1
|
Zhao Y, Qin G, Fan W, Zhang Y, Peng H. TF and TFRC regulate ferroptosis in swine testicular cells through the JNK signaling pathway. Int J Biol Macromol 2025; 307:142369. [PMID: 40120870 DOI: 10.1016/j.ijbiomac.2025.142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/23/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Transferrin (TF) is a serum glycoprotein that plays a critical role in iron metabolism and typically functions through binding to its transferrin receptor (TFRC). TF is also considered a key indicator of sperm quality and, together with TFRC, plays a critical role in regulating spermatogenesis. This study aimed to explore the effects of increased TF and TFRC expression on ferroptosis in swine testicular cells (ST cells). Our findings revealed that the overexpression of either TF or TFRC diminishes ST cell viability, increases cytotoxicity, intensifies oxidative stress damage, decreases mitochondrial activity, and promotes ferroptosis. Transcriptomic analysis suggested that TF and TFRC may influence ST cells through the MAPK signaling pathway. Subsequent experiments revealed that inhibiting the JNK signaling pathway within the MAPK pathway improved mitochondrial activity, reduced oxidative stress damage, and mitigated ferroptosis progression. Moreover, we discovered that TF and TFRC might regulate cellular oxidative phosphorylation via the JNK signaling pathway. In conclusion, increased expression of TF or TFRC increases the sensitivity of ST cells to ferroptosis and modulates mitochondrial DNA transcription and energy metabolism through the JNK signaling pathway. These findings could offer potential therapeutic targets for addressing reproductive toxicity associated with ferroptosis.
Collapse
Affiliation(s)
- Yuanjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; College of Life and Health, Hainan University, Haikou 570228, China
| | - Ge Qin
- College of Animal Science and Technology, Southwest University, Chongqing 404100, China
| | - Weiqin Fan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanyan Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Begelman DV, Dixit B, Truong C, King CD, Watson MA, Schilling B, Brand MD, Boominathan A. Exogenous expression of ATP8, a mitochondrial encoded protein, from the nucleus in vivo. Mol Ther Methods Clin Dev 2024; 32:101372. [PMID: 39659757 PMCID: PMC11629202 DOI: 10.1016/j.omtm.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Replicative errors, inefficient repair, and proximity to sites of reactive oxygen species production make mitochondrial DNA (mtDNA) susceptible to damage with time. We explore in vivo allotopic expression (re-engineering mitochondrial genes and expressing them from the nucleus) as an approach to rescue defects arising from mtDNA mutations. We used a mouse strain C57BL/6J(mtFVB) with a natural polymorphism (m.7778 G>T) in the mitochondrial ATP8 gene that encodes a protein subunit of the ATP synthase. We generated a transgenic mouse with an epitope-tagged recoded mitochondrial-targeted ATP8 gene expressed from the ROSA26 locus in the nucleus and used the C57BL/6J(mtFVB) strain to verify successful incorporation. The allotopically expressed ATP8 protein in transgenic mice was constitutively expressed across all tested tissues, successfully transported into the mitochondria, and incorporated into ATP synthase. The ATP synthase with transgene had similar activity to non-transgenic control, suggesting successful integration and function. Exogenous ATP8 protein had no negative impact on measured mitochondrial function, metabolism, or behavior. Successful allotopic expression of a mitochondrially encoded protein in vivo in a mammal is a step toward utilizing allotopic expression as a gene therapy in humans to repair physiological consequences of mtDNA defects that may accumulate in congenital mitochondrial diseases or with age.
Collapse
Affiliation(s)
- David V. Begelman
- SENS Research Foundation, Mountain View, CA 94041, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Bhavna Dixit
- SENS Research Foundation, Mountain View, CA 94041, USA
| | - Carly Truong
- SENS Research Foundation, Mountain View, CA 94041, USA
| | | | - Mark A. Watson
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | |
Collapse
|
3
|
Dashti M, Ali NM, Alsaleh H, John SE, Nizam R, Thanaraj TA, Al-Mulla F. Association of mitochondrial haplogroup H with reduced risk of type 2 Diabetes among Gulf Region Arabs. Front Endocrinol (Lausanne) 2024; 15:1443737. [PMID: 39659613 PMCID: PMC11628290 DOI: 10.3389/fendo.2024.1443737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Background Numerous studies have linked mitochondrial dysfunction to the development of type 2 diabetes (T2D) by affecting glucose-stimulated insulin secretion in pancreatic beta cells and reducing oxidative phosphorylation in insulin-responsive tissues. Given the strong genetic underpinnings of T2D, research has explored the connection between mitochondrial DNA haplogroups, specific variants, and the risk and comorbidities of T2D. For example, haplogroups F, D, M9, and N9a have been linked to an elevated risk of T2D across various populations. Additionally, specific mitochondrial DNA variants, such as the rare mtDNA 3243 A>G and the more prevalent mtDNA 16189 T>C, have also been implicated in heightened T2D risk. Notably, these associations vary among different populations. Given the high incidence of T2D in the Gulf Cooperation Council countries, this study investigates the correlation between T2D and mitochondrial haplogroups and variants in Arab populations from the Gulf region. Methods This analysis involved mitochondrial haplogroup and variant testing in a cohort of 1,112 native Kuwaiti and Qatari individuals, comprising 685 T2D patients and 427 controls. Complete mitochondrial genomes were derived from whole exome sequencing data to examine the associations between T2D and haplogroups and mitochondrial DNA variants. Results The analysis revealed a significant protective effect of haplogroup H against T2D (odds ratio [OR] = 0.65; P = 0.022). This protective association persisted when adjusted for age, sex, body mass index (BMI) and population group, with an OR of 0.607 (P = 0.021). Furthermore, specific mitochondrial variants showed significant associations with T2D risk after adjustment for relevant covariates, and some variants were exclusively found in T2D patients. Conclusion Our findings confirm that the maternal haplogroup H, previously identified as protective against obesity in Kuwaiti Arabs, also serves as a protective factor against T2D in Arabs from the Gulf region. The study also identifies mitochondrial DNA variants that either increase or decrease the risk of T2D, underscoring their role in cellular energy metabolism.
Collapse
Affiliation(s)
- Mohammed Dashti
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Naser M. Ali
- Department of Medical Laboratories, Ahmadi Hospital, Kuwait Oil Company (KOC), Ahmadi, Kuwait
| | - Hussain Alsaleh
- Saad Al-Abdullah Academy for Security Sciences, Ministry of Interior, Shuwaikh, Kuwait
| | - Sumi Elsa John
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
4
|
Shaik SM, Cao Y, Gogola JV, Dodiya HB, Zhang X, Boutej H, Han W, Kriz J, Sisodia SS. Translational profiling identifies sex-specific metabolic and epigenetic reprogramming of cortical microglia/macrophages in APPPS1-21 mice with an antibiotic-perturbed-microbiome. Mol Neurodegener 2023; 18:95. [PMID: 38104136 PMCID: PMC10725591 DOI: 10.1186/s13024-023-00668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Microglia, the brain-resident macrophages perform immune surveillance and engage with pathological processes resulting in phenotype changes necessary for maintaining homeostasis. In preceding studies, we showed that antibiotic-induced perturbations of the gut microbiome of APPPS1-21 mice resulted in significant attenuation in Aβ amyloidosis and altered microglial phenotypes that are specific to male mice. The molecular events underlying microglial phenotypic transitions remain unclear. Here, by generating 'APPPS1-21-CD11br' reporter mice, we investigated the translational state of microglial/macrophage ribosomes during their phenotypic transition and in a sex-specific manner. METHODS Six groups of mice that included WT-CD11br, antibiotic (ABX) or vehicle-treated APPPS1-21-CD11br males and females were sacrificed at 7-weeks of age (n = 15/group) and used for immunoprecipitation of microglial/macrophage polysomes from cortical homogenates using anti-FLAG antibody. Liquid chromatography coupled to tandem mass spectrometry and label-free quantification was used to identify newly synthesized peptides isolated from polysomes. RESULTS We show that ABX-treatment leads to decreased Aβ levels in male APPPS1-21-CD11br mice with no significant changes in females. We identified microglial/macrophage polypeptides involved in mitochondrial dysfunction and altered calcium signaling that are associated with Aβ-induced oxidative stress. Notably, female mice also showed downregulation of newly-synthesized ribosomal proteins. Furthermore, male mice showed an increase in newly-synthesized polypeptides involved in FcγR-mediated phagocytosis, while females showed an increase in newly-synthesized polypeptides responsible for actin organization associated with microglial activation. Next, we show that ABX-treatment resulted in substantial remodeling of the epigenetic landscape, leading to a metabolic shift that accommodates the increased bioenergetic and biosynthetic demands associated with microglial polarization in a sex-specific manner. While microglia in ABX-treated male mice exhibited a metabolic shift towards a neuroprotective phenotype that promotes Aβ clearance, microglia in ABX-treated female mice exhibited loss of energy homeostasis due to persistent mitochondrial dysfunction and impaired lysosomal clearance that was associated with inflammatory phenotypes. CONCLUSIONS Our studies provide the first snapshot of the translational state of microglial/macrophage cells in a mouse model of Aβ amyloidosis that was subject to ABX treatment. ABX-mediated changes resulted in metabolic reprogramming of microglial phenotypes to modulate immune responses and amyloid clearance in a sex-specific manner. This microglial plasticity to support neuro-energetic homeostasis for its function based on sex paves the path for therapeutic modulation of immunometabolism for neurodegeneration.
Collapse
Affiliation(s)
- Shabana M Shaik
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yajun Cao
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Joseph V Gogola
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hemraj B Dodiya
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Xulun Zhang
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Weinong Han
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | | |
Collapse
|
5
|
de Souza FG, da Silva MB, de Araújo GS, Silva CS, Pinheiro AHG, Cáceres-Durán MÁ, Santana-da-Silva MN, Pinto P, Gobbo AR, da Costa PF, Salgado CG, Ribeiro-Dos-Santos Â, Cavalcante GC. Whole mitogenome sequencing uncovers a relation between mitochondrial heteroplasmy and leprosy severity. Hum Genomics 2023; 17:110. [PMID: 38062538 PMCID: PMC10704783 DOI: 10.1186/s40246-023-00555-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In recent years, the mitochondria/immune system interaction has been proposed, so that variants of mitochondrial genome and levels of heteroplasmy might deregulate important metabolic processes in fighting infections, such as leprosy. METHODS We sequenced the whole mitochondrial genome to investigate variants and heteroplasmy levels, considering patients with different clinical forms of leprosy and household contacts. After sequencing, a specific pipeline was used for preparation and bioinformatics analysis to select heteroplasmic variants. RESULTS We found 116 variants in at least two of the subtypes of the case group (Borderline Tuberculoid, Borderline Lepromatous, Lepromatous), suggesting a possible clinical significance to these variants. Notably, 15 variants were exclusively found in these three clinical forms, of which five variants stand out for being missense (m.3791T > C in MT-ND1, m.5317C > A in MT-ND2, m.8545G > A in MT-ATP8, m.9044T > C in MT-ATP6 and m.15837T > C in MT-CYB). In addition, we found 26 variants shared only by leprosy poles, of which two are characterized as missense (m.4248T > C in MT-ND1 and m.8027G > A in MT-CO2). CONCLUSION We found a significant number of variants and heteroplasmy levels in the leprosy patients from our cohort, as well as six genes that may influence leprosy susceptibility, suggesting for the first time that the mitogenome might be involved with the leprosy process, distinction of clinical forms and severity. Thus, future studies are needed to help understand the genetic consequences of these variants.
Collapse
Affiliation(s)
- Felipe Gouvea de Souza
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Moisés Batista da Silva
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, PA, 67105-290, Brazil
| | - Gilderlanio S de Araújo
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Caio S Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Andrey Henrique Gama Pinheiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Miguel Ángel Cáceres-Durán
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Mayara Natália Santana-da-Silva
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Pablo Pinto
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Angélica Rita Gobbo
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, PA, 67105-290, Brazil
| | - Patrícia Fagundes da Costa
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, PA, 67105-290, Brazil
| | - Claudio Guedes Salgado
- Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, PA, 67105-290, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
6
|
Guo X, Can C, Liu W, Wei Y, Yang X, Liu J, Jia H, Jia W, Wu H, Ma D. Mitochondrial transfer in hematological malignancies. Biomark Res 2023; 11:89. [PMID: 37798791 PMCID: PMC10557299 DOI: 10.1186/s40364-023-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Mitochondria are energy-generated organelles and take an important part in biological metabolism. Mitochondria could be transferred between cells, which serves as a new intercellular communication. Mitochondrial transfer improves mitochondrial defects, restores the biological functions of recipient cells, and maintains the high metabolic requirements of tumor cells as well as drug resistance. In recent years, it has been reported mitochondrial transfer between cells of bone marrow microenvironment and hematological malignant cells play a critical role in the disease progression and resistance during chemotherapy. In this review, we discuss the patterns and mechanisms on mitochondrial transfer and their engagement in different pathophysiological contexts and outline the latest knowledge on intercellular transport of mitochondria in hematological malignancies. Besides, we briefly outline the drug resistance mechanisms caused by mitochondrial transfer in cells during chemotherapy. Our review demonstrates a theoretical basis for mitochondrial transfer as a prospective therapeutic target to increase the treatment efficiency in hematological malignancies and improve the prognosis of patients.
Collapse
Affiliation(s)
- Xiaodong Guo
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Can Can
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Hexiao Jia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Wenbo Jia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China.
| |
Collapse
|
7
|
Xing X, Liang Y, Li Y, Zhao Y, Zhang Y, Li Z, Li Z, Wu Z. Fisetin Delays Postovulatory Oocyte Aging by Regulating Oxidative Stress and Mitochondrial Function through Sirt1 Pathway. Molecules 2023; 28:5533. [PMID: 37513404 PMCID: PMC10384696 DOI: 10.3390/molecules28145533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The quality of oocytes determines the development potential of an embryo and is dependent on their timely fertilization after ovulation. Postovulatory oocyte aging is an inevitable factor during some assisted reproduction technology procedures, which results in poor fertilization rates and impairs embryo development. We found that fisetin, a bioactive flavonol contained in fruits and vegetables, delayed postovulatory oocyte aging in mice. Fisetin improved the development of aged oocytes after fertilization and inhibited the Sirt1 reduction in aged oocytes. Fisetin increased the GSH level and Sod2 transcription level to inhibit ROS accumulation in aged oocytes. Meanwhile, fisetin attenuated aging-induced spindle abnormalities, mitochondrial dysfunction, and apoptosis. At the molecular level, fisetin decreased aging-induced aberrant expression of H3K9me3. In addition, fisetin increased the expression levels of the mitochondrial transcription factor Tfam and the mitochondrial genes Co2 and Atp8 by upregulating Sirt1 in aged oocytes. Finally, inhibition of Sirt1 reversed the anti-aging effects of fisetin. Taken together, fisetin delayed postovulatory oocyte aging by upregulating Sirt1.
Collapse
Affiliation(s)
- Xupeng Xing
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yaolu Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Guichard JL, Kane MS, Grenett M, Sandel M, Benavides GA, Bradley WE, Powell PC, Darley-Usmar V, Ballinger SW, Dell'Italia LJ. Mitochondrial haplotype modulates genome expression and mitochondrial structure/function in cardiomyocytes following volume overload. Am J Physiol Heart Circ Physiol 2023; 324:H484-H493. [PMID: 36800507 PMCID: PMC10010923 DOI: 10.1152/ajpheart.00371.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Mitochondrial DNA (mtDNA) haplotype regulates mitochondrial structure/function and reactive oxygen species in aortocaval fistula (ACF) in mice. Here, we unravel the mitochondrial haplotype effects on cardiomyocyte mitochondrial ultrastructure and transcriptome response to ACF in vivo. Phenotypic responses and quantitative transmission electron microscopy (TEM) and RNA sequence at 3 days were determined after sham surgery or ACF in vivo in cardiomyocytes from wild-type (WT) C57BL/6J (C57n:C57mt) and C3H/HeN (C3Hn:C3Hmt) and mitochondrial nuclear exchange mice (C57n:C3Hmt or C3Hn:C57mt). Quantitative TEM of cardiomyocyte mitochondria C3HWT hearts have more electron-dense compact mitochondrial cristae compared with C57WT. In response to ACF, mitochondrial area and cristae integrity are normal in C3HWT; however, there is mitochondrial swelling, cristae lysis, and disorganization in both C57WT and MNX hearts. Tissue analysis shows that C3HWT hearts have increased autophagy, antioxidant, and glucose fatty acid oxidation-related genes compared with C57WT. Comparative transcriptomic analysis of cardiomyocytes from ACF was dependent upon mtDNA haplotype. C57mtDNA haplotype was associated with increased inflammatory/protein synthesis pathways and downregulation of bioenergetic pathways, whereas C3HmtDNA showed upregulation of autophagy genes. In conclusion, ACF in vivo shows a protective response of C3Hmt haplotype that is in large part driven by mitochondrial nuclear genome interaction.NEW & NOTEWORTHY The results of this study support the effects of mtDNA haplotype on nuclear gene expression in cardiomyocytes. Currently, there is no acceptable therapy for volume overload due to mitral regurgitation. The findings of this study could suggest that mtDNA haplotype activates different pathways after ACF warrants further investigations on human population of heart disease from different ancestry backgrounds.
Collapse
Affiliation(s)
- Jason L Guichard
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mariame Selma Kane
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States
| | - Maximiliano Grenett
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael Sandel
- Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi, United States
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wayne E Bradley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Pamela Cox Powell
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Scott W Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
- UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Al-Ghamdi BA, Al-Shamrani JM, El-Shehawi AM, Al-Johani I, Al-Otaibi BG. Role of mitochondrial DNA in diabetes Mellitus Type I and Type II. Saudi J Biol Sci 2022; 29:103434. [PMID: 36187456 PMCID: PMC9523097 DOI: 10.1016/j.sjbs.2022.103434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Morbidity and mortality from diabetes mellitus and associated illnesses is a major problem across the globe. Anti-diabetic medicines must be improved despite existing breakthroughs in treatment approaches. Diabetes has been linked to mitochondrial dysfunction. As a result, particular mitochondrial diabetes kinds like MIDD (maternally inherited diabetes & deafness) and DAD (diabetic autonomic dysfunction) have been identified and studied (diabetes and Deafness). Some mutations as in mitochondrial DNA (mtDNA), that encodes for a significant portion of mitochondrial proteins as well as mitochondrial tRNA essential for mitochondrial protein biosynthesis, are responsible for hereditary mitochondrial diseases. Tissue-specificity and heteroplasmy have a role in the harmful phenotype of mtDNA mutations, making it difficult to generalise findings from one study to another. There are a huge increase in the number for mtDNA mutations related with human illnesses that have been identified using current sequencing technologies. In this study, we make a list on mtDNA mutations linked with diseases and diabetic illnesses and explore the methods by which they contribute to the pathology's emergence.
Collapse
Affiliation(s)
- Bandar Ali Al-Ghamdi
- Department of Cardiology and Cardiac Surgery, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia.,Department of Biotechnology, Taif University, Taif City, Saudi Arabia
| | | | | | - Intisar Al-Johani
- Department of Biotechnology, Taif University, Taif City, Saudi Arabia
| | | |
Collapse
|
10
|
Wang X, Wang J, Raza SHA, Deng J, Ma J, Qu X, Yu S, Zhang D, Alshammari AM, Almohaimeed HM, Zan L. Identification of the hub genes related to adipose tissue metabolism of bovine. Front Vet Sci 2022; 9:1014286. [PMID: 36439361 PMCID: PMC9682410 DOI: 10.3389/fvets.2022.1014286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022] Open
Abstract
Due to the demand for high-quality animal protein, there has been consistent interest in how to obtain more high-quality beef. As well-known, the adipose content of beef has a close connection with the taste and quality of beef, and cattle with different energy or protein diet have corresponding effects on the lipid metabolism of beef. Thus, we performed weighted gene co-expression network analysis (WGCNA) with subcutaneous adipose genes from Norwegian red heifers fed different diets to identify hub genes regulating bovine lipid metabolism. For this purpose, the RNA sequencing data of subcutaneous adipose tissue of 12-month-old Norwegian red heifers (n = 48) with different energy or protein levels were selected from the GEO database, and 7,630 genes with the largest variation were selected for WGCNA analysis. Then, three modules were selected as hub genes candidate modules according to the correlation between modules and phenotypes, including pink, magenta and grey60 modules. GO and KEGG enrichment analysis showed that genes were related to metabolism, and participated in Rap, MAPK, AMPK, VEGF signaling pathways, and so forth. Combined gene interaction network analysis using Cytoscape software, eight hub genes of lipid metabolism were identified, including TIA1, LOC516108, SNAPC4, CPSF2, ZNF574, CLASRP, MED15 and U2AF2. Further, the expression levels of hub genes in the cattle tissue were also measured to verify the results, and we found hub genes in higher expression in muscle and adipose tissue in adult cattle. In summary, we predicted the key genes of lipid metabolism in the subcutaneous adipose tissue that were affected by the intake of various energy diets to find the hub genes that coordinate lipid metabolism, which provide a theoretical basis for regulating beef quality.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
- *Correspondence: Linsen Zan
| |
Collapse
|
11
|
Ludwig-Słomczyńska AH, Rehm M. Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obesity (Silver Spring) 2022; 30:1156-1169. [PMID: 35491673 DOI: 10.1002/oby.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022]
Abstract
Two genomes regulate the energy metabolism of eukaryotic cells: the nuclear genome, which codes for most cellular proteins, and the mitochondrial genome, which, together with the nuclear genome, coregulates cellular bioenergetics. Therefore, mitochondrial genome variations can affect, directly or indirectly, all energy-dependent cellular processes and shape the metabolic state of the organism. This review provides a current and up-to-date overview on how codependent these two genomes are, how they appear to have coevolved, and how variations within the mitochondrial genome might be associated with the manifestation of metabolic diseases. This review summarizes and structures results obtained from epidemiological studies that identified links between mitochondrial haplogroups and individual risks for developing obesity and diabetes. This is complemented by findings on the compatibility of mitochondrial and nuclear genomes and cellular bioenergetic fitness, which have been acquired from well-controlled studies in conplastic animal models. These elucidate, more mechanistically, how single-nucleotide variants can influence cellular metabolism and physiology. Overall, it seems that certain mitochondrial genome variations negatively affect mitochondrial-nuclear compatibility and are statistically linked with the onset of metabolic diseases, whereas, for others, greater uncertainty exists, and additional research into this exciting field is required.
Collapse
Affiliation(s)
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Tian H, Yan H, Zhang Y, Fu Q, Li C, He J, Li H, Zhou Y, Huang Y, Li R. Knockdown of mitochondrial threonyl-tRNA synthetase 2 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Bioengineered 2022; 13:5190-5204. [PMID: 35184682 PMCID: PMC8974053 DOI: 10.1080/21655979.2022.2037368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lung cancer is a significant global burden. Aminoacyl-tRNA synthetases (aaRSs) can be reliably identified by the occurrence and improvement of tumors. Threonyl-tRNA synthetase (TARS) and mitochondrial threonyl-tRNA synthetase 2 (TARS2) are both aaRSs. Many studies have shown that TARS are involved in tumor angiogenesis and metastasis. However, TARS2 has not yet been reported in tumors. This study explored the role of TARS2 in the proliferation and apoptosis of lung adenocarcinoma (LUAD). TARS2 expression in lung adenocarcinoma and non-cancerous lung tissues was detected via immunohistochemistry. Cell proliferation was detected using MTS, clone formation, and EdU staining assays. Flow cytometry was used to detect cell cycle, mitochondria reactive oxygen species (mROS) production, and apoptosis. Mitochondrial membrane potential (MMP ΔΨm) was detected using JC-1 fluorescent probes. Cell cycle, apoptosis-related pathway, and mitochondrial DNA (mtDNA) -encoded protein expression was detected via Western blotting. Finally, the effect of TARS2 on tumor growth was examined using a xenotransplanted tumor model in nude mice. We found that TARS2 was highly expressed in lung adenocarcinoma tissues and associated with poor overall survival (OS). Mechanistic analysis showed that knockdown of TARS2 inhibited proliferation through the retinoblastoma protein (RB) pathway and promoted mROS-induced apoptosis. Knockdown of TARS2 inhibits tumor growth in a xenotransplanted tumor model. TARS2 plays an important role in LUAD cell proliferation and apoptosis and may be a new therapeutic target.
Collapse
Affiliation(s)
- Hui Tian
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiaofen Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Juan He
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Zhou
- Division Department of Thoracic Surgery Organization, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Youguang Huang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
13
|
The Mitochondrial Genome in Aging and Disease and the Future of Mitochondrial Therapeutics. Biomedicines 2022; 10:biomedicines10020490. [PMID: 35203698 PMCID: PMC8962324 DOI: 10.3390/biomedicines10020490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome’s transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.
Collapse
|
14
|
Solano-Aguilar GI, Lakshman S, Jang S, Gupta R, Molokin A, Schroeder SG, Gillevet PM, Urban JF. The Effects of Consuming White Button Mushroom Agaricus bisporus on the Brain and Liver Metabolome Using a Targeted Metabolomic Analysis. Metabolites 2021; 11:metabo11110779. [PMID: 34822437 PMCID: PMC8625434 DOI: 10.3390/metabo11110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition.
Collapse
Affiliation(s)
- Gloria I. Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
- Correspondence: ; Tel.: +1-301-504-8068
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Saebyeol Jang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA; (R.G.); (P.M.G.)
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Steven G. Schroeder
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA;
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA; (R.G.); (P.M.G.)
| | - Joseph F. Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| |
Collapse
|
15
|
Eldeigdhye SM, Abdelaleem MA, Mater SNA, Kamal AM. The bioprotective role of irradiated hibiscus against harmful effects of using repeatedly frying edible oil. BRAZ J BIOL 2021; 84:e253084. [PMID: 34730699 DOI: 10.1590/1519-6984.253084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
Repeatedly frying process of dietary edible oil has a potential role in the generation of free radicals. Therefore, questions have always been raised as to whether, there is an efficient and economical method to reduce the harmful effects of repeated use of frying edible oil. Since hibiscus has been stated to have a wide variety of therapeutic effects, it was important to investigate its properties against harmful effects of free radicals. The current study aspires to find out whether irradiated powder of hibiscus has a protective role against adverse effects of repeated use of frying edible oil. Thirty-five adult male albino rats were equally assigned into five groups. First group"G1" was fed with normal diet as control group, meanwhile, group"G2" the diet mixed with fresh oil, "G3" diet mixed with repeatedly frying oil only, "G4" diet mixed with frying oil treated with hibiscus and "G5" diet mixed with frying oil treated with irradiated hibiscus. Feeding duration was six weeks. Fatty acid analyses of oil as well as peroxide values were determined. Blood and liver samples were collected for biochemical analyses as well as histological study. Repeatedly heated cooked oil has significant increases in peroxide value, acid value, free fatty acid and both conjugated diene and triene compared with repeatedly frying oil treated with hibiscus. Also there are significant increases in cholesterol and triglyceride and impaired in liver functions in "G3"compared with others. In addition, relative to the hibiscus groups, there is a substantial reduction in oxygen consumption in "G3". Both hibiscus as well as irradiated hibiscus attract attention in order to play a vital and economical role against harmful effects of frequent use of frying edible oil on some biological functions but, irradiated hibiscus was more effective.
Collapse
Affiliation(s)
- Sh M Eldeigdhye
- Egyptian Atomic Energy Authority, Nuclear Research Center, Biological Applications Department, Cairo, Egypt
| | - M A Abdelaleem
- Egyptian Atomic Energy Authority, Nuclear Research Center, Plant Research Department, Cairo, Egypt
| | - S N A Mater
- Egyptian Atomic Energy Authority, Nuclear Research Center, Biological Applications Department, Cairo, Egypt
| | - A M Kamal
- Egyptian Atomic Energy Authority, Nuclear Research Center, Biological Applications Department, Cairo, Egypt
| |
Collapse
|
16
|
Wang X, Younis S, Cen J, Wang Y, Krizhanovskii C, Andersson L, Welsh N. ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excess mitochondrial activation. Diabetologia 2021; 64:2292-2305. [PMID: 34296320 PMCID: PMC8423654 DOI: 10.1007/s00125-021-05517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS ZBED6 (zinc finger, BED-type containing 6) is known to regulate muscle mass by suppression of Igf2 gene transcription. In insulin-producing cell lines, ZBED6 maintains proliferative capacity at the expense of differentiation and beta cell function. The aim was to study the impact of Zbed6 knockout on beta cell function and glucose tolerance in C57BL/6 mice. METHODS Beta cell area and proliferation were determined in Zbed6 knockout mice using immunohistochemical analysis. Muscle and fat distribution were assessed using micro-computed tomography. Islet gene expression was assessed by RNA sequencing. Effects of a high-fat diet were analysed by glucose tolerance and insulin tolerance tests. ZBED6 was overexpressed in EndoC-βH1 cells and human islet cells using an adenoviral vector. Beta cell cell-cycle analysis, insulin release and mitochondrial function were studied in vitro using propidium iodide staining and flow cytometry, ELISA, the Seahorse technique, and the fluorescent probes JC-1 and MitoSox. RESULTS Islets from Zbed6 knockout mice showed lowered expression of the cell cycle gene Pttg1, decreased beta cell proliferation and decreased beta cell area, which occurred independently from ZBED6 effects on Igf2 gene expression. Zbed6 knockout mice, but not wild-type mice, developed glucose intolerance when given a high-fat diet. The high-fat diet Zbed6 knockout islets displayed upregulated expression of oxidative phosphorylation genes and genes associated with beta cell differentiation. In vitro, ZBED6 overexpression resulted in increased EndoC-βH1 cell proliferation and a reduced glucose-stimulated insulin release in human islets. ZBED6 also reduced mitochondrial JC-1 J-aggregate formation, mitochondrial oxygen consumption rates (OCR) and mitochondrial reactive oxygen species (ROS) production, both at basal and palmitate + high glucose-stimulated conditions. ZBED6-induced inhibition of OCR was not rescued by IGF2 addition. ZBED6 reduced levels of the mitochondrial regulator PPAR-γ related coactivator 1 protein (PRC) and bound its promoter/enhancer region. Knockdown of PRC resulted in a lowered OCR. CONCLUSIONS/INTERPRETATION It is concluded that ZBED6 is required for normal beta cell replication and also limits excessive beta cell mitochondrial activation in response to an increased functional demand. ZBED6 may act, at least in part, by restricting PRC-mediated mitochondrial activation/ROS production, which may lead to protection against beta cell dysfunction and glucose intolerance in vivo.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yun Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Camilla Krizhanovskii
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX, USA.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. Int J Mol Sci 2021; 22:ijms22136733. [PMID: 34201756 PMCID: PMC8268113 DOI: 10.3390/ijms22136733] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus and related disorders significantly contribute to morbidity and mortality worldwide. Despite the advances in the current therapeutic methods, further development of anti-diabetic therapies is necessary. Mitochondrial dysfunction is known to be implicated in diabetes development. Moreover, specific types of mitochondrial diabetes have been discovered, such as MIDD (maternally inherited diabetes and deafness) and DAD (diabetes and Deafness). Hereditary mitochondrial disorders are caused by certain mutations in the mitochondrial DNA (mtDNA), which encodes for a substantial part of mitochondrial proteins and mitochondrial tRNA necessary for mitochondrial protein synthesis. Study of mtDNA mutations is challenging because the pathogenic phenotype associated with such mutations depends on the level of its heteroplasmy (proportion of mtDNA copies carrying the mutation) and can be tissue-specific. Nevertheless, modern sequencing methods have allowed describing and characterizing a number of mtDNA mutations associated with human disorders, and the list is constantly growing. In this review, we provide a list of mtDNA mutations associated with diabetes and related disorders and discuss the mechanisms of their involvement in the pathology development.
Collapse
|
18
|
Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors. Front Genet 2021; 12:636294. [PMID: 33815470 PMCID: PMC8010675 DOI: 10.3389/fgene.2021.636294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Behavioral Health, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Pérez-Amado CJ, Tovar H, Gómez-Romero L, Beltrán-Anaya FO, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Ruíz LA, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front Oncol 2020; 10:572954. [PMID: 33194675 PMCID: PMC7653098 DOI: 10.3389/fonc.2020.572954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Tovar
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Laura Gómez-Romero
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | | | | | | | - Luis Alberto Alfaro-Ruíz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
20
|
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Handelman SK, Mantaj U, Cyganek K, Gutaj P, Dobrucka Ł, Wender-Ożegowska E, Małecki MT, Wołkow PP. Mitochondrial GWAS and association of nuclear - mitochondrial epistasis with BMI in T1DM patients. BMC Med Genomics 2020; 13:97. [PMID: 32635923 PMCID: PMC7341625 DOI: 10.1186/s12920-020-00752-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND BMI is a strong indicator of complications from type I diabetes, especially under intensive treatment. METHODS We have genotyped 435 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays and performed mitoGWAS on BMI. We identified additive interactions between mitochondrial and nuclear variants in genes associated with mitochondrial functioning MitoCarta2.0 and confirmed and refined the results on external cohorts: the Framingham Heart Study (FHS) and GTEx data. Linear mixed model analysis was performed using the GENESIS package in R/Bioconductor. RESULTS We find a borderline significant association between the mitochondrial variant rs28357980, localized to MT-ND2, and BMI (β = - 0.69, p = 0.056). This BMI association was confirmed on 1889 patients from FHS cohort (β = - 0.312, p = 0.047). Next, we searched for additive interactions between mitochondrial and nuclear variants. MT-ND2 variants interacted with variants in the genes SIRT3, ATP5B, CYCS, TFB2M and POLRMT. TFB2M is a mitochondrial transcription factor and together with TFAM creates a transcription promoter complex for the mitochondrial polymerase POLRMT. We have found an interaction between rs3021088 in MT-ND2 and rs6701836 in TFB2M leading to BMI decrease (inter_pval = 0.0241), while interaction of rs3021088 in MT-ND2 and rs41542013 in POLRMT led to BMI increase (inter_pval = 0.0004). The influence of these interactions on BMI was confirmed in external cohorts. CONCLUSIONS Here, we have shown that variants in the mitochondrial genome as well as additive interactions between mitochondrial and nuclear SNPs influence BMI in T1DM and general cohorts.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- The Ohio State University Wexner Medical Center, Department of Cancer Biology and Genetics, Columbus, OH, USA
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Pitera
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Samuel K Handelman
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Urszula Mantaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Cyganek
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | - Paweł Gutaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Łucja Dobrucka
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | | | - Maciej T Małecki
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
21
|
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats. Aging (Albany NY) 2020; 12:10398-10414. [PMID: 32445551 PMCID: PMC7346067 DOI: 10.18632/aging.103265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023]
Abstract
Deficits in coordinated motor behavior and mitochondrial complex V activity have been observed in aged males. Testosterone supplementation can improve coordinated motor behavior in aged males. We investigated the effects of testosterone supplementation on mitochondrial complex V function in the substantia nigra (a brain region that regulates motor activity) in aged male rats. These rats exhibited diminished ATP levels, attenuated mitochondrial complex V activity, and reduced expression of 3 of the 17 mitochondrial complex V subunits (ATP6, ATP8 and ATP5C1) in the substantia nigra. Testosterone supplementation increased ATP levels, mitochondrial complex V activity, and ATP6, ATP8 and ATP5C1 expression in the substantia nigra of the rats. Conversely, orchiectomy reduced mitochondrial complex V activity, downregulated ATP6 and ATP8 expression, and upregulated ATP5C1, ATP5I and ATP5L expression in the substantia nigra. Testosterone replacement reversed those effects. Thus, testosterone enhanced mitochondrial complex V function in the substantia nigra of aged male rats by upregulating ATP6 and ATP8. As potential testosterone targets, these two subunits may to some degree maintain nigrostriatal dopaminergic function in aged males.
Collapse
|
22
|
Lewis CJ, Dixit B, Batiuk E, Hall CJ, O'Connor MS, Boominathan A. Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes. Redox Biol 2020; 30:101429. [PMID: 31981894 PMCID: PMC6976934 DOI: 10.1016/j.redox.2020.101429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Bhavna Dixit
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Elizabeth Batiuk
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Carter J Hall
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Matthew S O'Connor
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| | - Amutha Boominathan
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| |
Collapse
|
23
|
Wang J, Gao Y, Lin F, Han K, Wang X. Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-κB signaling. Arch Biochem Biophys 2019; 679:108187. [PMID: 31706880 DOI: 10.1016/j.abb.2019.108187] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Abstract
Macrophages play a pivotal role in the defense response against harmful pathogens and stimuli by releasing various pro-inflammatory mediators. However, overproduction of pro-inflammatory mediators will do harm to the organism and cause inflammation-associated diseases. Omentin-1, which is a newly discovered adipokine, is specifically expressed in omental adipose tissue. Recent studies have found correlations between omentin-1 and insulin resistance, diabetes, obesity, inflammation, atherosclerosis, bone metabolism, and tumor cell proliferation. Some studies have shown that the association between omentin-1, insulin resistance, and inflammation might suggest that omentin-1 plays an important role in chronic inflammatory diseases. In this study, we found that omentin-1 inhibited LPS-induced expression of inflammatory mediators and pro-inflammatory cytokines in macrophages. Furthermore, omentin-1 inhibited activation of the NF-κB pathway by suppressing both nuclear p65 accumulation and transfected NFκB promoter activity. Importantly, omentin-1 increased nuclear translocation of Nrf2. Our findings demonstrate that omentin-1 exerts anti-inflammatory effects on LPS-induced macrophages and has potential implication in the treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Jinzhong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Yi Gao
- Department of Infectious Disease, The Affiliated Hainan Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Feng Lin
- Department of Infectious Disease, The Affiliated Hainan Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Kui Han
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan province, China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan province, China.
| |
Collapse
|
24
|
Mitochondrial Genome (mtDNA) Mutations that Generate Reactive Oxygen Species. Antioxidants (Basel) 2019; 8:antiox8090392. [PMID: 31514455 PMCID: PMC6769445 DOI: 10.3390/antiox8090392] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are critical for the energetic demands of virtually every cellular process within nucleated eukaryotic cells. They harbour multiple copies of their own genome (mtDNA), as well as the protein-synthesing systems required for the translation of vital subunits of the oxidative phosphorylation machinery used to generate adenosine triphosphate (ATP). Molecular lesions to the mtDNA cause severe metabolic diseases and have been proposed to contribute to the progressive nature of common age-related diseases such as cancer, cardiomyopathy, diabetes, and neurodegenerative disorders. As a consequence of playing a central role in cellular energy metabolism, mitochondria produce reactive oxygen species (ROS) as a by-product of respiration. Here we review the evidence that mutations in the mtDNA exacerbate ROS production, contributing to disease.
Collapse
|
25
|
Su H, Tang X, Zhang X, Liu L, Jing L, Pan D, Sun W, He H, Yang C, Zhao D, Zhang H, Qi B. Comparative proteomics analysis reveals the difference during antler regeneration stage between red deer and sika deer. PeerJ 2019; 7:e7299. [PMID: 31346498 PMCID: PMC6642628 DOI: 10.7717/peerj.7299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Deer antler, as the only mammalian regenerative appendage, provides an optimal model to study regenerative medicine. Antler harvested from red deer or sika deer were mainly study objects used to disclose the mechanism underlying antler regeneration over past decades. A previous study used proteomic technology to reveal the signaling pathways of antler stem cell derived from red deer. Moreover, transcriptome of antler tip from sika deer provide us with the essential genes, which regulated antler development and regeneration. However, antler comparison between red deer and sika deer has not been well studied. In our current study, proteomics were employed to analyze the biological difference of antler regeneration between sika deer and red deer. The proteomics profile was completed by searching the UniProt database, and differentially expressed proteins were identified by bioinformatic software. Thirty-six proteins were highly expressed in red deer antler, while 144 proteins were abundant in sika deer. GO and KEGG analysis revealed that differentially expressed proteins participated in the regulation of several pathways including oxidative phosphorylation, ribosome, extracellular matrix interaction, and PI3K-Akt pathway.
Collapse
Affiliation(s)
- Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Tang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaocui Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Jing
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, China
| | - Daian Pan
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Weijie Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Huinan He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chonghui Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
26
|
De Leon ER, Brinkman JA, Fenske RJ, Gregg T, Schmidt BA, Sherman DS, Cummings NE, Peter DC, Kimple ME, Lamming DW, Merrins MJ. Age-Dependent Protection of Insulin Secretion in Diet Induced Obese Mice. Sci Rep 2018; 8:17814. [PMID: 30546031 PMCID: PMC6292902 DOI: 10.1038/s41598-018-36289-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes is an age-and-obesity associated disease driven by impairments in glucose homeostasis that ultimately result in defective insulin secretion from pancreatic β-cells. To deconvolve the effects of age and obesity in an experimental model of prediabetes, we fed young and aged mice either chow or a short-term high-fat/high-sucrose Western diet (WD) and examined how weight, glucose tolerance, and β-cell function were affected. Although WD induced a similar degree of weight gain in young and aged mice, a high degree of heterogeneity was found exclusively in aged mice. Weight gain in WD-fed aged mice was well-correlated with glucose intolerance, fasting insulin, and in vivo glucose-stimulated insulin secretion, relationships that were not observed in young animals. Although β-cell mass expansion in the WD-fed aged mice was only three-quarters of that observed in young mice, the islets from aged mice were resistant to the sharp WD-induced decline in ex vivo insulin secretion observed in young mice. Our findings demonstrate that age is associated with the protection of islet function in diet-induced obese mice, and furthermore, that WD challenge exposes variability in the resilience of the insulin secretory pathway in aged mice.
Collapse
Affiliation(s)
- Elizabeth R. De Leon
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Jacqueline A. Brinkman
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Rachel J. Fenske
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Trillian Gregg
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Brian A. Schmidt
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Dawn S. Sherman
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Nicole E. Cummings
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Darby C. Peter
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Michelle E. Kimple
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Dudley W. Lamming
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| | - Matthew J. Merrins
- 0000 0001 2167 3675grid.14003.36Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, and the William S. Middleton Memorial Veterans Hospital, Madison, WI USA
| |
Collapse
|
27
|
Hahn A, Zuryn S. The Cellular Mitochondrial Genome Landscape in Disease. Trends Cell Biol 2018; 29:227-240. [PMID: 30509558 DOI: 10.1016/j.tcb.2018.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial genome (mitochondrial DNA, mtDNA) lesions that unbalance bioenergetic and oxidative outputs are an important cause of human disease. A major impediment in our understanding of the pathophysiology of mitochondrial disorders is the complexity with which mtDNA mutations are spatiotemporally distributed and managed within individual cells, tissues, and organs. Unlike the comparatively static nuclear genome, accumulating evidence highlights the variability, dynamism, and modifiability of the mtDNA nucleotide sequence between individual cells over time. In this review, we summarize and discuss the impact of mtDNA defects on disease within the context of a mosaic and shifting mutational landscape.
Collapse
Affiliation(s)
- Anne Hahn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia
| | - Steven Zuryn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia.
| |
Collapse
|
28
|
Hirose M, Künstner A, Schilf P, Sünderhauf A, Rupp J, Jöhren O, Schwaninger M, Sina C, Baines JF, Ibrahim SM. Mitochondrial gene polymorphism is associated with gut microbial communities in mice. Sci Rep 2017; 7:15293. [PMID: 29127319 PMCID: PMC5681637 DOI: 10.1038/s41598-017-15377-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Gut microbial communities are key mediators of health and disease and have the capacity to drive the pathogenesis of diverse complex diseases including metabolic and chronic inflammatory diseases as well as aging. Host genetics is also a major determinant of disease phenotypes, whereby two different genomes play a role, the nuclear (nDNA)- and mitochondrial genome (mtDNA). We investigated the impact of mutations in mtDNA on the gut microbiota using conplastic mouse strains exhibiting distinct mutations in their mtDNA on an identical nDNA. Each of three strain tested harbors a distinct gut microbiota, ranging from differences at the phylum- to operational taxonomic units level. The C57BL/6J-mt FVB/NJ strain, carrying a mutation in the mitochondrial ATP8 synthase gene, exhibits higher Firmicutes abundance than Bacteroidetes, indicating a possible indicative for metabolic dysfunctions. In line with this, the C57BL/6J-mt FVB/NJ displays a variety of different phenotypes, including increased susceptibility to metabolic-related and inflammatory disorders. Furthermore, we discuss the cross-talk between mitochondrial genome/mitochondria and commensal microbiota in relation to clinical phenotypes. In summary, we demonstrate that mutations in mtDNA lead to significant differences in the composition of gut microbial communities in mice. Such differences may facilitate the emergence of metabolic disease and therefore constitute potential therapeutic targets.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
- Institute for Experimental Medicine, Evolutionary Genomics, Kiel, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
29
|
Tourmente M, Hirose M, Ibrahim S, Dowling DK, Tompkins DM, Roldan ERS, Gemmell NJ. mtDNA polymorphism and metabolic inhibition affect sperm performance in conplastic mice. Reproduction 2017; 154:341-354. [PMID: 28676531 DOI: 10.1530/rep-17-0206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Abstract
Whereas a broad link exists between nucleotide substitutions in the mitochondrial genome (mtDNA) and a range of metabolic pathologies, exploration of the effect of specific mtDNA genotypes is on-going. Mitochondrial DNA mutations are of particular relevance for reproductive traits, since they are expected to have profound effects on male specific processes as a result of the strict maternal inheritance of mtDNA. Sperm motility is crucially dependent on ATP in most systems studied. However, the importance of mitochondrial function in the production of the ATP necessary for sperm function remains uncertain. In this study, we test the effect of mtDNA polymorphisms upon mouse sperm performance and bioenergetics by using five conplastic inbred strains that share the same nuclear background while differing in their mitochondrial genomes. We found that, while genetic polymorphisms across distinct mtDNA haplotypes are associated with modification in sperm progressive velocity, this effect is not related to ATP production. Furthermore, there is no association between the number of mtDNA polymorphisms and either (a) the magnitude of sperm performance decrease, or (b) performance response to specific inhibition of the main sperm metabolic pathways. The observed variability between strains may be explained in terms of additive effects of single nucleotide substitutions on mtDNA coding sequences, which have been stabilized through genetic drift in the different laboratory strains. Alternatively, the decreased sperm performance might have arisen from the disruption of the nuclear DNA/mtDNA interactions that have coevolved during the radiation of Mus musculus subspecies.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Misa Hirose
- Institute of Experimental DermatologyUniversity of Luebeck, Luebeck, Germany
| | - Saleh Ibrahim
- Institute of Experimental DermatologyUniversity of Luebeck, Luebeck, Germany
| | - Damian K Dowling
- School of Biological SciencesMonash University, Clayton, Australia
| | | | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Neil J Gemmell
- Department of AnatomyUniversity of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Wang J, Shi Y, Elzo MA, Dang S, Jia X, Lai S. Genetic diversity of ATP8 and ATP6 genes is associated with high-altitude adaptation in yak. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:385-393. [PMID: 28306370 DOI: 10.1080/24701394.2017.1285292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ATP synthase 8 (ATP8) and ATPase synthase 6 (ATP6) play an important role in mitochondrial ATPase assembly. Mutations in either of these units could affect the ATP processing and the respiration chain in mitochondria. To find out if there were differences in gene diversity between Tibetan yaks and domestic cattle, we sequenced the ATP8 and ATP6 genes in 66 Tibetan yaks and 81 domestic cattle. We identified 20 SNPs in the ATP8 gene and 60 SNPs in the ATP6 gene. Ten SNPs detected in ATP8 were probably positively associated with high-altitude adaptation, of which SNPs m.8164 G > A, m.8210 G > A, m.8231 C > T and m. 8249 C > T resulted in amino acid changes. Similarly, SNPs m.8308A > G, m.8370A > C, m.8514G > A of ATP6 also appeared to be associated with high-altitude adaptability. Specifically, m.8308 A > G, located in the overlap region, might bring in a conserved region found in cytochrome b561 which play an important role in iron regulation, thus it might help the Tibetan yaks with this mutation to utilize rare oxygen efficiently. Considering all mutations, three of eight haplotypes identified in gene ATP8 were present only in Tibetan yaks, and six (H3 to H8) out of 21 haplotypes (H1 to H21) in gene ATP6 were restricted to Tibetan yaks. Haplotypes present only in Tibetan yaks could be positively associated with high-altitude adaptation.
Collapse
Affiliation(s)
- Jie Wang
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Yu Shi
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Mauricio A Elzo
- b Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Shuzhang Dang
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Xianbo Jia
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| | - Songjia Lai
- a College of Animal Science and Technology, Sichuan Agricultural University , Chengdu , Sichuan , China
| |
Collapse
|
31
|
Zhang J, Ma J, Long K, Jin L, Liu Y, Zhou C, Tian S, Chen L, Luo Z, Tang Q, Jiang A, Wang X, Wang D, Jiang Z, Wang J, Li X, Li M. Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose. PeerJ 2016; 4:e1768. [PMID: 26989614 PMCID: PMC4793310 DOI: 10.7717/peerj.1768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 02/04/2023] Open
Abstract
A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8, COX2, COX3, ND1, ND2, SCD and TUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China.,Department of Animal Science, Southwest University at Rongchang, Chongqing, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yihui Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Chaowei Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China.,Department of Aquaculture, Southwest University at Rongchang, Chongqing, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Zonggang Luo
- Department of Animal Science, Southwest University at Rongchang, Chongqing, China.,Chongqing Academy of Animal Science, Chongqing, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - An'an Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Dawei Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
32
|
Reilly KM. The Effects of Genetic Background of Mouse Models of Cancer: Friend or Foe? Cold Spring Harb Protoc 2016; 2016:pdb.top076273. [PMID: 26933251 DOI: 10.1101/pdb.top076273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past century, mice have been selectively bred to give rise to the strains used in biomedical research today. Mouse models of cancer allow researchers to control variables of diet, environment, and genetic heterogeneity to better dissect the role of these factors in cancer in humans. Because of the important role of genetic background in cancer, the strain of the mouse can introduce confounding results in studies of mouse models if not properly controlled. Conversely, genetic variation between strains can also provide important new insights into cancer mechanisms. Here, the sources of genetic heterogeneity in mouse models are reviewed, with an explanation of how heterogeneity modifies cancer phenotypes.
Collapse
Affiliation(s)
- Karlyne M Reilly
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
33
|
Schröder T, Kucharczyk D, Bär F, Pagel R, Derer S, Jendrek ST, Sünderhauf A, Brethack AK, Hirose M, Möller S, Künstner A, Bischof J, Weyers I, Heeren J, Koczan D, Schmid SM, Divanovic S, Giles DA, Adamski J, Fellermann K, Lehnert H, Köhl J, Ibrahim S, Sina C. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis. Mol Metab 2016; 5:283-295. [PMID: 27069868 PMCID: PMC4812012 DOI: 10.1016/j.molmet.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH. C57BL/6J-mtFVB/N mice (mt-ATP8, nt7778 G/T) display hepatic mitochondrial dysfunction. C57BL/6J-mtFVB/N mice display alterations in hepatic energy metabolism. C57BL/6J-mtFVB/N mice show no spontaneous hepatic steatosis or inflammation. C57BL/6J-mtFVB/N mice are susceptible to diet induced NASH. Study demonstrates causative role of mitochondrial dysfunction for NASH development.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMP, adenosine monophosphate
- AMPK, AMP-activated proteinkinase
- ATP, adenosine triphosphate
- ATP8, ATP synthase protein 8
- Arg, arginine
- Asp, aspartic acid
- B6-mtB6, C57BL/6
- B6-mtFVB, C57BL/6-mtFVB/N
- C0, free dl-carnitine
- C16, hexadecanoyl-l-carntine
- C18, octadecanoyl-l-carnitine
- CD, control diet
- CD3, cluster of differentiation receptor 3
- CPT I, carnitine-palmitoyltransferase I
- CYP51A1, cytochrome P450, family 51, subfamily A, polypeptide 1
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- Gr1, granulocyte differentiation antigen 1
- H&E, hematoxylin–eosin staining
- H2O2, hydrogen peroxide
- Hsd17b7, 17-beta-hydroxysteroid dehydrogenase type 7
- IDI1, isopentenyl-diphosphate delta isomerase 1
- IL, interleukin
- IPA, ingenuity pathway analysis
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Lipid metabolism
- Ly6G, lymphocyte antigen 6 complex, locus G
- MCDD, methionine and choline deficient diet
- MSMO1, methylsterol monooxygenase 1
- Met, methionine
- Mitochondrial dysfunction
- Mitochondrial gene polymorphism
- NAFL, non-alcoholic liver steatosis
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- ND3, NADH dehydrogenase subunit 3
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation system
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- SNPs, single nucleotide polymorphisms
- SOD2, superoxide dismutase 2
- STRING, Search Tool for the Retrieval of Interacting Genes/Proteins
- Steatohepatitis
- TNFα
- TNFα, tumor necrosis factor alpha
- Tyr, tyrosine
- WD, western-style diet
- mt, mitochondrial
- pAMPK, phosphorylated AMP-activated proteinkinase
Collapse
Affiliation(s)
- Torsten Schröder
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - David Kucharczyk
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Florian Bär
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - René Pagel
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Derer
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sebastian Torben Jendrek
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany; University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Annika Sünderhauf
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Ann-Kathrin Brethack
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Misa Hirose
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Steffen Möller
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Ernst-Heydemann-Straße 8, D-18057 Rostock, Germany
| | - Axel Künstner
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Max Planck Institute for Evolutionary Biology, Guest Group Evolutionary Genomics, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Julia Bischof
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Imke Weyers
- University of Lübeck, Institute of Anatomy, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Heeren
- University Hospital Hamburg-Eppendorf, Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, D-20246 Hamburg, Germany
| | - Dirk Koczan
- University of Rostock, Institute of Immunology, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Senad Divanovic
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Daniel Aaron Giles
- Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany; Technische Universität München, Lehrstuhl für Experimentelle Genetik, Liesel-Beckmann-Straße 4, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Klaus Fellermann
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Hendrik Lehnert
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Köhl
- University of Lübeck, Institute for Systemic Inflammation Research, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Division of Immunobiology, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Saleh Ibrahim
- University of Lübeck, The Lübeck Institute of Experimental Dermatology, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Christian Sina
- University of Lübeck, Department of Medicine I, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| |
Collapse
|
34
|
Chauhan A, Weiss H, Koch F, Ibrahim SM, Vera J, Wolkenhauer O, Tiedge M. Dissecting Long-Term Glucose Metabolism Identifies New Susceptibility Period for Metabolic Dysfunction in Aged Mice. PLoS One 2015; 10:e0140858. [PMID: 26540285 PMCID: PMC4634931 DOI: 10.1371/journal.pone.0140858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/01/2015] [Indexed: 11/30/2022] Open
Abstract
Metabolic disorders, like diabetes and obesity, are pathogenic outcomes of imbalance in glucose metabolism. Nutrient excess and mitochondrial imbalance are implicated in dysfunctional glucose metabolism with age. We used conplastic mouse strains with defined mitochondrial DNA (mtDNA) mutations on a common nuclear genomic background, and administered a high-fat diet up to 18 months of age. The conplastic mouse strain B6-mtFVB, with a mutation in the mt-Atp8 gene, conferred β-cell dysfunction and impaired glucose tolerance after high-fat diet. To our surprise, despite of this functional deficit, blood glucose levels adapted to perturbations with age. Blood glucose levels were particularly sensitive to perturbations at the early age of 3 to 6 months. Overall the dynamics consisted of a peak between 3–6 months followed by adaptation by 12 months of age. With the help of mathematical modeling we delineate how body weight, insulin and leptin regulate this non-linear blood glucose dynamics. The model predicted a second rise in glucose between 15 and 21 months, which could be experimentally confirmed as a secondary peak. We therefore hypothesize that these two peaks correspond to two sensitive periods of life, where perturbations to the basal metabolism can mark the system for vulnerability to pathologies at later age. Further mathematical modeling may perspectively allow the design of targeted periods for therapeutic interventions and could predict effects on weight loss and insulin levels under conditions of pre-diabetic obesity.
Collapse
Affiliation(s)
- Anuradha Chauhan
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Heike Weiss
- Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Franziska Koch
- Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
| | - Saleh M. Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Julio Vera
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Markus Tiedge
- Department of Medical Biochemistry and Molecular Biology, University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
35
|
Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice. Methods Mol Biol 2015; 1351:163-73. [PMID: 26530681 DOI: 10.1007/978-1-4939-3040-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The unique features of the mitochondrial genome, such as its high copy number and lack of defined mechanisms of recombination, have hampered efforts to manipulate its sequence to create specific mutations in mouse mtDNA. As such, the generation of in vivo mouse models of mtDNA disease has proved technically challenging. This chapter describes a unique approach to create mitochondrial oxidative phosphorylation (OXPHOS) defects in mouse ES cells by transferring mtDNA from different murid species into Mus musculus domesticus ES cells using cytoplasmic hybrid ("cybrid") fusion. The resulting "xenocybrid" ES cells carry OXPHOS defects of varying severity, and can be utilized to generate live mouse models of mtDNA disease.
Collapse
|
36
|
Zetina-Esquivel AM, Tovilla-Zárate CA, Guzmán-Garcia C, Rodríguez-Hernández A, Castell-Rodríguez AE, Ble-Castillo JL, Avila-Fernandez A, Juárez-Rojop IE, Díaz-Zagoya JC. Effect of <i>Carica papaya</i> Leaf Extract on Serum Lipids and Liver Metabolic Parameters of Rats Fed a High Cholesterol Diet. Health (London) 2015. [DOI: 10.4236/health.2015.79134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol 2014; 63:196-206. [PMID: 23884159 DOI: 10.1097/01.fjc.0000432861.55968.a6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of heart failure (HF) has evolved during the past 30 years with the recognition of neurohormonal activation and the effectiveness of its inhibition in improving the quality of life and survival. Over the past 20 years, there has been a revolution in the investigation of the mitochondrion with the development of new techniques and the finding that mitochondria are connected in networks and undergo constant division (fission) and fusion, even in cardiac myocytes. This has led to new molecular and cellular discoveries in HF, which offer the potential for the development of new molecular-based therapies. Reactive oxygen species are an important cause of mitochondrial and cellular injury in HF, but there are other abnormalities, such as depressed mitochondrial fusion, that may eventually become the targets of at least episodic treatment. The overall need for mitochondrial fission/fusion balance may preclude sustained change in either fission or fusion. In this review, we will discuss the current HF therapy and its impact on the mitochondria. In addition, we will review some of the new drug targets under development. There is potential for effective, novel therapies for HF to arise from new molecular understanding.
Collapse
|
38
|
Müller S, Krüger B, Lange F, Bock CN, Nizze H, Glass Ä, Ibrahim SM, Jaster R. The mtDNA nt7778 G/T polymorphism augments formation of lymphocytic foci but does not aggravate cerulein-induced acute pancreatitis in mice. PLoS One 2014; 9:e102266. [PMID: 25010670 PMCID: PMC4092110 DOI: 10.1371/journal.pone.0102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022] Open
Abstract
A polymorphism in the ATP synthase 8 (ATP8) gene of the murine mitochondrial genome, G-to-T transversion at position 7778, has been suggested to increase susceptibility to multiple autoimmune diseases, including autoimmune pancreatitis (AIP). The polymorphism also induces mitochondrial reactive oxygen species generation, secretory dysfunction and β-cell mass adaptation. Here, we have used two conplastic mouse strains, C57BL/6N-mtAKR/J (B6-mtAKR; nt7778 G; control) and C57BL/6N-mtFVB/N (B6-mtFVB; nt7778 T), to address the question if the polymorphism also affects the course of cerulein-induced acute pancreatitis in mice. Therefore, two age groups of mice (3 and 12-month-old, respectively) were subjected to up to 7 injections of the secretagogue cerulein (50 µg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of α-amylase and activities of myeloperoxidase (MPO) in lung tissue. A comparison of cerulein-induced pancreatic tissue damage and increases of α-amylase and MPO activities showed no differences between the age-matched groups of both strains. Interestingly, histological evaluation of pancreatic tissue of both untreated and cerulein-treated B6-mtAKR and B6-mtFVB mice also revealed the presence of infiltrates of immune cells surrounding ducts and vessels; a finding that is compatible with an early stage of AIP. After recovery from cerulein-induced pancreatitis (day 7 after the injections), 12-month-old B6-mtFVB mice but not B6-mtAKR mice displayed aggravated lymphocytic lesions. A comparison of 12-month-old mice with other age groups of both strains revealed that lymphocytic foci were largely absent in 3-month-old mice, while 24-month-old mice were more affected. Together, our data suggest that the mtDNA nt7778 G/T polymorphism does not aggravate cerulein-induced acute pancreatitis. Autoimmune-like lesions, however, may progress faster if additional tissue damage occurs.
Collapse
Affiliation(s)
- Sarah Müller
- Department of Medicine II, Division of Gastroenterology, University Medicine Rostock, Rostock, Germany
| | - Burkhard Krüger
- Division of Medical Biology, University Medicine Rostock, Rostock, Germany
| | - Falko Lange
- Department of Medicine II, Division of Gastroenterology, University Medicine Rostock, Rostock, Germany
- Oscar-Langendorff-Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Cristin N. Bock
- Department of Medicine II, Division of Gastroenterology, University Medicine Rostock, Rostock, Germany
| | - Horst Nizze
- Institute of Pathology, University Medicine Rostock, Rostock, Germany
| | - Änne Glass
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medicine Rostock, Rostock, Germany
| | - Saleh M. Ibrahim
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology, University Medicine Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
39
|
Wang J, Jiang W, Zhong Y, Lu B, Shao J, Jiang S, Gu P. Xuezhikang attenuated the functional and morphological impairment of pancreatic islets in diabetic mice via the inhibition of oxidative stress. J Cardiovasc Pharmacol 2014; 63:282-289. [PMID: 24609055 DOI: 10.1097/fjc.0000000000000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Xuezhikang, purified from red yeast rice, is a traditional Chinese medicine with pleiotropic effects on the cardiovascular system. Oxidative stress plays a crucial role in the dysfunction of pancreas islet in diabetic condition and represents a promising therapeutical target for diabetes mellitus. Therefore, the purpose of this study was to explore the effects and possible mechanisms of xuezhikang on the microenvironment and insulin secretion by pancreatic islets in db/db diabetic mice. Our results showed that xuezhikang decreased the blood glucose level by improving glucose tolerance and insulin secretion in db/db mice. Xuezhikang protected islets from hyperglycemic injury as illustrated by the conserved β-cell content and microenvironment. Furthermore, xuezhikang potently inhibited the expression of key factors in oxidative stress. In addition, administration of xuezhikang caused an upregulated expression of glucose-sensing apparatus. These observations provide evidence that the influence of xuezhikang on oxidative stress may at least partly account for its protective effects on the microenvironment and insulin secretion function of pancreatic islets in diabetes.
Collapse
Affiliation(s)
- Jun Wang
- *Department of Cardiology, School of Medicine, Nanjing University, Jinling Hospital/Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu Province, China; †Department of Cardiology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China; and Departments of ‡Health Care, and §Endocrinology, School of Medicine, Nanjing University, Jinling Hospital/Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Tang T, Abbott MJ, Ahmadian M, Lopes AB, Wang Y, Sul HS. Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet β cells. Cell Metab 2013; 18:883-895. [PMID: 24268737 PMCID: PMC3871209 DOI: 10.1016/j.cmet.2013.10.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/31/2013] [Accepted: 10/08/2013] [Indexed: 02/02/2023]
Abstract
Excessive caloric intake leading to obesity is associated with insulin resistance and dysfunction of islet β cells. High-fat feeding decreases desnutrin (also called ATGL/PNPLA2) levels in islets. Here we show that desnutrin ablation via RIP-Cre (βKO) or RIP-CreER results in hyperglycemia with impaired glucose-stimulated insulin secretion (GSIS). Due to decreased lipolysis, islets have higher TAG content but lower free FA levels. βKO islets exhibit impaired mitochondrial respiration and lower production of ATP required for GSIS, along with decreased expression of PPARδ target genes involved in mitochondrial oxidation. Furthermore, synthetic PPARδ, but not PPARα, agonist restores GSIS and expression of mitochondrial oxidative genes in βKO mice, revealing that desnutrin-catalyzed lipolysis generates PPARδ ligands. Finally, adenoviral expression of desnutrin in βKO islets restores all defects of βKO islet phenotype and function, including GSIS and mitochondrial defects, demonstrating the critical role of the desnutrin-PPARδ-mitochondrial oxidation axis in regulating islet β cell GSIS.
Collapse
Affiliation(s)
- Tianyi Tang
- Endocrinology Program, University of California, Berkeley, CA, USA 94720
| | - Marcia J. Abbott
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA, USA 94720
| | - Maryam Ahmadian
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA, USA 94720
| | | | - Yuhui Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA, USA 94720
| | - Hei Sook Sul
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA, USA 94720
- Endocrinology Program, University of California, Berkeley, CA, USA 94720
| |
Collapse
|
41
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|