1
|
Hu M, Liu T, Huang H, Ogi D, Tan Y, Ye K, Jin S. Extracellular matrix proteins refine microenvironments for pancreatic organogenesis from induced pluripotent stem cell differentiation. Theranostics 2025; 15:2229-2249. [PMID: 39990212 PMCID: PMC11840725 DOI: 10.7150/thno.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Rationale: The current understanding on manipulating signaling pathways to generate mature human islet organoids with all major hormone-secreting endocrine cell types (i.e., α, β, δ, and γ cells) from induced pluripotent stem cells (iPSCs) is insufficient. However, donor islet shortage necessitates that we produce functional islets in vitro. In this study, we aimed to find decellularized pancreatic extracellular matrix (dpECM) proteins that leverage signaling pathways and promote functional iPSC islet organogenesis. Methods: We performed proteomic analysis to identify key islet promoting factors from porcine and rat dpECM. With this, we identified collagen type II (COL2) as a potential biomaterial cue that endorses islet development from iPSCs. Using global transcriptome profiling, gene set enrichment analysis, immunofluorescence microscopy, flow cytometry, Western blot, and glucose-stimulated hormonal secretion analysis, we examined COL2's role in regulating iPSC pancreatic lineage specification and signaling pathways, critical to islet organogenesis and morphogenesis. Results: We discovered COL2 acts as a functional biomaterial that augments islet development from iPSCs, similar to collagen type V (COL5) as reported in our earlier study. COL2 substantially stimulates the formation of endocrine progenitors and subsequent islet organoids with significantly elevated expressions of pancreatic signature genes and proteins. Furthermore, it enhances islets' glucose sensitivity for hormonal secretion. A cluster of gene expressions associated with various signaling pathways, including but not limited to oxidative phosphorylation, insulin secretion, cell cycle, the canonical WNT, hypoxia, and interferon-γ response, were considerably affected by COL2 and COL5 cues. Conclusion: We demonstrated dpECM's crucial role in refining stem cell differentiation microenvironments for organoid development and maturation. Our findings on biomaterial-stimulated signaling for stem cell specification, organogenesis, and maturation open up a new way to increase the differentiation efficacy of endocrine tissues that can contribute to the production of biologically functional islets.
Collapse
Affiliation(s)
- Ming Hu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Tianzheng Liu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Derek Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| |
Collapse
|
2
|
Du G, Chen J, Zhu X, Zhu Z. Bioinformatics analysis identifies TGF-β signaling pathway-associated molecular subtypes and gene signature in diabetic foot. iScience 2024; 27:109094. [PMID: 38439964 PMCID: PMC10910239 DOI: 10.1016/j.isci.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
The role of transforming growth factor β (TGF-β) in inflammation and immune response is established, but the mechanism of TGF-β signaling pathway-related genes (TRGs) in diabetic foot ulcer (DFU) is not fully understood. We aimed to investigate the contribution of TRGs in the identification, molecular categorization, and immune infiltration of DFU through bioinformatics analysis. TGF-β signaling pathway is activated in DFU. 33 TRGs were upregulated. Regression analysis revealed TGFBR1 and TGFB1 as significant differential expression core genes, validated by quantitative real-time PCR. The diagnostic model with core genes had high clinical validity (AUC = 0.909). Core gene expression was associated with immune cell infiltration. A total of 5672 genes showed differential expression in TGF-related patterns, with differences in biological functions and immune infiltration. TGF-β signaling pathway may be critical in DFU development.
Collapse
Affiliation(s)
- Guanggang Du
- Department of Burn and Wound Repair, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jie Chen
- Department of Burn and Wound Repair, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Xuezhu Zhu
- Department of Burn and Wound Repair, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Zongdong Zhu
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Orthopaedics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
3
|
Mo S, Wang Y, Wu W, Zhao H, Jiang H, Qin S. Identifying target ion channel-related genes to construct a diagnosis model for insulinoma. Front Genet 2023; 14:1181307. [PMID: 37772258 PMCID: PMC10523017 DOI: 10.3389/fgene.2023.1181307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Insulinoma is the most common functional pancreatic neuroendocrine tumor (PNET) with abnormal insulin hypersecretion. The etiopathogenesis of insulinoma remains indefinable. Based on multiple bioinformatics methods and machine learning algorithms, this study proposed exploring the molecular mechanism from ion channel-related genes to establish a genetic diagnosis model for insulinoma. Methods: The mRNA expression profile dataset of GSE73338 was applied to the analysis, which contains 17 insulinoma samples, 63 nonfunctional PNET (NFPNET) samples, and four normal islet samples. Differently expressed ion channel-related genes (DEICRGs) enrichment analyses were performed. We utilized the protein-protein interaction (PPI) analysis and machine learning of LASSO and support vector machine-recursive feature elimination (SVM-RFE) to identify the target genes. Based on these target genes, a nomogram diagnostic model was constructed and verified by a receiver operating characteristic (ROC) curve. Moreover, immune infiltration analysis, single-gene gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were executed. Finally, a drug-gene interaction network was constructed. Results: We identified 29 DEICRGs, and enrichment analyses indicated they were primarily enriched in ion transport, cellular ion homeostasis, pancreatic secretion, and lysosome. Moreover, the PPI network and machine learning recognized three target genes (MCOLN1, ATP6V0E1, and ATP4A). Based on these target genes, we constructed an efficiently predictable diagnosis model for identifying insulinomas with a nomogram and validated it with the ROC curve (AUC = 0.801, 95% CI 0.674-0.898). Then, single-gene GSEA analysis revealed that these target genes had a significantly positive correlation with insulin secretion and lysosome. In contrast, the TGF-beta signaling pathway was negatively associated with them. Furthermore, statistically significant discrepancies in immune infiltration were revealed. Conclusion: We identified three ion channel-related genes and constructed an efficiently predictable diagnosis model to offer a novel approach for diagnosing insulinoma.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaying Zhao
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixing Jiang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Wang HL, Wang L, Zhao CY, Lan HY. Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes. Biomolecules 2022; 12:373. [PMID: 35327565 PMCID: PMC8945211 DOI: 10.3390/biom12030373] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Beta (β) cell dysfunction or loss is the common pathological feature in all types of diabetes mellitus (diabetes). Resolving the underlying mechanism may facilitate the treatment of diabetes by preserving the β cell population and function. It is known that TGF-β signaling plays diverse roles in β cell development, function, proliferation, apoptosis, and dedifferentiation. Inhibition of TGF-β signaling expands β cell lineage in the development. However, deletion of Tgfbr1 has no influence on insulin demand-induced but abolishes inflammation-induced β cell proliferation. Among canonical TGF-β signaling, Smad3 but not Smad2 is the predominant repressor of β cell proliferation in response to systemic insulin demand. Deletion of Smad3 simultaneously improves β cell function, apoptosis, and systemic insulin resistance with the consequence of eliminated overt diabetes in diabetic mouse models, revealing Smad3 as a key mediator and ideal therapeutic target for type-2 diabetes. However, Smad7 shows controversial effects on β cell proliferation and glucose homeostasis in animal studies. On the other hand, overexpression of Tgfb1 prevents β cells from autoimmune destruction without influence on β cell function. All these findings reveal the diverse regulatory roles of TGF-β signaling in β cell biology.
Collapse
Affiliation(s)
- Hong-Lian Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (H.-L.W.); (L.W.)
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Research Center for Integrative Medicine, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (H.-L.W.); (L.W.)
| | - Chang-Ying Zhao
- Department of Endocrinology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Guangdong Academy of Sciences, Guangdong Provincial People’s Hospital Joint Research Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Zhou Z, Zhu X, Huang H, Xu Z, Jiang J, Chen B, Zhu H. Recent Progress of Research Regarding the Applications of Stem Cells for Treating Diabetes Mellitus. Stem Cells Dev 2022; 31:102-110. [PMID: 35072537 DOI: 10.1089/scd.2021.0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
At present, the number of diabetes patients has exceeded 537 million worldwide and this number continues to increase. Stem cell therapy represents a new direction for the treatment of diabetes; the use of stem cells overcomes some shortcomings associated with traditional therapies. Functional β-cells play an important role in the pathogenesis of diabetes. As therapeutic targets, functional β-cells are restored by a variety of stem cells, including pluripotent stem cells, mesenchymal cells, and urine-derived stem cells. Although all types of stem cells have their own characteristics, they mainly promote the repair and regeneration of β-cells through directional differentiation, immunomodulation, and paracrine signaling after homing to the injured site. However, stem cell therapy still faces many obstacles, such as low long-term cell survival rate after transplantation, low maintenance time of blood glucose homeostasis, immune rejection, and tumorigenesis. Recently, genetically edited pluripotent stem cells and the co-transplantation of mesenchymal stem cells and islet cells have made significant progress in improving the efficacy of stem cell transplantation processes, also providing powerful tools for the study of the mechanisms underlying diabetes and disease modeling. In this review, we first focused on: (1) stem cells as a pool for the differentiation of insulin-producing cells; (2) stem cells as a source for regenerative repair of damaged islets and as a potential co-transplanted population with islets; (3) the potential of combining gene editing with stem cell therapy; and (4) selection of the stem cell transplantation approach. Based on these topics, we discuss the challenges within the field of adapting stem cell-supported and stem cell-derived transplantations, and the promising routes for overcoming these problems.
Collapse
Affiliation(s)
- Zijun Zhou
- The First Affiliated Hospital of Wenzhou Medical University, 89657, Endocrinology, Wenzhou, Zhejiang, China, 325000;
| | - Xiandong Zhu
- Wenzhou Medical University First Affiliated Hospital, 89657, Wenzhou, China, 325000;
| | - Hongjian Huang
- Wenzhou Medical College First Affiliated Hospital, 89657, Wenzhou, China, 325000;
| | - Zeru Xu
- The First Affiliated Hospital of Wenzhou Medical University, 89657, Wenzhou, China, 325000;
| | - Jiahong Jiang
- The First Affiliated Hospital of Wenzhou Medical University, 89657, endocrinology, Wenzhou, Zhejiang, China, 325000;
| | - Bicheng Chen
- Wenzhou Medical University First Affiliated Hospital, 89657, Wenzhou, China, 325000;
| | - Hong Zhu
- The First Affiliated Hospital of Wenzhou Medical University, 89657, Endocrinology, Wenzhou, Zhejiang, China, 325000;
| |
Collapse
|
7
|
Wang HL, Wei B, He HJ, Huang XR, Sheng JY, Chen XC, Wang L, Tan RZ, Li JC, Liu J, Yang SJ, Ma RCW, Lan HY. Smad3 deficiency improves islet-based therapy for diabetes and diabetic kidney injury by promoting β cell proliferation via the E2F3-dependent mechanism. Am J Cancer Res 2022; 12:379-395. [PMID: 34987651 PMCID: PMC8690916 DOI: 10.7150/thno.67034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Poor β cell proliferation is one of the detrimental factors hindering islet cell replacement therapy for patients with diabetes. Smad3 is an important transcriptional factor of TGF-β signaling and has been shown to promote diabetes by inhibiting β cell proliferation. Therefore, we hypothesize that Smad3-deficient islets may be a novel cell replacement therapy for diabetes. Methods: We examined this hypothesis in streptozocin-induced type-1 diabetic mice and type-2 diabetic db/db mice by transplanting Smad3 knockout (KO) and wild type (WT) islets under the renal capsule, respectively. The effects of Smad3KO versus WT islet replacement therapy on diabetes and diabetic kidney injury were examined. In addition, RNA-seq was applied to identify the downstream target gene underlying Smad3-regulated β cell proliferation in Smad3KO-db/db versus Smad3WT-db/db mouse islets. Results: Compared to Smad3WT islet therapy, treatment with Smad3KO islets produced a much better therapeutic effect on both type-1 and type-2 diabetes by significantly lowering serum levels of blood glucose and HbA1c and protected against diabetic kidney injuries by preventing an increase in serum creatinine and the development of proteinuria, mesangial matrix expansion, and fibrosis. These were associated with a significant increase in grafted β cell proliferation and blood insulin levels, resulting in improved glucose intolerance. Mechanistically, RNA-seq revealed that compared with Smad3WT-db/db mouse islets, deletion of Smad3 from db/db mouse islets markedly upregulated E2F3, a pivotal regulator of cell cycle G1/S entry. Further studies found that Smad3 could bind to the promoter of E2F3, and thus inhibit β cell proliferation via an E2F3-dependent mechanism as silencing E2F3 abrogated the proliferative effect on Smad3KO β cells. Conclusion: Smad3-deficient islet replacement therapy can significantly improve both type-1 and type-2 diabetes and protect against diabetic kidney injury, which is mediated by a novel mechanism of E2F3-dependent β cell proliferation.
Collapse
|
8
|
Zhu L, Qian J, Jiang Y, Yang T, Duan Q, Xiao X. PlGF Reduction Compromises Angiogenesis in Diabetic Foot Disease Through Macrophages. Front Immunol 2021; 12:736153. [PMID: 34659227 PMCID: PMC8511710 DOI: 10.3389/fimmu.2021.736153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic foot disease (DFD) is a common and serious complication for diabetes and is characterized with impaired angiogenesis. In addition to the well-defined role of vascular endothelial growth factor (VEGF) -A and its defect in the pathogenesis of DFD, another VEGF family member, placental growth factor (PlGF), was also recently found to alter expression pattern in the DFD patients with undetermined mechanisms. This question was thus addressed in the current study. We detected attenuated PlGF upregulation in a mouse DFD model. In addition, the major cell types at the wound to express the unique PlGF receptor, VEGF receptor 1 (VEGFR1), were macrophages and endothelial cells. To assess how PlGF regulates DFD-associated angiogenesis, we injected recombinant PlGF and depleted VEGF1R specifically in macrophages by local injection of an adeno-associated virus (AAV) carrying siRNA for VEGFR1 under a macrophage-specific CD68 promoter. We found that the angiogenesis and recovery of the DFD were both improved by PlGF injection. The PlGF-induced improvement in angiogenesis and the recovery of skin injury were largely attenuated by macrophage-specific depletion of VEGF1R, likely resulting from reduced macrophage number and reduced M2 polarization. Together, our data suggest that reduced PlGF compromises angiogenesis in DFD at least partially through macrophages.
Collapse
Affiliation(s)
- Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology, The Peoples Hospital of Yudu County, Ganzhou, China
| | - Jieqi Qian
- Department of Surgery, Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yinan Jiang
- Department of Surgery, Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Duan
- Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangwei Xiao
- Department of Surgery, Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Liu Q, Jiang Y, Zhu L, Qian J, Wang C, Yang T, Prasadan K, Gittes GK, Xiao X. Insulin-positive ductal cells do not migrate into preexisting islets during pregnancy. Exp Mol Med 2021; 53:605-614. [PMID: 33820959 PMCID: PMC8102600 DOI: 10.1038/s12276-021-00593-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The adult pancreatic ductal system was suggested to harbor facultative beta-cell progenitors similar to the embryonic pancreas, and the appearance of insulin-positive duct cells has been used as evidence for natural duct-to-beta-cell reprogramming. Nevertheless, the phenotype and fate of these insulin-positive cells in ducts have not been determined. Here, we used a cell-tagging dye, CFDA-SE, to permanently label pancreatic duct cells through an intraductal infusion technique. Representing a time when significant increases in beta-cell mass occur, pregnancy was later induced in these CFDA-SE-treated mice to assess the phenotype and fate of the insulin-positive cells in ducts. We found that a small portion of CFDA-SE-labeled duct cells became insulin-positive, but they were not fully functional beta-cells based on the in vitro glucose response and the expression levels of key beta-cell genes. Moreover, these insulin-positive cells in ducts expressed significantly lower levels of genes associated with extracellular matrix degradation and cell migration, which may thus prevent their budding and migration into preexisting islets. A similar conclusion was reached through analysis of the Gene Expression Omnibus database for both mice and humans. Together, our data suggest that the contribution of duct cells to normal beta-cells in adult islets is minimal at best.
Collapse
Affiliation(s)
- Qun Liu
- Department of Endocrinology, The First Affiliated Hospital of NanChang University, Nanchang, 330006, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of NanChang University, Nanchang, 330006, China.
| | - Jieqi Qian
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Department of Pediatric Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoban Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Department of Pediatric Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
10
|
Abstract
Pancreatic islet beta cells (β-cells) synthesize and secrete insulin in response to rising glucose levels and thus are a prime target in both major forms of diabetes. Type 1 diabetes ensues due to autoimmune destruction of β-cells. On the other hand, the prevailing insulin resistance and hyperglycemia in type 2 diabetes (T2D) elicits a compensatory response from β-cells that involves increases in β-cell mass and function. However, the sustained metabolic stress results in β-cell failure, characterized by severe β-cell dysfunction and loss of β-cell mass. Dynamic changes to β-cell mass also occur during pancreatic development that involves extensive growth and morphogenesis. These orchestrated events are triggered by multiple signaling pathways, including those representing the transforming growth factor β (TGF-β) superfamily. TGF-β pathway ligands play important roles during endocrine pancreas development, β-cell proliferation, differentiation, and apoptosis. Furthermore, new findings are suggestive of TGF-β's role in regulation of adult β-cell mass and function. Collectively, these findings support the therapeutic utility of targeting TGF-β in diabetes. Summarizing the role of the various TGF-β pathway ligands in β-cell development, growth and function in normal physiology, and during diabetes pathogenesis is the topic of this mini-review.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Ji-Hyeon Lee
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
| | - Sushil G Rane
- Cell Growth and Metabolism Section, Diabetes, Endocrinology & Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bethesda, MD, USA
- Correspondence: Sushil G. Rane, PhD, Cell Growth and Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Building 10, CRC-West 5-5940, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Oakie A, Nostro MC. Harnessing Proliferation for the Expansion of Stem Cell-Derived Pancreatic Cells: Advantages and Limitations. Front Endocrinol (Lausanne) 2021; 12:636182. [PMID: 33716986 PMCID: PMC7947602 DOI: 10.3389/fendo.2021.636182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Restoring the number of glucose-responsive β-cells in patients living with diabetes is critical for achieving normoglycemia since functional β-cells are lost during the progression of both type 1 and 2 diabetes. Stem cell-derived β-cell replacement therapies offer an unprecedented opportunity to replace the lost β-cell mass, yet differentiation efficiencies and the final yield of insulin-expressing β-like cells are low when using established protocols. Driving cellular proliferation at targeted points during stem cell-derived pancreatic progenitor to β-like cell differentiation can serve as unique means to expand the final cell therapeutic product needed to restore insulin levels. Numerous studies have examined the effects of β-cell replication upon functionality, using primary islets in vitro and mouse models in vivo, yet studies that focus on proliferation in stem cell-derived pancreatic models are only just emerging in the field. This mini review will discuss the current literature on cell proliferation in pancreatic cells, with a focus on the proliferative state of stem cell-derived pancreatic progenitors and β-like cells during their differentiation and maturation. The benefits of inducing proliferation to increase the final number of β-like cells will be compared against limitations associated with driving replication, such as the blunted capacity of proliferating β-like cells to maintain optimal β-cell function. Potential strategies that may bypass the challenges induced by the up-regulation of cell cycle-associated factors during β-cell differentiation will be proposed.
Collapse
Affiliation(s)
- Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Parajuli P, Nguyen TL, Prunier C, Razzaque MS, Xu K, Atfi A. Pancreatic cancer triggers diabetes through TGF-β-mediated selective depletion of islet β-cells. Life Sci Alliance 2020; 3:e201900573. [PMID: 32371554 PMCID: PMC7211975 DOI: 10.26508/lsa.201900573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that remains incurable because of late diagnosis, which renders any therapeutic intervention challenging. Most PDAC patients develop de novo diabetes, which exacerbates their morbidity and mortality. How PDAC triggers diabetes is still unfolding. Using a mouse model of KrasG12D-driven PDAC, which faithfully recapitulates the progression of the human disease, we observed a massive and selective depletion of β-cells, occurring very early at the stages of preneoplastic lesions. Mechanistically, we found that increased TGF beta (TGF-β) signaling during PDAC progression caused erosion of β-cell mass through apoptosis. Suppressing TGF-β signaling, either pharmacologically through TGF-β immunoneutralization or genetically through deletion of Smad4 or TGF-β type II receptor (TβRII), afforded substantial protection against PDAC-driven β-cell depletion. From a translational perspective, both activation of TGF-β signaling and depletion of β-cells frequently occur in human PDAC, providing a mechanistic explanation for the pathogenesis of diabetes in PDAC patients, and further implicating new-onset diabetes as a potential early prognostic marker for PDAC.
Collapse
Affiliation(s)
- Parash Parajuli
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Thien Ly Nguyen
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Céline Prunier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Keli Xu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
13
|
Zhu L, Zhong Q, Yang T, Xiao X. Improved therapeutic effects on diabetic foot by human mesenchymal stem cells expressing MALAT1 as a sponge for microRNA-205-5p. Aging (Albany NY) 2019; 11:12236-12245. [PMID: 31866580 PMCID: PMC6949052 DOI: 10.18632/aging.102562] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Diabetic foot (DF) is a common complication of high severity for diabetes, a prevalent metabolic disorder that affects billions of people worldwide. Mesenchymal stem cells (MSCs) have a demonstrative therapeutic effect on DF, through their generation of pro-angiogenesis factors, like vascular endothelial growth factor (VEGF). Recently, genetically modified MSCs have been used in therapy and we have shown that depletion of micoRNA-205-5p (miR-205-5p) in human MSCs promotes VEGF-mediated therapeutic effects on DF. Here, we showed that a long non-coding RNA (lncRNA), MALAT1, is a competing endogenous RNA (ceRNA) for miR-205-5p, and is low expressed in human MSCs. Ectopic expression of MALAT1 in human MSCs significantly decreased miR-205-5p levels, resulting in upregulation of VEGF production and improved in vitro endothelial cell tube formation. In a DF model in immunodeficient NOD/SCID mice, transplantation of human miR-205-5p-depleted MSCs exhibited better therapeutic effects on DF recovery than control MSCs. Moreover, MALAT1-expressing MSCs showed even better therapeutic effects on DF recovery than miR-205-5p-depleted MSCs. This difference in DF recovery was shown to be associated with the levels of on-site vascularization. Together, our data suggest that MALAT1 functions as a sponge RNA for miR-205-5p to increase therapeutic effects of MSCs on DF.
Collapse
Affiliation(s)
- Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Qiaoqing Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
14
|
Song Z, Yu Z, Chen L, Zhou Z, Zou Q, Liu Y. MicroRNA-1181 supports the growth of hepatocellular carcinoma by repressing AXIN1. Biomed Pharmacother 2019; 119:109397. [PMID: 31514071 DOI: 10.1016/j.biopha.2019.109397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Micro-RNAs regulate multiple biological behaviors of cancers, making them potential targets of new cancer therapies. MiR-1181 has been demonstrated to perform oncogenic or tumor-suppressing function in a tissue-dependent way, but its role in hepatocellular carcinoma (HCC) was unclear. Here, we showed that miR-1181 was significantly overexpressed in HCC tissues when compared with tumor-adjacent normal ones or normal liver tissues from donated organ, and that inhibition of miR-1181 could repress the growth of HCC cells. Through bioinformatics analysis and luciferase reporter assays, we found that axis inhibition protein 1 (AXIN1) was a direct target of miR-1181, and the expression of AXIN1 showed a negative correlation with that of miR-1181 in HCC. Therefore, these data indicated an oncogenic function of miRNA-1181 in the development of HCC and a potential target for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Zewen Song
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhaomei Yu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Limin Chen
- Department of Infection, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhijiao Zhou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
15
|
Chen C, Shiota C, Agostinelli G, Ridley D, Jiang Y, Ma J, Prasadan K, Xiao X, Gittes GK. Evidence of a developmental origin for β-cell heterogeneity using a dual lineage-tracing technology. Development 2019; 146:dev164913. [PMID: 31160417 PMCID: PMC6633602 DOI: 10.1242/dev.164913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
The Cre/loxP system has been used extensively in mouse models with a limitation of one lineage at a time. Differences in function and other properties among populations of adult β-cells is termed β-cell heterogeneity, which was recently associated with diabetic phenotypes. Nevertheless, the presence of a developmentally derived β-cell heterogeneity is unclear. Here, we have developed a novel dual lineage-tracing technology, using a combination of two recombinase systems, Dre/RoxP and Cre/LoxP, to independently trace green fluorescent Pdx1-lineage cells and red fluorescent Ptf1a-lineage cells in the developing and adult mouse pancreas. We detected a few Pdx1+/Ptf1a- lineage cells in addition to the vast majority of Pdx1+/Ptf1a+ lineage cells in the pancreas. Moreover, Pdx1+/Ptf1a+ lineage β-cells had fewer Ki-67+ proliferating β-cells, and expressed higher mRNA levels of insulin, Glut2, Pdx1, MafA and Nkx6.1, but lower CCND1 and CDK4 levels, compared with Pdx1+/Ptf1a- lineage β-cells. Furthermore, more TSQ-high, SSC-high cells were detected in the Pdx1+Ptf1a+ lineage population than in the Pdx1+Ptf1a- lineage population. Together, these data suggest that differential activation of Ptf1a in the developing pancreas may correlate with this β-cell heterogeneity.
Collapse
Affiliation(s)
- Congde Chen
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Chiyo Shiota
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Guy Agostinelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Daniel Ridley
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
16
|
Wang P, Karakose E, Liu H, Swartz E, Ackeifi C, Zlatanic V, Wilson J, González BJ, Bender A, Takane KK, Ye L, Harb G, Pagliuca F, Homann D, Egli D, Argmann C, Scott DK, Garcia-Ocaña A, Stewart AF. Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. Cell Metab 2019; 29:638-652.e5. [PMID: 30581122 PMCID: PMC6402958 DOI: 10.1016/j.cmet.2018.12.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 01/13/2023]
Abstract
Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFβSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers. This synergy reflects activation of cyclins and cdks by DYRK1A inhibition, accompanied by simultaneous reductions in key cell-cycle inhibitors (CDKN1C and CDKN1A). The latter results from interference with the basal Trithorax- and SMAD-mediated transactivation of CDKN1C and CDKN1A. Notably, combined DYRK1A and TGFβ inhibition allows preservation of beta cell differentiated function. These beneficial effects extend from normal human beta cells and stem cell-derived human beta cells to those from people with type 2 diabetes, and occur both in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esra Karakose
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongtao Liu
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney Ackeifi
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bryan J González
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Aaron Bender
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen K Takane
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lillian Ye
- Semma Therapeutics, Cambridge, MA 02142, USA
| | - George Harb
- Semma Therapeutics, Cambridge, MA 02142, USA
| | | | - Dirk Homann
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Zhu L, Xu J, Liu Y, Gong T, Liu J, Huang Q, Fischbach S, Zou W, Xiao X. Prion protein is essential for diabetic retinopathy-associated neovascularization. Angiogenesis 2018; 21:767-775. [DOI: 10.1007/s10456-018-9619-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022]
|
18
|
Jiang Y, Fischbach S, Xiao X. The Role of the TGFβ Receptor Signaling Pathway in Adult Beta Cell Proliferation. Int J Mol Sci 2018; 19:3136. [PMID: 30322036 PMCID: PMC6212884 DOI: 10.3390/ijms19103136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a global epidemic and affects millions of individuals in the United States. Devising novel treatments for diabetes continues to be a great medical challenge. Postnatal beta cell growth or compensation is largely attributed to beta cell proliferation, which declines continuously with age. To boost beta cell proliferation to regenerate an adequate functional mass, there is a need to understand the signaling pathways that regulate beta cell proliferation for creating practical strategies to promote the process. Transforming growth factor β (TGFβ) belongs to a signaling superfamily that governs pancreatic development and the regeneration of beta cells after pancreatic diseases. TGFβ exerts its functions by activation of downstream Smad proteins and through its crosstalk with other pathways. Accumulating data demonstrate that the TGFβ receptor signaling pathway also participates in the control of beta cell proliferation. This review details the role of the TGFβ receptor signaling pathway in beta cell proliferation physiologically and in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Yinan Jiang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
- The Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA.
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| |
Collapse
|
19
|
Xiao X, Guo P, Shiota C, Zhang T, Coudriet GM, Fischbach S, Prasadan K, Fusco J, Ramachandran S, Witkowski P, Piganelli JD, Gittes GK. Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell 2018; 22:78-90.e4. [PMID: 29304344 PMCID: PMC5757249 DOI: 10.1016/j.stem.2017.11.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
Successful strategies for treating type 1 diabetes need to restore the function of pancreatic beta cells that are destroyed by the immune system and overcome further destruction of insulin-producing cells. Here, we infused adeno-associated virus carrying Pdx1 and MafA expression cassettes through the pancreatic duct to reprogram alpha cells into functional beta cells and normalized blood glucose in both beta cell-toxin-induced diabetic mice and in autoimmune non-obese diabetic (NOD) mice. The euglycemia in toxin-induced diabetic mice and new insulin+ cells persisted in the autoimmune NOD mice for 4 months prior to reestablishment of autoimmune diabetes. This gene therapy strategy also induced alpha to beta cell conversion in toxin-treated human islets, which restored blood glucose levels in NOD/SCID mice upon transplantation. Hence, this strategy could represent a new therapeutic approach, perhaps complemented by immunosuppression, to bolster endogenous insulin production. Our study thus provides a potential basis for further investigation in human type 1 diabetes.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Gina M Coudriet
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | | | - Piotr Witkowski
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
20
|
Chen C, Wu S, Lin X, Wu D, Fischbach S, Xiao X. ERK5 plays an essential role in gestational beta-cell proliferation. Cell Prolif 2017; 51:e12410. [PMID: 29159830 DOI: 10.1111/cpr.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Restoring a functional beta-cell mass is a fundamental goal in treating diabetes. A complex signalling pathway network coordinates the regulation of beta-cell proliferation, although a role for ERK5 in this network has not been reported. This question was addressed in this study. MATERIALS AND METHODS We studied the activation of extracellular-signal-regulated kinase 5 (ERK5) in pregnant mice, a well-known mouse model of increased beta-cell proliferation. A specific inhibitor of ERK5 activation, BIX02189, was intraperitoneally injected into the pregnant mice to suppress ERK5 signalling. Beta-cell proliferation was determined by quantification of Ki-67+ beta cells. Beta-cell apoptosis was determined by TUNEL assay. The extent of beta-cell proliferation was determined by beta-cell mass. The alteration of ERK5 activation and CyclinD1 levels in purified mouse islets was examined by Western blotting. RESULTS Extracellular-signal-regulated kinase 5 phosphorylation, which represents ERK5 activation, was significantly upregulated in islets from pregnant mice. Suppression of ERK5 activation by BIX02189 in pregnant mice significantly reduced beta-cell proliferation, without affecting beta-cell apoptosis, resulting in increases in random blood glucose levels and impairment of glucose response of the mice. ERK5 seemed to activate CyclinD1 to promote gestational beta-cell proliferation. CONCLUSIONS Extracellular-signal-regulated kinase 5 plays an essential role in the gestational augmentation of beta-cell proliferation. ERK5 may be a promising target for increasing beta-cell mass in diabetes patients.
Collapse
Affiliation(s)
- Congde Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suichun Wu
- Reproductive Medicine Centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Lin
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dazhou Wu
- Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shane Fischbach
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
21
|
Xiao X, Fischbach S, Zhang T, Chen C, Sheng Q, Zimmerman R, Patnaik S, Fusco J, Ming Y, Guo P, Shiota C, Prasadan K, Gangopadhyay N, Husain SZ, Dong H, Gittes GK. SMAD3/Stat3 Signaling Mediates β-Cell Epithelial-Mesenchymal Transition in Chronic Pancreatitis-Related Diabetes. Diabetes 2017; 66:2646-2658. [PMID: 28775125 PMCID: PMC5606322 DOI: 10.2337/db17-0537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Many patients with chronic pancreatitis develop diabetes (chronic pancreatitis-related diabetes [CPRD]) through an undetermined mechanism. Here we used long-term partial pancreatic duct ligation (PDL) as a model to study CPRD. We found that long-term PDL induced significant β-cell dedifferentiation, followed by a time-dependent decrease in functional β-cell mass-all specifically in the ligated tail portion of the pancreas (PDL-tail). High levels of transforming growth factor β1 (TGFβ1) were detected in the PDL-tail and were mainly produced by M2 macrophages at the early stage and by activated myofibroblasts at the later stage. Loss of β-cell mass was then found to result from TGFβ1-triggered epithelial-mesenchymal transition (EMT) by β-cells, rather than resulting directly from β-cell apoptosis. Mechanistically, TGFβ1-treated β-cells activated expression of the EMT regulator gene Snail in a SMAD3/Stat3-dependent manner. Moreover, forced expression of forkhead box protein O1 (FoxO1), an antagonist for activated Stat3, specifically in β-cells ameliorated β-cell EMT and β-cell loss and prevented the onset of diabetes in mice undergoing PDL. Together, our data suggest that chronic pancreatitis may trigger TGFβ1-mediated β-cell EMT to lead to CPRD, which could substantially be prevented by sustained expression of FoxO1 in β-cells.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tina Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Congde Chen
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Qingfeng Sheng
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ray Zimmerman
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sneha Patnaik
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Joseph Fusco
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yungching Ming
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ping Guo
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chiyo Shiota
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Krishna Prasadan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nupur Gangopadhyay
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sohail Z Husain
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Henry Dong
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - George K Gittes
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
22
|
Zhu L, Wang G, Fischbach S, Xiao X. Suppression of microRNA-205-5p in human mesenchymal stem cells improves their therapeutic potential in treating diabetic foot disease. Oncotarget 2017; 8:52294-52303. [PMID: 28881730 PMCID: PMC5581029 DOI: 10.18632/oncotarget.17012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a prevalent disease endangering human health, while diabetic foot disease (DF) is one of the most severe complications of diabetes. Mesenchymal stem cells (MSCs) have been used in DF treatment, taking advantage of the differentiation potential of MSCs into endothelial cells and their production and secretion of trophic factors like vascular endothelial growth factor (VEGF). Molecular modification of MSCs to improve their therapeutic effects has been recently applied in treating other diseases, but not yet in DF. Here, we found that micoRNA-205-5p (miR-205-5p) is expressed in human MSCs, and miR-205-5p inhibits protein translation of VEGF through its interaction with 3'-UTR of the VEGF mRNA. Expression of antisense of miR-205-5p (as-miR-205-5p) significantly increased both cellular and secreted VEGF by MSCs, which significantly improved the therapeutic effects of MSCs on DF-associated wound healing in diabetic NOD/SCID mice. Together, our data suggest that miR-205-5p suppression in MSCs may improve their therapeutic effects on DF, seemingly through augmentation of VEGF-mediated vascularization.
Collapse
Affiliation(s)
- Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA15224, USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA15224, USA
| |
Collapse
|
23
|
Xiao X, Chen C, Guo P, Zhang T, Fischbach S, Fusco J, Shiota C, Prasadan K, Dong H, Gittes GK. Forkhead Box Protein 1 (FoxO1) Inhibits Accelerated β Cell Aging in Pancreas-specific SMAD7 Mutant Mice. J Biol Chem 2017; 292:3456-3465. [PMID: 28057752 PMCID: PMC5336177 DOI: 10.1074/jbc.m116.770032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/04/2017] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying the effects of exocrine dysfunction on the development of diabetes remain largely unknown. Here we show that pancreatic depletion of SMAD7 resulted in age-dependent increases in β cell dysfunction with accelerated glucose intolerance, followed by overt diabetes. The accelerated β cell dysfunction and loss of proliferation capacity, two features of β cell aging, appeared to be non-cell-autonomous, secondary to the adjacent exocrine failure as a "bystander effect." Increased Forkhead box protein 1 (FoxO1) acetylation and nuclear retention was followed by progressive FoxO1 loss in β cells that marked the onset of diabetes. Moreover, forced FoxO1 expression in β cells prevented β cell dysfunction and loss in this model. Thus, we present a model of accelerated β cell aging that may be useful for studying the mechanisms underlying β cell failure in diabetes. Moreover, we provide evidence highlighting a critical role of FoxO1 in maintaining β cell identity in the context of SMAD7 failure.
Collapse
Affiliation(s)
| | - Congde Chen
- Divisions of Pediatric Surgery; Department of Pediatric Surgery, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Guo
- Divisions of Pediatric Surgery; Department of Orthopedic Surgery, University of Texas Health Sciences Center, Houston, Texas 77054
| | - Ting Zhang
- Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | | | | | | - Henry Dong
- Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | |
Collapse
|
24
|
Song Z, Fusco J, Zimmerman R, Fischbach S, Chen C, Ricks DM, Prasadan K, Shiota C, Xiao X, Gittes GK. Epidermal Growth Factor Receptor Signaling Regulates β Cell Proliferation in Adult Mice. J Biol Chem 2016; 291:22630-22637. [PMID: 27587395 PMCID: PMC5077199 DOI: 10.1074/jbc.m116.747840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/29/2016] [Indexed: 12/20/2022] Open
Abstract
A thorough understanding of the signaling pathways involved in the regulation of β cell proliferation is an important initial step in restoring β cell mass in the diabetic patient. Here, we show that epidermal growth factor receptor 1 (EGFR) was significantly up-regulated in the islets of C57BL/6 mice after 50% partial pancreatectomy (PPx), a model for workload-induced β cell proliferation. Specific deletion of EGFR in the β cells of adult mice impaired β cell proliferation at baseline and after 50% PPx, suggesting that the EGFR signaling pathway plays an essential role in adult β cell proliferation. Further analyses showed that β cell-specific depletion of EGFR resulted in impaired expression of cyclin D1 and impaired suppression of p27 after PPx, both of which enhance β cell proliferation. These data highlight the importance of EGFR signaling and its downstream signaling cascade in postnatal β cell growth.
Collapse
Affiliation(s)
- Zewen Song
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
- Department of Oncology, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha 410013, China, and
| | - Joseph Fusco
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ray Zimmerman
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shane Fischbach
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Congde Chen
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - David Matthew Ricks
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Krishna Prasadan
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chiyo Shiota
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Xiangwei Xiao
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,
| | - George K Gittes
- From the Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224,
| |
Collapse
|
25
|
Cui JP, Zhang MJ, Liu BL. Research progress of mesenchymal stem cells combined with islet transplantation in treatment of type I diabetes mellitus. Shijie Huaren Xiaohua Zazhi 2016; 24:2213-2218. [DOI: 10.11569/wcjd.v24.i14.2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The most significant feature of type I diabetes is β-cell loss, which results in a series of complications. While β-cell loss occurs, β-cells are ultimately damaged by macrophages and T cells in the presence of inflammatory mediators. Because of this characteristic, five kinds of antibodies are commonly used in clinical practice to diagnose and evaluate β-cell loss, including islet cell antibody, insulin antibody, GAD65, IA-2 and IA-2b. In addition to the HLA gene related factors, environmental factors, such as infection, diet and physiological and psychological factors, are suspected to be causes of this disease. At present, there are many treatments for type I diabetes, and the clinical goal is to control blood glucose, prevent further damage of βcells and control patients' own immune response. In 1992, the discovery of insulin, which converts the fatal diabetes into a chronic disease, to some extent, delayed the progression of microvascular complications; however, it is not able to delay the progression of the disease. β-cell transplantation is currently the only minimally invasive means for reasonable control of blood glucose control disease related complications. Although whole pancreas transplantation can achieve a promising effect to some extent, it is accompanied by high incidence and mortality, as well as lifelong mandatory immune suppression. Bone marrow mesenchymal stem cells transplantation, lipopolysaccharideon (LPS) bone marrow mesenchymal stem cell pretreatment and islet cell exendin-4 liquid preservation reduce warm ischemia time damage and provide new avenues for islet cell transplantation.
Collapse
|
26
|
Saunders D, Powers AC. Replicative capacity of β-cells and type 1 diabetes. J Autoimmun 2016; 71:59-68. [PMID: 27133598 DOI: 10.1016/j.jaut.2016.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
Efforts to restore β-cell number or mass in type 1 diabetes (T1D) must combine an intervention to stimulate proliferation of remaining β-cells and an intervention to mitigate or control the β-cell-directed autoimmunity. This review highlights features of the β-cell, including it being part of a pancreatic islet, a mini-organ that is highly vascularized and highly innervated, and efforts to promote β-cell proliferation. In addition, the β-cell in T1D exists in a microenvironment with interactions and input from other islet cell types, extracellular matrix, vascular endothelial cells, neuronal projections, and immune cells, all of which likely influence the β-cell's capacity for replication. Physiologic β-cell proliferation occurs in human and rodents in the neonatal period and early in life, after which there is an age-dependent decline in β-cell proliferation, and also as part of the β-cell's compensatory response to the metabolic challenges of pregnancy and insulin resistance. This review reviews the molecular pathways involved in this β-cell proliferation and highlights recent work in two areas: 1) Investigators, using high-throughput screening to discover small molecules that promote human β-cell proliferation, are now focusing on the dual-specificity tyrosine-regulated kinase-1a and cell cycle-dependent kinase inhibitors CDKN2C/p18 or CDKN1A/p21as targets of compounds to stimulate adult human β-cell proliferation. 2) Local inflammation, macrophages, and the local β-cell microenvironment promote β-cell proliferation. Future efforts to harness the responsible mechanisms may lead to new approaches to promote β-cell proliferation in T1D.
Collapse
Affiliation(s)
- Diane Saunders
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; VA Tennessee Valley Healthcare System, Nashville, TN, United States.
| |
Collapse
|