1
|
Xiao WC, Zhou G, Wan L, Tu J, Yu YJ, She ZG, Xu CL, Wang L. Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation. Brain Res Bull 2023; 195:37-46. [PMID: 36775042 DOI: 10.1016/j.brainresbull.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Chang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Gang Zhou
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.
| | - Lu Wan
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Jun Tu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Yong-Jie Yu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Chun-Lin Xu
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
2
|
Zhang J, Zhang W, Yang L, Zhao W, Liu Z, Wang E, Wang J. Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154589. [PMID: 36610145 DOI: 10.1016/j.phymed.2022.154589] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) usually includes NAFL called simple hepatosteatosis and nonalcoholic steatohepatitis (NASH) called more steatohepatitis. The latter is a leading pathogenic promotor of hepatocellular carcinoma (HCC). Phytochemical gallic acid (GA) has been proved to exert positive efficacy in HCC in our work, but it remains unclear whether its hepatoprotective effect attributes to the controlled transition from simple steatosis to steatohepatitis. PURPOSE This work aims to provide mechanistic evidence that the therapeutic application of GA in NAFLD is indispensable for GA-meliorated NASH progression. METHODS The high-fat diet (HFD)-fed mice and palmitic acid (PA) and oleic acid (OA)-treated hepatocytes were used collectively in this study. Bioinformatic analysis, clinical subjects, RNA-Seq, molecular docking, and confirmatory experiments were performed comprehensively to uncover the pathological link between the AMPK-ACC-PPARα axis and the treatment of NAFLD. RESULTS By analyzing the clinical subjects and GEO database, we find a close link between the activation of AMPK-ACC-PPARα axis and the progression of NAFLD in human fatty liver. Subsequent assays show that GA exhibits pharmacological activation of AMPK, reprogramming lipid metabolism, and reversing mitochondrial function in cellular and murine fatty liver models. AMPK activation conferred substantial protection against murine NASH and fibrosis in the context of HFD-induced NAFLD. In contrast, silencing AMPK badly aggravates lipid deposition in hepatocytes, boosting NASH and NAFLD-associated HCC progression. The in silico docking, in vitro surface plasmon resonance and in vivo cellular thermal shift assay collectively reveal that GA directly interacts with AMPKα, which inactivates the ACC-PPARα axis signaling. Notably, GA repairs the liver damage, lipotoxicity, and mitochondrial respiratory capacity caused by excessive mtROS, while showing minimal effects in other major organs in mice. CONCLUSION Our work identifies GA as an important suppressor of NAFLD-HCC progression, and underscores the AMPK-ACC-PPARα signal axis as a potential therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenxin Zhang
- Second Hospital of Jilin University, Changchun 130041, China
| | - Li Yang
- Hepatobiliary Hospital of Jilin Province, Changchun 130062, China
| | - Wenjing Zhao
- Hepatobiliary Hospital of Jilin Province, Changchun 130062, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, USA.
| |
Collapse
|
3
|
Chen Z, Jin ZX, Cai J, Li R, Deng KQ, Ji YX, Lei F, Li HP, Lu Z, Li H. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J Mol Med (Berl) 2022; 100:1721-1739. [PMID: 36396746 DOI: 10.1007/s00109-022-02269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic damage in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Disturbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as β-oxidation of fatty acids, may also produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhao-Xia Jin
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Ruyan Li
- Northfield Mount Hermon School, Gill, MA, 01354, USA
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huo-Ping Li
- Department of Cardiovascular, Huanggang Central Hospital of Yangtze University, Huanggang, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Huanggang Institute of Translational Medicine, Huanggang, China.
- School of Basic Medical Science, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. LIVERS 2022; 2:283-314. [DOI: 10.3390/livers2040023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Oxygen is vital for life as it is required for many different enzymatic reactions involved in intermediate metabolism and xenobiotic biotransformation. Moreover, oxygen consumption in the electron transport chain of mitochondria is used to drive the synthesis of ATP to meet the energetic demands of cells. However, toxic free radicals are generated as byproducts of molecular oxygen consumption. Oxidative stress ensues not only when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense mechanism of cells, but it can also occur as a consequence of an unbalance between antioxidant strategies. Given the important role of hepatocytes in the biotransformation and metabolism of xenobiotics, ROS production represents a critical event in liver physiology, and increasing evidence suggests that oxidative stress contributes to the development of many liver diseases. The present review, which is part of the special issue “Oxidant stress in Liver Diseases”, aims to provide an overview of the sources and targets of ROS in different liver diseases and highlights the pivotal role of oxidative stress in cell death. In addition, current antioxidant therapies as treatment options for such disorders and their limitations for future trial design are discussed.
Collapse
Affiliation(s)
- Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José C. Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 08036 Barcelona, Spain
- Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Chen R, Luo X, Jiang X, Deng S. Vinexin β deficiency exacerbates diet-induced obesity, hepatosteatosis, insulin resistance and endoplasmic reticulum stress in mice. Biochem Biophys Res Commun 2022; 596:14-21. [PMID: 35104662 DOI: 10.1016/j.bbrc.2022.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
Abstract
Vinexin β is a member of an adaptor protein family. Previous research has elucidated its role in cell adhesion and growth factor signaling. Recently, several studies demonstrated its role in metabolic abnormality, such as obesity and atherosclerosis. In this study, we found that vinexin β-knockout (KO) mice were more obese and gained more obvious visceral fat accumulation than their wildtype (WT) littermates fed with high fat diet (HFD). KO mice also showed more severe hepatosteatosis when compared with the WT control, which was in line with the significant increase of key serum lipids in KO mice. Furthermore, we confirmed the inhibited Akt signaling and exacerbated insulin resistance which resulted in high fasting blood glucose in KO mice. The endoplasmic reticulum stress response was found obviously activated which may mediate the metabolic changes in KO mice. Our studies indicated that vinexin β deficiency promotes the diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xi Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoli Jiang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
6
|
Qu W, Ma T, Cai J, Zhang X, Zhang P, She Z, Wan F, Li H. Liver Fibrosis and MAFLD: From Molecular Aspects to Novel Pharmacological Strategies. Front Med (Lausanne) 2021; 8:761538. [PMID: 34746195 PMCID: PMC8568774 DOI: 10.3389/fmed.2021.761538] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and this nomenclature MAFLD was proposed to renovate its former name, non-alcoholic fatty liver disease (NAFLD). MAFLD/NAFLD have shared and predominate causes from nutrition overload to persistent liver damage and eventually lead to the development of liver fibrosis and cirrhosis. Unfortunately, there is an absence of effective treatments to reverse MAFLD/NAFLD-associated fibrosis. Due to the significant burden of MAFLD/NAFLD and its complications, there are active investigations on the development of novel targets and pharmacotherapeutics for treating this disease. In this review, we cover recent discoveries in new targets and molecules for antifibrotic treatment, which target pathways intertwined with the fibrogenesis process, including lipid metabolism, inflammation, cell apoptosis, oxidative stress, and extracellular matrix formation. Although marked advances have been made in the development of antifibrotic therapeutics, none of the treatments have achieved the endpoints evaluated by liver biopsy or without significant side effects in a large-scale trial. In addition to the discovery of new druggable targets and pharmacotherapeutics, personalized medication, and combinatorial therapies targeting multiple profibrotic pathways could be promising in achieving successful antifibrotic interventions in patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Feng Wan
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Huanggang Institute of Translational Medicine, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
7
|
Protective Effects of Polyphenol Enriched Complex Plants Extract on Metabolic Dysfunctions Associated with Obesity and Related Nonalcoholic Fatty Liver Diseases in High Fat Diet-Induced C57BL/6 Mice. Molecules 2021; 26:molecules26020302. [PMID: 33435558 PMCID: PMC7827276 DOI: 10.3390/molecules26020302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Currently, obesity is a global health challenge due to its increasing prevalence and associated health risk. It is associated with various metabolic diseases, including diabetes, hypertension, cardiovascular disease, stroke, certain forms of cancer, and non-alcoholic liver diseases (NAFLD). Objective: The aim of this study to evaluate the effects of polyphenol enriched herbal complex (Rubus crataegifolius/ellagic acid, Crataegus pinnatifida Bunge/vitexin, chlorogenic acid, Cinnamomum cassiaa/cinnamic acid) on obesity and obesity induced NAFLD in the high-fat diet (HFD)-induced obese mouse model. Methods: Obesity was induced in male C57BL/6 mice using HFD. After 8 weeks, the mice were treated with HFD+ plants extract for 8 weeks. Body weight, food intake weekly, and blood sugar level were measured. After sacrifice, changes in the treated group’s liver weight, fat weight, serum biochemical parameters, hormone levels, and enzyme levels were measured. For histological analysis, tissues were stained with hematoxylin-eosin (H&E) and Oil Red-O. Results: Our results showed that the herbal complex ameliorated body weight and liver weight gain, and decreased total body fat in HFD-fed animals. Post prandial blood glucose (PBG) and fasting blood glucose (FBG) were lower in the herbal complex-treated group than in the HFD control group. Additionally, herbal formulation treatment significantly increased HDL levels in serum and decreased TC, TG, AST, ALT, deposition of fat droplets in the liver, and intima media thickness (IMT) in the aorta. Herbal complex increased serum adiponectin and decreased serum leptin. Herbal complex also increased carnitine palmityl transferase (CPT) activity and significantly decreased enzyme activity of beta-hydroxy beta methyl glutamyl-CoA (HMG-CoA) reductase, and fatty acid synthase (FAS). Conclusions: The results of this study demonstrated that the herbal complex is an effective herbal formulation in the attenuation of obesity and obesity-induced metabolic dysfunction including NAFLD in HFD-induced mouse model.
Collapse
|
8
|
Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. Int J Mol Sci 2021; 22:ijms22010436. [PMID: 33406763 PMCID: PMC7795122 DOI: 10.3390/ijms22010436] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and has become the major cause of chronic liver disease, especially in western countries. NAFLD encompasses a wide spectrum of hepatic histological alterations, from simple steatosis to steatohepatitis and cirrhosis with a potential development of hepatocellular carcinoma. Non-alcoholic steatohepatitis (NASH) is characterized by lobular inflammation and fibrosis. Several studies reported that insulin resistance, redox unbalance, inflammation, and lipid metabolism dysregulation are involved in NAFLD progression. However, the mechanisms beyond the evolution of simple steatosis to NASH are not clearly understood yet. Recent findings suggest that different oxidized products, such as lipids, cholesterol, aldehydes and other macromolecules could drive the inflammation onset. On the other hand, new evidence indicates innate and adaptive immunity activation as the driving force in establishing liver inflammation and fibrosis. In this review, we discuss how immunity, triggered by oxidative products and promoting in turn oxidative stress in a vicious cycle, fuels NAFLD progression. Furthermore, we explored the emerging importance of immune cell metabolism in determining inflammation, describing the potential application of trained immune discoveries in the NASH pathological context.
Collapse
|
9
|
Duggan BM, Cavallari JF, Foley KP, Barra NG, Schertzer JD. RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice. Endocrinology 2020; 161:5849113. [PMID: 32473019 DOI: 10.1210/endocr/bqaa086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) used in cancer are also being investigated in diabetes. TKIs can improve blood glucose control in diabetic cancer patients, but the specific kinases that alter blood glucose or insulin are not clear. We sought to define the role of Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) in mouse models of insulin resistance. We tested the TKI gefitinib, which inhibits RIPK2 activity, in wild-type (WT), Nod1-/-, Nod2-/-, and Ripk2-/- mice fed an obesogenic high-fat diet. Gefitinib lowered blood glucose during a glucose tolerance test (GTT) in a nucleotide-binding oligomerization domain (NOD)-RIPK2-independent manner in all obese mice. However, gefitinib lowered glucose-stimulated insulin secretion only in obese Ripk2-/- mice. Gefitinib had no effect on insulin secretion in obese WT, Nod1-/-, or Nod2-/- mice. Hence, genetic deletion of Ripk2 promoted the insulin-sensitizing potential of gefitinib, since this TKI lowered both blood glucose and insulin only in Ripk2-/- mice. Gefitinib did not alter the inflammatory profile of pancreas, adipose, liver, or muscle tissues in obese Ripk2-/- mice compared with obese WT mice. We also tested imatinib, a TKI that does not inhibit RIPK2 activity, in obese WT mice. Imatinib lowered blood glucose during a GTT, consistent with TKIs lowering blood glucose independently of RIPK2. However, imatinib increased glucose-stimulated insulin secretion during the glucose challenge. These data show that multiple TKIs lower blood glucose, where actions of TKIs on RIPK2 dictate divergent insulin responses, independent of tissue inflammation. Our data show that RIPK2 limits the insulin sensitizing effect of gefitinib, whereas imatinib increased insulin secretion.
Collapse
Affiliation(s)
- Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Joseph F Cavallari
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Kevin P Foley
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152:116-141. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Citation(s) in RCA: 768] [Impact Index Per Article: 153.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
11
|
Cao P, Chen Y, Guo X, Chen Y, Su W, Zhan N, Dong W. Fusobacterium nucleatum Activates Endoplasmic Reticulum Stress to Promote Crohn's Disease Development via the Upregulation of CARD3 Expression. Front Pharmacol 2020; 11:106. [PMID: 32153411 PMCID: PMC7047714 DOI: 10.3389/fphar.2020.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that members of the gut microbiota, especially Fusobacterium nucleatum (F. nucleatum), are associated with Crohn’s disease (CD), but the specific mechanism by which F. nucleatum promotes CD development is unclear. Here, we first examined the abundance of F. nucleatum and its effects on CD disease activity and explored whether F. nucleatum aggravated intestinal inflammation and promoted intestinal mucosal barrier damage in vitro and in vivo. Our data showed that F. nucleatum was enriched in 41.21% of CD tissues from patients and was correlated with the clinical course, clinical activity, and refractory behavior of CD (P < 0.05). In addition, we found that F. nucleatum infection is involved in activating the endoplasmic reticulum stress (ERS) pathway during CD development to promote intestinal mucosal barrier destruction. Mechanistically, F. nucleatum targeted caspase activation and recruitment domain 3 (CARD3) to activate the ERS pathway and promote F. nucleatum-mediated mucosal barrier damage in vivo and in vitro. Thus, F. nucleatum coordinates a molecular network involving CARD3 and ERS to control the CD process. Measuring and targeting F. nucleatum and its associated pathways will provide valuable insight into the prevention and treatment of CD.
Collapse
Affiliation(s)
- Pan Cao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongyu Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xufeng Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenhao Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Na Zhan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Chen Z, Yu Y, Cai J, Li H. Emerging Molecular Targets for Treatment of Nonalcoholic Fatty Liver Disease. Trends Endocrinol Metab 2019; 30:903-914. [PMID: 31597607 DOI: 10.1016/j.tem.2019.08.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
In parallel with the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide. Disequilibrium of lipid metabolism and the subsequent metabolic-stress-induced inflammation are believed to be central in the pathogenesis of NAFLD. Of note, metabolic inflammation is primarily mediated by innate immune signaling, which is increasingly recognized as a driving force in NAFLD progression. Currently, a series of agents targeting one or more of these pathomechanisms have shown encouraging results in preclinical models and clinical trials. This review summarizes the emerging molecular targets involved in signaling in the lipid metabolism and innate immunity aspects of NAFLD, focusing on their mechanistic roles and translational potentials.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China
| | - Yao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430072, China; Basic Medical School, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Cai J, Zhang XJ, Li H. The Role of Innate Immune Cells in Nonalcoholic Steatohepatitis. Hepatology 2019; 70:1026-1037. [PMID: 30653691 DOI: 10.1002/hep.30506] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
Inflammation and metabolic dysfunction are hallmarks of nonalcoholic steatohepatitis (NASH), which is one of the fastest-growing liver diseases worldwide. Emerging evidence indicates that innate immune mechanisms are pivotal drivers of inflammation and other pathological manifestations observed in NASH, such as hepatosteatosis, insulin resistance (IR), and fibrosis. This robust innate immune reaction is intrinsic to the liver, which is an important immunological organ that contains a coordinated network of innate immune cells, including Kupffer cells (KCs), dendritic cells (DCs), and lymphocytes. Hepatocytes and liver sinusoidal endothelial cells (LSECs) are not formally innate immune cells, but they take on immune cell function when stressed. These cells can sense excess metabolites and bacterial products and translate those signals into immune responses and pathological hepatic changes during the development of NASH. In this review, we take a historical perspective in describing decades of research that aimed to identify the key molecular and cellular players in the innate immune system in the setting of NASH. Furthermore, we summarize the innate immune cells that are involved in the progression of NASH and illustrate how they sense disturbances in circulating metabolic factors by innate immune receptors and subsequently initiate the intercellular signaling cascades that lead to persistent inflammation and progression of hepatic complications.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
15
|
Cai J, Xu M, Zhang X, Li H. Innate Immune Signaling in Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:153-184. [PMID: 30230967 DOI: 10.1146/annurev-pathmechdis-012418-013003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The physiological significance of innate immune signaling lies primarily in its role in host defense against invading pathogens. It is becoming increasingly clear that innate immune signaling also modulates the development of metabolic diseases, especially nonalcoholic fatty liver disease and cardiovascular diseases, which are characterized by chronic, low-grade inflammation due to a disarrangement of innate immune signaling. Notably, recent studies indicate that in addition to regulating canonical innate immune-mediated inflammatory responses (or immune-dependent signaling-induced responses), molecules of the innate immune system regulate pathophysiological responses in multiple organs during metabolic disturbances (termed immune-independent signaling-induced responses), including the disruption of metabolic homeostasis, tissue repair, and cell survival. In addition, emerging evidence from the study of immunometabolism indicates that the systemic metabolic status may have profound effects on cellular immune function and phenotypes through the alteration of cell-intrinsic metabolism. We summarize how the innate immune system interacts with metabolic disturbances to trigger immune-dependent and immune-independent pathogenesis in the context of nonalcoholic fatty liver disease, as representative of metabolic diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| | - Xiaojing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; .,Institute of Model Animals of Wuhan University, Wuhan 430072, China.,Basic Medical School, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Jang J, Jung Y, Chae S, Cho SH, Yoon M, Yang H, Shin SS, Yoon Y. Gangjihwan, a polyherbal composition, inhibits fat accumulation through the modulation of lipogenic transcription factors SREBP1C, PPARγ and C/EBPα. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:10-22. [PMID: 28842339 DOI: 10.1016/j.jep.2017.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gangjihwan (DF) which is composed of Ephedra intermedia, Lithospermum erythrorhizon, and Rheum palmatum has been used for the treatment of obesity in traditional medical clinics in Korea. AIM OF THE STUDY This study was conducted to standardize DF and elucidate its mechanism of action for inhibiting fat accumulation in adipocytes and adipose tissues. MATERIALS AND METHODS The herbal ingredients of DF were extracted in water, 30% ethanol or 70% ethanol and freeze-dried followed by HPLC analyses. 3T3-L1 adipocytes and high-fat diet-induced obese mice were treated with each of the three DF preparations. Messenger RNA and protein expression levels were measured by real-time qPCR and Western blotting. RNA-Seq analyses were conducted to examine the effects of DF treatment on whole transcriptome of adipocyte. RESULTS (-)-Ephedrine and (+)-pseudoephedrine from E. intermedia, aloe-emodin and chrysophanol from R. palmatum and shikonin from L. erythrorhizon were identified as phytochemical components of DF. DF caused dose-dependent inhibition of fat accumulation in 3T3-L1 adipocytes. It also significantly reduced adipose tissue mass and adipocyte size in high-fat diet-induced obese mice. DF was found to down-regulate the expressions of the lipogenic transcription factors such as sterol regulatory element binding protein 1C (SREBP1C), peroxisome proliferator activated receptor gamma (PPARγ), and CCAAT/enhancer binding protein alpha (C/EBPα). Among the three preparations of DF, the 70% ethanol extract was the most effective. RNA-Seq analyses showed that DF treatment decreased the expression levels of up-regulators and increased those of down-regulators of lipogenic transcription factors. CONCLUSIONS DF preparations, among which 70% ethanol extract was the most effective, reduced fat accumulation in 3T3-L1 adipocytes and high-fat diet-induced obese mice through the down-regulation of lipogenic transcription factors SREBP1C, PPARγ and C/EBPα.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoonju Jung
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seyeon Chae
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soo Hyun Cho
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Republic of Korea
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejon 35349, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Soon Shik Shin
- Department of Formula Sciences and Research Center of Korean Medicine for Diabetes and Obesity, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea.
| | - Yoosik Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
17
|
Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats. Molecules 2016; 21:molecules21111424. [PMID: 27792149 PMCID: PMC6274173 DOI: 10.3390/molecules21111424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD), high-fat diet (HFD), high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat), high-fat diet with 0.2% HT048 (w/w; HFD + 0.2% HT048), and high-fat diet with 0.6% HT048 (w/w; HFD + 0.6% HT048). It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.
Collapse
|
18
|
Korner G, Scherer T, Adamsen D, Rebuffat A, Crabtree M, Rassi A, Scavelli R, Homma D, Ledermann B, Konrad D, Ichinose H, Wolfrum C, Horsch M, Rathkolb B, Klingenspor M, Beckers J, Wolf E, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Blau N, Rozman J, Thöny B. Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to Pts variants leads to unusual body fat distribution and abdominal obesity in mice. J Inherit Metab Dis 2016; 39:309-19. [PMID: 26830550 DOI: 10.1007/s10545-015-9909-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth. Here we generated a Pts-knock-in (Pts-ki) allele expressing the murine PTPS-p.Arg15Cys with low residual activity (15% of wild-type in vitro) and investigated homozygous (Pts-ki/ki) and compound heterozygous (Pts-ki/ko) mutants. All mice showed normal viability and depending on the severity of the Pts alleles exhibited up to 90% reduction of PTPS activity concomitant with neopterin elevation and mild reduction of total biopterin while blood L-phenylalanine and brain monoamine neurotransmitters were unaffected. Yet, adult mutant mice with compromised PTPS activity (i.e., Pts-ki/ko, Pts-ki/ki or Pts-ko/wt) had increased body weight and elevated intra-abdominal fat. Comprehensive phenotyping of Pts-ki/ki mice revealed alterations in energy metabolism with proportionally higher fat content but lower lean mass, and increased blood glucose and cholesterol. Transcriptome analysis indicated changes in glucose and lipid metabolism. Furthermore, differentially expressed genes associated with obesity, weight loss, hepatic steatosis, and insulin sensitivity were consistent with the observed phenotypic alterations. We conclude that reduced PTPS activity concomitant with mildly compromised BH4-biosynthesis leads to abnormal body fat distribution and abdominal obesity at least in mice. This study associates a novel single gene mutation with monogenic forms of obesity.
Collapse
Affiliation(s)
- Germaine Korner
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Tanja Scherer
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Dea Adamsen
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Children's Research Center (CRC), Zürich, Switzerland
| | - Alexander Rebuffat
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Mark Crabtree
- BHF Centre of Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DU, Oxford, UK
| | - Anahita Rassi
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zürich, Switzerland
| | - Rossana Scavelli
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland
| | - Daigo Homma
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Birgit Ledermann
- Division of Animal Facility, University of Zurich, Zürich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Hiroshi Ichinose
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Am Forum 8, 85354, Freising-Weihenstephan, Germany
- ZIEL - Center for Nutrition and Food Sciences, Technische Universität München, D-85350, Freising, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
- Dietmar-Hopp Metabolic Center, University Children's Hospital Heidelberg, Im Neuenheimer Feld 669, D-69120, Heidelberg, Germany.
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Am Forum 8, 85354, Freising-Weihenstephan, Germany.
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Beat Thöny
- Division of Metabolism, University Children's Hospital Zürich, Steinwiesstrasse 75, CH-8032, Zürich, Switzerland.
- Affiliated with the Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland.
- Children's Research Center (CRC), Zürich, Switzerland.
| |
Collapse
|
19
|
Song H, Wu T, Xu D, Chu Q, Lin D, Zheng X. Dietary sweet cherry anthocyanins attenuates diet-induced hepatic steatosis by improving hepatic lipid metabolism in mice. Nutrition 2016; 32:827-33. [PMID: 27158052 DOI: 10.1016/j.nut.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Anthocyanins have been reported to have beneficial effects on obesity and obesity-related metabolic disorders (e.g., insulin resistance and dyslipidemia). The objective of this study was to examine the beneficial effects of sweet cherry anthocyanins (SWCN) on high-fat diet-induced liver steatosis and investigate the underlying molecular mechanism. METHODS C57 BL/6 J mice were fed low-fat diet, high-fat diet, or high-fat diet supplemented with SWCN of 200 mg/kg for 15 wk. The hepatic gene expression profile was analyzed by DNA microarray analysis. RESULTS SWCN supplementation alleviated high-fat diet-induced liver steatosis in mice. Microarray analysis of hepatic gene expression profiles indicated that SWCN treatment significantly changed the expression profiles of 1119 genes which were enriched in 16 pathways, such as PPAR signaling pathway, steroid biosynthesis, fatty acid metabolism, and biosynthesis of unsaturated fatty acids. CONCLUSION These results confirmed the previous findings regarding the occurrence and development of hepatic steatosis under high-fat-diet conditions, elucidated that SWCN protected from diet-induced hepatic steatosis and the beneficial effects might be involved in multiple molecular pathways, especially the PPARγ pathway.
Collapse
Affiliation(s)
- Haizhao Song
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Tao Wu
- Department of Food Sciences & Bioengineering, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Dongdong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
20
|
Zhang XJ, Zhang P, Li H. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 2015; 66:222-47. [PMID: 26077571 DOI: 10.1161/hypertensionaha.115.04898] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital (X.-J.Z., P.Z., H.L.) and Cardiovascular Research Institute (X.-J.Z., P.Z., H.L.), Wuhan University, Wuhan, China; and State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China (X.-J.Z.).
| |
Collapse
|
21
|
Park MY, Mun ST. Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice. Nutr Res Pract 2013; 7:294-301. [PMID: 23964317 PMCID: PMC3746164 DOI: 10.4162/nrp.2013.7.4.294] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/07/2023] Open
Abstract
In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of β-oxidation-related genes, such as peroxisome proliferator-activated receptor α (PPAR-α), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid β-oxidation in mice.
Collapse
Affiliation(s)
- Mi-Young Park
- Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-707, Korea
| | | |
Collapse
|
22
|
Wang XA, Zhang R, Jiang D, Deng W, Zhang S, Deng S, Zhong J, Wang T, Zhu LH, Yang L, Hong S, Guo S, Chen K, Zhang XF, She Z, Chen Y, Yang Q, Zhang XD, Li H. Interferon regulatory factor 9 protects against hepatic insulin resistance and steatosis in male mice. Hepatology 2013; 58:603-616. [PMID: 23471885 PMCID: PMC3736732 DOI: 10.1002/hep.26368] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Obesity is a calorie-excessive state associated with high risk of diabetes, atherosclerosis, and certain types of tumors. Obesity may induce inflammation and insulin resistance (IR). We found that the expression of interferon (IFN) regulatory factor 9 (IRF9), a major transcription factor mediating IFN responses, was lower in livers of obese mice than in those of their lean counterparts. Furthermore, whole-body IRF9 knockout (KO) mice were more obese and had aggravated IR, hepatic steatosis, and inflammation after chronic high-fat diet feeding. In contrast, adenoviral-mediated hepatic IRF9 overexpression in both diet-induced and genetically (ob/ob) obese mice showed markedly improved hepatic insulin sensitivity and attenuated hepatic steatosis and inflammation. We further employed a yeast two-hybrid screening system to investigate the interactions between IRF9 and its cofactors. Importantly, we identified that IRF9 interacts with peroxisome proliferator-activated receptor alpha (PPAR-α), an important metabolism-associated nuclear receptor, to activate PPAR-α target genes. In addition, liver-specific PPAR-α overexpression rescued insulin sensitivity and ameliorated hepatic steatosis and inflammation in IRF9 KO mice. CONCLUSION IRF9 attenuates hepatic IR, steatosis, and inflammation through interaction with PPAR-α.
Collapse
Affiliation(s)
- Xin-An Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Ran Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dingsheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Shumin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Shan Deng
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinfeng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Li Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Shufen Hong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Sen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Ke Chen
- College of life sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Fei Zhang
- College of life sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhigang She
- Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, California 92037, USA
| | - Yingjie Chen
- Cardiovascular Division, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
| | - Xiao-Dong Zhang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| |
Collapse
|