1
|
Ma L, Li D, Wen Y, Shi D. Advances in understanding the role of pentraxin-3 in lung infections. Front Immunol 2025; 16:1575968. [PMID: 40313930 PMCID: PMC12043646 DOI: 10.3389/fimmu.2025.1575968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025] Open
Abstract
Pentraxin-3 (PTX3) is a soluble pattern recognition molecule (PRM) characterized by a C-terminal pentraxin structural domain and a unique N-terminal structural domain. As a key component of the innate immune system, PTX3 can be rapidly released into the extracellular space during microbial invasion and inflammatory responses. It plays a crucial role in regulating complement activation, enhancing the ability of myeloid cells to recognize pathogens, and exerting various immune effects. PTX3 is integral to the regulation of innate immunity, inflammation, and tumor dynamics through its dual function as both a pro-inflammatory and anti-inflammatory mediator depending on the context. This role is closely linked to its diverse molecular and cellular targets. Additionally, PTX3 has been implicated in the pathogenesis of various lung diseases through its involvement in numerous physiological and pathological processes. In this paper, we summarize the complex immunological functions of PTX3 and review the multifaceted roles it plays in the development of infectious lung diseases. Our objective is to highlight the potential for clinical targeting of PTX3 as a biomarker in infectious diseases and to propose it as a viable alternative in future therapeutic strategies.
Collapse
Affiliation(s)
- Li Ma
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Yiyang Wen
- Department of pathology, Jining No.1 People’s Hospital, Jining, Shandong, China
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, China
- Department of Dermatology, Jining No.1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
2
|
Zhu Y, Chen Y, Shu X, Wei R. miR-101-3p suppresses proliferation of orbital fibroblasts by targeting pentraxin-3 in thyroid eye disease. PeerJ 2024; 12:e18535. [PMID: 39559327 PMCID: PMC11572358 DOI: 10.7717/peerj.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Background Excessive proliferation of orbital fibroblasts (OFs) is an essential factor in the pathogenesis of thyroid eye disease (TED). While existing evidence indicates that various microRNAs (miRNAs) significantly contribute to TED development, the precise function and targets of miR-101-3p in TED pathogenesis remain unknown. This research aims to elucidate the effects of miR-101-3p on TED-OFs and identify its potential targets. Methods Orbital adipose tissues were harvested from both TED patients and healthy controls to culture their fibroblasts. MiR-101-3p mimic or mimic negative control (mimic NC) was transfected into OFs from TED patients, with untreated OFs serving as an additional blank control group. Cell proliferation was assessed using cell counting kit-8 (CCK-8) assay, Ki-67 immunofluorescence staining, and the EdU assay, while apoptosis was evaluated via flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the expression levels of miR-101-3p and pentraxin-3 (PTX3), and PTX3 protein levels were quantified using western blot. A dual-luciferase assay was conducted to ascertain how miR-101-3p and PTX3 interacted. Results The results demonstrated a significant downregulation of miR-101-3p in fibroblasts and TED orbital adipose tissues. Transfection with the miR-101-3p mimic upregulated miR-101-3p levels, significantly reducing OFs proliferation without affecting apoptosis. Overexpression of miR-101-3p led to the downregulation of PTX3 in OFs. The dual-luciferase assay validated miR-101-3p binding to PTX3's 3'UTR, thereby repressing its expression. Moreover, overexpression of PTX3 partially rescued the miR-101-3p mimic's inhibitory effect on TED-OFs proliferation. Conclusion Our findings illustrate miR-101-3p's role in targeting PTX3 to regulate TED-OFs proliferation, providing novel insights into the pathological mechanisms underlying TED development.
Collapse
Affiliation(s)
- Yanfei Zhu
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Yuqing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Xingyi Shu
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Chen Y, Tang R, Xiong W, Zhang F, Wang N, Xie B, Cao J, Chen Z, Ma C. RNA aptamers with specific binding affinity to CD40 (CD40Apt) represents a promising antagonist of the CD40-CD40L signaling for thyroid-associated ophthalmopathy (TAO) treatment in mouse. J Transl Med 2023; 21:396. [PMID: 37331977 DOI: 10.1186/s12967-023-04217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/21/2023] [Indexed: 06/20/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most common autoimmune inflammatory diseases of the orbit. The CD40-CD40L pathway has been regarded as a potential molecular mechanism contributing to the development and progression of TAO, and RNA aptamers with specific binding affinity to CD40 (CD40Apt) represents a promising inhibitor of the CD40-CD40L signaling in TAO treatment. In this study, CD40Apt was confirmed to specifically recognize mouse CD40-positive ortibtal fibroblast. Mouse orbital fibroblasts were isolated from TAO mice model orbital tissues and validated. In TGF-β-induced orbital fibroblast activation model in vitro, CD40Apt administration inhibited TGF-β-induced cell viability, decreased TGF-β-induced α-SMA, Collagen I, Timp-1, and vimentin levels, and suppressed TGF-β-induced phosphorylation of Erk, p38, JNK, and NF-κB. In TAO mice model in vivo, CD40Apt caused no significant differences to the body weight of mice; furthermore, CD40Apt improved the eyelid broadening, ameliorated inflammatory infiltration and the hyperplasia in orbital muscle and adipose tissues in model mice. Concerning orbital fibroblast activation, CD40Apt reduced the levels of CD40, collagen I, TGF-β, and α-SMA in orbital muscle and adipose tissues of model mice. Finally, CD40Apt administration significantly suppressed Erk, p38, JNK, and NF-κB phosphorylation. In conclusion, CD40Apt, specifically binds to CD40 proteins in their natural state on the cell surface with high affinity, could suppress mouse orbital fibroblast activation, therefore improving TAO in mice model through the CD40 and downstream signaling pathways. CD40Apt represents a promising antagonist of the CD40-CD40L signaling for TAO treatment.
Collapse
Affiliation(s)
- Yizhi Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Renhong Tang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Nuo Wang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingyu Xie
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuokun Chen
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Ma
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Chiari D, Pirali B, Perano V, Leone R, Mantovani A, Bottazzi B. The crossroad between autoimmune disorder, tissue remodeling and cancer of the thyroid: The long pentraxin 3 (PTX3). Front Endocrinol (Lausanne) 2023; 14:1146017. [PMID: 37025408 PMCID: PMC10070760 DOI: 10.3389/fendo.2023.1146017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Thyroid is at the crossroads of immune dysregulation, tissue remodeling and oncogenesis. Autoimmune disorders, nodular disease and cancer of the thyroid affect a large amount of general population, mainly women. We wondered if there could be a common factor behind three processes (immune dysregulation, tissue remodeling and oncogenesis) that frequently affect, sometimes coexisting, the thyroid gland. The long pentraxin 3 (PTX3) is an essential component of the humoral arm of the innate immune system acting as soluble pattern recognition molecule. The protein is found expressed in a variety of cell types during tissue injury and stress. In addition, PTX3 is produced by neutrophils during maturation in the bone-marrow and is stored in lactoferrin-granules. PTX3 is a regulator of the complement cascade and orchestrates tissue remodeling and repair. Preclinical data and studies in human tumors indicate that PTX3 can act both as an extrinsic oncosuppressor by modulating complement-dependent tumor-promoting inflammation, or as a tumor-promoter molecule, regulating cell invasion and proliferation and epithelial to mesenchymal transition, thus suggesting that this molecule may have different functions on carcinogenesis. The involvement of PTX3 in the regulation of immune responses, tissue remodeling and oncosuppressive processes led us to explore its potential role in the development of thyroid disorders. In this review, we aimed to highlight what is known, at the state of the art, regarding the connection between the long pentraxin 3 and the main thyroid diseases i.e., nodular thyroid disease, thyroid cancer and autoimmune thyroid disorders.
Collapse
Affiliation(s)
- Damiano Chiari
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- General Surgery Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Barbara Pirali
- Endocrinology Clinic, Internal Medicine Department, Humanitas Mater Domini Clinical Institute, Castellanza, Italy
- *Correspondence: Barbara Pirali, ; Damiano Chiari,
| | - Vittoria Perano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Harvey Research Institute, Queen Mary University of London Charterhouse Square, London, United Kingdom
| | | |
Collapse
|
5
|
Proctor ES, Smith TJ. Bone marrow fibrocytes: villain or white knight in thyroid-associated ophthalmopathy? Curr Opin Endocrinol Diabetes Obes 2022; 29:441-448. [PMID: 35950703 DOI: 10.1097/med.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW We attempt to provide an historical perspective on progress made in understanding the pathogenesis of thyroid-associated ophthalmopathy (TAO), focusing on the roles of orbital fibroblasts (OF) in the diseased orbit (termed GD-OF) and how these cells differ from those residing in the healthy orbit. GD-OF comprise both residential OF and those apparently derived from CD34 + fibrocytes. RECENT FINDINGS CD34 + fibrocytes of the monocyte lineage putatively traffic to the TAO orbit from bone marrow. We believe that these fibroblastic cell populations dictate the activity and severity of TAO. Their impact on disease may be moderated by Slit2, a neuron axon guidance repellent synthesized by and released from residential CD34 - OF. Approximately 50% of patients with GD develop clinically meaningful TAO. Relatively few require systemic medical and surgical therapies, while milder disease can be managed with conservative, local care. Determining the intrinsic properties of GD-OF and their expression of Slit2 may explain why some patients with GD develop severe, vision-threatening TAO while others virtually escape any of its manifestations. Such insights should allow for improved and better-tolerated therapies. SUMMARY Identifying unique characteristics of fibrocytes and GD-OF subsets reveals their apparent roles in tissue activation, inflammation, and remodeling associated with TAO. Better understanding of these cells, their origins, behavior, and factors modulating their activities remains necessary for the development of more targeted, effective, and safe treatments.
Collapse
Affiliation(s)
- Erin S Proctor
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Diao J, Chen X, Mou P, Ma X, Wei R. Potential Therapeutic Activity of Berberine in Thyroid-Associated Ophthalmopathy: Inhibitory Effects on Tissue Remodeling in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 36094643 PMCID: PMC9482321 DOI: 10.1167/iovs.63.10.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Berberine (BBR), an alkaloid produced by a traditional Chinese plant, was recently attributed multiple effects on lipometabolism, inflammation, and fibrosis. Thyroid-associated ophthalmopathy (TAO) is highly associated with these pathologic changes. Thus, we aimed to examine the potential therapeutic effect of BBR in an in vitro model of TAO. Methods Orbital fibroblasts (OFs) obtained from control donors (n = 6) or patients with TAO (n = 6) were cultured. The CCK-8 assay was conducted for assessing the optimal concentration range. Oil Red O staining, Western blotting, and quantitative RT-PCR (qRT-PCR) were conducted to assess adipogenesis in OFs. RNA sequencing (RNA-seq) was used to screen the key pathways of the antiadipogenic effect mediated by BBR. Along with incremental concentrations of BBR, IL-1β–induced expression of proinflammatory molecules was determined by ELISA and qRT-PCR. In addition, TGF-β–induced hyaluronan (HA) production and fibrosis were evaluated by ELISA, qRT-PCR, and Western blotting. Results TAO-OFs, but not control fibroblasts (CON-OFs), were readily differentiated into adipocytes with the commercial medium. Intracellular lipid accumulation was dose-dependently decreased by BBR, and adipogenic markers were also downregulated. Moreover, the PPARγ and AMPK pathways were screened out by RNA-seq and their downstream effectors were suppressed by BBR. Besides, BBR attenuated IL-1β–induced expression of proinflammatory molecules in both TAO-OFs and CON-OFs by blocking nuclear factor–κB signaling. BBR's inhibitory effect on TGF-β–mediated tissue remodeling was also confirmed in OFs. Conclusions These findings demonstrate BBR has outstanding capabilities of controlling adipogenesis, inflammation, HA production, and fibrosis in OFs, highlighting its potential therapeutic role in TAO management.
Collapse
Affiliation(s)
- Jiale Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Xiaoye Ma
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Huangpu District, Shanghai, China
| |
Collapse
|
7
|
Protective effect of pentraxin 3 on pathological retinal angiogenesis in an in vitro model of diabetic retinopathy. Arch Biochem Biophys 2022; 725:109283. [DOI: 10.1016/j.abb.2022.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
8
|
Abstract
PURPOSE Our understanding of thyroid-associated ophthalmopathy (TAO, A.K.A Graves' orbitopathy, thyroid eye disease) has advanced substantially, since one of us (TJS) wrote the 2010 update on TAO, appearing in this journal. METHODS PubMed was searched for relevant articles. RESULTS Recent insights have resulted from important studies conducted by many different laboratory groups around the World. A clearer understanding of autoimmune diseases in general and TAO specifically emerged from the use of improved research methodologies. Several key concepts have matured over the past decade. Among them, those arising from the refinement of mouse models of TAO, early stage investigation into restoring immune tolerance in Graves' disease, and a hard-won acknowledgement that the insulin-like growth factor-I receptor (IGF-IR) might play a critical role in the development of TAO, stand out as important. The therapeutic inhibition of IGF-IR has blossomed into an effective and safe medical treatment. Teprotumumab, a β-arrestin biased agonist monoclonal antibody inhibitor of IGF-IR has been studied in two multicenter, double-masked, placebo-controlled clinical trials demonstrated both effectiveness and a promising safety profile in moderate-to-severe, active TAO. Those studies led to the approval by the US FDA of teprotumumab, currently marketed as Tepezza for TAO. We have also learned far more about the putative role that CD34+ fibrocytes and their derivatives, CD34+ orbital fibroblasts, play in TAO. CONCLUSION The past decade has been filled with substantial scientific advances that should provide the necessary springboard for continually accelerating discovery over the next 10 years and beyond.
Collapse
Affiliation(s)
- E J Neag
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - T J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
9
|
Wu P, Lin B, Huang S, Meng J, Zhang F, Zhou M, Hei X, Ke Y, Yang H, Huang D. IL-11 Is Elevated and Drives the Profibrotic Phenotype Transition of Orbital Fibroblasts in Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:846106. [PMID: 35273577 PMCID: PMC8902078 DOI: 10.3389/fendo.2022.846106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Orbital fibrosis is a hallmark of tissue remodeling in thyroid-associated ophthalmopathy (TAO). Previous studies have shown that interleukin (IL)-11 plays a pivotal profibrotic role in various inflammatory and autoimmune diseases. However, the expression pattern of IL-11 in patients with TAO and whether IL-11 is mechanistically linked with pathological fibrosis remains unknown. In this study, we investigated IL-11 levels in the serum and orbital connective tissue of patients with TAO, and evaluated the correlation of these levels with the patient's clinical activity score. We also evaluated the expression pattern of IL-11Rα in orbital connective tissue. Furthermore, we elucidated the regulatory factors, profibrotic function, and downstream signaling pathways for IL-11 in TAO using in vitro studies. IL-11 levels in serum and orbital connective tissues were increased in patients with TAO, as compared with healthy controls. In addition, both levels were positively correlated with disease activity. Single-cell RNA sequencing of orbital connective tissue indicated that IL-11Rα was dominantly expressed in orbital fibroblasts (OFs). RNA sequencing of paired unstimulated and transforming growth factor (TGF)-β1-stimulated samples demonstrated that upregulation of IL-11 expression defined the dominant transcriptional response. IL-11 signaling was also confirmed to be downstream of TGF-β1 and IL-1β. Therefore, we deduced that IL-11 protein is secreted in an autocrine loop in TAO. We also indicated that IL-11 mediated the profibrotic phenotype switch by inducing the expression of myofibroblast differentiation markers, including α-smooth muscle actin and collagen type I α1, which could be abrogated by an anti-IL-11 neutralizing antibody. Furthermore, we revealed that extracellular regulated protein kinase may be a crucial factor in the pro-fibrotic, translationally specific signaling activity of IL-11. These data demonstrate that IL-11 plays a crucial role in orbital fibroblast phenotype switching and may be a potential therapeutic target candidate for the treatment of TAO.
Collapse
Affiliation(s)
- Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jie Meng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
10
|
Douglas RS, Kahaly GJ, Ugradar S, Elflein H, Ponto KA, Fowler BT, Dailey R, Harris GJ, Schiffman J, Tang R, Wester S, Jain AP, Marcocci C, Marinò M, Antonelli A, Eckstein A, Führer-Sakel D, Salvi M, Sile S, Francis-Sedlak M, Holt RJ, Smith TJ. Teprotumumab Efficacy, Safety and Durability in Longer Duration Thyroid Eye Disease and Retreatment: Optic-X Study. Ophthalmology 2021; 129:438-449. [PMID: 34688699 DOI: 10.1016/j.ophtha.2021.10.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Evaluate teprotumumab safety and efficacy in patients with thyroid eye disease (TED) who previously did not respond or who had a disease flare. DESIGN OPTIC-X is an open-label (previous treatment masked) teprotumumab treatment and retreatment trial in patients from the randomized double-masked, multicenter, placebo-controlled OPTIC study. PARTICIPANTS OPTIC study patients who previously received placebo, 37 patients, or who previously received teprotumumab, 14 patients. INTERVENTION OPTIC non-responders and those who flared (≥2mm increase in proptosis, ≥2point increase in clinical activity score [CAS], or both) during follow-up were treated for the first time (previous placebo patients) or retreated with teprotumumab in OPTIC-X with 8 infusions over 24-weeks. MAIN OUTCOME MEASURES Proptosis responder rate and safety were examined. Secondary outcomes included proptosis, CAS, subjective diplopia, and quality of life responses. RESULTS Thirty-three of 37 (89.2%) placebo-treated OPTIC patients became proptosis responders (mean [standard deviation] -3.5mm [1.7]) when treated with teprotumumab in OPTIC-X. The magnitude of responses was equivalent to those in the OPTIC study. In these responders, proptosis, CAS 0 or 1, and diplopia responses were maintained in 29/32 (90.6%), 20/21 (95.2%), and 12/14 (85.7%), respectively, at week-48 of follow up. These patients had a median TED duration of 12.9 months versus 6.3 months in those treated with teprotumumab in the OPTIC study. Of the 5 OPTIC teprotumumab non-responders retreated in the OPTIC-X study, 2 responded, 1 had a proptosis reduction of 1.5mm from OPTIC baseline and 2 discontinued treatment early. Of the OPTIC teprotumumab responders who flared, 5/8 (62.5%) became responders when retreated (mean proptosis reduction of 1.9mm [1.2] from OPTIC-X baseline, 3.3mm [0.7] from OPTIC baseline). Compared to published double-masked trials and their integrated follow-up, no new safety signals were identified. Mild hearing impairment was reported with 4 events occurring during the first course of treatment and 2 events reoccurring following retreatment. CONCLUSION These data indicate that TED patients with longer disease duration respond similarly to those treated earlier in their disease. Patients with an insufficient initial response or flare may benefit from additional teprotumumab therapy. This analysis did not find any new safety risk; however additional post-marketing pharmacovigilance is ongoing.
Collapse
Affiliation(s)
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Shoaib Ugradar
- The Jules Stein Eye Institute, UCLA, Los Angeles, California, USA
| | - Heike Elflein
- Department of Ophthalmology, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Katharina A Ponto
- Department of Ophthalmology and Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Brian T Fowler
- University of Tennessee, Health Science Center, Memphis, Tennessee, USA
| | - Roger Dailey
- Casey Eye Institute, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Gerald J Harris
- The Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin, USA
| | - Jade Schiffman
- Eye Wellness Center- Neuro-Eye Clinical Trials, Inc., Houston, Texas, USA
| | - Rosa Tang
- Eye Wellness Center- Neuro-Eye Clinical Trials, Inc., Houston, Texas, USA
| | - Sara Wester
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Amy Patel Jain
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Michele Marinò
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Anja Eckstein
- Department of Ophthalmology, EUGOGO Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Führer-Sakel
- Department of Endocrinology, Diabetes and Metabolism, EUGOGO Center Essen, University Hospital Essen, University of Duisburg-Essen
| | - Mario Salvi
- Endocrinology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Saba Sile
- Horizon Therapeutics plc, Deerfield, Illinois, USA
| | | | | | - Terry J Smith
- Department of Ophthalmology and Visual Sciences and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Shi L, Ye H, Huang J, Li Y, Wang X, Xu Z, Chen J, Xiao W, Chen R, Yang H. IL-38 Exerts Anti-Inflammatory and Antifibrotic Effects in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2021; 106:e3125-e3142. [PMID: 33693700 DOI: 10.1210/clinem/dgab154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroid-associated ophthalmopathy (TAO) is an organ-specific autoimmune disease closely associated with Graves' disease. IL-38, a novel cytokine in the IL-1 superfamily, has been reported to be involved in the pathogenesis of various autoimmune diseases. OBJECTIVE We aimed to evaluate the relationship between IL-38 and TAO disease activity and its role in inflammation and fibrosis in TAO. METHODS Blood samples and orbital connective tissues were collected from TAO patients and controls. Orbital fibroblasts were isolated from patients with TAO. Enzyme-linked immunosorbent assay, immunohistochemistry, flow cytometry, immunofluorescence, quantitative real-time PCR and Western blot analysis were performed. RESULTS Here, we demonstrated that IL-38 levels decreased in the circulation and orbital connective tissues of patients with TAO compared with the controls, and levels were negatively correlated with the clinical activity score. In vitro, potent anti-inflammatory and antifibrotic effects of IL-38 were observed. Furthermore, we revealed that IL-38 can counteract the phosphorylation of star molecules in multiple classical pathways. CONCLUSION IL-38 plays a protective role in TAO and is associated with its pathogenesis. Our data suggest that IL-38 may be a promising marker of TAO disease activity and a potential target for TAO therapy.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhihui Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingqiao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
12
|
Diao J, Chen X, Jiang L, Mou P, Wei R. Transforming growth factor-β1 suppress pentraxin-3 in human orbital fibroblasts. Endocrine 2020; 70:78-84. [PMID: 32300954 DOI: 10.1007/s12020-020-02307-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Transforming growth factor-β (TGF-β), recognized as a crucial factor in regulating fibrosis and tissue remodeling, plays a role in thyroid-associated ophthalmopathy (TAO). Pentraxin-3 (PTX3), a member of pentraxins, was recently implicated in many autoimmune and fibrotic diseases. Thus, we hypothesize if there is a potential correlation between TGF-β and PTX3 in orbital fibroblasts (OFs). METHODS Several strains of OFs obtained from patients with TAO (n = 8) and healthy donors (n = 3) were established as the study model. Recombinant TGF-β1 was exerted as an intervention and the expression of PTX3 was detected. To uncover the underlying mechanism, specific inhibitors of TGF-β and siRNA knockdown of Smads were utilized. RESULTS We found that TGF-β1 can reduce PTX3 protein expression in OFs. We also demonstrated that this downregulation was mediated at a pretranslational level, and PTX3 mRNA was inhibited in a time- and concentration-dependent manner by TGF-β1. Interestingly, the basic level of PTX3 and the magnitude of suppression were not significantly different between TAO and control groups. Furthermore, the TGF-β receptor complex (type I:type II) and the Smad2/3-Smad4-dependent pathway are essential for TGF-mediated PTX3 repression. CONCLUSION These findings indicated that TGF-β1 can inhibit PTX3 expression in human OFs, which may participate in inflammation and fibrosis in patients with TAO and provide a potential target for the antifibrotic treatment.
Collapse
Affiliation(s)
- Jiale Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Lihong Jiang
- Department of Ophthalmology, Zhabei Central Hospital, Jingan District, 619 Zhonghua Xin Road, Shanghai, 200070, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
13
|
Hai YP, Lee ACH, Frommer L, Diana T, Kahaly GJ. Immunohistochemical analysis of human orbital tissue in Graves' orbitopathy. J Endocrinol Invest 2020; 43:123-137. [PMID: 31538314 DOI: 10.1007/s40618-019-01116-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Immunohistochemistry of orbital tissues offers a correlation between the microscopic changes and macroscopic clinical manifestation of Graves' orbitopathy (GO). Summarizing the participation of different molecules will help us to understand the pathogenesis of GO. METHODS The pertinent and current literature on immunohistochemistry of human orbital tissue in GO was reviewed using the NCBI PubMed database. RESULTS 33 articles comprising over 700 orbital tissue samples were included in this review. The earliest findings included the demonstration of HLA-DR and T cell (to a lesser extent B cell) markers in GO orbital tissues. Subsequent investigators further contributed by characterizing cellular infiltration, confirming the presence of HLA-DR and TSHR, as well as revealing the participation of cytokines, growth factors, adhesion molecules and miscellaneous substances. HLA-DR and TSHR are over-expressed in orbital tissues of GO patients. The inflammatory infiltration mainly comprises CD4 + T cells and macrophages. Cytokine profile suggests the importance of Th1 (especially in early active phase) and Th17 immunity in the pathogenesis of GO. Upregulation of proinflammatory/profibrotic cytokines, adhesion molecules and growth factors finally culminate in activation of orbital fibroblasts and perpetuation of orbital inflammation. The molecular status of selected parameters correlates with the clinical presentation of GO. CONCLUSION Further investigation is warranted to define precisely the role of different molecules and ongoing search for new players yet to be discovered is also important. Unfolding the molecular mechanisms behind GO will hopefully provide insights into the development of novel therapeutic strategies and optimize our clinical management of the disease.
Collapse
Affiliation(s)
- Y P Hai
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - A C H Lee
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - L Frommer
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - T Diana
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
| | - G J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany.
| |
Collapse
|
14
|
Woeller CF, Roztocil E, Hammond C, Feldon SE. TSHR Signaling Stimulates Proliferation Through PI3K/Akt and Induction of miR-146a and miR-155 in Thyroid Eye Disease Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2020; 60:4336-4345. [PMID: 31622470 PMCID: PMC6798326 DOI: 10.1167/iovs.19-27865] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To investigate the molecular pathways that drive thyroid stimulating hormone receptor (TSHR)–induced cellular proliferation in orbital fibroblasts (OFs) from thyroid eye disease (TED) patients. Methods Orbital fibroblasts from TED and non-TED patients were treated with TSH and changes in gene expression and proliferation were measured. To determine the role of TSHR, TSHR-specific siRNA was used to deplete TSHR levels. Proliferation was measured by bromodeoxyuridine (BrdU) incorporation. PI3K/Akt activation was analyzed by Western blot. The PI3K inhibitor LY294002 was used to investigate PI3K/Akt signaling in OF proliferation. Expression of TSHR, inflammatory cytokines, proliferation related genes and miR-146a and miR-155 were measured by qPCR. Results Orbital fibroblasts from TED patients proliferate significantly more than non-TED OFs in response to TSH. TSH-induced proliferation was dependent upon TSHR expression and required the PI3K/Akt signaling cascade. TSHR activation stimulated miR-146a and miR-155 expression. TED OFs produced significantly more miR-146a and miR-155 than non-TED OFs. MiR-146a and miR-155 targets, ZNRF3 and PTEN, which both limit cell proliferation, were decreased in TSH treated OFs. Conclusions These data reveal that TSHR signaling in TED OFs stimulates proliferation directly through PI3K/Akt signaling and indirectly through induction of miR-146a and miR-155. MiR-146a and miR-155 enhance TED OF proliferation by reducing expression of target genes that normally block cell proliferation. TSHR-dependent expression of miR-146a and miR-155 may explain part of the fibroproliferative pathology observed in TED.
Collapse
Affiliation(s)
- Collynn F Woeller
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Elisa Roztocil
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Christine Hammond
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| | - Steven E Feldon
- Flaum Eye Institute, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States
| |
Collapse
|
15
|
Lu Y, Atkins SJ, Fernando R, Trierweiler A, Mester T, Grisolia ABD, Mou P, Novaes P, Smith TJ. CD34- Orbital Fibroblasts From Patients With Thyroid-Associated Ophthalmopathy Modulate TNF-α Expression in CD34+ Fibroblasts and Fibrocytes. Invest Ophthalmol Vis Sci 2019; 59:2615-2622. [PMID: 29847668 PMCID: PMC5968835 DOI: 10.1167/iovs.18-23951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Orbital fibroblasts from patients with Graves' disease (GD-OF) express many different cytokines when treated with bovine thyrotropin (bTSH). The present study aimed to determine why TNF-α cannot be induced by bTSH in GD-OF. Methods Fibrocytes and GD-OFs were cultivated from donors who were patients in a busy academic medical center practice. Real-time PCR, Western blot analysis, reporter gene assays, cell transfections, mRNA stability assays, ELISA, and flow cytometry were performed. Results We found that bTSH induces TNF-α dramatically in fibrocytes but is undetectable in GD-OF. The induction in fibrocytes is a consequence of increased TNF-α gene promoter activity and is independent of ongoing protein synthesis. It could be attenuated by dexamethasone and the IGF-1 receptor inhibiting antibody, teprotumumab. When separated into pure CD34+ OF and CD34- OF subsets, TNF-α mRNA became highly inducible by bTSH in CD34+ OF but remained undetectable in CD34- OF. Conditioned medium from CD34- OF inhibited induction of TNF-α in fibrocytes. Conclusions Our data indicate that CD34- OF appear to release a soluble(s) factor that downregulates expression and induction by bTSH of TNF-α in fibrocytes and their derivative CD34+ OF. We proffer that CD34- OF produce an unidentified modulatory factor that attenuates TNF-α expression in GD-OF and may do so in the TAO orbit.
Collapse
Affiliation(s)
- Yan Lu
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Stephen J Atkins
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Roshini Fernando
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Aaron Trierweiler
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Tünde Mester
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Ana Beatriz Diniz Grisolia
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Pei Mou
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Priscila Novaes
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Terry J Smith
- Departments of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan, United States.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
16
|
Smith TJ. Is there potential for the approval of monoclonal antibodies to treat thyroid-associated ophthalmopathy? Expert Opin Orphan Drugs 2018; 6:593-595. [PMID: 31662952 DOI: 10.1080/21678707.2018.1521268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Terry J Smith
- University of Michigan Ringgold standard institution - Ophthalmology and Visual Sciences, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Qin S, Chen X, Gao M, Zhou J, Li X. Prenatal Exposure to Lipopolysaccharide Induces PTX3 Expression and Results in Obesity in Mouse Offspring. Inflammation 2018; 40:1847-1861. [PMID: 28770376 PMCID: PMC5656716 DOI: 10.1007/s10753-017-0626-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study tested the hypothesis whether inflammation will directly lead to obesity. This study was designed to investigate the relationship between inflammation and obesity by intraperitoneally injecting pregnant mice with lipopolysaccharide (LPS) (75 μg kg-1). The results showed that inflammation during pregnancy could lead to a significant increase in the levels of the inflammatory factor PTX3. The offspring of the LPS-treated mice displayed abnormal levels of fat development, blood lipids, and glucose metabolism, and fat differentiation markers were significantly increased. Our study also confirmed that PTX3 can increase the susceptibility to obesity by regulating the expression of adipogenic markers; this regulatory role of PTX3 is most likely caused by MAPK pathway hyperactivation. Our study is the first to find strong evidence of inflammation as a cause of obesity. We determined that PTX3 was an important moderator of obesity, and we elucidated its mechanism, thus providing new targets and theories for obesity therapy. Moreover, our study provides new ideas and directions for the early intervention of anti-inflammation in pregnancy.
Collapse
Affiliation(s)
- Shugang Qin
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xin Chen
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Meng Gao
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jianzhi Zhou
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Xiaohui Li
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Mohyi M, Smith TJ. IGF1 receptor and thyroid-associated ophthalmopathy. J Mol Endocrinol 2018; 61:T29-T43. [PMID: 29273685 PMCID: PMC6561656 DOI: 10.1530/jme-17-0276] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a vexing and poorly understood autoimmune process involving the upper face and tissues surrounding the eyes. In TAO, the orbit can become inflamed and undergo substantial remodeling that is disfiguring and can lead to loss of vision. There are currently no approved medical therapies for TAO, the consequence of its uncertain pathogenic nature. It usually presents as a component of the syndrome known as Graves' disease where loss of immune tolerance to the thyrotropin receptor (TSHR) results in the generation of activating antibodies against that protein and hyperthyroidism. The role for TSHR and these antibodies in the development of TAO is considerably less well established. We have reported over the past 2 decades evidence that the insulin-like growth factorI receptor (IGF1R) may also participate in the pathogenesis of TAO. Activating antibodies against IGF1R have been detected in patients with GD. The actions of these antibodies initiate signaling in orbital fibroblasts from patients with the disease. Further, we have identified a functional and physical interaction between TSHR and IGF1R. Importantly, it appears that signaling initiated from either receptor can be attenuated by inhibiting the activity of IGF1R. These findings underpin the rationale for therapeutically targeting IGF1R in active TAO. A recently completed therapeutic trial of teprotumumab, a human IGF1R inhibiting antibody, in patients with moderate to severe, active TAO, indicates the potential effectiveness and safety of the drug. It is possible that other autoimmune diseases might also benefit from this treatment strategy.
Collapse
Affiliation(s)
- Michelle Mohyi
- Department of Ophthalmology and Visual SciencesUniversity of Michigan, Ann Arbor, Michigan, USA
| | - Terry J Smith
- Department of Ophthalmology and Visual SciencesUniversity of Michigan, Ann Arbor, Michigan, USA
- Division of MetabolismEndocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
PTX3: A Potential Biomarker in Thyroid Associated Ophthalmopathy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5961974. [PMID: 29675428 PMCID: PMC5838458 DOI: 10.1155/2018/5961974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Abstract
Background Thyroid associated ophthalmopathy (TAO) is an autoimmune disease, which involves inflammation and tissue remodeling. Pentraxin-3 (PTX3) is a component of innate immune system and recently implicated in autoimmunity. This observation may indicate that PTX3 participates in the inflammatory process of TAO. Methods All studies were performed on TAO patients and healthy controls (45: 28 in total). RNA-seq was used to detect differential gene expression of orbital adipose-connective tissue. Quantitative PCR was performed to verify the results. PTX3 protein in orbital adipose-connective tissues was visualized by immunohistochemistry (IHC). PTX3 concentration in serum was determined by enzyme-linked immunosorbent assay (ELISA). Results RNA-seq showed 1.86-log2FC higher PTX3 expression in the orbital adipose-connective tissues from TAO group than controls (FDR = 0.0059). qPCR confirmed the difference (5.59-fold increase, p = 0.0012). The presence of PTX3 protein was demonstrated. Orbital adipose tissue from healthy controls showed weak staining for PTX3 while tissue from TAO group was strongly positive. Serum PTX3 concentration was significantly elevated in patients when compared to the control group (1.9-fold increase; p < 0.0001). Conclusions Patients with TAO showed increased presence of PTX3 in orbital tissue and serum, which may suggest a potential relationship of PTX3 and TAO.
Collapse
|
20
|
Smith TJ. Rationale for therapeutic targeting insulin-like growth factor-1 receptor and bone marrow-derived fibrocytes in thyroid-associated ophthalmopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 11:77-79. [PMID: 28603545 PMCID: PMC5464408 DOI: 10.1586/17469899.2016.1164598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of medical therapy for thyroid-associated ophthalmopathy has lagged behind that for many other autoimmune diseases, in large part because its pathogenesis has not been understood. Recent insights into the nature of the main target of the disease, orbital connective tissues, have led to a greater understanding of how and why this ocular manifestation of Graves' disease might occur. Emerging from this work are the identities of potential drug targets. We believe that these findings will help pave the road toward an acceleration of therapy development.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences and Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|