1
|
Carreira LM, Cota J, Alves J, Inácio F, Alexandre-Pires G, Azevedo P. A Pilot Study of the Clinical Effectiveness of a Single Intra-Articular Injection of Stanozolol in Canines with Knee Degenerative Joint Disease and Its Correlation with Serum Interleukin-1β Levels. Animals (Basel) 2024; 14:1351. [PMID: 38731355 PMCID: PMC11082967 DOI: 10.3390/ani14091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Stanozolol shows promise as an anabolic and anti-catabolic agent for treating degenerative joint disease (DJD). This study assessed the clinical efficacy of a single intra-articular stanozolol injection in canine knees with DJD and its correlation with serum IL-1β levels. Thirty dogs (n = 30) were divided into a control group (CG, n = 10) and a study group (SG, n = 20) with DJD. Pain levels were assessed using the Brown query, and radiographs were taken at T0 and T3. IL-1β levels were quantified via ELISA. Apart from 2 patients, all showed reduced pain intensity, with 15 patients showing improvement at T1 and 3 patients at T2. A positive correlation (r = 0.84; p < 0.01) was found between pain level and IL-1β in 15 patients. No systemic effects were observed. Most patients (18/20) experienced reduced pain. This pilot study suggests stanozolol's potential in managing DJD in dogs. Further research is warranted to validate these findings and understand stanozolol's mechanism in DJD treatment.
Collapse
Affiliation(s)
- L. Miguel Carreira
- Anjos of Assis Veterinary Medicine Centre-CMVAA, Rua D.ª Francisca da Azambuja Nº9-9A, 2830-077 Barreiro, Portugal (P.A.)
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; (F.I.); (G.A.-P.)
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Faculty of American Laser Study Club—ALSC, Altamonte Springs, FL 32714, USA
| | - João Cota
- Anjos of Assis Veterinary Medicine Centre-CMVAA, Rua D.ª Francisca da Azambuja Nº9-9A, 2830-077 Barreiro, Portugal (P.A.)
| | - Joao Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771 Lisbon, Portugal;
| | - Filipa Inácio
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; (F.I.); (G.A.-P.)
| | - Graça Alexandre-Pires
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal; (F.I.); (G.A.-P.)
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon (FMV/ULisboa), Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Pedro Azevedo
- Anjos of Assis Veterinary Medicine Centre-CMVAA, Rua D.ª Francisca da Azambuja Nº9-9A, 2830-077 Barreiro, Portugal (P.A.)
- Faculty of American Laser Study Club—ALSC, Altamonte Springs, FL 32714, USA
| |
Collapse
|
2
|
Saadat N, Pallas B, Ciarelli J, Vyas AK, Padmanabhan V. Gestational testosterone excess early to mid-pregnancy disrupts maternal lipid homeostasis and activates biosynthesis of phosphoinositides and phosphatidylethanolamines in sheep. Sci Rep 2024; 14:6230. [PMID: 38486090 PMCID: PMC10940674 DOI: 10.1038/s41598-024-56886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Gestational hyperandrogenism is a risk factor for adverse maternal and offspring outcomes with effects likely mediated in part via disruptions in maternal lipid homeostasis. Using a translationally relevant sheep model of gestational testosterone (T) excess that manifests maternal hyperinsulinemia, intrauterine growth restriction (IUGR), and adverse offspring cardiometabolic outcomes, we tested if gestational T excess disrupts maternal lipidome. Dimensionality reduction models following shotgun lipidomics of gestational day 127.1 ± 5.3 (term 147 days) plasma revealed clear differences between control and T-treated sheep. Lipid signatures of gestational T-treated sheep included higher phosphoinositides (PI 36:2, 39:4) and lower acylcarnitines (CAR 16:0, 18:0, 18:1), phosphatidylcholines (PC 38:4, 40:5) and fatty acids (linoleic, arachidonic, Oleic). Gestational T excess activated phosphatidylethanolamines (PE) and PI biosynthesis. The reduction in key fatty acids may underlie IUGR and activated PI for the maternal hyperinsulinemia evidenced in this model. Maternal circulatory lipids contributing to adverse cardiometabolic outcomes are modifiable by dietary interventions.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Ciarelli
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University St. Louis, St. Louis, MO, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA.
| |
Collapse
|
3
|
Noroozzadeh M, Rahmati M, Farhadi-Azar M, Saei Ghare Naz M, Azizi F, Ramezani Tehrani F. Maternal androgen excess increases the risk of metabolic syndrome in female offspring in their later life: A long-term population-based follow-up study. Arch Gynecol Obstet 2023; 308:1555-1566. [PMID: 37422863 DOI: 10.1007/s00404-023-07132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Hyperandrogenic intrauterine environment may lead to the development of metabolic disorders in offspring in their later life. In this study, we aimed to determine the impact of maternal hyperandrogenism (MHA) on metabolic syndrome (MetS) risk in female offspring in their later life. METHODS In this cohort study conducted in Tehran, Iran, female offspring with MHA (n = 323) and without MHA (controls) (n = 1125) were selected. Both groups of female offspring were followed from the baseline to the date of the incidence of events, censoring, or end of the study period, whichever came first. We used age-scaled unadjusted and adjusted Cox regression models to assess the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between MHA and MetS in female offspring. The software package STATA was used for statistical analysis, and the significance level was set at P < 0.05. RESULTS We observed a higher risk of MetS (unadjusted HR (95% CI), 1.36 (1.05-1.77)), (P = 0.02) and (adjusted HR (95% CI), 1.34 (1.00-1.80)), (P = 0.05, borderline)), in female offspring with MHA, compared to controls. The results were adjusted for the potential confounders including body mass index (BMI) at baseline, net changes of BMI, physical activity, education status, and birth weight. CONCLUSION Our results suggest that MHA increases the risk of developing MetS in female offspring in their later life. Screening of these female offspring for MetS may be recommended.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Maryam Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Mahbanoo Farhadi-Azar
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Marzieh Saei Ghare Naz
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi, Yaman Street, Velenjak, P.O.Code: 1985717413, Tehran, Iran.
| |
Collapse
|
4
|
Guo F, Mao S, Long Y, Zhou B, Gao L, Huang H. The Influences of Perinatal Androgenic Exposure on Cardiovascular and Metabolic Disease of Offspring of PCOS. Reprod Sci 2023; 30:3179-3189. [PMID: 37380913 DOI: 10.1007/s43032-023-01286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Hyperandrogenism is an endocrine disorder affecting a large population of reproductive-aged women, thus proportionally high number of fetuses are subjected to prenatal androgenic exposure (PNA). The short-term stimulations at critical ontogenetic stages can wield lasting influences on the health. The most commonly diagnosed conditions in reproductive age women is polycystic ovary syndrome (PCOS). PNA may affect the growth and development of many systems in the whole body and disrupts the normal metabolic trajectory in the offspring of PCOS, contributing to the prevalence of cardiovascular and metabolic diseases (CVMD), including myocardial hypertrophy, hypertension, hyperinsulinemia, insulin resistance, hyperglycemia, obesity, and dyslipidemia, which are the leading causes of hospitalizations in young PCOS offspring. In this review, we focus on the effects of prenatal androgenic exposure on the cardiovascular and metabolic diseases in offspring, discuss the possible pathogenesis respectively, and summarize potential management strategies to improve metabolic health of PCOS offspring. It is expected that the incidence of CVMD and the medical burden will be reduced in the future.
Collapse
Affiliation(s)
- Fei Guo
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Suqing Mao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yuhang Long
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Bokang Zhou
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ling Gao
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hefeng Huang
- Department of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| |
Collapse
|
5
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
6
|
Ferrer MJ, Abruzzese GA, Heber MF, Ferreira SR, Campo Verde Arbocco F, Motta AB. Intrauterine androgen exposure impairs gonadal adipose tissue functions of adult female rats. Theriogenology 2023; 198:131-140. [PMID: 36584634 DOI: 10.1016/j.theriogenology.2022.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Prenatal androgen exposure induces fetal programming leading to alterations in offspring health and phenotypes that resemble those seen in women with Polycystic Ovary Syndrome. It has been described that prenatal androgenization affects the reproductive axis and leads to metabolic and endocrine disorders. Adipose tissue plays a crucial role in all these functions and is susceptible to programming effects. Particularly, gonadal adipose tissue is involved in reproductive functions, so dysfunctions in this tissue could be related to fertility alterations. We aimed to investigate the extent to which prenatal hyperandrogenization is able to alter the functionality of gonadal adipose tissue in female adult rats, including lipid metabolism, adipokines expression, and de novo synthesis of steroids. Pregnant rats were treated with 1 mg of testosterone from day 16 to day 19 of pregnancy, and female offspring were followed until 90 days of age, when they were euthanized. The prenatally hyperandrogenized (PH) female offspring displayed two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Regarding lipid metabolism, both PH groups displayed disruptions in the main lipid pathways with altered levels of triglyceride and increased lipid peroxidation levels. In addition, we found that Peroxisome Proliferator-Activated Receptors (PPARs) alpha protein expression was decreased in both PH phenotypes (p < 0.05), but no changes were found in PPARγ protein levels. Furthermore, regarding adipokines, no changes were found in Leptin and Adiponectin protein levels, but Chemerin protein levels were decreased in the PHiov group (p < 0.05). Regarding de novo synthesis of steroids, the PHanov group showed increased protein levels of Cyp17a1 and Cyp19, while the PHiov group only showed decreased protein levels of Cyp19 (p < 0.05). These results suggest that prenatal androgen exposure affects females' gonadal adipose tissue in adulthood, disturbing different lipid pathways, Chemerin expression, and de novo synthesis of steroids.
Collapse
Affiliation(s)
- María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500, Mendoza, Argentina; Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Abruzzese GA, Arbocco FCV, Ferrer MJ, Silva AF, Motta AB. Role of Hormones During Gestation and Early Development: Pathways Involved in Developmental Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:31-70. [PMID: 37466768 DOI: 10.1007/978-3-031-32554-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina
- Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
8
|
Noroozzadeh M, Salehi Jahromi M, Gholami H, Amiri M, Ramezani Tehrani F. Ovarian expression of follicle stimulating hormone and activin receptors genes in a prenatally-androgenized rat model of polycystic ovary syndrome in adulthood. Mol Biol Rep 2022; 49:7765-7771. [PMID: 35668149 DOI: 10.1007/s11033-022-07601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The expression of genes involved in basic pathways, such as folliculogenesis and steroidogenesis may be affected following prenatal androgen exposure. Besides, exposure to androgens during prenatal life plays a central role in developing polycystic ovary syndrome (PCOS) in females in later life. In the present study, we aimed to examine the expression of the follicle stimulating hormone receptor (FSHR) and activin receptor (actR) genes in ovarian granulosa cells (GCs) of a prenatally-androgenized rat model of PCOS in adulthood. METHODS AND RESULTS In the adult rat model of PCOS and their controls (n = 8 in each group), different phases of the estrous cycle were determined by vaginal smear. Total RNA was extracted from the ovarian GCs using the TRIzol protocol, a reverse transcription kit was used for complementary DNA (cDNA) synthesis, and the expression of FSHR and actR genes was measured by SYBR-Green Real-Time PCR. GraphPad Prism was used for statistical analysis of data, and the t-Student's test was used to compare the results between the two groups. PCOS rats had longer and irregular estrous cycles compared to controls. The expression of FSHR and actR genes were significantly decreased in the rat model of PCOS compared to control rats. In PCOS rats, genes expression ratios for FSHR and actR were 0.91 ± 0.11 times (P = 0.008) and 0.42 ± 0.13 times (P = 0.048) less than controls, respectively. CONCLUSION Reduced expression of the FSHR and actR genes in ovarian GCs may be one of the mechanisms mediating PCOS-related disorders, especially abnormal ovarian folliculogenesis and ovulation dysfunction, following exposure to androgens during fetal life.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi Ave, Yaman Street, Velenjak, 1985717413, Tehran, Iran
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hanieh Gholami
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi Ave, Yaman Street, Velenjak, 1985717413, Tehran, Iran.
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Arabi Ave, Yaman Street, Velenjak, 1985717413, Tehran, Iran.
| |
Collapse
|
9
|
Noroozzadeh M, Rahmati M, Behboudi-Gandevani S, Ramezani Tehrani F. Maternal hyperandrogenism is associated with a higher risk of type 2 diabetes mellitus and overweight in adolescent and adult female offspring: a long-term population-based follow-up study. J Endocrinol Invest 2022; 45:963-972. [PMID: 35043365 DOI: 10.1007/s40618-021-01721-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Adverse intrauterine environment may predispose offspring to cardio-metabolic dysfunction in later life. In this study, we aimed to investigate the effects of maternal hyperandrogenism (MH) on cardio-metabolic risk factors in female offspring in later life. METHODS This prospective population-based study included 211 female offspring with MH and 757 female offspring without MH (controls). Both groups were followed from baseline to the date of incidence of events, censoring, or end of the study period, whichever came first. Age scaled unadjusted and adjusted cox regression models were applied to assess the hazard ratios (HR) and 95% confidence intervals (CIs) for the association of MH with pre-diabetes (pre-DM), type 2 diabetes mellitus (T2DM), overweight and obesity in offspring of both groups. Statistical analysis was performed using the software package STATA; significance level was set at P < 0.05. RESULTS This study revealed a higher risk of T2DM (unadjusted HR 2.67, 95% CI 1.33-5.36) and overweight (unadjusted HR 1.41, 95% CI 1.06-1.88) in female offspring with MH, compared to controls. Results remained unchanged after adjustment for potential confounders including body mass index, education, physical activity, mother's age at delivery, birth weight, and childhood obesity. However, no significant difference was observed in the risk of pre-DM and obesity in females with MH, compared to controls in both unadjusted and adjusted models. CONCLUSION This pioneer study with a long-term follow-up demonstrated that MH increases the risk of developing T2DM and being overweight in female offspring in later life. Further long-term population-based studies are needed to confirm these findings.
Collapse
Affiliation(s)
- M Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran
| | - M Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran
| | | | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 23 Parvaneh, Yaman Street, Velenjak, Tehran, 1985717413, Iran.
| |
Collapse
|
10
|
Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022; 20:12. [PMID: 35012577 PMCID: PMC8744313 DOI: 10.1186/s12958-021-00878-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity. Recent findings in normal-weight hyperandrogenic PCOS women show that exaggerated lipid accumulation by subcutaneous (SC) abdominal stem cells during development to adipocytes in vitro occurs in combination with reduced insulin sensitivity and preferential accumulation of highly-lipolytic intra-abdominal fat in vivo. This PCOS phenotype may be an evolutionary metabolic adaptation to balance energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction. This review integrates fundamental endocrine-metabolic changes in healthy, normal-weight PCOS women with similar PCOS-like traits present in animal models in which tissue differentiation is completed during fetal life as in humans to support the evolutionary concept that PCOS has common ancestral and developmental origins.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | | | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | - David H. Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715 USA
| |
Collapse
|
11
|
Saadat N, Puttabyatappa M, Elangovan VR, Dou J, Ciarelli JN, Thompson RC, Bakulski KM, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology 2022; 163:6413684. [PMID: 34718504 PMCID: PMC8667859 DOI: 10.1210/endocr/bqab225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance, ectopic lipid accumulation, and insulin signaling disruption in liver and muscle. This study investigated transcriptional changes and transcriptome signature of prenatal T excess-induced hepatic and muscle-specific metabolic disruptions. Genome-wide coding and noncoding (nc) RNA expression in liver and muscle from 21-month-old prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30-90 of gestation; term: 147 days) and control females were compared. Prenatal T (1) induced differential expression of messenger RNAs (mRNAs) in liver (15 down, 17 up) and muscle (66 down, 176 up) (false discovery rate < 0.05, absolute log2 fold change > 0.5); (2) downregulated mitochondrial pathway genes in liver and muscle; (3) downregulated hepatic lipid catabolism and peroxisome proliferator-activated receptor (PPAR) signaling gene pathways; (4) modulated noncoding RNA (ncRNA) metabolic processes gene pathway in muscle; and (5) downregulated 5 uncharacterized long noncoding RNA (lncRNA) in the muscle but no ncRNA changes in the liver. Correlation analysis showed downregulation of lncRNAs LOC114112974 and LOC105607806 was associated with decreased TPK1, and LOC114113790 with increased ZNF470 expression. Orthogonal projections to latent structures discriminant analysis identified mRNAs HADHA and SLC25A45, and microRNAs MIR154A, MIR25, and MIR487B in the liver and ARIH1 and ITCH and miRNAs MIR369, MIR10A, and MIR10B in muscle as potential biomarkers of prenatal T excess. These findings suggest downregulation of mitochondria, lipid catabolism, and PPAR signaling genes in the liver and dysregulation of mitochondrial and ncRNA gene pathways in muscle are contributors of lipotoxic and insulin-resistant hepatic and muscle phenotype. Gestational T excess programming of metabolic dysfunctions involve tissue-specific ncRNA-modulated transcriptional changes.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
- Correspondence: Vasantha Padmanabhan, PhD, MS, Department of Pediatrics, University of Michigan, 7510 MSRB1, 1150 W Medical Center Dr, Ann Arbor, MI 48019-5718, USA.
| |
Collapse
|
12
|
Usman TO, Olatunji LA. Late gestational testosterone exposure causes glucose deregulation and elevated cardiac VCAM-1 and DPP-4 activity in rats. Arch Physiol Biochem 2021; 127:445-452. [PMID: 31387411 DOI: 10.1080/13813455.2019.1650068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
CONTEXT Increased vascular cell adhesion molecule-1 (VCAM-1) has been reported to be a critical link between obesity and atherosclerotic cardiovascular diseases while dipeptidyl peptidase-4 (DPP-4) has been implicated in the development of disrupted glucose regulation and inflammation. OBJECTIVE This study aimed to investigate the effect of gestational testosterone exposure on glucose metabolism, atherogenic dyslipidemia, as well as circulating and cardiac VCAM-1, oxidative stress biomarkers and DPP-4 activity in pregnant rats. METHODS Pregnant Wistar rats received either vehicle or testosterone (0.5 mg/kg; sc) between gestational days 14 and 19. RESULTS Gestational testosterone exposure caused impaired glucose homeostasis that was accompanied with atherogenic dyslipidemia, elevated circulating and cardiac levels of VCAM-1, uric acid, malondialdehyde as well as increased DPP-4 activity. However, nitric oxide levels were decreased. CONCLUSION This study shows that gestational testosterone exposure causes glucose deregulation and atherogenic dyslipidemia that is accompanied by increased circulating and cardiac VCAM-1 and DPP-4 activity.
Collapse
Affiliation(s)
- Taofeek O Usman
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Cardiovascular Unit, Department of Physiology, College of Health sciences, Osun State University, Osogbo, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
13
|
Puttabyatappa M, Ciarelli JN, Chatoff AG, Padmanabhan V. Developmental programming: Metabolic tissue-specific changes in endoplasmic reticulum stress, mitochondrial oxidative and telomere length status induced by prenatal testosterone excess in the female sheep. Mol Cell Endocrinol 2021; 526:111207. [PMID: 33607270 PMCID: PMC8005473 DOI: 10.1016/j.mce.2021.111207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Prenatal testosterone (T) excess-induced metabolic dysfunctions involve tissue specific changes in insulin sensitivity with insulin resistant, oxidative and lipotoxic state in liver/muscle and insulin sensitive but inflammatory and oxidative state in visceral adipose tissues (VAT). We hypothesized that mitochondrial dysfunction, endoplasmic reticulum (ER) stress and premature cellular senescence are contributors to the tissue-specific changes in insulin sensitivity. Markers of mitochondrial number, function, and oxidative phosphorylation (OxPhos), ER stress and cellular senescence (telomere length) were assessed in liver, muscle and 4 adipose (VAT, subcutaneous [SAT], epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep at 21 months of age. Prenatal T treatment led to: (a) reduction in mitochondrial number and OxPhos complexes and increase in ER stress markers in muscle; (b) increase in fibrosis with trend towards increase in short telomere fragments in liver (c) depot-specific mitochondrial changes with OxPhos complexes namely increase in SAT and reduction in PRAT and increase in mitochondrial number in ECAT; (d) depot-specific ER stress marker changes with increase in VAT, reduction in SAT, contrasting changes in ECAT and no changes in PRAT; and (d) reduced shorter telomere fragments in SAT, ECAT and PRAT. These changes indicate insulin resistance may be driven by mitochondrial and ER dysfunction in muscle, fibrosis and premature senescence in liver, and depot-specific changes in mitochondrial function and ER stress without involving cellular senescence in adipose tissue. These findings provide mechanistic insights into pathophysiology of metabolic dysfunction among female offspring from hyperandrogenic pregnancies.
Collapse
Affiliation(s)
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Chatoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
14
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Dou J, Puttabyatappa M, Padmanabhan V, Bakulski KM. Developmental programming: Adipose depot-specific transcriptional regulation by prenatal testosterone excess in a sheep model of PCOS. Mol Cell Endocrinol 2021; 523:111137. [PMID: 33359827 PMCID: PMC7854529 DOI: 10.1016/j.mce.2020.111137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Prenatal testosterone (T)-treated female sheep manifest adipose depot-specific disruptions in inflammatory/oxidative state, adipocyte differentiation and thermogenic adipocyte distribution. The objective of this study was to identify common and divergent gene pathways underlying prenatal T excess-induced adipose depot-specific disruptions. RNA sequencing and network analyses were undertaken with visceral (VAT), subcutaneous (SAT), epicardiac (ECAT) and perirenal (PRAT) adipose tissues from control and prenatal T-treated (100 mg T propionate twice a week from days 30-90 of gestation) female sheep at 21 months of age. Increased expression of adiposity and inflammation-related genes in VAT and genes that promote differentiation of white adipocytes in SAT were congruous with their metabolic roles with SAT favoring uptake/storage of free fatty acids and triglycerides and VAT favoring higher rate of fatty acid turnover and lipolysis. Selective upregulation of cardiac muscle and renoprotection genes in ECAT and PRAT respectively are suggestive of protective paracrine actions. Expression profile in prenatal T-treated sheep paralleled depot-specific dysfunctions with increased proinflammatory genes in VAT, reduced adipocyte differentiation genes in VAT and SAT and increased vascular related gene expression in PRAT. The high expression of genes involved in cardiomyocyte function in ECAT is suggestive of cardioprotective function being maintained to overcome the prenatal T-induced cardiac dysfunction and hypertension. These findings coupled with changes in gene pathways and networks involved in chromatin modification, extracellular matrix, immune and mitochondrial function, and endoplasmic reticulum to Golgi transport suggest that dysregulation in gene expression underlie prenatal T-treatment induced functional differences among adipose depots and manifestation of metabolic dysfunction.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Siemienowicz KJ, Coukan F, Franks S, Rae MT, Duncan WC. Aberrant subcutaneous adipogenesis precedes adult metabolic dysfunction in an ovine model of polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 2021; 519:111042. [PMID: 33010309 DOI: 10.1016/j.mce.2020.111042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects over 10% of women. Insulin resistance, elevated free fatty acids (FFAs) and increased adiposity are key factors contributing to metabolic dysfunction in PCOS. We hypothesised that aberrant adipogenesis during adolescence, and downstream metabolic perturbations, contributes to the metabolic phenotype of adult PCOS. We used prenatally androgenised (PA) sheep as a clinically realistic model of PCOS. During adolescence, but not during fetal or early life of PA sheep, adipogenesis was decreased in subcutaneous adipose tissue (SAT) accompanied by decreased leptin, adiponectin, and increased FFAs. In adulthood, PA sheep developed adipocyte hypertrophy in SAT paralleled by increased expression of inflammatory markers, elevated FFAs and increased expression of genes linked to fat accumulation in visceral adipose tissue. This study provides better understanding into the pathophysiology of PCOS from puberty to adulthood and identifies opportunity for early clinical intervention to normalise adipogenesis and ameliorate the metabolic phenotype.
Collapse
Affiliation(s)
- Katarzyna J Siemienowicz
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK; School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| | - Flavien Coukan
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College, London, UK
| | - Mick T Rae
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
17
|
Jackson IJ, Puttabyatappa M, Anderson M, Muralidharan M, Veiga-Lopez A, Gregg B, Limesand S, Padmanabhan V. Developmental programming: Prenatal testosterone excess disrupts pancreatic islet developmental trajectory in female sheep. Mol Cell Endocrinol 2020; 518:110950. [PMID: 32726642 PMCID: PMC7609617 DOI: 10.1016/j.mce.2020.110950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Prenatal testosterone (T)- treated female sheep manifest juvenile insulin resistance, post-pubertal increase in insulin sensitivity and return to insulin resistance during adulthood. Since compensatory hyperinsulinemia is associated with insulin resistance, altered pancreatic islet ontogeny may contribute towards metabolic defects. To test this, pregnant sheep were treated with or without T propionate from days 30-90 of gestation and pancreas collected from female fetuses at gestational day 90 and female offspring at 21 months-of-age. Uterine (maternal) and umbilical (fetal) arterial blood insulin/glucose ratios were determined at gestational day 90. The morphological and functional changes in pancreatic islet were assessed through detection of 1) islet hormones (insulin, glucagon) and apoptotic beta cells at fetal day 90 and 2) islet hormones (insulin, glucagon and somatostatin), and pancreatic lipid and collagen accumulation in adults. At gestational day 90, T-treatment led to maternal but not fetal hyperinsulinemia, decrease in pancreatic/fetal weight ratio and alpha cells, and a trend for increase in beta cell apoptosis in fetal pancreas. Adult prenatal T-treated female sheep manifested 1) significant increase in beta cell size and a tendency for increase in insulin and somatostatin stained area and proportion of beta cells in the islet; and 2) significant increase in pancreatic islet collagen and a tendency towards increased lipid accumulation. Gestational T-treatment induced changes in pancreatic islet endocrine cells during both fetal and adult ages track the trajectory of hyperinsulinemic status with the increase in adult pancreatic collagen accumulation indicative of impending beta cell failure with chronic insulin resistance.
Collapse
Affiliation(s)
- Ian J Jackson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | | | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Meha Muralidharan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sean Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | | |
Collapse
|
18
|
Dumesic DA, Hoyos LR, Chazenbalk GD, Naik R, Padmanabhan V, Abbott DH. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction 2020; 159:R1-R13. [PMID: 31376813 DOI: 10.1530/rep-19-0197] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Developmental origins of adult disease (DoHAD) refers to critical gestational ages during human fetal development and beyond when the endocrine metabolic status of the mother can permanently program the physiology and/or morphology of the fetus, modifying its susceptibility to disease after birth. The aim of this review is to address how DoHAD plays an important role in the phenotypic expression of polycystic ovary syndrome (PCOS), the most common endocrinopathy of women characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. Clinical studies of PCOS women are integrated with findings from relevant animal models to show how intergenerational transmission of these central components of PCOS are programmed through an altered maternal endocrine-metabolic environment that adversely affects the female fetus and long-term offspring health. Prenatal testosterone treatment in monkeys and sheep have been particularly crucial in our understanding of developmental programming of PCOS because organ system differentiation in these species, as in humans, occurs during fetal life. These animal models, along with altricial rodents, produce permanent PCOS-like phenotypes variably characterized by LH hypersecretion from reduced steroid-negative feedback, hyperandrogenism, ovulatory dysfunction, increased adiposity, impaired glucose-insulin homeostasis and other metabolic abnormalities. The review concludes that DoHAD underlies the phenotypic expression of PCOS through an altered maternal endocrine-metabolic environment that can induce epigenetic modifications of fetal genetic susceptibility to PCOS after birth. It calls for improved maternal endocrine-metabolic health of PCOS women to lower their risks of pregnancy-related complications and to potentially reduce intergenerational susceptibility to PCOS and its metabolic derangements in offspring.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Luis R Hoyos
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rajanigandha Naik
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Dou JF, Puttabyatappa M, Padmanabhan V, Bakulski KM. Developmental programming: Transcriptional regulation of visceral and subcutaneous adipose by prenatal bisphenol-A in female sheep. CHEMOSPHERE 2020; 255:127000. [PMID: 32417515 PMCID: PMC7418632 DOI: 10.1016/j.chemosphere.2020.127000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Bisphenol-A (BPA) exposure is widespread and early life exposure is associated with metabolic syndrome. While visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are implicated in the development of metabolic syndrome, the adipose depot-specific effects of prenatal BPA treatment are poorly understood. OBJECTIVE To determine the impact of prenatal BPA exposure on genome-wide gene expression of VAT and SAT depots. METHODS RNA sequencing was performed on SAT and VAT from 21-month old control and prenatal BPA-treated female sheep. Gene expression and pathway differences between SAT and VAT depots with or without prenatal BPA-treatment and the effect of prenatal BPA treatment on each depot were tested. RESULTS There were 179 differentially expressed genes (padjusted < 0.05, log2-fold change >2.5) between SAT and VAT. Development and immune response pathways were upregulated in SAT, while metabolic pathways were upregulated in VAT. These adipose depot-specific genes and pathways were consistent with prenatal BPA-treatment. In SAT, BPA-treatment resulted in differential expression of 108 genes (78% upregulated with BPA) and altered pathways (immune response downregulated, RNA processing upregulated). In contrast in VAT, BPA-treatment differentially expressed 4 genes and upregulated chromatin and RNA processing pathways. CONCLUSION Prenatal BPA-treatment induces adult depot-specific alterations in RNA expression in inflammation, RNA processing, and chromatin pathways, reflecting the diverse roles of SAT and VAT in regulating lipid storage and insulin sensitivity. These adipose tissue transcriptional dysregulations may contribute to the metabolic disorders observed in prenatal BPA-treated female sheep.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Guo X, Puttabyatappa M, Domino SE, Padmanabhan V. Developmental programming: Prenatal testosterone-induced changes in epigenetic modulators and gene expression in metabolic tissues of female sheep. Mol Cell Endocrinol 2020; 514:110913. [PMID: 32562712 PMCID: PMC7397566 DOI: 10.1016/j.mce.2020.110913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance and tissue-specific changes in insulin sensitivity with liver and muscle manifesting insulin resistance accompanied by inflammatory, oxidative and lipotoxic state. In contrast, visceral (VAT) and subcutaneous (SAT) adipose tissues are insulin sensitive in spite of VAT manifesting changes in inflammatory and oxidative state. We hypothesized that prenatal T-induced changes in tissue-specific insulin resistance arise from disrupted lipid storage and metabolism gene expression driven by changes in DNA and histone modifying enzymes. Changes in gene expression were assessed in liver, muscle and 4 adipose (VAT, SAT, epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep. Prenatal T-treatment increased lipid droplet and metabolism genes PPARA and PLIN1 in liver, SREBF and PLIN1 in muscle and showed a trend for decrease in PLIN2 in PRAT. Among epigenetic modifying enzymes, prenatal T-treatment increased expression of 1) DNMT1 in liver and DNMT3A in VAT, PRAT, muscle and liver; 2) HDAC1 in ECAT, HDAC2 in muscle with decrease in HDAC3 in VAT; 3) EP300 in VAT and ECAT; and 4) KDM1A in VAT with increases in liver histone acetylation. Increased lipid storage and metabolism genes in liver and muscle are consistent with lipotoxicity in these tissues with increased histone acetylation likely contributing to increased liver PPARA. These findings are suggestive that metabolic defects in prenatal T-treated sheep may arise from changes in key genes mediated, in part, by tissue-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | - Steven E Domino
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
21
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
22
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
23
|
Puttabyatappa M, Ciarelli JN, Chatoff AG, Singer K, Padmanabhan V. Developmental programming: Adipose depot-specific changes and thermogenic adipocyte distribution in the female sheep. Mol Cell Endocrinol 2020; 503:110691. [PMID: 31863810 PMCID: PMC7012762 DOI: 10.1016/j.mce.2019.110691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep exhibit an enhanced inflammatory and oxidative stress state in the visceral adipose tissue (VAT) but not in the subcutaneous (SAT), while surprisingly maintaining insulin sensitivity in both depots. In adult sheep, adipose tissue is predominantly composed of white adipocytes which favor lipid storage. Brown/beige adipocytes that make up the brown adipose tissue (BAT) favor lipid utilization due to thermogenic uncoupled protein 1 expression and are interspersed amidst white adipocytes, more so in epicardiac (ECAT) and perirenal (PRAT) depots. The impact of prenatal T-treatment on ECAT and PRAT depots are unknown. As BAT imparts a metabolically healthy phenotype, the depot-specific impact of prenatal T-treatment on inflammation, oxidative stress, differentiation and insulin sensitivity could be dictated by the distribution of brown adipocytes. This hypothesis was tested by assessing markers of oxidative stress, inflammation, adipocyte differentiation, fibrosis and thermogenesis in adipose depots from control and prenatal T (100 mg T propionate twice a week from days 30-90 of gestation) -treated female sheep at 21 months of age. Our results show prenatal T-treatment induces depot-specific changes in inflammation, oxidative stress state, collagen accumulation, and differentiation with changes being more pronounced in the VAT. Prenatal T-treatment also increased thermogenic gene expression in all depots indicative of increased browning with effects being more prominent in VAT and SAT. Considering that inflammatory and oxidative stress are also elevated, the increased brown adipocyte distribution is likely a compensatory response to maintain insulin sensitivity and function of organs in the proximity of respective depots.
Collapse
Affiliation(s)
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Chatoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
24
|
Simsir C, Pekcan MK, Aksoy RT, Ecemis T, Coskun B, Kilic SH, Tokmak A. The ratio of anterior anogenital distance to posterior anogenital distance: A novel-biomarker for polycystic ovary syndrome. J Chin Med Assoc 2019; 82:782-786. [PMID: 31356564 DOI: 10.1097/jcma.0000000000000150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age. The etiopathogenesis of the disease remains uncertain. Additionally, a full consensus has not been reached regarding PCOS diagnostic criteria. Several attempts have been made to diagnose PCOS with a simple clinical biomarker, but most of them failed. This study aims to investigate the possible association between PCOS and anogenital distance (AGD), which is an important sign of intrauterine androgen exposure. METHODS A prospective cohort study was conducted on 130 women. The study group contained 65 women with PCOS whereas 65 healthy women were recruited for the control group, all between 18 and 40 years in age. The groups were compared in terms of demographics and clinical and laboratory parameters. Both anterior and posterior AGDs and associated ratios were recorded for each woman. RESULTS The mean ratio of anterior AGD to posterior AGD for the PCOS and control group were 4.4 ± 1.0 and 4.9 ± 1.0, respectively (p = 0.003). Regression analysis demonstrated that this ratio significantly and positively correlated with the waist to hip ratio and negatively correlated with the free androgen index. CONCLUSION AGD was initially used to define sexual differentiation of animals. Subsequent human studies showed that boys have longer AGDs than girls. Recent studies supporting the hypothesis that extreme prenatal androgen exposure contributes to PCOS found that AGD in adult PCOS patients was longer than control PCOS patients. However, a novel biomarker other than AGD needs to be identified to standardize these measurements. This work represents the first study to evaluate the ratio of anterior AGD to posterior AGD in PCOS patients. In this study, AGD anterior and posterior measurements were longer in PCOS patients than in controls. However, the strongest predictor of PCOS is the ratio of anterior to posterior AGD.
Collapse
Affiliation(s)
- Coskun Simsir
- Department of Obstetrics and Gynecology, Liv Hospital, Ankara, Turkey
| | - Meryem Kuru Pekcan
- Division of Gynecological Endocrinology, Department of Obstetrics and Gynecology, Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, University of Health Sciences, Ankara, Turkey
| | - Rifat Taner Aksoy
- Division of Gynecological Endocrinology, Department of Obstetrics and Gynecology, Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, University of Health Sciences, Ankara, Turkey
| | - Tolga Ecemis
- Department of Obstetrics and Gynecology, Liv Hospital, Ankara, Turkey
| | - Bugra Coskun
- Department of Obstetrics and Gynecology, Liv Hospital, Ankara, Turkey
| | | | - Aytekin Tokmak
- Division of Gynecological Endocrinology, Department of Obstetrics and Gynecology, Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
25
|
Developmental Programming of PCOS Traits: Insights from the Sheep. Med Sci (Basel) 2019; 7:medsci7070079. [PMID: 31336724 PMCID: PMC6681354 DOI: 10.3390/medsci7070079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that results from a combination of multiple factors, including genetic, epigenetic, and environmental influences. Evidence from clinical and preclinical studies indicates that elevated intrauterine androgen levels increase the susceptibility of the female offspring to develop the PCOS phenotype. Additionally, early postnatal endocrine and metabolic imbalances may act as a "second-hit", which, through activational effects, might unmask or amplify the modifications programmed prenatally, thus culminating in the development of adult disease. Animal models provide unparalleled resources to investigate the effects of prenatal exposure to androgen excess and to elucidate the etiology and progression of disease conditions associated with this occurrence, such as PCOS. In sheep, prenatal treatment with testosterone disrupts the developmental trajectory of the fetus, culminating in adult neuroendocrine, ovarian, and metabolic perturbations that closely resemble those seen in women with PCOS. Our longitudinal studies clearly demonstrate that prenatal exposure to testosterone excess affects both the reproductive and the metabolic systems, leading to a self-perpetuating cycle with defects in one system having an impact on the other. These observations in the sheep suggest that intervention strategies targeting multiple organ systems may be required to prevent the progression of developmentally programmed disorders.
Collapse
|
26
|
Dumesic DA, Phan JD, Leung KL, Grogan TR, Ding X, Li X, Hoyos LR, Abbott DH, Chazenbalk GD. Adipose Insulin Resistance in Normal-Weight Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2019; 104:2171-2183. [PMID: 30649347 PMCID: PMC6482023 DOI: 10.1210/jc.2018-02086] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
CONTEXT Normal-weight women with polycystic ovary syndrome (PCOS) may have adipose tissue insulin resistance (adipose-IR). OBJECTIVE To examine whether adipose-IR and subcutaneous (SC) abdominal adipose stem cell (ASC) gene expression are altered in normal-weight women with PCOS and correlated with hyperandrogenemia and/or whole-body IR. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENTS Ten normal-weight women with PCOS and 18 control subjects matched for age and body mass index. INTERVENTION(S) Women underwent circulating hormone and metabolic measurements, IV glucose tolerance testing, total-body dual-energy x-ray absorptiometry, and SC abdominal fat biopsy. MAIN OUTCOME MEASURE(S) Adipose-IR (fasting insulin × total fatty acid levels) and SC abdominal ASC gene expression were compared between groups and correlated with clinical outcomes. RESULTS Adipose-IR was greater in women with PCOS than in control subjects (P < 0.01), with 29 pmol/L × mmol/L providing 94% specificity and 80% sensitivity in discriminating the two groups (P < 0.001). Adipose-IR positively correlated with serum androgen and log of fasting triglyceride (TG) levels, percentage of small adipocytes (P < 0.01, all correlations), and acute insulin response to glucose (P < 0.05); and negatively correlated with insulin sensitivity (Si; P < 0.025) and serum adiponectin levels (P < 0.05). Adjusting for serum androgens, adipose-IR correlations with Si and log TG levels remained significant. ASC genes were differentially expressed by the two groups. Expression of functionally critical genes was associated with serum testosterone and/or fasting insulin levels. CONCLUSION Normal-weight women with PCOS have increased adipose-IR and altered ASC gene expression related to hyperandrogenism and IR.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California
- Correspondence and Reprint Requests: Daniel A. Dumesic, MD, Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, 10833 Le Conte Avenue, Room 22-178 CHS, Los Angeles, California 90095. E-mail:
| | - Julia D Phan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Karen L Leung
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Xiangmiang Ding
- Technology Center for Genomics and Bioinformatics, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Xinmin Li
- Technology Center for Genomics and Bioinformatics, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Luis R Hoyos
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California
| |
Collapse
|
27
|
Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod Toxicol 2019; 85:110-122. [PMID: 30853570 DOI: 10.1016/j.reprotox.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Developmental exposure to endocrine disruptor bisphenol A (BPA) is associated with metabolic defects during adulthood. In sheep, prenatal BPA treatment causes insulin resistance (IR) and adipocyte hypertrophy in the female offspring. To determine if changes in insulin sensitivity mediators (increase in inflammation, oxidative stress, and lipotoxicity and/or decrease in adiponectin) and the intracrine steroidal milieu contributes to these metabolic perturbations, metabolic tissues collected from 21-month-old female offspring born to mothers treated with 0, 0.05, 0.5, or 5 mg/kg/day of BPA were studied. Findings showed prenatal BPA in non-monotonic manner (1) increased oxidative stress; (2) induced lipotoxicity in liver and muscle; and (3) increased aromatase and estrogen receptor expression in visceral adipose tissues. These changes are generally associated with the development of peripheral and tissue level IR and may explain the IR status and adipocyte hypertrophy observed in prenatal BPA-treated female sheep.
Collapse
|
28
|
Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic origins of polycystic ovary syndrome - implications for pathophysiology and therapy. Expert Rev Endocrinol Metab 2019; 14:131-143. [PMID: 30767580 PMCID: PMC6992448 DOI: 10.1080/17446651.2019.1576522] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) diagnosis comprises combinations of female hyperandrogenism, menstrual irregularity and polycystic ovaries. While it is a familial and highly prevalent endocrine disorder, progress towards a cure is hindered by absence of a definitive pathogenic mechanism and lack of an animal model of naturally occurring PCOS. AREAS COVERED These include an overview of PCOS and its potential etiology, and an examination of insights gained into its pathogenic origins. Animal models derived from experimentally-induced hyperandrogenism during gestation, or from naturally-occurring PCOS-like traits, most reliably demonstrate reproductive, neuroendocrine and metabolic pathogenesis. EXPERT OPINION Genetic studies, while identifying at least 17 PCOS risk genes, account for <10% of women with PCOS. A number of PCOS risk genes involve regulation of gonadotropin secretion or action, suggesting a reproductive neuroendocrine basis for PCOS pathogenesis. Consistent with this notion, a number of animal models employing fetal androgen excess demonstrate epigenetic induction of PCOS-like traits, including reproductive neuroendocrine and metabolic dysfunction. Monkey models are most comprehensive, while mouse models provide molecular insight, including identifying the androgen receptor, particularly in neurons, as mediating androgen-induced PCOS-like programming. Naturally-occurring female hyperandrogenism is also demonstrated in monkeys. Animal models are poised to delineate molecular gateways to PCOS pathogenesis.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
- Department of Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jon E Levine
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
29
|
Puttabyatappa M, Padmanabhan V. Ovarian and Extra-Ovarian Mediators in the Development of Polycystic Ovary Syndrome. J Mol Endocrinol 2018; 61:R161-R184. [PMID: 29941488 PMCID: PMC6192837 DOI: 10.1530/jme-18-0079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women of reproductive age. The origin of PCOS is still not clear and appears to be a function of gene x environment interactions. This review addresses the current knowledge of the genetic and developmental contributions to the etiology of PCOS, the ovarian and extra-ovarian mediators of PCOS and the gaps and key challenges that need to be addressed in the diagnosis, treatment and prevention of PCOS.
Collapse
|
30
|
Abruzzese GA, Crisosto N, De Grava Kempinas W, Sotomayor-Zárate R. Developmental programming of the female neuroendocrine system by steroids. J Neuroendocrinol 2018; 30:e12632. [PMID: 29968423 DOI: 10.1111/jne.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Developmental programming refers to processes that occur during early life that may have long-term consequences, modulating adult health and disease. Complex diseases, such as diabetes, cancer and cardiovascular disease, have a high prevalence in different populations, are multifactorial, and may have a strong environmental component. The environment interacts with organisms, affecting their behaviour, morphology and physiology. This interaction may induce permanent or long-term changes, and organisms may be more susceptible to environmental factors during certain developmental stages, such as the prenatal and early postnatal periods. Several factors have been identified as responsible for inducing the reprogramming of various reproductive and nonreproductive tissues. Among them, both natural and synthetic steroids, such as endocrine disruptors, are known to have either detrimental or positive effects on organisms depending on the dose of exposure, stage of development and biological sexual background. The present review focuses on the action of steroids and endocrine disruptors as agents involved in developmental programming and on their modulation and effects on female neuroendocrine functions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nicolás Crisosto
- Endocrinology and Metabolism Laboratory West Division, School of Medicine, University of Chile, Santiago, Chile
- Endocrinology Unit, Clínica Las Condes, Santiago, Chile
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences, Universidade Estadual Paulista-UNESP, Botucatu, Sao Paulo, Brazil
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
31
|
Abstract
Prenatal exposure to excess steroids or steroid mimics can disrupt the normal developmental trajectory of organ systems, culminating in adult disease. The metabolic system is particularly susceptible to the deleterious effects of prenatal steroid excess. Studies in sheep demonstrate that prenatal exposure to excess native steroids or endocrine-disrupting chemicals with steroidogenic activity, such as bisphenol A, results in postnatal development of numerous cardiometabolic perturbations, including insulin resistance, increased adiposity, altered adipocyte size and distribution, and hypertension. The similarities in the phenotypic outcomes programmed by these different prenatal insults suggest that common mechanisms may be involved, and these may include hormonal imbalances (e.g., hyperandrogenism and hyperinsulinemia), oxidative stress, inflammation, lipotoxicity, and epigenetic alterations. Animal models, including the sheep, provide mechanistic insight into the metabolic repercussions associated with prenatal steroid exposure and represent valuable research tools in understanding human health and disease. Focusing on the sheep model, this review summarizes the cardiometabolic perturbations programmed by prenatal exposure to different native steroids and steroid mimics and discusses the potential mechanisms underlying the development of adverse outcomes.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
32
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
33
|
Varlamov O, Bishop CV, Handu M, Takahashi D, Srinivasan S, White A, Roberts CT. Combined androgen excess and Western-style diet accelerates adipose tissue dysfunction in young adult, female nonhuman primates. Hum Reprod 2018; 32:1892-1902. [PMID: 28854720 DOI: 10.1093/humrep/dex244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION What are the separate and combined effects of mild hyperandrogenemia and consumption of a high-fat Western-style diet (WSD) on white adipose tissue (WAT) morphology and function in young adult female nonhuman primates? SUMMARY ANSWER Combined exposure to mild hyperandrogenemia and WSD induces visceral omental (OM-WAT) but not subcutaneous (SC-WAT) adipocyte hypertrophy that is associated with increased uptake and reduced mobilization of free fatty acids. WHAT IS KNOWN ALREADY Mild hyperandrogenemia in females, principally in the context of polycystic ovary syndrome, is often associated with adipocyte hypertrophy, but the mechanisms of associated WAT dysfunction and depot specificity remain poorly understood. STUDY DESIGN, SIZE AND DURATION Female rhesus macaques were randomly assigned at 2.5 years of age (near menarche) to receive either cholesterol (C; n = 20) or testosterone (T; n = 20)-containing silastic implants to elevate T levels 5-fold above baseline. Half of each of these groups was then fed either a low-fat monkey chow diet or WSD, resulting in four treatment groups (C, control diet; T alone; WSD alone; T + WSD; n = 10/group) that were maintained until the current analyses were performed at 5.5 years of age (3 years of treatment, young adults). PARTICIPANTS/MATERIALS, SETTING AND METHODS OM and SC-WAT biopsies were collected and analyzed longitudinally for in vivo changes in adipocyte area and blood vessel density, and ex vivo basal and insulin-stimulated fatty acid uptake and basal and isoproterenol-stimulated lipolysis. MAIN RESULTS AND THE ROLE OF CHANCE In years 2 and 3 of treatment, the T + WSD group exhibited a significantly greater increase in OM adipocyte size compared to all other groups (P < 0.05), while the size of SC adipocytes measured at the end of the study was not significantly different between groups. In year 3, both WAT depots from the WSD and T + WSD groups displayed a significant reduction in local capillary length and vessel junction density (P < 0.05). In year 3, insulin-stimulated fatty acid uptake in OM-WAT was increased in the T + WSD group compared to year 2 (P < 0.05). In year 3, basal lipolysis was blunted in the T and T + WSD groups in both WAT depots (P < 0.01), while isoproterenol-stimulated lipolysis was significantly blunted in the T and T + WSD groups only in SC-WAT (P < 0.01). LIMITATIONS, REASONS FOR CAUTION At this stage of the study, subjects were still relatively young adults, so that the effects of mild hyperandrogenemia and WSD may become more apparent with increasing age. WIDER IMPLICATIONS OF THE FINDINGS The combination of mild hyperandrogenemia and WSD accelerates the development of WAT dysfunction through T-specific (suppression of lipolytic response by T), WSD-dependent (reduced capillary density) and combined T + WSD (increased fatty acid uptake) mechanisms. These data support the idea that combined hyperandrogenemia and WSD increases the risk of developing obesity in females. STUDY FUNDING/COMPETING INTEREST(S) Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award number P50 HD071836 to C.T.R. and award number OD 011092 from the Office of the Director, National Institutes of Health, for operation of the Oregon National Primate Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Mithila Handu
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Sathya Srinivasan
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Ashley White
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.,Department of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
34
|
Puttabyatappa M, Lu C, Martin JD, Chazenbalk G, Dumesic D, Padmanabhan V. Developmental Programming: Impact of Prenatal Testosterone Excess on Steroidal Machinery and Cell Differentiation Markers in Visceral Adipocytes of Female Sheep. Reprod Sci 2017; 25:1010-1023. [PMID: 29237348 DOI: 10.1177/1933719117746767] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest reduced adipocyte size and peripheral insulin resistance. The small adipocyte phenotype may reflect defects in adipogenesis and its steroidal machinery. To test whether prenatal T treatment from gestational days 30 to 90 alters the visceral adipose tissue (VAT) steroidal machinery and reduces adipocyte differentiation, we examined expression of the steroidogenic enzymes, steroid receptors, and adipocyte differentiation markers at fetal day 90 and postnatal ages 10 and 21 months. Because gestational T treatment increases fetal T and maternal insulin, the contributions of these were assessed by androgen receptor antagonist or insulin sensitizer cotreatment, either separately (at fetal day 90 and 21 months of age time points) or together (10 months of age). The effects on adipogenesis were assessed in the VAT-derived mesenchymal stem cells (AT-MSCs) from pre- and postpubertal time points to evaluate the effects of pubertal steroidal changes on adipogenesis. Our results show that VAT manifests potentially a predominant estrogenic intracrine milieu (increased aromatase and estrogen receptor α) and reduced differentiation markers at fetal day 90 and postnatal 21 months of age. These changes appear to involve both androgenic and metabolic pathways. Preliminary findings suggest that prenatal T treatment reduces adipogenesis, decreases expression of differentiation, and increases expression of commitment markers at both pre- and postpubertal time points. Together, these findings suggest that (1) increased commitment of AT-MSCs to adipocyte lineage and decreased differentiation to adipocytes may underlie the small adipocyte phenotype of prenatal T-treated females and (2) excess T-induced changes in steroidal machinery in the VAT likely participate in the programming/maintenance of this defect.
Collapse
Affiliation(s)
| | - Chunxia Lu
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jacob D Martin
- 1 Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Gregorio Chazenbalk
- 2 Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel Dumesic
- 2 Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
35
|
Olatunji LA, Usman TO, Akinade AI, Adeyanju OA, Kim I, Soladoye AO. Low-dose spironolactone ameliorates insulin resistance and suppresses elevated plasminogen activator inhibitor-1 during gestational testosterone exposure. Arch Physiol Biochem 2017; 123:286-292. [PMID: 28480754 DOI: 10.1080/13813455.2017.1320681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Elevated gestational circulating testosterone has been associated with pathological pregnancies that increase the risk of development of cardiometabolic disorder in later life. OBJECTIVE We hypothesised that gestational testosterone exposure, in late pregnancy, causes glucose deregulation and atherogenic dyslipidaemia that would be accompanied by high plasminogen activator inhibitor-1 (PAI-1). The study also hypothesise that low-dose spironolactone treatment would ameliorate these effects. METHODS Pregnant Wistar rats received vehicle, testosterone (0.5 mg/kg; sc), spironolactone (0.5 mg/kg, po) or testosterone and spironolactone daily between gestational days 15 and 19. RESULTS Gestational testosterone exposure led to increased HOMA-IR, circulating insulin, testosterone, 1-h post-load glucose, atherogenic dyslipidaemia, PLR, PAI-1 and MDA. However, all these effects, except that of circulating testosterone, were ameliorated by spironolactone. CONCLUSIONS These results demonstrate that low-dose spironolactone ameliorates glucose deregulation and atherogenic dyslipidaemia during elevated gestational testosterone exposure, at least in part, by suppressing elevated PAI-1.
Collapse
Affiliation(s)
- Lawrence A Olatunji
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| | - Taofeek O Usman
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
- b Department of Physiology, Cardiovascular Unit, College of Health sciences , Osun State University , Osogbo , Nigeria
| | - Aminat I Akinade
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| | - Oluwaseun A Adeyanju
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| | - InKyeom Kim
- c Department of Pharmacology, Cardiovascular Research Institute , Kyungpook National University School of Medicine , Daegu , Republic of Korea
| | - Ayodele O Soladoye
- a Department of Physiology, Cardiovascular Research Laboratory , College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| |
Collapse
|
36
|
Puttabyatappa M, Andriessen V, Mesquitta M, Zeng L, Pennathur S, Padmanabhan V. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Mediators of Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep. Endocrinology 2017; 158:2783-2798. [PMID: 28911168 PMCID: PMC5659659 DOI: 10.1210/en.2017-00460] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
Prenatal testosterone (T) excess in sheep leads to peripheral insulin resistance (IR), reduced adipocyte size, and tissue-specific changes, with liver and muscle but not adipose tissue being insulin resistant. To determine the basis for the tissue-specific differences in insulin sensitivity, we assessed changes in negative (inflammation, oxidative stress, and lipotoxicity) and positive mediators (adiponectin and antioxidants) of insulin sensitivity in the liver, muscle, and adipose tissues of control and prenatal T-treated sheep. Because T excess leads to maternal hyperinsulinemia, fetal hyperandrogenism, and functional hyperandrogenism and IR in their female offspring, prenatal and postnatal interventions with antiandrogen, flutamide, and the insulin sensitizer rosiglitazone were used to parse out the contribution of androgenic and metabolic pathways in programming and maintaining these defects. Results showed that (1) peripheral IR in prenatal T-treated female sheep is related to increases in triglycerides and 3-nitrotyrosine, which appear to override the increase in high-molecular-weight adiponectin; (2) liver IR is a function of the increase in oxidative stress (3-nitrotyrosine) and lipotoxicity; (3) muscle IR is related to lipotoxicity; and (4) the insulin-sensitive status of visceral adipose tissue appears to be a function of the increase in antioxidants that likely overrides the increase in proinflammatory cytokines, macrophages, and oxidative stress. Prenatal and postnatal intervention with either antiandrogen or insulin sensitizer had partial effects in preventing or ameliorating the prenatal T-induced changes in mediators of insulin sensitivity, suggesting that both pathways are critical for the programming and maintenance of the prenatal T-induced changes and point to potential involvement of estrogenic pathways.
Collapse
Affiliation(s)
| | | | - Makeda Mesquitta
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
| | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
37
|
Pu Y, Veiga-Lopez A. PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cell Mol Biol Lett 2017; 22:6. [PMID: 28536637 PMCID: PMC5415806 DOI: 10.1186/s11658-017-0037-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/10/2017] [Indexed: 01/07/2023] Open
Abstract
Background Although the 3T3-L1 preadipocyte cell line represents an informative model for in vitro adipogenesis research, primary cultured cells are often needed to understand particular human or animal metabolic phenotypes. As demonstrated by in vitro cultured preadipocytes from large mammalian species, primary cultured cells require specific adipogenic differentiation conditions different to that of the 3T3-L1 cell line. These conditions are also species-specific and require optimization steps. However, efficient protocols to differentiate primary preadipocytes using alternative species to rodents are scarce. Sheep represent an amenable animal model for fetal biology and developmental origins of health and disease studies. In this work, we present with the first detailed procedure to efficiently differentiate primary fetal and adult ovine preadipocytes. Methods Fetal and adult ovine adipose and skin tissue harvest, preadipocyte and fibroblast isolation, proliferation, and standardization and optimization of a new adipogenic differentiation protocol. Use of commercial cell lines (3T3-L1 and NIH-3T3) for validation purposes. Oil red O stain and gene expression were used to validate adipogenic differentiation. ANOVA and Fisher’s exact test were used to determine statistical significance. Results Our optimized adipogenic differentiation method included a prolonged adipogenic cocktail exposure time from 2 to 8 days, higher insulin concentration, and supplementation with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone. This protocol was optimized for both, fetal and adult preadipocytes. Conclusions Our protocol enables successful adipogenic differentiation of fetal and adult ovine preadipocytes. This work demonstrates that compared to the 3T3-L1 cell line, fetal ovine preadipocytes require a longer exposure to the differentiation cocktail, and the need for IMBX, dexamethasone, and/or the PPARγ agonist rosiglitazone through the terminal differentiation phase. They also require higher insulin concentration during differentiation to enhance lipid accumulation and similar to human primary preadipocytes, PPARγ agonist supplementation is also required for ovine adipogenic differentiation. This work highlights species-specific differences requirements for adipogenic differentiation and the need to develop standardized methods to investigate comparative adipocyte biology.
Collapse
Affiliation(s)
- Yong Pu
- Department of Animal Science, Michigan State University, 474 S. Shaw Lane Rm 1230 F, East Lansing, MI 48824 USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, 474 S. Shaw Lane Rm 1230 F, East Lansing, MI 48824 USA
| |
Collapse
|
38
|
Wu Y, Zhong G, Chen S, Zheng C, Liao D, Xie M. Polycystic ovary syndrome is associated with anogenital distance, a marker of prenatal androgen exposure. Hum Reprod 2017; 32:937-943. [DOI: 10.1093/humrep/dex042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/25/2017] [Indexed: 12/31/2022] Open
|
39
|
Hakim C, Padmanabhan V, Vyas AK. Gestational Hyperandrogenism in Developmental Programming. Endocrinology 2017; 158:199-212. [PMID: 27967205 PMCID: PMC5413081 DOI: 10.1210/en.2016-1801] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
Androgen excess (hyperandrogenism) is a common endocrine disorder affecting women of reproductive age. The potential causes of androgen excess in women include polycystic ovary syndrome, congenital adrenal hyperplasia (CAH), adrenal tumors, and racial disparity among many others. During pregnancy, luteoma, placental aromatase deficiency, and fetal CAH are additional causes of gestational hyperandrogenism. The present report reviews the various phenotypes of hyperandrogenism during pregnancy and its origin, pathophysiology, and the effect of hyperandrogenism on the fetal developmental trajectory and offspring consequences.
Collapse
Affiliation(s)
- Christopher Hakim
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109; and
| | - Arpita K. Vyas
- College of Human Medicine, Michigan State University, East Lansing, Michigan 48824
- Department of Pediatrics, Texas Tech University Health Sciences Center, Permian Basin Campus, Odessa, Texas 79763
| |
Collapse
|
40
|
Puttabyatappa M, Padmanabhan V. Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:575-596. [PMID: 29224111 DOI: 10.1007/978-3-319-70178-3_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin resistance, a common feature of metabolic disorders such as obesity, nonalcoholic fatty liver disease, metabolic syndrome, and polycystic ovary syndrome, is a risk factor for development of diabetes. Because sex hormones orchestrate the establishment of sex-specific behavioral, reproductive, and metabolic differences, a role for them in the developmental origin of insulin resistance is also to be expected. Female sheep exposed to male levels of testosterone during fetal life serve as an excellent translational model for delineating programming of insulin resistance. This chapter summarizes the ontogeny of insulin resistance, the tissue-specific changes in insulin sensitivity, and the various factors that are involved in the programming and maintenance of the insulin resistance in adult female sheep that were developmentally exposed to fetal male levels of testosterone during the sexual-differentiation window.
Collapse
|
41
|
Dumesic DA, Akopians AL, Madrigal VK, Ramirez E, Margolis DJ, Sarma MK, Thomas AM, Grogan TR, Haykal R, Schooler TA, Okeya BL, Abbott DH, Chazenbalk GD. Hyperandrogenism Accompanies Increased Intra-Abdominal Fat Storage in Normal Weight Polycystic Ovary Syndrome Women. J Clin Endocrinol Metab 2016; 101:4178-4188. [PMID: 27571186 PMCID: PMC5095243 DOI: 10.1210/jc.2016-2586] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Normal weight polycystic ovary syndrome (PCOS) women may have altered adipose structure-function underlying metabolic dysfunction. OBJECTIVE This study examines whether adipose structure-functional changes exist in normal weight PCOS women and correlate with hyperandrogenism and/or hyperinsulinemia. DESIGN This is a prospective cohort study. SETTING The setting was an academic medical center. PATIENTS Six normal weight PCOS women and 14 age- and body mass index-matched normoandrogenic ovulatory (NL) women were included. INTERVENTION(S) All women underwent circulating hormone and metabolic measurements; frequently sampled intravenous glucose tolerance testing; total body dual-energy x-ray absorptiometry; abdominal magnetic resonance imaging; and SC abdominal fat biopsy. MAIN OUTCOME MEASURE(S) Circulating hormones and metabolites, body fat and its distribution, and adipocyte size were compared between PCOS and NL women, and were correlated with each other in all women. RESULTS Circulating LH and androgen levels were significantly greater in PCOS than NL women, as were fasting insulin levels, pancreatic β-cell responsiveness to glucose, and total abdominal fat mass. Intra-abdominal fat mass also was significantly increased in PCOS women and was positively correlated with circulating androgen, fasting insulin, triglyceride, and non-high-density lipoprotein cholesterol levels in all women. SC abdominal fat mass was not significantly increased in PCOS women, but contained a greater proportion of small SC abdominal adipocytes that positively correlated with serum androgen levels in all women. CONCLUSION Hyperandrogenism in normal weight PCOS women is associated with preferential intra-abdominal fat deposition and an increased population of small SC abdominal adipocytes that could constrain SC adipose storage and promote metabolic dysfunction.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Alin L Akopians
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Vanessa K Madrigal
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Emmanuel Ramirez
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Daniel J Margolis
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Manoj K Sarma
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Albert M Thomas
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Tristan R Grogan
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Rasha Haykal
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Tery A Schooler
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Bette L Okeya
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - David H Abbott
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology (D.A.D., A.L.A., V.K.M., R.H., T.A.S., B.L.O, G.D.C.), David Geffen School of Medicine at UCLA, Los Angeles, California 90095; Department of Medicine (E.R.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Radiological Science (D.J.M., M.K.S, A.M.T.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medicine Statistics Core (T.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center (D.H.A), University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
42
|
Zubeldia-Brenner L, Roselli CE, Recabarren SE, Gonzalez Deniselle MC, Lara HE. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J Neuroendocrinol 2016; 28:10.1111/jne.12401. [PMID: 27262161 PMCID: PMC4956521 DOI: 10.1111/jne.12401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.
Collapse
Affiliation(s)
- L Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, Portland, OR, USA
| | - S E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Chillán, Chile
| | - M C Gonzalez Deniselle
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H E Lara
- Laboratory of Neurobiochemistry Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
43
|
Ramaswamy S, Grace C, Mattei AA, Siemienowicz K, Brownlee W, MacCallum J, McNeilly AS, Duncan WC, Rae MT. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion. Sci Rep 2016; 6:27408. [PMID: 27265420 PMCID: PMC4893678 DOI: 10.1038/srep27408] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023] Open
Abstract
Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.
Collapse
Affiliation(s)
- S Ramaswamy
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - C Grace
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - A A Mattei
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - K Siemienowicz
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - W Brownlee
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - J MacCallum
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - A S McNeilly
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - W C Duncan
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - M T Rae
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| |
Collapse
|
44
|
Lu C, Cardoso RC, Puttabyatappa M, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep. Biol Reprod 2016; 94:113. [PMID: 27053365 PMCID: PMC4939741 DOI: 10.1095/biolreprod.115.136283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/05/2016] [Indexed: 12/25/2022] Open
Abstract
Women with polycystic ovary syndrome often manifest insulin resistance. Using a sheep model of polycystic ovary syndrome-like phenotype, we explored the contribution of androgen and insulin in programming and maintaining disruptions in insulin signaling in metabolic tissues. Phosphorylation of AKT, ERK, GSK3beta, mTOR, and p70S6K was examined in the liver, muscle, and adipose tissue of control and prenatal testosterone (T)-, prenatal T plus androgen antagonist (flutamide)-, and prenatal T plus insulin sensitizer (rosiglitazone)-treated fetuses as well as 2-yr-old females. Insulin-stimulated phospho (p)-AKT was evaluated in control and prenatal T-, prenatal T plus postnatal flutamide-, and prenatal T plus postnatal rosiglitazone-treated females at 3 yr of age. GLUT4 expression was evaluated in the muscle at all time points. Prenatal T treatment increased mTOR, p-p70S6K, and p-GSK3beta levels in the fetal liver with both androgen antagonist and insulin sensitizer preventing the mTOR increase. Both interventions had partial effect in preventing the increase in p-GSK3beta. In the fetal muscle, prenatal T excess decreased p-GSK3beta and GLUT4. The decrease in muscle p-GSK3beta was partially prevented by insulin sensitizer cotreatment. Both interventions partially prevented the decrease in GLUT4. Prenatal T treatment had no effect on basal expression of any of the markers in 2-yr-old females. At 3 yr of age, prenatal T treatment prevented the insulin-stimulated increase in p-AKT in liver and muscle, but not in adipose tissue, and neither postnatal intervention restored p-AKT response to insulin stimulation. Our findings provide evidence that prenatal T excess changes insulin sensitivity in a tissue- and development-specific manner and that both androgens and insulin may be involved in the programming of these metabolic disruptions.
Collapse
Affiliation(s)
- Chunxia Lu
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
45
|
|
46
|
Cardoso RC, Veiga-Lopez A, Moeller J, Beckett E, Pease A, Keller E, Madrigal V, Chazenbalk G, Dumesic D, Padmanabhan V. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep. Endocrinology 2016; 157:522-35. [PMID: 26650569 PMCID: PMC4733129 DOI: 10.1210/en.2015-1565] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Almudena Veiga-Lopez
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Jacob Moeller
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Evan Beckett
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Anthony Pease
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Erica Keller
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Vanessa Madrigal
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Gregorio Chazenbalk
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Daniel Dumesic
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Vasantha Padmanabhan
- Department of Pediatrics (R.C.C., A.V.-L., J.M., E.B., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Small Animal Clinical Sciences (A.P.), Michigan State University, East Lansing, Michigan 48824; and Department of Obstetrics and Gynecology (E.K., V.M., G.C., D.D.), David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
47
|
Veiga-Lopez A, Moeller J, Sreedharan R, Singer K, Lumeng C, Ye W, Pease A, Padmanabhan V. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. Am J Physiol Endocrinol Metab 2016; 310:E238-47. [PMID: 26646100 PMCID: PMC4888526 DOI: 10.1152/ajpendo.00425.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
Abstract
Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan; Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Rohit Sreedharan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Carey Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Wen Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Anthony Pease
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
48
|
More AS, Mishra JS, Gopalakrishnan K, Blesson CS, Hankins GD, Sathishkumar K. Prenatal Testosterone Exposure Leads to Gonadal Hormone-Dependent Hyperinsulinemia and Gonadal Hormone-Independent Glucose Intolerance in Adult Male Rat Offspring. Biol Reprod 2015; 94:5. [PMID: 26586841 PMCID: PMC4809560 DOI: 10.1095/biolreprod.115.133157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Elevated testosterone levels during prenatal life lead to hyperandrogenism and insulin resistance in adult females. This study evaluated whether prenatal testosterone exposure leads to the development of insulin resistance in adult male rats in order to assess the influence of gonadal hormones on glucose homeostasis in these animals. Male offspring of pregnant rats treated with testosterone propionate or its vehicle (control) were examined. A subset of male offspring was orchiectomized at 7 wk of age and reared to adulthood. At 24 wk of age, fat weights, plasma testosterone, glucose homeostasis, pancreas morphology, and gastrocnemius insulin receptor (IR) beta levels were examined. The pups born to testosterone-treated mothers were smaller at birth and remained smaller through adult life, with levels of fat deposition relatively similar to those in controls. Testosterone exposure during prenatal life induced hyperinsulinemia paralleled by an increased HOMA-IR index in a fasting state and glucose intolerance and exaggerated insulin responses following a glucose tolerance test. Prenatal androgen-exposed males had more circulating testosterone during adult life. Gonadectomy prevented hyperandrogenism, reversed hyperinsulinemia, and attenuated glucose-induced insulin responses but did not alter glucose intolerance in these rats. Prenatal androgen-exposed males had decreased pancreatic islet numbers, size, and beta-cell area along with decreased expression of IR in gastrocnemius muscles. Gonadectomy restored pancreatic islet numbers, size, and beta-cell area but did not normalize IRbeta expression. This study shows that prenatal testosterone exposure leads to a defective pancreas and skeletal muscle function in male offspring. Hyperinsulinemia during adult life is gonad-dependent, but glucose intolerance appears to be independent of postnatal testosterone levels.
Collapse
Affiliation(s)
- Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Jay S Mishra
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Kathirvel Gopalakrishnan
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Gary D Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Kunju Sathishkumar
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
49
|
Maliqueo M, Echiburú B, Crisosto N. Perinatal androgen exposure and adipose tissue programming: is there an impact on body weight fate? Expert Rev Endocrinol Metab 2015; 10:533-544. [PMID: 30298761 DOI: 10.1586/17446651.2015.1077695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is a major concern in public health because it is one of the main risk factors for the development of non-transmissible chronic diseases. The fact that there is a clear sex dimorphism in normal body fat distribution points out the role of sex steroids as key factors in the regulation and function of the adipose cell. Androgens affect adipogenesis and fat metabolism in the adipose tissue of males and females. Hormonal disorders during pregnancy may affect the fetal tissues, with long-term implications leading to the development of pathologies during adult life. Obesity and metabolic disease are among these. In this regard, animal models have demonstrated an abnormal fat distribution and modifications in the size and function of adipose cells in the female and male offspring of mothers exposed to androgen excess during pregnancy.
Collapse
Affiliation(s)
| | - Bárbara Echiburú
- a Endocrinology and Metabolism Laboratory, University of Chile, West Division, School of Medicine, Santiago, Chile
| | - Nicolás Crisosto
- a Endocrinology and Metabolism Laboratory, University of Chile, West Division, School of Medicine, Santiago, Chile
| |
Collapse
|
50
|
Free Fatty Acid Effects on the Atrial Myocardium: Membrane Ionic Currents Are Remodeled by the Disruption of T-Tubular Architecture. PLoS One 2015; 10:e0133052. [PMID: 26274906 PMCID: PMC4537212 DOI: 10.1371/journal.pone.0133052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epicardial adiposity and plasma levels of free fatty acids (FFAs) are elevated in atrial fibrillation, heart failure and obesity, with potentially detrimental effects on myocardial function. As major components of epicardial fat, FFAs may be abnormally regulated, with a potential to detrimentally modulate electro-mechanical function. The cellular mechanisms underlying such effects of FFAs are unknown. OBJECTIVE To determine the mechanisms underlying electrophysiological effects of palmitic (PA), stearic (SA) and oleic (OA) FFAs on sheep atrial myocytes. METHODS We used electrophysiological techniques, numerical simulations, biochemistry and optical imaging to examine the effects of acutely (≤ 15 min), short-term (4-6 hour) or 24-hour application of individual FFAs (10 μM) on isolated ovine left atrial myocytes (LAMs). RESULTS Acute and short-term incubation in FFAs resulted in no differences in passive or active properties of isolated left atrial myocytes (LAMs). 24-hour application had differential effects depending on the FFA. PA did not affect cellular passive properties but shortened (p<0.05) action potential duration at 30% repolarization (APD30). APD50 and APD80 were unchanged. SA had no effect on resting membrane potential but reduced membrane capacitance by 15% (p<0.05), and abbreviated APD at all values measured (p≤0.001). OA did not significantly affect passive or active properties of LAMs. Measurement of the major voltage-gated ion channels in SA treated LAMs showed a ~60% reduction (p<0.01) of the L-type calcium current (ICa-L) and ~30% reduction (p<0.05) in the transient outward potassium current (ITO). A human atrial cell model recapitulated SA effects on APD. Optical imaging showed that SA incubated for 24 hours altered t-tubular structure in isolated cells (p<0.0001). CONCLUSIONS SA disrupts t-tubular architecture and remodels properties of membrane ionic currents in sheep atrial myocytes, with potential implications in arrhythmogenesis.
Collapse
|