Wu K, Liu M, Yang B. Adverse impact of carbon tetrachloride on metabolic function in mice. J Cell Biochem 2019; 120:11973-11980. [PMID: 30775809 DOI: 10.1002/jcb.28481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Carbon tetrachloride (CCl4 ), a potent hepatotoxin, is linked to the histopathological outcomes of inflammatory or oxidative stress, and cell death. However, further study of additional dysmetabolism induced by CCl 4 toxicant has not yet been investigated. In current study, chronical and acute exposures of CCl 4 in mice were used to unmask the biological molecular mechanism responsible for insulin-dependent metabolic disorder. In experimental methods, a number of biochemical assays were used in assessment of biological impacts on insulin-produced pancreas and insulin-responsive hepatocyte after long- and short-term exposures of CCl 4 toxicant, respectively. As a result, data from oral glucose tolerance test showed that CCl 4 exposures induced glucose tolerance and disrupted blood insulin and glucagon levels time-dependently. Meanwhile, biochemical and histocytological analyses further indicated that CCl 4 exposures significantly resulted in liver cell damage, induced abnormal changes of hepatic and skeletal glycogen synthesis. In addition, acute CCl 4 -exposed mice showed reduced functional proteins of glucose transporter 2 (GLUT2), insulin receptor β, insulin receptor substrate 1, glycogen synthase kinase 3β (GSK3β), p-AKT Ser473 associated with AKT signaling pathway in liver cells, whereas acute CCl 4 exposure downregulated the endogenous expressions of the insulin and glucagon hormonal proteins in the pancreas. Taken together, the current findings highlight that CCl 4 impaired insulin-dependent glucose homeostasis through modulating hepatocellular AKT signaling pathway in acute CCl 4 exposure and GLUT2/GSK3β pathway in chronic CCl 4 -exposed liver cells.
Collapse
Affiliation(s)
- Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Meizhen Liu
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Glucagon is known as a key hormone in the control of glucose and amino acid metabolism. Critical illness is hallmarked by a profound alteration in glucose and amino acid metabolism, accompanied by muscle wasting and hypoaminoacidemia. Here we review novel insights in glucagon (patho)physiology and discuss the recently discovered role of glucagon in controlling amino acid metabolism during critical illness. RECENT FINDINGS The role of glucagon in glucose metabolism is much more complex than originally anticipated, and glucagon has shown to be a key player in amino acid metabolism. During critical illness, the contribution of glucagon in bringing about hyperglycemia appeared to be quite limited, whereas increased glucagon availability seems to contribute importantly to the typical hypoaminoacidemia via stimulating hepatic amino acid breakdown, without affecting muscle wasting. Providing amino acids further increases hepatic amino acid breakdown, mediated by a further increase in glucagon. SUMMARY Glucagon plays a crucial role in amino acid metabolism during critical illness, with an apparent feedback loop between glucagon and circulating amino acids. Indeed, elevated glucagon may, to a large extent, be responsible for the hypoaminoacidemia in the critically ill and infusing amino acids increases glucagon-driven amino acid breakdown in the liver. These novel insights further question the rationale for amino acid administration during critical illness.
Collapse
|
44
|
Sellami M, Bragazzi NL, Slimani M, Hayes L, Jabbour G, De Giorgio A, Dugué B. The Effect of Exercise on Glucoregulatory Hormones: A Countermeasure to Human Aging: Insights from a Comprehensive Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:1709. [PMID: 31096708 PMCID: PMC6572009 DOI: 10.3390/ijerph16101709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/25/2019] [Accepted: 05/11/2019] [Indexed: 11/17/2022]
Abstract
Hormones are secreted in a circadian rhythm, but also follow larger-scale timetables, such as monthly (hormones of the menstrual cycle), seasonal (i.e., winter, summer), and, ultimately, lifespan-related patterns. Several contexts modulate their secretion, such as genetics, lifestyle, environment, diet, and exercise. They play significant roles in human physiology, influencing growth of muscle, bone, and regulating metabolism. Exercise training alters hormone secretion, depending on the frequency, duration, intensity, and mode of training which has an impact on the magnitude of the secretion. However, there remains ambiguity over the effects of exercise training on certain hormones such as glucoregulatory hormones in aging adults. With advancing age, there are many alterations with the endocrine system, which may ultimately alter human physiology. Some recent studies have reported an anti-aging effect of exercise training on the endocrine system and especially cortisol, growth hormone and insulin. As such, this review examines the effects of endurance, interval, resistance and combined training on hormones (i.e., at rest and after) exercise in older individuals. We summarize the influence of age on glucoregulatory hormones, the influence of exercise training, and where possible, examine masters' athletes' endocrinological profile.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program, College of Arts and Sciences (QU-CAS), University of Qatar, Doha 2713, Qatar.
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy.
| | - Maamer Slimani
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy.
| | - Lawrence Hayes
- Active Ageing Research Group, Department of Medical and Sport Sciences, University of Cumbria, Bowerham Road, Lancaster LA1 3JD, UK.
| | - Georges Jabbour
- Sport Science Program, College of Arts and Sciences (QU-CAS), University of Qatar, Doha 2713, Qatar.
| | - Andrea De Giorgio
- Department of Psychology, eCampus University, 22060 Novedrate, Italy.
| | - Benoit Dugué
- Laboratory of Mobility, Aging and Exercise (MOVE), EA 6314 Poitiers, France.
| |
Collapse
|
45
|
Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019; 20:ijms20081885. [PMID: 30995792 PMCID: PMC6515121 DOI: 10.3390/ijms20081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is the central organ of glycolipid metabolism, which regulates the metabolism of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions. Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism. Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to control hepatic metabolism in response to different physiological states. Through inducing acetylation of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition, glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally, we summarize and discuss the potential impact of glucagon on the treatment of liver diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
46
|
Druzhkova T, Pochigaeva K, Yakovlev A, Kazimirova E, Grishkina M, Chepelev A, Guekht A, Gulyaeva N. Acute stress response to a cognitive task in patients with major depressive disorder: potential metabolic and proinflammatory biomarkers. Metab Brain Dis 2019; 34:621-629. [PMID: 30564974 DOI: 10.1007/s11011-018-0367-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Responses of the hypothalamic-pituitary-adrenal axis (HPAA), immune system and metabolic pathways are involved in adaptation to stress, while alterations in these responses have been implicated in the development of major depressive disorder (MDD). Multiple laboratory indices are known to react in response to the acute stress, however, no valid biomarkers have been reported, which can differentiate stress response in depressed individuals. The aim of this study was to assess changes in a set of laboratory parameters in patients with MDD in response to a moderate mental stress and to find potential markers of altered stress reactivity associated with depression. A group of 33 MDD patients and 43 control subjects underwent clinical evaluation to assess depression and anxiety symptoms, as well as heart rate variability (HRV) analysis. Participants were asked to perform a time constrained cognitive task, and selected hormones (cortisol, ACTH), cytokines (IL-6, IL-1β, TNF-α), neurotrophic factors (BDNF, CNTF) and metabolic parameters (glucose, cholesterol, triglycerides) were measured before and 60 min after the task performance. HRV analysis showed increased sympathetic input in MDD patients. The MDD group manifested an elevated HPAA activity as well as IL-6 and CNTF levels at baseline. A specific stress-induced increase in glucose and TNF-α was revealed in the MDD group, which was absent in control subjects. The data confirm the impairments of stress response in MDD and suggest that the reaction of simple metabolic and pro-inflammatory indices to a mild stressogenic challenge may be indicative of a depressive state.
Collapse
Affiliation(s)
- Tatiana Druzhkova
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Ksenia Pochigaeva
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Aleksander Yakovlev
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova street 5a, Moscow, Russian Federation, 117485
| | - Evdokia Kazimirova
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova street 5a, Moscow, Russian Federation, 117485
| | - Maria Grishkina
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Aleksey Chepelev
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
| | - Alla Guekht
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Natalia Gulyaeva
- Healthcare Department of Moscow, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation.
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova street 5a, Moscow, Russian Federation, 117485.
| |
Collapse
|
47
|
Rabizadeh S, Nakhjavani M, Esteghamati A. Cardiovascular and Renal Benefits of SGLT2 Inhibitors: A Narrative Review. Int J Endocrinol Metab 2019; 17:e84353. [PMID: 31372172 PMCID: PMC6628616 DOI: 10.5812/ijem.84353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Most recently developed anti-hyperglycemic drugs have offered cardiovascular and renal benefits. In this narrative review, we discuss the cardiovascular and renal benefits of novel antidiabetic drugs, sodium glucose cotransporter type 2 (SGLT2) inhibitors, in type 2 diabetes. EVIDENCE ACQUISITION The literature published in PubMed, Scopus, Web of Science, Google Scholar, and Cochrane library were reviewed up to January 2019. The keywords including SGLT2 inhibitor, type 2 diabetes, cardiovascular effect, and renal effect were used in different combinations. RESULTS Cardiovascular disease represents a large health burden in patients with diabetes. The prevention of cardiovascular events is a major concern in the treatment of patients with diabetes. Diabetes is also associated with an increased risk of adverse renal events and diabetic nephropathy is the leading cause of end-stage renal disease worldwide. SGLT2 inhibitors as new glucose-lowering agents act by inhibiting glucose reabsorption in the proximal tubule of the kidney, which is independent of insulin secretion. We reviewed the cardiovascular effects of these drugs including effects on triple MACE (major adverse cardiovascular events), myocardial infarction, heart failure, cardiovascular and all-cause mortality, and stroke, as well as renal effects including albuminuria, serum creatinine, the rate of renal replacement therapy, and renal function over time, along with the mechanisms of these effects. CONCLUSIONS Given the suboptimal glycemic and cardiovascular risk control in type 2 diabetes, novel therapies such as SGLT2 inhibitors seem to have an important clinical advantage to improve glycemic control and cardiovascular and renal outcomes.
Collapse
Affiliation(s)
- Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Khare P, Mangal P, Baboota RK, Jagtap S, Kumar V, Singh DP, Boparai RK, Sharma SS, Khardori R, Bhadada SK, Kondepudi KK, Chopra K, Bishnoi M. Involvement of Glucagon in Preventive Effect of Menthol Against High Fat Diet Induced Obesity in Mice. Front Pharmacol 2018; 9:1244. [PMID: 30505271 PMCID: PMC6250823 DOI: 10.3389/fphar.2018.01244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Glucagon mediated mechanisms have been shown to play clinically significant role in energy expenditure. The present study was designed to understand whether pharmacological mimicking of cold using menthol (TRPM8 modulator) can induce glucagon-mediated energy expenditure to prevent weight gain and related complications. Acute oral and topical administration of TRPM8 agonists (menthol and icilin) increased serum glucagon concentration which was prevented by pre-treatment with AMTB, a TRPM8 blocker. Chronic administration of menthol (50 and 100 mg/kg/day for 12 weeks) to HFD fed animals prevented weight gain, insulin resistance, adipose tissue hypertrophy and triacylglycerol deposition in liver. These effects were not restricted to oral administration, but also observed upon the topical application of menthol (10% w/v). The metabolic alterations caused by menthol in liver and adipose tissue mirrored the known effects of glucagon, such as increased glycogenolysis and gluconeogenesis in the liver, and enhanced thermogenic activity of white and brown adipose tissue. Correlation analysis suggests a strong correlation between glucagon dependent changes and energy expenditure markers. Interestingly, in-vitro treatment of the serum of menthol treated mice increased energy expenditure markers in mature 3T3L1 adipocytes, which was prevented in the presence of non-competitive glucagon receptor antagonist, L-168,049, indicating that menthol-induced increase in serum glucagon is responsible for increase in energy expenditure phenotype. In conclusion, the present work provides evidence that glucagon plays an important role in the preventive effect of menthol against HFD-induced weight gain and related complications.
Collapse
Affiliation(s)
- Pragyanshu Khare
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India.,Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Ritesh K Baboota
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| | - Sneha Jagtap
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| | | | - Ravneet K Boparai
- Department of Biotechnology, Government College for Girls, Chandigarh, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Romesh Khardori
- Division of Endocrinology and Metabolism, The EVMS Sterling Centre of Diabetes and Endocrine Disorders, Department of Internal Medicine, East Virginia Medical School, Norfolk, VA, United States
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanthi K Kondepudi
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
49
|
Zhao D, Liu H, Dong P. Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Hum Hypertens 2018; 33:327-339. [PMID: 30443007 DOI: 10.1038/s41371-018-0134-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
The antidiabetic effect of empagliflozin in patients with type 2 diabetes mellitus has been explored in several trials. We performed this meta-analysis determining the effects of empagliflozin on blood pressure, uric acid, estimated glomerular filtration rate, blood lipids, blood glucose, and body weight in patients with type 2 diabetes mellitus. We searched three electronic databases (Pubmed, Web of Science, and Cochrane Central) for all published articles evaluating the effects of empagliflozin on blood glucose or blood pressure in subjects with type 2 diabetes mellitus. Total 5781 patients were included in 12 randomized controlled trials with a follow-up of 28 ± 22 weeks. Empagliflozin 10 or 25 mg reduced systolic and diastolic blood pressure, uric acid, hemoglobin A1c, fasting plasma glucose, and body weight in patients with type 2 diabetes mellitus (all p < 0.001). There were no differences for changes of estimated glomerular filtration rate between empagliflozin 10 or 25 mg and placebo in these patients (all p > 0.05). In conclusion, empagliflozin reduces systolic and diastolic blood pressure, uric acid, hemoglobin A1c, fasting plasma glucose, and body weight. These data suggest the beneficial effects of empagliflozin on these cardiovascular risk factors in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Di Zhao
- Division of Hypertension, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Hui Liu
- Division of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, China
| | - Pingshuan Dong
- Division of Cardiology, the First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
50
|
Sodium-Glucose Cotransporter-2 Inhibition in Type 2 Diabetes Mellitus: A Review of Large-Scale Cardiovascular Outcome Studies and Possible Mechanisms of Benefit. Cardiol Rev 2018; 26:312-320. [PMID: 29608505 DOI: 10.1097/crd.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular (CV) disease remains the leading cause of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). However, conventional antihyperglycemic medications seem to have minimal effect on lowering CV risk despite achieving excellent reductions in glycated hemoglobin A1c and associated reductions in microvascular risk. Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as noteworthy antihyperglycemic agents with concomitant CV and renal protection in T2DM patients. In this comprehensive review, we present the key CV findings from major large-scale outcome trials of SGLT2 inhibitors to date. We also review the mechanistic studies that might explain the CV benefits of SGLT2 inhibition in patients with T2DM.
Collapse
|