1
|
Desmond LW, Dawud LM, Kessler LR, Akonom T, Hunter EAH, Holbrook EM, Andersen ND, Sterrett JD, Boateng DA, Stuart BJ, Guerrero L, Gebert MJ, Tsai PS, Langgartner D, Reber SO, Frank MG, Lowry CA. Protective effects of Mycobacterium vaccae ATCC 15483 against "Western"-style diet-induced weight gain and visceral adiposity in adolescent male mice. Brain Behav Immun 2025; 125:249-267. [PMID: 39709061 DOI: 10.1016/j.bbi.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
The prevalence of noncommunicable inflammatory disease is increasing in modern urban societies, posing significant challenges to public health. Novel prevention and therapeutic strategies are needed to effectively deal with this issue. One promising approach is leveraging microorganisms such as Mycobacterium vaccae ATCC 15483, known for its anti-inflammatory, immunoregulatory, and stress-resilience properties. This study aimed to assess whether weekly subcutaneous administrations of a whole-cell, heat-killed preparation of M. vaccae ATCC 15483 (eleven injections initiated one week before the onset of the diet intervention), relative to vehicle injections, in adolescent male C57BL/6N mice can mitigate inflammation associated with Western-style diet-induced obesity, which is considered a risk factor for a number of metabolic and inflammatory diseases. Our results show that treatment with M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations. The Western-style diet, relative to a control diet condition, decreased alpha diversity and altered the community composition of the gut microbiome, increasing the Bacillota to Bacteroidota ratio (formerly referred to as the Firmicutes to Bacteroidetes ratio). Despite the finding that M. vaccae ATCC 15483 prevented Western-style diet-induced excessive weight gain, visceral adipose tissue accumulation, and elevated plasma leptin concentrations, it had no effect on the diversity or community composition of the gut microbiome, suggesting that it acts downstream of the gut microbiome to alter immunometabolic signaling. M. vaccae ATCC 15483 reduced baseline levels of biomarkers of hippocampal neuroinflammation and microglial priming, such as Nfkbia and Nlrp3, and notably decreased anxiety-like defensive behavioral responses. The current findings provide compelling evidence supporting the potential for M. vaccae ATCC 15483 as a promising intervention for prevention or treatment of adverse immunometabolic outcomes linked to the consumption of a Western-style diet and the associated dysbiosis of the gut microbiome.
Collapse
Affiliation(s)
- Luke W Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lamya'a M Dawud
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lyanna R Kessler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Tyler Akonom
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth A H Hunter
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Evan M Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Nathan D Andersen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dennis A Boateng
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Barbara J Stuart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lucas Guerrero
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, D-89081, Ulm, Germany.
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, D-89081, Ulm, Germany.
| | - Matthew G Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Son SE, Im DS. Activation of G Protein-Coupled Estrogen Receptor 1 (GPER) Attenuates Obesity-Induced Asthma by Switching M1 Macrophages to M2 Macrophages. Int J Mol Sci 2024; 25:9532. [PMID: 39273478 PMCID: PMC11395149 DOI: 10.3390/ijms25179532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Qiu Y, Liu Q, Luo Y, Chen J, Zheng Q, Xie Y, Cao Y. Causal association between obesity and hypothyroidism: a two-sample bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 14:1287463. [PMID: 38260160 PMCID: PMC10801094 DOI: 10.3389/fendo.2023.1287463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Previous observational studies have reported a positive correlation between obesity and susceptibility to hypothyroidism; however, there is limited evidence from alternative methodologies to establish a causal link. Methods We investigated the causal relationship between obesity and hypothyroidism using a two-sample bidirectional Mendelian randomization (MR) analysis. Single-nucleotide polymorphisms (SNPs) associated with obesity-related traits were extracted from a published genome-wide association study (GWAS) of European individuals. Summarized diagnostic data of hypothyroidism were obtained from the UK Biobank. Primary analyses were conducted using the inverse variance-weighted (IVW) method with a random-effects model as well as three complementary approaches. Sensitivity analyses were performed to ascertain the correlation between obesity and hypothyroidism. Results MR analyses of the IVW method and the analyses of hypothyroidism/myxedema indicated that body mass index (BMI) and waist circumference (WC) were significantly associated with higher odds and risk of hypothyroidism. Reverse MR analysis demonstrated that a genetic predisposition to hypothyroidism was associated with an increased risk of elevated BMI and WC, which was not observed between WC adjusted for BMI (WCadjBMI) and hypothyroidism. Discussion Our current study indicates that obesity is a risk factor for hypothyroidism, suggesting that individuals with higher BMI/WC have an increased risk of developing hypothyroidism and indicating the importance of weight loss in reducing the risk of hypothyroidism.
Collapse
Affiliation(s)
- Yingkun Qiu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinyu Liu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yinghua Luo
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuping Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
4
|
He P, Wang H, Cheng S, Hu F, Zhang L, Chen W, Xu Y, Zhang Y, Gu Y, Li Z, Jin Y, Liu X, Jia Y. Geniposide ameliorates atherosclerosis by regulating macrophage polarization via perivascular adipocyte-derived CXCL14. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116532. [PMID: 37149071 DOI: 10.1016/j.jep.2023.116532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis is a traditional Chinese medicine that has been used for treatment of various diseases, including atherosclerosis by clearing heat and detoxication. Geniposide is considered as the effective compounds responsible for the therapeutic efficacy of Gardenia jasminoides Ellis against atherosclerosis. AIM OF THE STUDY To investigate the effect of geniposide on atherosclerosis burden and plaque macrophage polarization, with focus on its potential impact on CXCL14 expression by perivascular adipose tissue (PVAT). MATERIALS AND METHODS ApoE-/- mice fed a western diet (WD) were used to model atherosclerosis. In vitro cultures of mouse 3T3-L1 preadipocytes and RAW264.7 macrophages were used for molecular assays. RESULTS The results revealed that geniposide treatment reduced atherosclerotic lesions in ApoE-/- mice, and this effect was correlated with increased M2 and decreased M1 polarization of plaque macrophages. Of note, geniposide increased the expression of CXCL14 in PVAT, and both the anti-atherosclerotic effect of geniposide, as well as its regulatory influence on macrophage polarization, were abrogated upon in vivo CXCL14 knockdown. In line with these findings, exposure to conditioned medium from geniposide-treated 3T3-L1 adipocytes (or to recombinant CXCL14 protein) enhanced M2 polarization in interleukin-4 (IL-4) treated RAW264.7 macrophages, and this effect was negated after CXCL14 silencing in 3T3-L1 cells. CONCLUSION In summary, our findings suggest that geniposide protects ApoE-/- mice against WD-induced atherosclerosis by inducing M2 polarization of plaque macrophages via enhanced expression of CXCL14 in PVAT. These data provide novel insights into PVAT paracrine function in atherosclerosis and reaffirm geniposide as a therapeutic drug candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fang Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuling Xu
- College of Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yaxin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyu Liu
- Pingshan General Hospital (Shenzhen Pingshan District Medical Healthcare Group), Southern Medical University, Shenzhen, Guangdong Province, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Effects of total hip arthroplasty and hemiarthroplasty on hip function in patients with traumatic femoral neck fracture. Arch Orthop Trauma Surg 2023; 143:873-878. [PMID: 35113238 DOI: 10.1007/s00402-022-04349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/06/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Traumatic femoral neck fracture is a common disease that can be treated by hip arthroplasty, which is divided into hemiarthroplasty (HA) and total hip arthroplasty (THA). The difference between HA and THA are incompletely understood. The objective of this study was to investigate the effect of hip arthroplasty on hip function in patients with traumatic femoral neck fracture. METHODS A total of 132 patients with traumatic femoral neck fracture admitted to our hospital from January 2019 to January 2021 were selected and divided into control group (HA group) and study group (THA group) with 66 cases in each group by random number table method. The duration of operation, intraoperative blood loss, postoperative drainage and length of hospital stay were compared between the two groups. The degree of pain before operation, 3 days after operation and 7 days after operation were observed, the hip joint function before operation, 6 months after operation and 12 months after operation was analyzed, and the occurrence of short-term and long-term complications was compared between the two groups. RESULT Compared with the HA group, the operative time, intraoperative blood loss, postoperative drainage and hospital stay were higher in the THA group. The degree of pain in THA group was higher than that in HA group on 3 and 7 days after operation; At 6 and 12 months after surgery, the scores of pain, range of motion, joint function and deformity in the THA group were higher than those in the HA group with statistically significant. Compared with HA group, IGF-1 and Leptin in THA group were increased significantly, while inflammatory cytokines TNF-α was decreased in THA group. The total incidence of short-term and long-term complications was lower in THA group. CONCLUSION Total hip arthroplasty can effectively restore hip joint function in patients with traumatic femoral neck fracture, with low incidence of short-term and long-term complications, high safety, and worthy of clinical application.
Collapse
|
6
|
Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:ijms24032684. [PMID: 36769012 PMCID: PMC9917048 DOI: 10.3390/ijms24032684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
It is well established that decreases in plasma leptin levels, as with fasting, signal starvation and elicit appropriate physiological responses, such as increasing the drive to eat and decreasing energy expenditure. These responses are mediated largely by suppression of the actions of leptin in the hypothalamus, most notably on arcuate nucleus (ArcN) orexigenic neuropeptide Y neurons and anorexic pro-opiomelanocortin neurons. However, the question addressed in this review is whether the effects of increased leptin levels are also significant on the long-term control of energy balance, despite conventional wisdom to the contrary. We focus on leptin's actions (in both lean and obese individuals) to decrease food intake, increase sympathetic nerve activity, and support the hypothalamic-pituitary-thyroid axis, with particular attention to sex differences. We also elaborate on obesity-induced inflammation and its role in the altered actions of leptin during obesity.
Collapse
|
7
|
Cox AR, Masschelin PM, Saha PK, Felix JB, Sharp R, Lian Z, Xia Y, Chernis N, Bader DA, Kim KH, Li X, Yoshino J, Li X, Li G, Sun Z, Wu H, Coarfa C, Moore DD, Klein S, Sun K, Hartig SM. The rheumatoid arthritis drug auranofin lowers leptin levels and exerts antidiabetic effects in obese mice. Cell Metab 2022; 34:1932-1946.e7. [PMID: 36243005 PMCID: PMC9742315 DOI: 10.1016/j.cmet.2022.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/19/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
Low-grade, sustained inflammation in white adipose tissue (WAT) characterizes obesity and coincides with type 2 diabetes mellitus (T2DM). However, pharmacological targeting of inflammation lacks durable therapeutic effects in insulin-resistant conditions. Through a computational screen, we discovered that the FDA-approved rheumatoid arthritis drug auranofin improved insulin sensitivity and normalized obesity-associated abnormalities, including hepatic steatosis and hyperinsulinemia in mouse models of T2DM. We also discovered that auranofin accumulation in WAT depleted inflammatory responses to a high-fat diet without altering body composition in obese wild-type mice. Surprisingly, elevated leptin levels and blunted beta-adrenergic receptor activity achieved by leptin receptor deletion abolished the antidiabetic effects of auranofin. These experiments also revealed that the metabolic benefits of leptin reduction were superior to immune impacts of auranofin in WAT. Our studies uncover important metabolic properties of anti-inflammatory treatments and contribute to the notion that leptin reduction in the periphery can be accomplished to treat obesity and T2DM.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Peter M Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jessica B Felix
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zeqin Lian
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Anesthesiology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Li
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gang Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Sun
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Ghrelin and leptin regulating wound healing. Trends Immunol 2022; 43:777-779. [PMID: 36028447 DOI: 10.1016/j.it.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
A recent article by Kratofil et al. investigated the immune inflammatory response against Staphylococcus aureus-contaminated foreign bodies placed under mouse skin. In this model, neutrophils are indispensable for bacterial clearance, while monocyte-derived macrophages are required for optimal wound healing. Intriguingly, ghrelin produced by macrophages favors, and leptin produced by hypodermal adipocytes inhibits, an adequate foreign body response.
Collapse
|
9
|
Chakarov S, Blériot C, Ginhoux F. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219:213212. [PMID: 35543703 PMCID: PMC9098652 DOI: 10.1084/jem.20211948] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
Abstract
The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in obesity.
Collapse
Affiliation(s)
- Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France.,Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
10
|
Wang YY, Wang YD, Qi XY, Liao ZZ, Mai YN, Xiao XH. Organokines and Exosomes: Integrators of Adipose Tissue Macrophage Polarization and Recruitment in Obesity. Front Endocrinol (Lausanne) 2022; 13:839849. [PMID: 35273574 PMCID: PMC8902818 DOI: 10.3389/fendo.2022.839849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity is escalating and has become a worldwide health challenge coinciding with the development of metabolic diseases. Emerging evidence has shown that obesity is accompanied by the infiltration of macrophages into adipose tissue, contributing to a state of low-grade chronic inflammation and dysregulated metabolism. Moreover, in the state of obesity, the phenotype of adipose tissue macrophages switches from the M2 polarized state to the M1 state, thereby contributing to chronic inflammation. Notably, multiple metabolic organs (adipose tissue, gut, skeletal muscle, and the liver) communicate with adipose tissue macrophages via secreting organokines or exosomes. In this review, we systematically summarize how the organokines (adipokines, gut microbiota and its metabolites, gut cytokines, myokines, and hepatokines) and exosomes (adipocyte-, skeletal muscle-, and hepatocyte-derived exosomes) act as important triggers for macrophage recruitment in adipose tissue and adipose tissue macrophage polarization, thus providing further insight into obesity treatment. In addition, we also highlight the complex interaction of organokines with organokines and organokines with exosomes, revealing new paths in understanding adipose tissue macrophage recruitment and polarization.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
SantaCruz-Calvo S, Bharath L, Pugh G, SantaCruz-Calvo L, Lenin RR, Lutshumba J, Liu R, Bachstetter AD, Zhu B, Nikolajczyk BS. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 2022; 18:23-42. [PMID: 34703027 PMCID: PMC11005058 DOI: 10.1038/s41574-021-00575-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health. In obesity, chronic low-grade inflammation can occur in adipose tissue that can progress to systemic inflammation; this inflammation contributes to the development of insulin resistance, T2DM and other comorbidities. An improved understanding of adaptive immune cell dysregulation that occurs during obesity and its associated metabolic comorbidities, with an appreciation of sex differences, will be critical for repurposing or developing immunomodulatory therapies to treat obesity and/or T2DM-associated inflammation. This Review critically discusses how activation and metabolic reprogramming of lymphocytes, that is, T cells and B cells, triggers the onset, development and progression of obesity and T2DM. We also consider the role of immunity in under-appreciated comorbidities of obesity and/or T2DM, such as oral cavity inflammation, neuroinflammation in Alzheimer disease and gut microbiome dysbiosis. Finally, we discuss previous clinical trials of anti-inflammatory medications in T2DM and consider the path forward.
Collapse
Affiliation(s)
- Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| | - Leena Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Gabriella Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Lucia SantaCruz-Calvo
- Department of Chemistry and Food Technology, Technical University of Madrid, Madrid, Spain
| | - Raji Rajesh Lenin
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Beibei Zhu
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
13
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Abstract
Macrophages are essential components of the immune system and play a role in the normal functioning of the cardiovascular system. Depending on their origin and phenotype, cardiac macrophages perform various functions. In a steady-state, these cells play a beneficial role in maintaining cardiac homeostasis by defending the body from pathogens and eliminating apoptotic cells, participating in electrical conduction, vessel patrolling, and arterial tone regulation. However, macrophages also take part in adverse cardiac remodeling that could lead to the development and progression of heart failure (HF) in such HF comorbidities as hypertension, obesity, diabetes, and myocardial infarction. Nevertheless, studies on detailed mechanisms of cardiac macrophage function are still in progress, and could enable potential therapeutic applications of these cells. This review aims to present the latest reports on the origin, heterogeneity, and functions of cardiac macrophages in the healthy heart and in cardiovascular diseases leading to HF. The potential therapeutic use of macrophages is also briefly discussed.
Collapse
|
15
|
Wang HF, Chen L, Xie Y, Wang XF, Yang K, Ning Y, He JY, Ding WJ. Electroacupuncture facilitates M2 macrophage polarization and its potential role in the regulation of inflammatory response. Biomed Pharmacother 2021; 140:111655. [PMID: 34029955 DOI: 10.1016/j.biopha.2021.111655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The underlying mechanism of electroacupuncture (EA) in relieving obesity, anti-inflammation and the interaction with metabolic pathways in obese mice has not been elaborated. The aim of this study was to investigate the regulation of EA on macrophage polarization in obesity tissue of diet-induced obesity mice. Mice were divided in 6 groups: normal control group, model group, EA-7 group, EA-14 group, EA-21 group and EA-28 group. Low-frequency EA was applied at "Tianshu (ST 25)", "Guanyuan (CV 4)", "Zusanli (ST 36)" and "Sanyinjiao (SP 6)" for 10 min. Adipose tissue was assessed with hematoxylin and eosin staining. Adipocytokines and pro-inflammatory factors expression was measured by ELISA. The protein and mRNA levels of macrophage markers were examined by immumohistochemical staining and RT-PCR, respectively. EA treatment was associated with a decrease of adipose tissue and large adipocytes, and an increase of small adipocytes. After EA treatment, the levels of Leptin, Chemerin, TNF-α, F4/80, iNOS, and CD11c decreased obviously in adipose tissue, while IL-4, IL-10 and CD206 levels increased significantly. Besides, TNF-α in spleen tissue was also downregulated, but IL-4 and IL-10 were upregulated. EA prevents weight gain through modulation inflammatory response and macrophage polarization in obese adipose tissues.
Collapse
Affiliation(s)
- Huai-Fu Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Li Chen
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Department of Endocrinology, Meishan Hospital of Traditional Chinese Medicine, 14# Suci Road, Dongpo District, Meishan, Sichuan, China
| | - Ya Xie
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Xiao-Fang Wang
- Department of Nursing, Sichuan Nursing Vocational College, Longdu South Road, Longquanyi District, Chengdu 610100, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Ying Ning
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jia-Yue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| |
Collapse
|
16
|
Zhang M, Ceyhan Y, Kaftanovskaya EM, Vasquez JL, Vacher J, Knop FK, Nathanson L, Agoulnik AI, Ittmann MM, Agoulnik IU. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol 2021; 4:416. [PMID: 33772116 PMCID: PMC7998001 DOI: 10.1038/s42003-021-01940-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.
Collapse
Affiliation(s)
- Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Jean Vacher
- Department of Medicine, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
18
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Sun AR, Udduttula A, Li J, Liu Y, Ren PG, Zhang P. Cartilage tissue engineering for obesity-induced osteoarthritis: Physiology, challenges, and future prospects. J Orthop Translat 2021; 26:3-15. [PMID: 33437618 PMCID: PMC7773977 DOI: 10.1016/j.jot.2020.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Osteoarthritis (OA) is a multifactorial joint disease with pathological changes that affect whole joint tissue. Obesity is acknowledged as the most influential risk factor for both the initiation and progression of OA in weight-bearing and non-weight-bearing joints. Obesity-induced OA is a newly defined phenotypic group in which chronic low-grade inflammation has a central role. Aside from persistent chronic inflammation, abnormal mechanical loading due to increased body weight on weight-bearing joints is accountable for the initiation and progression of obesity-induced OA. The current therapeutic approaches for OA are still evolving. Tissue-engineering-based strategy for cartilage regeneration is one of the most promising treatment breakthroughs in recent years. However, patients with obesity-induced OA are often excluded from cartilage repair attempts due to the abnormal mechanical demands, altered biomechanical and biochemical activities of cells, persistent chronic inflammation, and other obesity-associated factors. With the alarming increase in the number of obese populations globally, the need for an innovative therapeutic approach that could effectively repair and restore the damaged synovial joints is of significant importance for this sub-population of patients. In this review, we discuss the involvement of the systemic and localized inflammatory response in obesity-induced OA and the impact of altered mechanical loading on pathological changes in the synovial joint. Moreover, we examine the current strategies in cartilage tissue engineering and address the critical challenges of cell-based therapies for OA. Besides, we provide examples of innovative ways and potential strategies to overcome the obstacles in the treatment of obesity-induced OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Altogether, this review delivers insight into obesity-induced OA and offers future research direction on the creation of tissue engineering-based therapies for obesity-induced OA.
Collapse
Affiliation(s)
- Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Yanzhi Liu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
20
|
Liu Y, Sun Y, Hu C, Liu J, Gao A, Han H, Chai M, Zhang J, Zhou Y, Zhao Y. Perivascular Adipose Tissue as an Indication, Contributor to, and Therapeutic Target for Atherosclerosis. Front Physiol 2020; 11:615503. [PMID: 33391033 PMCID: PMC7775482 DOI: 10.3389/fphys.2020.615503] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has been identified to have significant endocrine and paracrine functions, such as releasing bioactive adipokines, cytokines, and chemokines, rather than a non-physiological structural tissue. Considering the contiguity with the vascular wall, PVAT could play a crucial role in the pathogenic microenvironment of atherosclerosis. Growing clinical evidence has shown an association between PVAT and atherosclerosis. Moreover, based on computed tomography, the fat attenuation index of PVAT was verified as an indication of vulnerable atherosclerotic plaques. Under pathological conditions, such as obesity and diabetes, PVAT shows a proatherogenic phenotype by increasing the release of factors that induce endothelial dysfunction and inflammatory cell infiltration, thus contributing to atherosclerosis. Growing animal and human studies have investigated the mechanism of the above process, which has yet to be fully elucidated. Furthermore, traditional treatments for atherosclerosis have been proven to act on PVAT, and we found several studies focused on novel drugs that target PVAT for the prevention of atherosclerosis. Emerging as an indication, contributor to, and therapeutic target for atherosclerosis, PVAT warrants further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chengping Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jinxing Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Ang Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Hongya Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Meng Chai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Jianwei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
21
|
Chen KHE, Lainez NM, Coss D. Sex Differences in Macrophage Responses to Obesity-Mediated Changes Determine Migratory and Inflammatory Traits. THE JOURNAL OF IMMUNOLOGY 2020; 206:141-153. [PMID: 33268480 DOI: 10.4049/jimmunol.2000490] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
The mechanisms whereby obesity differentially affects males and females are unclear. Because macrophages are functionally the most important cells in obesity-induced inflammation, we sought to determine reasons for male-specific propensity in macrophage migration. We previously determined that male mice fed a high-fat diet exhibit macrophage infiltration into the hypothalamus, whereas females were protected irrespective of ovarian estrogen, in this study, we show that males accumulate more macrophages in adipose tissues that are also more inflammatory. Using bone marrow cells or macrophages differentiated in vitro from male and female mice fed control or high-fat diet, we demonstrated that macrophages derived from male mice are intrinsically more migratory. We determined that males have higher levels of leptin in serum and adipose tissue. Serum CCL2 levels, however, are the same in males and females, although they are increased in obese mice compared with lean mice of both sexes. Leptin receptor and free fatty acid (FFA) receptor, GPR120, are upregulated only in macrophages derived from male mice when cultured in the presence of FFA to mimic hyperlipidemia of obesity. Unless previously stimulated with LPS, CCL2 did not cause migration of macrophages. Leptin, however, elicited migration of macrophages from both sexes. Macrophages from male mice maintained migratory capacity when cultured with FFA, whereas female macrophages failed to migrate. Therefore, both hyperlipidemia and hyperleptinemia contribute to male macrophage-specific migration because increased FFA induce leptin receptors, whereas higher leptin causes migration. Our results may explain sex differences in obesity-mediated disorders caused by macrophage infiltration.
Collapse
Affiliation(s)
- Kuan-Hui Ethan Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
22
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
23
|
Hamjane N, Benyahya F, Nourouti NG, Mechita MB, Barakat A. Cardiovascular diseases and metabolic abnormalities associated with obesity: What is the role of inflammatory responses? A systematic review. Microvasc Res 2020; 131:104023. [PMID: 32485192 DOI: 10.1016/j.mvr.2020.104023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Obesity is a chronic disease responsible for a high morbidity and mortality rate, with an increasing worldwide prevalence. Obesity is associated with immune responses characterized by chronic systemic inflammation. This article focuses on the mechanisms that explain the proposed link between obesity-associated diseases and inflammation. Also, it describes the role of inflammatory molecules in obesity-associated metabolic abnormalities. METHODS More than 200 articles were selected and consulted by an online English search using various electronic search databases. Predefined key-words for the pathogenesis of obesity-induced inflammation and associated diseases, as well as the role of various inflammatory molecules, were used. RESULTS We have summarized the data of the articles consulted in this research and we have found that obesity is associated with a low-grade inflammation resulting from the change of adipose tissue (AT). The AT produces a variety of inflammatory molecules called adipocytokines that are involved in the onset of systemic low-grade inflammation which is the link between obesity and associated-chronic abnormalities; such as insulin resistance, metabolic syndrome, cardiovascular disease (CVD), hypertension, diabetes, and some cancers. Also, we have searched all the inflammatory molecules involved in this pathogenesis and we have briefly described the role of 16 of them which are the most related to obesity-associated inflammation. The results have shown that there are inflammatory molecules that have a positive relationship with the pathogenesis of obesity-related diseases and others have a negative relationship with this pathogenesis. CONCLUSION Inflammation plays a crucial role in the development of various metabolic-abnormalities related to obesity. In this regard, the management of obesity may help reduce the risk of cardiovascular disease and other metabolic complications by inhibiting inflammatory mechanisms.
Collapse
Affiliation(s)
- Nadia Hamjane
- Laboratory of Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology, Abdelmalek Essaadi University, Tangier, Morocco.
| | | | - Naima Ghailani Nourouti
- Laboratory of Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Mohcine Bennani Mechita
- Laboratory of Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Amina Barakat
- Laboratory of Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| |
Collapse
|
24
|
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res 2020; 126:789-806. [PMID: 32163341 PMCID: PMC7255054 DOI: 10.1161/circresaha.119.312321] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While macrophages play a key role in cardiac remodeling, dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac injury. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation has been implicated in macrophage polarization. M1 macrophages primarily rely on glycolysis, whereas M2 macrophages rely on the tricarboxylic acid cycle and oxidative phosphorylation; thus, factors that affect macrophage metabolism may disrupt M1/M2 homeostasis and exacerbate inflammation. The mechanisms by which obesity and hypertension may synergistically induce macrophage metabolic dysfunction, particularly during cardiac remodeling, are not fully understood. We propose that obesity and hypertension induce M1 macrophage polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia. We discuss canonical and novel proinflammatory roles of macrophages during obesity-hypertension-induced cardiac injury, including diastolic dysfunction and impaired calcium handling. Finally, we discuss the current status of potential therapies to target macrophage metabolism during heart failure, including antidiabetic therapies, anti-inflammatory therapies, and novel immunometabolic agents.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Michael E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Department of Medicine, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| |
Collapse
|
25
|
Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev 2020; 52:88-98. [PMID: 32081538 DOI: 10.1016/j.cytogfr.2020.02.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
27
|
Anderson MR, Udupa JK, Edwin E, Diamond JM, Singer JP, Kukreja J, Hays SR, Greenland JR, Ferrante A, Lippel M, Blue T, McBurnie A, Oyster M, Kalman L, Rushefski M, Wu C, Pednekar G, Liu W, Arcasoy S, Sonett J, D'Ovidio F, Bacchetta M, Newell JD, Torigian D, Cantu E, Farber DL, Giles JT, Tong Y, Palmer S, Ware LB, Hancock WW, Christie JD, Lederer DJ. Adipose tissue quantification and primary graft dysfunction after lung transplantation: The Lung Transplant Body Composition study. J Heart Lung Transplant 2019; 38:1246-1256. [PMID: 31474492 PMCID: PMC6883162 DOI: 10.1016/j.healun.2019.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Obesity is associated with an increased risk of primary graft dysfunction (PGD) after lung transplantation. The contribution of specific adipose tissue depots is unknown. METHODS We performed a prospective cohort study of adult lung transplant recipients at 4 U.S. transplant centers. We measured cross-sectional areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) on chest and abdominal computed tomography (CT) scans and indexed each measurement to height.2 We used logistic regression to examine the associations of adipose indices and adipose classes with grade 3 PGD at 48 or 72 hours, and Cox proportional hazards models to examine survival. We used latent class analyses to identify the patterns of adipose distribution. We examined the associations of adipose indices with plasma biomarkers of obesity and PGD. RESULTS A total of 262 and 117 subjects had available chest CT scans and underwent protocol abdominal CT scans, respectively. In the adjusted models, a greater abdominal SAT index was associated with an increased risk of PGD (odds ratio 1.9, 95% CI 1.02-3.4, p = 0.04) but not with survival time. VAT indices were not associated with PGD risk or survival time. A greater abdominal SAT index correlated with greater pre- and post-transplant leptin (r = 0.61, p < 0.001, and r = 0.44, p < 0.001), pre-transplant IL-1RA (r = 0.25, p = 0.04), and post-transplant ICAM-1 (r = 0.25, p = 0.04). We identified 3 latent patterns of adiposity. The class defined by high thoracic and abdominal SAT had the greatest risk of PGD. CONCLUSIONS Subcutaneous, but not visceral, adiposity is associated with an increased risk of PGD after lung transplantation.
Collapse
Affiliation(s)
- Michaela R Anderson
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jayaram K Udupa
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ethan Edwin
- Columbia Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Joshua M Diamond
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan P Singer
- Department of Medicine University of California at San Francisco, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California at San Francisco, San Francisco, California
| | - Steven R Hays
- Department of Medicine University of California at San Francisco, San Francisco, California
| | - John R Greenland
- Department of Medicine University of California at San Francisco, San Francisco, California
| | - Anthony Ferrante
- Columbia Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Matthew Lippel
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Tatiana Blue
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Amika McBurnie
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Michelle Oyster
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laurel Kalman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie Rushefski
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caiyun Wu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gargi Pednekar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wen Liu
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Selim Arcasoy
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Joshua Sonett
- Department of Surgery, Columbia University Medical Center, New York, New York
| | - Frank D'Ovidio
- Department of Surgery, Columbia University Medical Center, New York, New York
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John D Newell
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Drew Torigian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna L Farber
- Department of Surgery, University of California at San Francisco, San Francisco, California; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York
| | - Jon T Giles
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Yubing Tong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott Palmer
- Department of Medicine, Duke University & Duke Clinical Research Institute, Durham, North Carolina
| | - Lorraine B Ware
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, New York; Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, New York.
| |
Collapse
|
28
|
Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. J Clin Med 2019; 8:jcm8050707. [PMID: 31109063 PMCID: PMC6572059 DOI: 10.3390/jcm8050707] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Bone marrow adipocytes (BMA) exert pleiotropic roles beyond mere lipid storage and filling of bone marrow (BM) empty spaces, and we are only now beginning to understand their regulatory traits and versatility. BMA arise from the differentiation of BM mesenchymal stromal cells, but they seem to be a heterogeneous population with distinct metabolisms, lipid compositions, secretory properties and functional responses, depending on their location in the BM. BMA also show remarkable differences among species and between genders, they progressively replace the hematopoietic BM throughout aging, and play roles in a range of pathological conditions such as obesity, diabetes and anorexia. They are a crucial component of the BM microenvironment that regulates hematopoiesis, through mechanisms largely unknown. Previously considered as negative regulators of hematopoietic stem cell function, recent data demonstrate their positive support for hematopoietic stem cells depending on the experimental approach. Here, we further discuss current knowledge on the role of BMA in hematological malignancies. Early hints suggest that BMA may provide a suitable metabolic niche for the malignant growth of leukemic stem cells, and protect them from chemotherapy. Future in vivo functional work and improved isolation methods will enable determining the true essence of this elusive BM hematopoietic stem cell niche component, and confirm their roles in a range of diseases. This promising field may open new pathways for efficient therapeutic strategies to restore hematopoiesis, targeting BMA.
Collapse
|
29
|
Cortese L, Terrazzano G, Pelagalli A. Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. Int J Mol Sci 2019; 20:2392. [PMID: 31091785 PMCID: PMC6566566 DOI: 10.3390/ijms20102392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Growing scientific evidence has unveiled increased incidences of obesity in domestic animals and its influence on a plethora of associated disorders. Leptin, an adipokine regulating body fat mass, represents a key molecule in obesity, able to modulate immune responses and foster chronic inflammatory response in peripheral tissues. High levels of cytokines and inflammatory markers suggest an association between inflammatory state and obesity in dogs, highlighting the parallelism with humans. Canine obesity is a relevant disease always accompanied with several health conditions such as inflammation, immune-dysregulation, insulin resistance, pancreatitis, orthopaedic disorders, cardiovascular disease, and neoplasia. However, leptin involvement in many disease processes in veterinary medicine is poorly understood. Moreover, hyperleptinemia as well as leptin resistance occur with cardiac dysfunction as a consequence of altered cardiac mitochondrial metabolism in obese dogs. Similarly, leptin dysregulation seems to be involved in the pancreatitis pathophysiology. This review aims to examine literature concerning leptin and immunological status in obese dogs, in particular for the aspects related to obesity-associated diseases.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
30
|
Qi XY, Qu SL, Xiong WH, Rom O, Chang L, Jiang ZS. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol 2018; 17:134. [PMID: 30305178 PMCID: PMC6180425 DOI: 10.1186/s12933-018-0777-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
Perivascular adipose tissue (PVAT), the adipose tissue that surrounds most of the vasculature, has emerged as an active component of the blood vessel wall regulating vascular homeostasis and affecting the pathogenesis of atherosclerosis. Although PVAT characteristics resemble both brown and white adipose tissues, recent evidence suggests that PVAT develops from its own distinct precursors implying a closer link between PVAT and vascular system. Under physiological conditions, PVAT has potent anti-atherogenic properties mediated by its ability to secrete various biologically active factors that induce non-shivering thermogenesis and metabolize fatty acids. In contrast, under pathological conditions (mainly obesity), PVAT becomes dysfunctional, loses its thermogenic capacity and secretes pro-inflammatory adipokines that induce endothelial dysfunction and infiltration of inflammatory cells, promoting atherosclerosis development. Since PVAT plays crucial roles in regulating key steps of atherosclerosis development, it may constitute a novel therapeutic target for the prevention and treatment of atherosclerosis. Here, we review the current literature regarding the roles of PVAT in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Yan Qi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Oren Rom
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| |
Collapse
|
31
|
Ramos Muniz MG, Palfreeman M, Setzu N, Sanchez MA, Saenz Portillo P, Garza KM, Gosselink KL, Spencer CT. Obesity Exacerbates the Cytokine Storm Elicited by Francisella tularensis Infection of Females and Is Associated with Increased Mortality. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3412732. [PMID: 30046592 PMCID: PMC6038682 DOI: 10.1155/2018/3412732] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Infection with Francisella tularensis, the causative agent of the human disease tularemia, results in the overproduction of inflammatory cytokines, termed the cytokine storm. Excess metabolic byproducts of obesity accumulate in obese individuals and activate the same inflammatory signaling pathways as F. tularensis infection. In addition, elevated levels of leptin in obese individuals also increase inflammation. Since leptin is produced by adipocytes, we hypothesized that increased fat of obese females may make them more susceptible to F. tularensis infection compared with lean individuals. Lean and obese female mice were infected with F. tularensis and the immunopathology and susceptibility monitored. Plasma and tissue cytokines were analyzed by multiplex ELISA and real-time RT-PCR, respectively. Obese mice were more sensitive to infection, developing a more intense cytokine storm, which was associated with increased death of obese mice compared with lean mice. This enhanced inflammatory response correlated with in vitro bacteria-infected macrophage cultures where addition of leptin led to increased production of inflammatory cytokines. We conclude that increased basal leptin expression in obese individuals causes a persistent low-level inflammatory response making them more susceptible to F. tularensis infection and heightening the generation of the immunopathological cytokine storm.
Collapse
Affiliation(s)
- Mireya G. Ramos Muniz
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Matthew Palfreeman
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Nicole Setzu
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Michelle A. Sanchez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Pamela Saenz Portillo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Kristine M. Garza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Kristin L. Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Charles T. Spencer
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
32
|
Gozal D, Khalyfa A, Qiao Z, Akbarpour M, Maccari R, Ottanà R. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice. Sleep 2018. [PMID: 28651353 DOI: 10.1093/sleep/zsx111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Study Objectives Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Methods Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. Results SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. Conclusions SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction.
Collapse
Affiliation(s)
- David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Abdelnaby Khalyfa
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Zhuanghong Qiao
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Mahzad Akbarpour
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Rosanna Maccari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, PoloAnnunziata, V.le SS. Annunziata, Messina, Italy
| | - Rosaria Ottanà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, PoloAnnunziata, V.le SS. Annunziata, Messina, Italy
| |
Collapse
|
33
|
|
34
|
Abstract
PURPOSE OF REVIEW The goal of this review is to gain a better understanding of marrow adipocyte development, its regulation of energy, and its characterization responsible for bone homeostasis. RECENT FINDINGS Despite major advances in uncovering the complex association of bone-fat in the marrow, the underlying basic biological process of adipose tissue development, as well as its interaction with bone homeostasis in pathophysiological conditions, is still not well understood. This review identifies many pro- and anti-osteogenic factors secreted by adipocytes to play a role in the manipulating the fate of mesenchymal stem cells as well as the osteoblastic activity during bone remodeling. It also addresses the function of adipose tissue capable of negative regulation of the hematopoietic microenvironment to influence the bone quantity and the nature of bone homeostasis.
Collapse
Affiliation(s)
- Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road Grafton, Auckland, New Zealand.
| | - Tao Wang
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road Grafton, Auckland, New Zealand
| | - Jian-Ming Lin
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road Grafton, Auckland, New Zealand
| |
Collapse
|
35
|
Abstract
Marrow adipose tissue (MAT) is a recently identified endocrine organ capable of modulating a host of responses. Given its intimate proximity to the bone microenvironment, the impact marrow adipocytes exert on bone has attracted much interest and scientific inquiry. Although many questions and controversies remain about marrow adipocytes, multiple conditions/disease states in which alterations occur have provided clues about their function. The consensus is that MAT is associated inversely with bone density and quality. While further investigation is warranted, MAT has clearly been demonstrated as an active dynamic depot that contributes to bone turnover and overall metabolic homeostasis.
Collapse
Affiliation(s)
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| |
Collapse
|
36
|
Liberale L, Bonaventura A, Vecchiè A, Casula M, Dallegri F, Montecucco F, Carbone F. The Role of Adipocytokines in Coronary Atherosclerosis. Curr Atheroscler Rep 2017; 19:10. [PMID: 28185154 DOI: 10.1007/s11883-017-0644-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to overview the pathophysiological role of adipocytokines in atherogenesis, focusing on their potential role as biomarkers of coronary disease. RECENT FINDINGS Several lines of evidence indicated adipose tissue not only as depot but rather as an endocrine organ. In this context, the balance between pro- and anti-inflammatory adipocytokines has been shown to critically regulate vascular homeostasis in both physiological and pathophysiological conditions. Overweight and obesity are characterized by dysfunctional adipose tissue and then the prevalence of pro-inflammatory mediators, with a detrimental effect on vascular health. As opposite to adiponectin, pro-inflammatory adipocytokines, such as leptin and resistin, promote endothelial dysfunction and inflammatory processes involved in atherosclerotic plaque progression and vulnerability. Therefore, many adipocytokines have been investigated as potential biomarkers of cardiovascular (CV) risk, but their role has not yet been clearly established. Furthermore, the perivascular adipose tissue recently emerged as a critical modulator of atherosclerotic processes, due to the close interaction with the underlying vascular tissue. The ongoing discovery of new adipocytokines and the complex pathophysiological role of the different adipose tissue depots strongly contribute to define the complexity of adipocytokines network. Understanding those complex interactions may allow determining new potential biomarkers of CV risk and potential therapeutic targets.
Collapse
Affiliation(s)
- Luca Liberale
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Aldo Bonaventura
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Alessandra Vecchiè
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Matteo Casula
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Franco Dallegri
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 10 Largo Benzi, 16132, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 Viale Benedetto XV, 16132, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
| |
Collapse
|
37
|
Leite F, Lima M, Marino F, Cosentino M, Ribeiro L. β 2 Adrenoceptors are underexpressed in peripheral blood mononuclear cells and associated with a better metabolic profile in central obesity. Int J Med Sci 2017; 14:853-861. [PMID: 28824322 PMCID: PMC5562192 DOI: 10.7150/ijms.19638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/17/2017] [Indexed: 11/05/2022] Open
Abstract
Background: Central obesity (CO) is an inflammatory disease. Because immune cells and adipocytes are catecholamines(CA)-producing cells, we studied the expression of adrenoceptors (AR) in peripheral blood mononuclear cells (PBMCs) hypothesizing a distinct adrenergic pattern in inflammatory obesity. Methods: AR expression was assessed in blood donors categorized by waist circumference (WC) (CO: WC≥0.80 m in women and ≥0.94 m in men). Following a pilot study for all AR subtypes, we measured β2AR expression in fifty-seven individuals and correlated this result with anthropometric, metabolic and inflammatory parameters. A ratio (R) between AR mRNA of CO and non-CO<0.5 was considered under and >2.0 over expression. Results: The pilot study revealed no differences between groups, except for β2AR mRNA. CO individuals showed underexpression of β2AR relatively to those without CO (R=0.08; p=0.009). β2AR expression inversely correlated with triacylglycerol (r=-0.271; p=0.041), very low-density lipoprotein-cholesterol (r=-0.313; p=0.018) and leptin (r=-0.392; p=0.012) and positively with high-density lipoprotein-cholesterol (r=0.310: p=0.045) plasma levels. Multiple logistic regression analysis showed a protective effect of β2AR expression (≥2x10-6) [odds ratio (OR) 0.177 with respective confidence interval of 95% (95% CI) (0.040- 0.796)] for the occurrence of CO. A higher association was found for women as compared to men (Ξ9:1) [OR 8.972 (95% CI) (1.679-47.949)]. Conclusion: PBMCs β2AR, underexpressed in centrally obese, are associated with a better metabolic profile and showed a protective role for the development of CO. The discovery of β2AR as a new molecular marker of obesity subphenotypes in PBMCs might contribute to clarify the adrenergic immunomodulation of inflammatory obesity.
Collapse
Affiliation(s)
- Fernanda Leite
- Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.,Department of Clinical Haematology, Centro Hospitalar of Porto, Portugal.,UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Margarida Lima
- Department of Clinical Haematology, Centro Hospitalar of Porto, Portugal.,UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Ribeiro
- Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal.,Department of Public Health Sciences, Forensic and Medical Education, Faculty of Medicine, University of Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal
| |
Collapse
|
38
|
Wang FS, Lian WS, Weng WT, Sun YC, Ke HJ, Chen YS, Ko JY. Neuropeptide Y mediates glucocorticoid-induced osteoporosis and marrow adiposity in mice. Osteoporos Int 2016; 27:2777-2789. [PMID: 27080706 DOI: 10.1007/s00198-016-3598-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Increased neuropeptide Y (NPY) expression occurred in the glucocorticoid-induced osteoporotic skeleton. NPY knockout mice exhibited a minor response to the glucocorticoid-mediated exacerbation of bone accretion and fatty marrow pathogenesis. NPY deletion restored SITR1 signaling and enhanced PPARγ ubiquitination of bone tissue, an alternative strategy for ameliorating glucocorticoid-induced skeletal deterioration. INTRODUCTION Glucocorticoid excess is observed to worsen the pathogenesis of osteoporosis and fatty marrow. This study was undertaken to investigate the contribution of neuropeptide Y (NPY) to glucocorticoid-induced bone loss and marrow adiposity. METHODS NPY knockout and wild-type mice were administered methylprednisolone for four consecutive weeks. Bone mineral density, microarchitecture, and calcein-labeled mineral acquisition were quantified by μCT, dual energy X-ray absorptiometry, and histomorphometry. Expression of osteogenic and adipogenic markers and acetylation states of PPARγ were detected by RT-quantitative PCR, immunoprecipitation, and immunoblotting. RESULTS High NPY levels were associated with glucocorticoid-induced trabecular bone deterioration and marrow fat accumulation. Mice lacking NPY had high bone mass concomitant with spacious trabecular and cortical bone microstructure. NPY deletion shielded skeletal tissues from the glucocorticoid-induced impediment of bone mass, trabecular morphometric characteristics, mineral accretion activity, and fatty marrow development. Ex vivo, NPY deficiency sustained osteogenic differentiation capacity and curtailed the glucocorticoid-mediated escalation of adipocyte formation reactions of primary bone-marrow mesenchymal cells. NPY deletion appeared to modulate Y1 and Y2 receptors, sirtuin 1, ERK, and p38 signaling pathways, an effect that facilitated hypoacetylation and ubiquitination of adipogenic transcription factor PPARγ in the skeletal tissues exposed to glucocorticoid stress. CONCLUSIONS NPY mediates the glucocorticoid-induced disturbance of mineral accretion and marrow adipogenesis through post-translational modification of PPARγ. This study brings a new molecular insight into the disintegration of adipogenic and osteogenic activities within glucocorticoid-mediated osteoporotic skeletons. Control of NPY is an alternative strategy to ameliorate glucocorticoid-induced bone destruction and fatty marrow.
Collapse
Affiliation(s)
- F-S Wang
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - W-S Lian
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - W-T Weng
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y-C Sun
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - H-J Ke
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y-S Chen
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - J-Y Ko
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.
| |
Collapse
|
39
|
Ohkura N, Oishi K, Kihara-Negishi F, Atsumi GI, Tatefuji T. Effects of a diet containing Brazilian propolis on lipopolysaccharide-induced increases in plasma plasminogen activator inhibitor-1 levels in mice. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:439-443. [PMID: 27757277 PMCID: PMC5061490 DOI: 10.5455/jice.20160814112735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/23/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Brazilian propolis has many biological activities including the ability to help prevent thrombotic diseases, but this particular effect has not been proven. Plasma levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, increase under inflammatory conditions such as infection, obesity and atherosclerosis and such elevated levels predispose individuals to a risk of developing thrombotic diseases. AIM This study aimed to determine the effects of a diet containing Brazilian propolis on lipopolysaccharide (LPS)-induced increases in plasma PAI-1 levels. MATERIALS AND METHODS Mice were fed with a diet containing 0.5% (w/w) Brazilian propolis for 8 weeks. Thereafter, the mice were subcutaneously injected with saline containing 0.015 mg/kg of LPS and sacrificed 4 h later. RESULTS Orally administered Brazilian propolis significantly suppressed the LPS-induced increase in PAI-1 antigen and its activity in mouse plasma. CONCLUSION This study indicated that Brazilian propolis contains natural products that can decrease thrombotic tendencies in mice.
Collapse
Affiliation(s)
- Naoki Ohkura
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Itabashi, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Japan
| | - Fumiko Kihara-Negishi
- Department of Life and Health Science, School of Pharma-Sciences, Teikyo University, Tokyo, Itabashi, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Itabashi, Japan
| | - Tomoki Tatefuji
- Institute for Bee Products and Health Science, Yamada Apiculture Center, Kagamino, Okayama, Japan
| |
Collapse
|
40
|
Washio K, Shimamoto Y, Kitamura H. Brazilian propolis extract increases leptin expression in mouse adipocytes. Biomed Res 2016; 36:343-6. [PMID: 26522151 DOI: 10.2220/biomedres.36.343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the anti-obesity effects of Brazilian green propolis ethanol extract using a mouse model of obesity. Repeated intraperitoneal injection of propolis (100 mg/kg twice a week) caused feeding suppression in C57BL/6 mice, whereas this treatment had negligible effects on C57BL/6 ob/ob mice. Since C57BL/6 ob/ob mice have a missense mutation in the Lep gene, leptin is likely to contribute to the propolis-induced feeding suppression. We found that propolis treatment indeed clearly increased leptin mRNA production in the visceral adipose tissues. Moreover, propolis extract directly elevated leptin expression in differentiated 3T3-L1 adipocytes. Artepillin C, an important organic compound found in Brazilian green propolis, failed to induce leptin mRNA in 3T3-L1 cells. Compounds other than artepillin C in Brazilian propolis must thus cause leptin induction in adipocytes, possibly resulting in the suppression of feeding and obesity.
Collapse
Affiliation(s)
- Kohei Washio
- Laboratory for Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University
| | | | | |
Collapse
|
41
|
Wee N, Herzog H, Baldock P. 18. Diet-induced obesity alters skeletal microarchitecture and the endocrine activity of bone. HANDBOOK OF NUTRITION AND DIET IN THERAPY OF BONE DISEASES 2016. [DOI: 10.3920/978-90-8686-823-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- N.K.Y. Wee
- Bone Biology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australia
| | - H. Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australia
| | - P.A. Baldock
- Bone Biology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
42
|
Hart KA, Wochele DM, Norton NA, McFarlane D, Wooldridge AA, Frank N. Effect of Age, Season, Body Condition, and Endocrine Status on Serum Free Cortisol Fraction and Insulin Concentration in Horses. J Vet Intern Med 2016; 30:653-63. [PMID: 26860336 PMCID: PMC4913614 DOI: 10.1111/jvim.13839] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/04/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Increased free cortisol fraction is associated with insulin dysregulation (ID) in people with Metabolic Syndrome and Cushing's Disease. Free cortisol has not been investigated in equine endocrine disorders. HYPOTHESES (1) In healthy horses, sex, age, body condition score (BCS), and season impact free cortisol; (2) free cortisol is increased in horses with Pituitary Pars Intermedia Dysfunction (PPID) or Equine Metabolic Syndrome (EMS). ANIMALS Fifty-seven healthy horses; 40 horses and ponies with PPID (n = 20) or EMS (n = 20). METHODS Prospective study. Serum collected seasonally from healthy animals and archived serum from PPID and EMS animals was analyzed for insulin, total and free cortisol concentrations, and free cortisol fraction (FCF). Linear mixed models were used to determine effects of age, sex, season, and BCS on hormones in controls. Hormone measurements were compared between disease groups and age- and season-matched controls with t-tests. EMS and hyperinsulinemic PPID animals were combined in an ID (hyperinsulinemia) group. RESULTS Free cortisol concentrations were increased in overweight/obese controls (0.3 ± 0.1 μg/dL) compared to lean controls (0.2 ± 0.1 μg/dL; P = .017). Mean FCF was significantly higher in animals with PPID (8.8 ± 5.8 μg/dL, P = .005) or ID (8.8 ± 10.2 μg/dL, P = .039) than controls (5.0 ± 0.9 μg/dL), but total cortisol concentrations were similar (P ≥ .350) (PPID: 4.2 ± 4.3 μg/dL; ID: 5.0 ± 4.5 μg/dL; controls: 4.6 ± 1.7 and 5.1 ± 2.1 μg/dL). CONCLUSIONS AND CLINICAL IMPORTANCE Increased FCF is associated with obesity in healthy horses and with ID (hyperinsulinemia) in horses and ponies with endocrine disease. Decreased plasma cortisol-binding capacity could be a component of these endocrine disorders in horses.
Collapse
Affiliation(s)
- K A Hart
- University of Georgia College of Veterinary Medicine, Athens, GA
| | - D M Wochele
- University of Georgia College of Veterinary Medicine, Athens, GA
| | - N A Norton
- University of Georgia College of Veterinary Medicine, Athens, GA
| | - D McFarlane
- Oklahoma State College of Veterinary Medicine, Stillwater, OK
| | - A A Wooldridge
- Auburn University College of Veterinary Medicine, Auburn, AL
| | - N Frank
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| |
Collapse
|
43
|
Fujita Y, Maki K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC OBESITY 2016; 3:1. [PMID: 26793316 PMCID: PMC4705635 DOI: 10.1186/s40608-016-0082-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Background The relationship between high-fat food consumption and obesity is well-established. However, it is as yet unclear whether high-fat diet (HFD)-induced obesity in childhood and adolescence determines age-related changes in jaw bone health. The aim of this study is to examine the age-related influence of HFD-induced obesity on mandibular bone architecture and the structure of the periodontium in growing mice. Methods Male C57BL/6 J mice (6-weeks-old) were divided into two groups (n = 6 each): the control group received a control diet and the experimental group a HFD. After treatment for 4, 8, or 12 weeks, trabecular and cortical bone architecture was assessed using micro-computed tomography. The periodontium and alveolar bone structure were evaluated by histopathology. Results In HFD mice, body weight, serum total cholesterol, and serum leptin levels were significantly higher than those in age-matched control mice (p < 0.05, all comparisons). Reductions in trabecular bone volume and in cortical bone growth (measured as the thickness and cross sectional area) in HFD mice were significant compared with the control mice after 4 weeks of treatment (p < 0.05, both comparisons). Significant decreases in cortical bone density in HFD-fed vs. age-matched control mice were determined after 12 weeks (p < 0.05). In the HFD mice, the periodontal ligament fibres were disrupted, having lost their orientation with respect to the bone surface, and constriction of the periodontal ligament space was inhibited. Conclusions These results suggest that HFD-induced obesity during growth not only triggers mandibular osteoporosis but also increases the risk of spontaneous periodontal disease.
Collapse
Affiliation(s)
- Yuko Fujita
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580 Japan
| | - Kenshi Maki
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580 Japan
| |
Collapse
|
44
|
Administration of Lactobacillus gasseri SBT2055 suppresses macrophage infiltration into adipose tissue in diet-induced obese mice. Br J Nutr 2015; 114:1180-7. [DOI: 10.1017/s0007114515002627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractAdministration of Lactobacillus gasseri SBT2055 (LG2055) has been shown to prevent body weight gain and it also down-regulates the expression of the Ccl2 gene in adipose tissue in diet-induced obese mice. The CC chemokine ligand 2 has a crucial role in macrophage infiltration into adipose tissue, which is known to exacerbate inflammation. However, it is not yet known how LG2055 affects the invasion of macrophages into adipose tissue. C57BL/6J male mice were fed a normal-fat diet (10 % energy fat), high-fat diet (HFD; 45 % energy fat), or HFD containing LG2055 for 12 weeks. After the feeding period, gene expression and macrophage population in adipose tissue were analysed by real-time PCR and flow cytometry, respectively. Body weight and abdominal fat weight were not altered by feeding LG2055. Flow cytometry analysis revealed that the population of macrophages in adipose tissue was significantly reduced by feeding LG2055 compared with HFD only. Furthermore, the ratio of classically activated inflammatory macrophages (M1 macrophages) to total macrophages was significantly decreased in the LG2055-fed group. The expressions of Ccl2, Ccr2 and Lep were down-regulated and that of Il6, Tnf and Nos2 tended to be down-regulated in adipose tissue by feeding LG2055. In addition, fasting glucose levels were significantly decreased in the LG2055-fed group. These data suggest that administration of LG2055 might attenuate inflammation, which is caused by the intake of an HFD, through the inhibition of macrophage invasion into adipose tissue.
Collapse
|
45
|
Hill AA, Reid Bolus W, Hasty AH. A decade of progress in adipose tissue macrophage biology. Immunol Rev 2015; 262:134-52. [PMID: 25319332 DOI: 10.1111/imr.12216] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One decade has passed since seminal publications described macrophage infiltration into adipose tissue (AT) as a key contributor to inflammation and obesity-related insulin resistance. Currently, a PubMed search for 'adipose tissue inflammation' reveals over 3500 entries since these original reports. We now know that resident macrophages in lean AT are alternatively activated, M2-like, and play a role in AT homeostasis. In contrast, the macrophages in obese AT are dramatically increased in number and are predominantly classically activated, M1-like, and promote inflammation and insulin resistance. Mediators of AT macrophage (ATM) phenotype include adipokines and fatty acids secreted from adipocytes as well as cytokines secreted from other immune cells in AT. There are several mechanisms that could explain the large increase in ATMs in obesity. These include recruitment-dependent mechanisms such as adipocyte death, chemokine release, and lipolysis of fatty acids. Newer evidence also points to recruitment-independent mechanisms such as impaired apoptosis, increased proliferation, and decreased egress. Although less is known about the homeostatic function of M2-like resident ATMs, recent evidence suggests roles in AT expansion, thermoregulation, antigen presentation, and iron homeostasis. The field of immunometabolism has come a long way in the past decade, and many exciting new discoveries are bound to be made in the coming years that will expand our understanding of how AT stands at the junction of immune and metabolic co-regulation.
Collapse
Affiliation(s)
- Andrea A Hill
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
46
|
Barnes MA, Carson MJ, Nair MG. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine 2015; 72:210-9. [PMID: 25703786 DOI: 10.1016/j.cyto.2015.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/03/2023]
Abstract
Catecholamines and adipokines function as hormones; catecholamines as neurotransmitters in the sympathetic nervous system, and adipokines as mediators of metabolic processes. It has become increasingly clear, however, that both also function as immunomodulators of innate and adaptive immune cells, including macrophages. Macrophages can respond to, as well as produce their own catecholamines. Dopamine, noradrenaline, and adrenaline are the most abundant catecholamines in the body, and can induce both pro-inflammatory and anti-inflammatory immune responses in macrophages, as well as non-immune processes such as thermogenesis. Though they are responsive to adipokines, particularly lipoproteins, leptin, and adiponectin, macrophages generally do not synthesize their own adipokines, with the exception being resistin-like molecules. Adipokines contribute to adverse metabolic and immune responses by stimulating lipid accumulation, foam cell formation and pro-inflammatory cytokine production in macrophages. Adipokines can also promote balance or resolution during metabolic and immune processes by promoting reverse lipid transport and expression of Th2 cytokines. This review will explore the mechanisms by which catecholamines and adipokines influence macrophage function in neural pathways, immunity and metabolism.
Collapse
Affiliation(s)
- Mark A Barnes
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States.
| |
Collapse
|
47
|
Abstract
Obesity is characterized as a chronic state of low-grade inflammation with progressive immune cell infiltration into adipose tissues. Adipose tissue macrophages play critical roles in the establishment of the chronic inflammatory state and metabolic dysfunctions. The novel discovery that pro-inflammatory macrophages are recruited to obese adipose tissue prompted an increased interest in the interplay between immune cells and metabolism. Since this discovery, many works have been published investigating the factors that lead to macrophage recruitment, the phenotypic change of adipose tissue macrophages, and metabolic dysfunctions. Adipokines and chemokines are key mediators that play crucial roles in crosstalk between adipocytes and macrophages and in regulating the adipose tissue inflammation. In the present review, we discuss the obesity-mediated adipose tissue remodelling, and particularly, the role of adipokines/chemokines in macrophage recruitment to obese adipose tissue. This review provides new insights into the physiological role of these factors and identifies a potential therapeutic target for obesity and associated disorders.
Collapse
Affiliation(s)
- Y Bai
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, Ohio, USA; Molecular, Cellular, and Developmental Biology Program, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
48
|
Aguilar-Valles A, Inoue W, Rummel C, Luheshi GN. Obesity, adipokines and neuroinflammation. Neuropharmacology 2015; 96:124-34. [PMID: 25582291 DOI: 10.1016/j.neuropharm.2014.12.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
Abstract
Global levels of obesity are reaching epidemic proportions, leading to a dramatic increase in incidence of secondary diseases and the significant economic burden associated with their treatment. These comorbidities include diabetes, cardiovascular disease, and some psychopathologies, which have been linked to a low-grade inflammatory state. Obese individuals exhibit an increase in circulating inflammatory mediators implicated as the underlying cause of these comorbidities. A number of these molecules are also manufactured and released by white adipose tissue (WAT), in direct proportion to tissue mass and are collectively known as adipokines. In the current review we focused on the role of two of the better-studied members of this family namely, leptin and adiponectin, with particular emphasis on their role in neuro-immune interactions, neuroinflammation and subsequent brain diseases. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Argel Aguilar-Valles
- Department of Neuroscience, Université de Montréal and Goodman Cancer Centre, Department of Biochemistry, McGill University, Montréal, Canada
| | - Wataru Inoue
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig-University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Giamal N Luheshi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
49
|
Xie L, Fu Q, Ortega TM, Zhou L, Rasmussen D, O’Keefe J, Zhang KK, Chapes SK. Overexpression of IL-10 in C2D macrophages promotes a macrophage phenotypic switch in adipose tissue environments. PLoS One 2014; 9:e86541. [PMID: 24466141 PMCID: PMC3897709 DOI: 10.1371/journal.pone.0086541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/14/2013] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206(+), CD301(+), CD11c(-)CD206(+) (M2) and CD11c(+)CD206(+) (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.
Collapse
Affiliation(s)
- Linglin Xie
- Department of Basic Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Qiang Fu
- Department of Basic Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
- Departments of Gerontology and Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Teresa M. Ortega
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Lun Zhou
- Department of Basic Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
- Departments of Gerontology and Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dane Rasmussen
- Department of Basic Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jacy O’Keefe
- Department of Basic Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ke K. Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- North Dakota IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Stephen K. Chapes
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
50
|
Affiliation(s)
- Alyssa H Hasty
- Department of Molecular Physiology and Biophysics (A.H.H.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Division of Cellular Immunology (D.A.G.), German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|