1
|
Marei WFA, Moorkens K, Gansemans Y, Van Nieuwerburgh F, Leroy JLMR. Acute and long-term transcriptomic responses of granulosa cells to obesogenic diet and concomitant effects on oocyte quality: insight from an outbred mouse model†. Biol Reprod 2025; 112:692-708. [PMID: 39913328 DOI: 10.1093/biolre/ioaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 04/16/2025] Open
Abstract
Diet-induced obesity can cause long-term alterations in ovarian functions, but the acute effects of obesogenic diets on the follicular cells and their progression over time, when intake is continued and obesity develops, remain unclear. We aimed to determine the onset and progression of changes in the granulosa cell transcriptomic profile after starting a high-fat/high sugar (HFHS)-diet feeding in mice. We also examined the changes in oocyte lipid droplet content and mitochondrial ultrastructural abnormalities. Swiss (outbred) mice were sacrificed at 24 h, 3 days, and at 1, 4, 8, 12, and 16 weeks of feeding HFHS and control diets. Lipid droplet content significantly increased in the HFHS oocytes within 24 h compared to controls (P < 0.05). Oocyte mitochondrial abnormalities only increased starting from 8 weeks. Granulosa RNA-seq revealed altered transcriptomic gene-set enrichments (GO terms and KEGG pathways, Padj < 0.05) already at 3 days and 1 week indicating acute endoplasmic reticulum unfolded protein responses, with concomitant fluctuations in several cellular metabolic pathways and gene sets related to mitochondrial bioenergetic functions, some of which persisted after 8 weeks. Interestingly, the short- and long-term patterns of changes in cytochrome P450, steroid hormone biosynthesis, retinol metabolism, bile acid metabolism, fatty acid metabolism, and Pi3K/Akt signaling pathways were most prominent and highly correlated; all being acutely upregulated, then chronically downregulated. These results show that the impact of obesogenic diet on the oocyte and granulosa cells is prompt, while the response depends on the duration of feeding and occurs in a multiphasic cascade together with a progressive deterioration in oocyte quality.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Kerlijne Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | | | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Klohonatz K, Durrant B, Sirard MA, Ruggeri E. Granulosa cells provide transcriptomic information on ovarian follicle dynamics in southern white rhinoceros. Sci Rep 2024; 14:19321. [PMID: 39164442 PMCID: PMC11336098 DOI: 10.1038/s41598-024-70235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Much remains unknown about the reproductive physiology of southern white rhinoceros (SWR) and the effect of ovarian stimulation prior to ovum pickup (OPU) have not been fully elucidated. Granulosa cells (GC) provide valuable insight into follicle growth and oocyte maturation status. The goals of this study were to evaluate transcriptomic changes in GC from three stages of follicle development and to identify biomarkers possibly associated with follicular growth and maturation as a result of ovarian stimulation. GC collected from SWRs following OPU were assigned stages based upon follicle size. Total RNA was isolated, and cDNA libraries were prepared and sequenced on a NovaSeq 6000. All bioinformatics analyses were performed utilizing the Galaxy web platform. Reads were aligned to CerSimCot1.0, and the manual curation was performed with EquCab3.0. Overall, 39,455 transcripts (21,612 genes) were identified across follicle stages, and manual curation yielded a 61% increase in gene identification from the original annotation. Granulosa cells from preovulatory follicles expressed the highest number of unique transcripts. The following seven biomarkers were determined based upon cluster analysis and patterns of expression: COL1A1, JMY, FBXW11, NRG1, TMPO, MACIR and COL4A1. These data can be used to potentially evaluate the effects of different ovarian stimulation protocols on follicle dynamics, improve OPU results, and support conservation efforts in this species.
Collapse
Affiliation(s)
- Kristin Klohonatz
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Durrant
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA
| | - Marc-André Sirard
- Département des Sciences Animales, Université Laval, Québec City, Québec, Canada
| | - Elena Ruggeri
- Reproductive Sciences, Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, USA.
| |
Collapse
|
3
|
Jia C, Zhang M, Liu X, Xu W, Xiong Y, Huang R, Li M, Li M. Transcriptome-wide m6A methylation profiling of Wuhua yellow-feathered chicken ovary revealed regulatory pathways underlying sexual maturation and low egg-laying performance. Front Genet 2023; 14:1284554. [PMID: 37928247 PMCID: PMC10622773 DOI: 10.3389/fgene.2023.1284554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
RNA N6-melthyladenosine (m6A) can play an important role in regulation of various biological processes. Chicken ovary development is closely related to egg laying performance, which is a process primarily controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify the potential molecular mechanisms underlying chicken ovary development. The results indicated that m6A levels of mRNAs were altered dramatically during sexual maturity. A total of 1,476 differential m6A peaks were found between these two stages with 662 significantly upregulated methylation peaks and 814 downregulated methylation peaks after sexual maturation. A positive correlation was observed between the m6A peaks and gene expression levels, indicating that m6A may play an important role in regulation of chicken ovary development. Functional enrichment analysis indicated that apoptosis related pathways could be the key molecular regulatory pathway underlying the poor reproductive performance of Wuhua yellow-feathered chicken. Overall, the various pathways and corresponding candidate genes identified here could be useful to facilitate molecular design breeding for improving egg production performance in Chinese local chicken breed, and it might also contribute to the genetic resource protection of valuable avian species.
Collapse
Affiliation(s)
- Congjun Jia
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Mengling Zhang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Xiaoyan Liu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Weilin Xu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Yanqing Xiong
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Rihao Huang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Meidi Li
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Mingna Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Li Z, Chen C, Yu W, Xu L, Jia H, Wang C, Pei N, Liu Z, Luo D, Wang J, Lv W, Yuan B, Zhang J, Jiang H. Colitis-Mediated Dysbiosis of the Intestinal Flora and Impaired Vitamin A Absorption Reduce Ovarian Function in Mice. Nutrients 2023; 15:nu15112425. [PMID: 37299390 DOI: 10.3390/nu15112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the composition and ratio of the flora during colitis have been found to potentially affect ovarian function through nutrient absorption. However, the mechanisms have not been fully explored. To investigate whether colitis-induced dysbacteriosis of the intestinal flora affects ovarian function, mice were given dextran sodium sulfate (DSS) through drinking water. High-throughput sequencing technology was used to clarify the composition and proportion of bacterial flora as well as gene expression changes in the colon. Changes in follicle type, number, and hormone secretion in the ovary were detected. The results showed that 2.5% DSS could induce severe colitis symptoms, including increased inflammatory cell infiltration, severe damage to the crypt, and high expression of inflammatory factors. Moreover, vitamin A synthesis metabolism-related genes Rdh10, Aldh1a1, Cyp26a1, Cyp26b1, and Rarβ were significantly decreased, as well as the levels of the steroid hormone synthase-related proteins STAR and CYP11A1. The levels of estradiol, progesterone, and Anti-Mullerian hormone as well as the quality of oocytes decreased significantly. The significantly changed abundances of Alistipes, Helicobacter, Bacteroides, and some other flora had potentially important roles. DSS-induced colitis and impaired vitamin A absorption reduced ovarian function.
Collapse
Affiliation(s)
- Ze Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Wenjie Yu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Lingxia Xu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haitao Jia
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chen Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Na Pei
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Zibin Liu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Dan Luo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Wang F, Tang Y, Cai Y, Yang R, Wang Z, Wang X, Yang Q, Wang W, Tian J, An L. Intrafollicular Retinoic Acid Signaling Is Important for Luteinizing Hormone-Induced Oocyte Meiotic Resumption. Genes (Basel) 2023; 14:genes14040946. [PMID: 37107703 PMCID: PMC10137601 DOI: 10.3390/genes14040946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
It has been clear that retinoic acid (RA), the most active vitamin A (VA) derivative, plays a central role in governing oocyte meiosis initiation. However, it has not been functionally determined if RA participates in luteinizing hormone (LH)-induced resumption from long-lasting oocyte meiotic arrest, which is essential for haploid oocyte formation. In the present study, using well-established in vivo and in vitro models, we identified that intrafollicular RA signaling is important for normal oocyte meiotic resumption. A mechanistic study indicated that mural granulosa cells (MGCs) are the indispensable follicular compartment for RA-prompted meiotic resumption. Moreover, retinoic acid receptor (RAR) is essential for mediating RA signaling to regulate meiotic resumption. Furthermore, we found zinc finger protein 36 (ZFP36) is the transcriptional target of RAR. Both RA signaling and epidermal growth factor (EGF) signaling were activated in MGCs in response to LH surge, and two intrafollicular signalings cooperate to induce rapid Zfp36 upregulation and Nppc mRNA decrease, which is critical to LH-induced meiotic resumption. These findings extend our understanding of the role of RA in oocyte meiosis: RA not only governs meiotic initiation but also regulates LH-induced meiotic resumption. We also emphasize the importance of LH-induced metabolic changes in MGCs in this process.
Collapse
Affiliation(s)
- Fupeng Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yawen Tang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yijie Cai
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ran Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zongyu Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaodong Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qianying Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Wenjing Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
6
|
Wu Y, Huang T, Li X, Shen C, Ren H, Wang H, Wu T, Fu X, Deng S, Feng Z, Xiong S, Li H, Gao S, Yang Z, Gao F, Dong L, Cheng J, Cai W. Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nat Commun 2023; 14:1181. [PMID: 36864033 PMCID: PMC9981688 DOI: 10.1038/s41467-023-36837-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic cardiomyopathy is a primary myocardial injury induced by diabetes with complex pathogenesis. In this study, we identify disordered cardiac retinol metabolism in type 2 diabetic male mice and patients characterized by retinol overload, all-trans retinoic acid deficiency. By supplementing type 2 diabetic male mice with retinol or all-trans retinoic acid, we demonstrate that both cardiac retinol overload and all-trans retinoic acid deficiency promote diabetic cardiomyopathy. Mechanistically, by constructing cardiomyocyte-specific conditional retinol dehydrogenase 10-knockout male mice and overexpressing retinol dehydrogenase 10 in male type 2 diabetic mice via adeno-associated virus, we verify that the reduction in cardiac retinol dehydrogenase 10 is the initiating factor for cardiac retinol metabolism disorder and results in diabetic cardiomyopathy through lipotoxicity and ferroptosis. Therefore, we suggest that the reduction of cardiac retinol dehydrogenase 10 and its mediated disorder of cardiac retinol metabolism is a new mechanism underlying diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yandi Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tongsheng Huang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xinghui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Conghui Shen
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Honglin Ren
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haiping Wang
- Prenatal Diagnosis Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Teng Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xinlu Fu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shijie Deng
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ziqi Feng
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shijie Xiong
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Saifei Gao
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhenyu Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Fei Gao
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Lele Dong
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
7
|
Yan J, Feng Y, Fang X, Cui X, Xia X, Li F, Luo W, Liang J, Feng J, Yu K. Anti-liver fibrosis effects of the total flavonoids of litchi semen on CCl 4-induced liver fibrosis in rats associated with the upregulation of retinol metabolism. PHARMACEUTICAL BIOLOGY 2022; 60:1264-1277. [PMID: 35787093 PMCID: PMC9262366 DOI: 10.1080/13880209.2022.2086584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT The litchi semen are traditional medications for treating liver fibrosis (LF) in China. The mechanism remains unclear. OBJECTIVE This study investigates the anti-liver fibrotic mechanism of the total flavonoids of litchi semen (TFL). MATERIALS AND METHODS Sprague-Dawley rats with carbon tetrachloride-induced LF were treated with TFL (50 and 100 mg/kg) for 4 weeks. The anti-liver fibrotic effects of TFL were evaluated and the underlying mechanisms were investigated via histopathological analysis, proteomic analysis and molecular biology technology. RESULTS Significant anti-LF effects were observed in the high-TFL-dose group (TFL-H, p < 0.05). Five hundred and eighty-five and 95 differentially expressed proteins (DEPs) were identified in the LF rat model (M group) and TFL-H group, respectively. The DEPs were significantly enriched in the retinol metabolism pathway (p < 0.0001). The content of 9-cis-retinoic acid (0.93 ± 0.13 vs. 0.66 ± 0.10, p < 0.05, vs. the M group) increased significantly in the TFL-H group. The upregulation of RXRα (0.50 ± 0.05 vs. 0.27 ± 0.13 protein, p < 0.05), ALDH2 (1.24 ± 0.09 vs. 1.04 ± 0.08 protein, p < 0.05), MMP3 (0.89 ± 0.02 vs. 0.61 ± 0.12 protein, p < 0.05), Aldh1a7 (0.20 ± 0.03 vs. 0.03 ± 0.00 mRNA, p < 0.05) and Aox3 (0.72 ± 0.14 vs. 0.05 ± 0.01 mRNA, p < 0.05) after TFL treatment was verified. CONCLUSIONS TFL exhibited good anti-liver fibrotic effects, which may be related to the upregulation of the retinol metabolism pathway. TFL may be promising anti-LF agents with potential clinical application prospects.
Collapse
Affiliation(s)
- Jiongyi Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- School of Health, Wuzhou Vocational College, Wuzhou, China
| | - Yinyi Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xuewan Fang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaojuan Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xing Xia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Weisheng Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianqin Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Pasquariello R, Anipchenko P, Pennarossa G, Crociati M, Zerani M, Brevini TA, Gandolfi F, Maranesi M. Carotenoids in female and male reproduction. PHYTOCHEMISTRY 2022; 204:113459. [PMID: 36183866 DOI: 10.1016/j.phytochem.2022.113459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are among the best-known pigments in nature, confer color to plants and animals, and are mainly derived from photosynthetic bacteria, fungi, algae, plants. Mammals cannot synthesize carotenoids. Carotenoids' source is only alimentary and after their assumption, they are mainly converted in retinal, retinol and retinoic acid, collectively known also as pro-vitamins and vitamin A, which play an essential role in tissue growth and regulate different aspects of the reproductive functions. However, their mechanisms of action and potential therapeutic effects are still unclear. This review aims to clarify the role of carotenoids in the male and female reproductive functions in species of veterinary interest. In female, carotenoids and their derivatives regulate not only folliculogenesis and oogenesis but also steroidogenesis. Moreover, they improve fertility by decreasing the risk of embryonic mortality. In male, retinol and retinoic acids activate molecular pathways related to spermatogenesis. Deficiencies of these vitamins have been correlated with degeneration of testis parenchyma with consequent absence of the mature sperm. Carotenoids have also been considered anti-antioxidants as they ameliorate the effect of free radicals. The mechanisms of action seem to be exerted by activating Kit and Stra8 pathways in both female and male. In conclusion, carotenoids have potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy; Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129, Perugia, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| | - Tiziana Al Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università Degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126, Perugia, Italy
| |
Collapse
|
9
|
Abdulrahman Alrabiah N, Simintiras CA, Evans ACO, Lonergan P, Fair T. Biochemical alterations in the follicular fluid of bovine peri-ovulatory follicles and association with final oocyte maturation. REPRODUCTION AND FERTILITY 2022; 4:RAF-22-0090. [PMID: 36547396 PMCID: PMC9874974 DOI: 10.1530/raf-22-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Follicular fluid (FF), a product of vascular transudate and granulosa and thecal cell secretions, is the milieu that has evolved to support oocyte growth and maturation which plays a central role in oocyte quality determination. Therefore, a suboptimal FF composition may be reflected in compromised oocyte progression through maturation, fertilization or embryo development. To date, the composition of bovine FF remains understudied. To address this, we comprehensively characterized the metabolomic constituency of bovine FF in the period during which the oocyte undergoes meiotic maturation. More specifically, FF from pre (-24 h) and peri (-2 h) -ovulatory follicles was profiled by high-throughput untargeted ultra-high-performance liquid chromatography tandem mass spectroscopy. A total of 634 metabolites were identified, comprising: lipids (37.1%), amino acids (30.0%), xenobiotics (11.5%), nucleotides (6.8%), carbohydrates (4.4%), cofactors and vitamins (4.4%), peptides (3.6%) and energy substrates (2.1%). The concentrations of 67 metabolites were significantly affected by stage of follicle development, 33.3% (n=21) were reduced (P≤0.05) by a mean of 9.0-fold, whereas 46 were elevated (P≤0.05) by a mean of 1.7-fold in peri vs. pre -ovulatory FF. The most pronounced individual metabolite concentration decreases were hypoxanthine (98.9-fold), xanthine (65.7-fold), 17β-oestradiol (12.4-fold), and inosine (4.6-fold). In contrast, the greatest increases were in retinal (4.9-fold), 1-methyl-5-imidazoleacetate (2.7-fold), and isovalerylcarnitine (2.7-fold). This global metabolomic analysis of bovine FF temporal dynamics provides new information for understanding the environment supporting oocyte maturation and facilitating ovulation, that has the potential for improving oocyte quality both in vivo and in vitro.
Collapse
Affiliation(s)
- Noof Abdulrahman Alrabiah
- School of Agriculture and Food Science, University College Dublin, Ireland
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Constantine A Simintiras
- School of Animal Sciences, Agricultural Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Ireland
| |
Collapse
|
10
|
Zhang C, Wang S, Wang Z, Zhang Q, Chen R, Zhang H, Hua Z, Ma S. Repair mechanism of Wuwei Fuzheng Yijing formula in di-2-ethylhexyl phthalate-induced sperm DNA fragmentation in mice. PHARMACEUTICAL BIOLOGY 2022; 60:1286-1302. [PMID: 35797467 PMCID: PMC9272935 DOI: 10.1080/13880209.2022.2089694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Di-2-ethylhexyl phthalate (DEHP), a known persistent organic pollutant, can increase the sperm DNA fragmentation index (DFI). OBJECTIVE To investigate the mechanism underlying the repair of DEHP-induced sperm DNA damage in mice by Wuwei Fuzheng Yijing (WFY) formula. MATERIALS AND METHODS The potential targets of WFY and sperm DNA fragment (SDF) were obtained from the TCMSP, BATMAN-TCM, OMIM and GeneCards. The protein-protein interaction (PPI) network, GO and KEGG pathway analyses of WFY-SDF were constructed. An animal model of DEHP-induced sperm DNA damage was replicated by gavage of SPF ICR (CD1) mice DEHP at 1 g/kg/d and treated with WFY at 8.92, 17.84 and 35.67 g/kg, respectively, for 60 d. Sperm DFI of each group was detected and compared. The target genes of WFY identified by transcriptomic and proteomic analyses were validated by qRT-PCR and Western blotting. RESULTS Network pharmacology pathway analysis indicated that PI3K/Akt was the potential target of WFY on SDF. The DFI of the DEHP group (25.48%) was significantly higher than that of the control group (4.02%). The high-dose WFY group (19.05%) exhibited the most significant repairing effect. The related pathways were PI3K/Akt and metabolic. Aass, Aldh1a7, GSTA3, betaine homocysteine S-methyltransferase (Bhmt), Mug2 and Svs1 were screened and Bhmt was validated. DISCUSSION AND CONCLUSIONS WFY can repair sperm DNA damage caused by DEHP, and the mechanism may be related to PI3K/Akt and metabolic pathways, and Bhmt. This provides a new direction for using traditional Chinese medicine to prevent and repair reproductive system injury caused by pollutants.
Collapse
Affiliation(s)
- Chenming Zhang
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiqi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Zhang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rubing Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hao Zhang
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong Hua
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sicheng Ma
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Zhou X, Yang Y, Ming R, Chen H, Hu D, Lu P. Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF-MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70833-70841. [PMID: 35589890 DOI: 10.1007/s11356-022-20424-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Dinotefuran is a chiral insecticide widely used to control Nilaparvata lugens in agriculture. However, little is known about the toxic effects of dinotefuran enantiomers on aquatic organisms. In this study, zebrafish were exposed to 1.00 and 10.00 mg/L dinotefuran enantiomers for 96 h, after which multivariate pattern recognition, metabolite identification, and pathway analysis were performed. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were then conducted to reveal the metabolic perturbations caused by dinotefuran enantiomers. Metabolic pathway analysis revealed the perturbation of five main pathways, including phenylalanine, tyrosine and tryptophan biosynthesis; phenylalanine metabolism; retinol metabolism; arginine and proline metabolism; and glycerophospholipid metabolism. These disturbed metabolic pathways were strongly correlated with energy, amino acid metabolism, and lipid metabolism. Pathway analysis also indicated that the metabolic pathway changes induced by the same level of R and S-dinotefuran were enantioselective. Our research may provide better insight into the risk of chiral dinotefuran in aquatic organisms in the environment.
Collapse
Affiliation(s)
- Xia Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ya Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Hong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ping Lu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Chen P, Song Y, Xu W, Huang Y, Jia Y, Li C, Lan Y, Chu K, Ma L, Zhou J. Association between serum vitamin A levels and premature ovarian insufficiency: a case-control, cross-sectional survey study. BMC Endocr Disord 2022; 22:88. [PMID: 35379206 PMCID: PMC8981733 DOI: 10.1186/s12902-022-01003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Although vitamin A is known to play an important role in ovarian function, its association with ovarian insufficiency has not been reported yet. Therefore, the aim of the study was to explore the association between serum vitamin A levels and premature ovarian insufficiency (POI). METHODS This cross-sectional survey included women with POI (n = 47) and normo-ovulatory controls (n = 67) who were enrolled between December 2016 and May 2018 in Zhejiang, China. The serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), anti-Müllerian hormone (AMH), vitamin A, and total cholesterol (TC) were measured for each participant. The association of TC-adjusted vitamin A levels with the risk of POI was assessed using binary logistic regression analysis. RESULTS Serum vitamin A levels appeared to be slightly higher in the POI group than in the control group, but there was no evidence of a statistically significant difference (728.00 ± 176.00 µg/L vs. 503.93 ± 145.64 µg/L, p = 0.13). After adjustment for serum lipid levels, the serum vitamin A/TC ratio was significantly lower in the POI group than in the control group (143.14 ± 35.86 vs. 157.56 ± 35.21 µg/mmol, p = 0.04). Further, the serum vitamin A/TC ratio was significantly and inversely associated with POI risk (unadjusted odds ratio [OR] = 0.988, 95% confidence interval [CI]: 0.977-0.999, p = 0.04). The association remained after adjusting for confounding factors (age, BMI, annual household income, and education) (OR = 0.986, 95% CI: 0.972-0.999, p = 0.04). CONCLUSIONS Serum vitamin A/TC ratio was inversely associated with POI risk. Therefore, the serum vitamin A/TC ratio may serve as a predictive factor for POI, and vitamin A supplementation may play help prevent or treat POI.
Collapse
Affiliation(s)
- Peiqiong Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yang Song
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Wenxian Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yingxian Jia
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China.
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, First Xueshi Rd, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
13
|
Demirhan D, Kumar A, Zhu J, Poulsen PC, Majewska NI, Sebastian Y, Chaerkady R, Yu W, Zhu W, Zhuang L, Shah P, Lekstrom K, Cole RN, Zhang H, Betenbaugh MJ, Bowen MA. Comparative systeomics to elucidate physiological differences between CHO and SP2/0 cell lines. Sci Rep 2022; 12:3280. [PMID: 35228567 PMCID: PMC8885639 DOI: 10.1038/s41598-022-06886-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Omics-based tools were coupled with bioinformatics for a systeomics analysis of two biopharma cell types: Chinese hamster ovary (M-CHO and CHO-K1) and SP2/0. Exponential and stationary phase samples revealed more than 10,000 transcripts and 6000 proteins across these two manufacturing cell lines. A statistical comparison of transcriptomics and proteomics data identified downregulated genes involved in protein folding, protein synthesis and protein metabolism, including PPIA-cyclophilin A, HSPD1, and EIF3K, in M-CHO compared to SP2/0 while cell cycle and actin cytoskeleton genes were reduced in SP2/0. KEGG pathway comparisons revealed glycerolipids, glycosphingolipids, ABC transporters, calcium signaling, cell adhesion, and secretion pathways depleted in M-CHO while retinol metabolism was upregulated. KEGG and IPA also indicated apoptosis, RNA degradation, and proteosomes enriched in CHO stationary phase. Alternatively, gene ontology analysis revealed an underrepresentation in ion and potassium channel activities, membrane proteins, and secretory granules including Stxbpt2, Syt1, Syt9, and Cma1 proteins in M-CHO. Additional enrichment strategies involving ultracentrifugation, biotinylation, and hydrazide chemistry identified over 4000 potential CHO membrane and secretory proteins, yet many secretory and membrane proteins were still depleted. This systeomics pipeline has revealed bottlenecks and potential opportunities for cell line engineering in CHO and SP2/0 to improve their production capabilities.
Collapse
Affiliation(s)
- Deniz Demirhan
- Department of Natural Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| | - Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jie Zhu
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Pi Camilla Poulsen
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Natalia I Majewska
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Raghothama Chaerkady
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Wen Yu
- Informatics, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Wei Zhu
- Translational Science, AstraZeneca, Gaithersburg, MD, USA
| | - Li Zhuang
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Kristen Lekstrom
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
15
|
Ruohonen ST, Gaytan F, Usseglio Gaudi A, Velasco I, Kukoricza K, Perdices-Lopez C, Franssen D, Guler I, Mehmood A, Elo LL, Ohlsson C, Poutanen M, Tena-Sempere M. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Hum Reprod 2022; 37:806-821. [PMID: 35037941 PMCID: PMC8971646 DOI: 10.1093/humrep/deab287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does direct kisspeptin signaling in the oocyte have a role in the control of follicular dynamics and ovulation? SUMMARY ANSWER Kisspeptin signaling in the oocyte plays a relevant physiological role in the direct control of ovulation; oocyte-specific ablation of kisspeptin receptor, Gpr54, induces a state of premature ovulatory failure in mice that recapitulates some features of premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY Kisspeptins, encoded by the Kiss1 gene, are essential for the control of ovulation and fertility, acting primarily on hypothalamic GnRH neurons to stimulate gonadotropin secretion. However, kisspeptins and their receptor, Gpr54, are also expressed in the ovary of different mammalian species, including humans, where their physiological roles remain contentious and poorly characterized. STUDY DESIGN, SIZE, DURATION A novel mouse line with conditional ablation of Gpr54 in oocytes, named OoGpr54−/−, was generated and studied in terms of follicular and ovulatory dynamics at different age-points of postnatal maturation. A total of 59 OoGpr54−/− mice and 47 corresponding controls were analyzed. In addition, direct RNA sequencing was applied to ovarian samples from 8 OoGpr54−/− and 7 control mice at 6 months of age, and gonadotropin priming for ovulatory induction was conducted in mice (N = 7) from both genotypes. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocyte-selective ablation of Gpr54 in the oocyte was achieved in vivo by crossing a Gdf9-driven Cre-expressing transgenic mouse line with a Gpr54 LoxP mouse line. The resulting OoGpr54−/− mouse line was subjected to phenotypic, histological, hormonal and molecular analyses at different age-points of postnatal maturation (Day 45, and 2, 4, 6 and 10–11 months of age), in order to characterize the timing of puberty, ovarian follicular dynamics and ovulation, with particular attention to identification of features reminiscent of POI. The molecular signature of ovaries from OoGpr54−/− mice was defined by direct RNA sequencing. Ovulatory responses to gonadotropin priming were also assessed in OoGpr54−/− mice. MAIN RESULTS AND THE ROLE OF CHANCE Oocyte-specific ablation of Gpr54 caused premature ovulatory failure, with some POI-like features. OoGpr54−/− mice had preserved puberty onset, without signs of hypogonadism. However, already at 2 months of age, 40% of OoGpr54−/− females showed histological features reminiscent of ovarian failure and anovulation. Penetrance of the phenotype progressed with age, with >80% and 100% of OoGpr54−/− females displaying complete ovulatory failure by 6- and 10 months, respectively. This occurred despite unaltered hypothalamic Gpr54 expression and gonadotropin levels. Yet, OoGpr54−/− mice had decreased sex steroid levels. While the RNA signature of OoGpr54−/− ovaries was dominated by the anovulatory state, oocyte-specific ablation of Gpr54 significantly up- or downregulated of a set of 21 genes, including those encoding pituitary adenylate cyclase-activating polypeptide, Wnt-10B, matrix-metalloprotease-12, vitamin A-related factors and calcium-activated chloride channel-2, which might contribute to the POI-like state. Notably, the anovulatory state of young OoGpr54−/− mice could be rescued by gonadotropin priming. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Conditional ablation of Gpr54 in oocytes unambiguously caused premature ovulatory failure in mice; yet, the ultimate molecular mechanisms for such state of POI can be only inferred on the basis of RNAseq data and need further elucidation, since some of the molecular changes observed in OoGpr54−/− ovaries were secondary to the anovulatory state. Direct translation of mouse findings to human disease should be made with caution since, despite the conserved expression of Kiss1/kisspeptin and Gpr54 in rodents and humans, our mouse model does not recapitulate all features of common forms of POI. WIDER IMPLICATIONS OF THE FINDINGS Deregulation of kisspeptin signaling in the oocyte might be an underlying, and previously unnoticed, cause for some forms of POI in women. STUDY FUNDING/COMPETING INTEREST(S) This work was primarily supported by a grant to M.P. and M.T.-S. from the FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland. Additional financial support came from grant BFU2017-83934-P (M.T.-S.; Ministerio de Economía y Competitividad, Spain; co-funded with EU funds/FEDER Program), research funds from the IVIRMA International Award in Reproductive Medicine (M.T.-S.), and EFSD Albert Renold Fellowship Programme (S.T.R.). The authors have no conflicts of interest to declare in relation to the contents of this work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Andrea Usseglio Gaudi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Cecilia Perdices-Lopez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Ipek Guler
- Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Arfa Mehmood
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Tena-Sempere
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
16
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol 2021; 4:1334. [PMID: 34824385 PMCID: PMC8617273 DOI: 10.1038/s42003-021-02849-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
During ovarian follicular development, granulosa cells proliferate and progressively differentiate to support oocyte maturation and ovulation. To determine the underlying links between proliferation and differentiation in granulosa cells, we determined changes in 1) the expression of genes regulating DNA methylation and 2) DNA methylation patterns, histone acetylation levels and genomic DNA structure. In response to equine chorionic gonadotropin (eCG), granulosa cell proliferation increased, DNA methyltransferase (DNMT1) significantly decreased and Tet methylcytosine dioxygenase 2 (TET2) significantly increased in S-phase granulosa cells. Comprehensive MeDIP-seq analyses documented that eCG treatment decreased methylation of promoter regions in approximately 40% of the genes in granulosa cells. The expression of specific demethylated genes was significantly increased in association with specific histone modifications and changes in DNA structure. These epigenetic processes were suppressed by a cell cycle inhibitor. Based on these results, we propose that the timing of sequential epigenetic events is essential for progressive, stepwise changes in granulosa cell differentiation.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Masayuki Shimada
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
18
|
Girard C, Budin K, Boisnard S, Zhang L, Debuchy R, Zickler D, Espagne E. RNAi-Related Dicer and Argonaute Proteins Play Critical Roles for Meiocyte Formation, Chromosome-Axes Lengths and Crossover Patterning in the Fungus Sordaria macrospora. Front Cell Dev Biol 2021; 9:684108. [PMID: 34262901 PMCID: PMC8274715 DOI: 10.3389/fcell.2021.684108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi) is a cellular process involving small RNAs that target and regulate complementary RNA transcripts. This phenomenon has well-characterized roles in regulating gene and transposon expression. In addition, Dicer and Argonaute proteins, which are key players of RNAi, also have functions unrelated to gene repression. We show here that in the filamentous Ascomycete Sordaria macrospora, genes encoding the two Dicer (Dcl1 and Dcl2) and the two Argonaute (Sms2 and Qde2) proteins are dispensable for vegetative growth. However, we identified roles for all four proteins in the sexual cycle. Dcl1 and Sms2 are essential for timely and successful ascus/meiocyte formation. During meiosis per se, Dcl1, Dcl2, and Qde2 modulate, more or less severely, chromosome axis length and crossover numbers, patterning and interference. Additionally, Sms2 is necessary both for correct synaptonemal complex formation and loading of the pro-crossover E3 ligase-protein Hei10. Moreover, meiocyte formation, and thus meiotic induction, is completely blocked in the dcl1 dcl2 and dcl1 sms2 null double mutants. These results indicate complex roles of the RNAi machinery during major steps of the meiotic process with newly uncovered roles for chromosomes-axis length modulation and crossover patterning regulation.
Collapse
Affiliation(s)
- Chloe Girard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
19
|
Nikanfar S, Oghbaei H, Rastgar Rezaei Y, Zarezadeh R, Jafari-Gharabaghlou D, Nejabati HR, Bahrami Z, Bleisinger N, Samadi N, Fattahi A, Nouri M, Dittrich R. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol 2021; 209:105852. [PMID: 33610800 DOI: 10.1016/j.jsbmb.2021.105852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Adipokines are mainly produced by adipose tissue; however, their expression has been reported in other organs including female reproductive tissues. Therefore, adipokines have opened new avenues of research in female fertility. In this regard, studies reported different roles for certain adipokines in ovarian function, although the role of other recently identified adipokines is still controversial. It seems that adipokines are essential for normal ovarian function and their abnormal levels could be associated with ovarian-related disorders. The objective of this study is to review the available information regarding the role of adipokines in ovarian functions including follicular development, oogenesis and steroidogenesis and also their involvement in ovary-related disorders.
Collapse
Affiliation(s)
- Saba Nikanfar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahrami
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| | - Naser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
Zou T, Liang YQ, Liao X, Chen XF, Wang T, Song Y, Lin ZC, Qi Z, Chen ZF, Cai Z. Metabolomics reveals the reproductive abnormality in female zebrafish exposed to environmentally relevant levels of climbazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116665. [PMID: 33581626 DOI: 10.1016/j.envpol.2021.116665] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/10/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Climbazole (CBZ) ubiquitously detected in the aquatic environment may disrupt fish reproductive function. Thus far, the previous study has focused on its transcriptional impact of steroidogenesis-related genes on zebrafish, but the underlying toxic mechanism still needs further investigation at the metabolic level. In this study, adult zebrafish were chronically exposed to CBZ at concentrations of 0.1 (corresponding to the real concentration in surface water), 10, and 1000 μg/L and evaluated for reproductive function by egg production, with subsequent ovarian tissue samples taken for histology, metabolomics, and other biochemical analysis. After 28 days' exposure, fecundity was significantly decreased in all exposure groups, with the inhibition of oocytes in varying developmental stages to a certain degree. The decrease in retinoic acid and sex hormones, down-regulated genes important in steroidogenesis, and increase in oxidized/reduced glutathione ratio and occurrence of apoptotic cells were observed in zebrafish ovaries following exposure to CBZ even at environmentally realistic concentrations, suggesting that alternations in steroidogenesis and oxidative stress can play significant roles in CBZ-triggered reproductive toxicity. Besides, mass spectrometry imaging analysis validated the results from metabolomics analysis. Our findings provide novel perspectives for unveiling the mechanism of reproductive dysfunction by CBZ and highlight its risk to fish reproduction.
Collapse
Affiliation(s)
- Ting Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoliang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou, 510006, China.
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
21
|
Hoque SAM, Umehara T, Kawai T, Shimada M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med 2021; 163:344-355. [PMID: 33385538 DOI: 10.1016/j.freeradbiomed.2020.12.434] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
High mitochondrial oxidative phosphorylation (mt-OXPHOS) levels are required to supply the ATP necessary for follicle-stimulating hormone (FSH)-induced granulosa cell proliferation during the follicular development process. Consequently, excessive reactive oxygen species (ROS) might be generated and have an adverse effect on follicular health. This study aimed to elucidate the negative effects of ROS on mitochondrial functions in FSH-stimulated granulosa cells during the follicular development process and to investigate whether pyrroloquinoline quinone (PQQ) treatment could accelerate this process by ameliorating the adverse effects. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ, and a natural mating study was also performed. The ROS level in FSH-/eCG-stimulated granulosa cells was significantly increased. Moreover, high oxidative stress and mtDNA damage levels were evident in the granulosa cells. PQQ treatment not only reduced the ROS and oxidative stress levels but also ameliorated mtDNA damage, accelerated FSH-/eCG-induced ATP production, and increased the mitochondrial membrane potential and the expression levels of mitochondrial genes (Nd1, Cytb, Cox1, ATPase6) and the mt-ND1 protein. Accordingly, the proliferation and viability of granulosa cells, numbers of healthy preovulatory follicles and ovulated oocytes and serum estrogen level were significantly improved, while the apoptosis of granulosa cells was reduced. However, PQQ treatment did not change the fertility parameters in mature mice with natural cycles but did significantly increased the number of offspring born per delivery. These results revealed that ROS-associated damage in FSH-stimulated granulosa cells adversely affects their physiology and follicular health during the follicular development process. Treatment with PQQ is a beneficial tool to increase both the number of ovulated oocytes and pups per delivery.
Collapse
Affiliation(s)
- S A Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan; Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Takashi Umehara
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan; Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
22
|
Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol 2021; 19:4. [PMID: 33407539 PMCID: PMC7789255 DOI: 10.1186/s12958-020-00686-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spermatogenesis is a complex process that is controlled by interactions between germ cells and somatic cells. The commitment of undifferentiated spermatogonia to differentiating spermatogonia and normal spermatogenesis requires the action of gonadotropins. Additionally, numerous studies revealed the role of retinoic acid signaling in induction of germ cell differentiation and meiosis entry. MAIN TEXT Recent studies have shown that expression of several RA signaling molecules including Rdh10, Aldh1a2, Crabp1/2 are influenced by changes in gonadotropin levels. Components of signaling pathways that are regulated by FSH signaling such as GDNF, Sohlh1/2, c-Kit, DMRT, BMP4 and NRGs along with transcription factors that are important for proliferation and differentiation of spermatogonia are also affected by retinoic acid signaling. CONCLUSION According to all studies that demonstrate the interface between FSH and RA signaling, we suggest that RA may trigger spermatogonia differentiation and initiation of meiosis through regulation by FSH signaling in testis. Therefore, to the best of our knowledge, this is the first time that the correlation between FSH and RA signaling in spermatogenesis is highlighted.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Abbaszadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Hughes CHK, Murphy BD. Nuclear receptors: Key regulators of somatic cell functions in the ovulatory process. Mol Aspects Med 2020; 78:100937. [PMID: 33288229 DOI: 10.1016/j.mam.2020.100937] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
The development of the ovarian follicle to its culmination by ovulation is an essential element of fertility. The final stages of ovarian follicular growth are characterized by granulosa cell proliferation and differentiation, and steroid synthesis under the influence of follicle-stimulating hormone (FSH). The result is a population of granulosa cells poised to respond to the ovulatory surge of luteinizing hormone (LH). Members of the nuclear receptor superfamily of transcription factors play indispensable roles in the regulation of these events. The key regulators of the final stages of follicular growth that precede ovulation from this family include the estrogen receptor beta (ESR2) and the androgen receptor (AR), with additional roles for others, including steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1). Following the LH surge, the mural and cumulus granulosa cells undergo rapid changes that result in expansion of the cumulus layer, and a shift in ovarian steroid hormone biosynthesis from estradiol to progesterone production. The nuclear receptor best associated with these events is LRH-1. Inadequate cumulus expansion is also observed in the absence of AR and ESR2, but not the progesterone receptor (PGR). The terminal stages of ovulation are regulated by PGR, which increases the abundance of the proteases that are directly responsible for rupture. It further regulates the prostaglandins and cytokines associated with the inflammatory-like characteristics of ovulation. LRH-1 regulates PGR, and is also a key regulator of steroidogenesis, cellular proliferation, and cellular migration, and cytoskeletal remodeling. In summary, nuclear receptors are among the panoply of transcriptional regulators with roles in ovulation, and several are necessary for normal ovarian function.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada.
| |
Collapse
|
24
|
Adetunji AO, Kawai T, Shimada M. Impact of lipopolysaccharide administration on luteinizing hormone/choriogonadotropin receptor (Lhcgr) expression in mouse ovaries. J Reprod Immunol 2020; 142:103193. [DOI: 10.1016/j.jri.2020.103193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
|
25
|
Hummitzsch K, Hatzirodos N, Macpherson AM, Schwartz J, Rodgers RJ, Irving-Rodgers HF. Transcriptome analyses of ovarian stroma: tunica albuginea, interstitium and theca interna. Reproduction 2020; 157:545-565. [PMID: 30925461 DOI: 10.1530/rep-18-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/29/2019] [Indexed: 01/15/2023]
Abstract
The ovary has specialised stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterise the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6). RNA microarray analysis showed minimal differences between interstitial stroma and pre-theca, and these were combined for some analyses and referred to as stroma. Genes significantly upregulated in theca interna compared to stroma included INSL3, LHCGR, HSD3B1, CYP17A1, ALDH1A1, OGN, POSTN and ASPN. Quantitative RT-PCR showed significantly greater expression of OGN and LGALS1 in interstitial stroma and theca interna versus tunica and greater expression of ACD in tunica compared to theca interna. PLN was significantly higher in interstitial stroma compared to tunica and theca. Ingenuity pathway, network and upstream regulator analyses were undertaken. Cell survival was also upregulated in theca interna. The tunica albuginea was associated with GPCR and cAMP signalling, suggesting tunica contractility. It was also associated with TGF-β signalling and increased fibrous matrix. Western immunoblotting was positive for OGN, LGALS1, ALDH1A1, ACD and PLN with PLN and OGN highly expressed in tunica and interstitial stroma (each n = 6), but not in theca interna from antral follicles (n = 24). Immunohistochemistry localised LGALS1 and POSTN to extracellular matrix and PLN to smooth muscle cells. These results have identified novel differences between the ovarian stromal compartments.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jeff Schwartz
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Pretreatment of ovaries with collagenase before vitrification keeps the ovarian reserve by maintaining cell-cell adhesion integrity in ovarian follicles. Sci Rep 2020; 10:6841. [PMID: 32321979 PMCID: PMC7176664 DOI: 10.1038/s41598-020-63948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovarian follicle is comprised of the germ cell or oocyte surrounded by the somatic cells, the granulosa and theca cells. The ovarian stroma, including the collagen-rich matrix that supports the three-dimensional disk-like follicular structure, impacts the integrity of the ovarian follicle and is essential for follicular development. Maintaining follicular integrity during cryopreservation has remained a limiting factor in preserving ovarian tissues for transplantation because a significant proportion of developed follicles in the frozen-thawed ovaries undergo atresia after transplantation. In this study, we show for the first time that during vitrification of the mouse ovary, the attachment of the oocyte to the granulosa cells was impaired by the loss of the cadherin adhesion molecules. Importantly, exposure to a high osmotic solution greatly decreased the ratio of oocyte diameter to the diameter of its follicle but did not alter the collagen-rich matrix surrounding the follicles. By treating ovaries briefly with collagenase before exposure to the hyper-osmotic solution the ratio of oocyte diameter to follicle diameter was maintained, and cadherin adhesion junctions were preserved. When frozen-thawed ovaries were transplanted to the bursa of recipient hosts, pretreatment with collagenase significantly increased serum levels of AMH, the number of intact follicles and the total number of viable offspring compared to frozen-thawed ovaries without collagenase pretreatment, even 6 months after transplantation. Thus, the collagenase pretreatment could provide a beneficial approach for maintaining the functions and viability of cryopreserved ovaries in other species and clinically relevant situations.
Collapse
|
27
|
Retinoic Acid and Germ Cell Development in the Ovary and Testis. Biomolecules 2019; 9:biom9120775. [PMID: 31771306 PMCID: PMC6995559 DOI: 10.3390/biom9120775] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), a derivative of vitamin A, is critical for the production of oocytes and sperm in mammals. These gametes derive from primordial germ cells, which colonize the nascent gonad, and later undertake sexual differentiation to produce oocytes or sperm. During fetal development, germ cells in the ovary initiate meiosis in response to RA, whereas those in the testis do not yet initiate meiosis, as they are insulated from RA, and undergo cell cycle arrest. After birth, male germ cells resume proliferation and undergo a transition to spermatogonia, which are destined to develop into haploid spermatozoa via spermatogenesis. Recent findings indicate that RA levels change periodically in adult testes to direct not only meiotic initiation, but also other key developmental transitions to ensure that spermatogenesis is precisely organized for the prodigious output of sperm. This review focuses on how female and male germ cells develop in the ovary and testis, respectively, and the role of RA in this process.
Collapse
|
28
|
Read CC, Dyce PW. All‐trans retinoic acid exposure increases connexin 43 expression in cumulus cells and improves embryo development in bovine oocytes. Mol Reprod Dev 2019; 86:1865-1873. [DOI: 10.1002/mrd.23274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Casey C. Read
- Department of Animal Sciences, College of AgricultureAuburn University Auburn Alabama
| | - Paul W. Dyce
- Department of Animal Sciences, College of AgricultureAuburn University Auburn Alabama
| |
Collapse
|
29
|
Peñalver Bernabé B, Thiele I, Galdones E, Siletz A, Chandrasekaran S, Woodruff TK, Broadbelt LJ, Shea LD. Dynamic genome-scale cell-specific metabolic models reveal novel inter-cellular and intra-cellular metabolic communications during ovarian follicle development. BMC Bioinformatics 2019; 20:307. [PMID: 31182013 PMCID: PMC6558917 DOI: 10.1186/s12859-019-2825-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The maturation of the female germ cell, the oocyte, requires the synthesis and storing of all the necessary metabolites to support multiple divisions after fertilization. Oocyte maturation is only possible in the presence of surrounding, diverse, and changing layers of somatic cells. Our understanding of metabolic interactions between the oocyte and somatic cells has been limited due to dynamic nature of ovarian follicle development, thus warranting a systems approach. RESULTS Here, we developed a genome-scale metabolic model of the mouse ovarian follicle. This model was constructed using an updated mouse general metabolic model (Mouse Recon 2) and contains several key ovarian follicle development metabolic pathways. We used this model to characterize the changes in the metabolism of each follicular cell type (i.e., oocyte, granulosa cells, including cumulus and mural cells), during ovarian follicle development in vivo. Using this model, we predicted major metabolic pathways that are differentially active across multiple follicle stages. We identified a set of possible secreted and consumed metabolites that could potentially serve as biomarkers for monitoring follicle development, as well as metabolites for addition to in vitro culture media that support the growth and maturation of primordial follicles. CONCLUSIONS Our systems approach to model follicle metabolism can guide future experimental studies to validate the model results and improve oocyte maturation approaches and support growth of primordial follicles in vitro.
Collapse
Affiliation(s)
| | - Ines Thiele
- Luxembourg Center for Systems Biology, University of Luxembourg, Esch-sur-Alzette, Luxembourg, L-4365, Luxembourg
| | - Eugene Galdones
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anaar Siletz
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Women's Health Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University Feinberg School of Medicine, Evanston, IL, 60208, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Wang F, Chen L, Chen S, Deng L, Tian M, Zheng B, Li C, Zhou X. Association of RBP-4 gene polymorphisms with follicular cysts in large white sows. Reprod Domest Anim 2019; 54:972-978. [PMID: 31025395 DOI: 10.1111/rda.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/20/2019] [Indexed: 11/30/2022]
Abstract
Follicular cysts, which is a common infertility disease, can cause financial losses in pig breeding programmes. The pathogenesis and mechanisms of the formation of follicular cysts are not understood clearly. In our previous study, the concentration of retinol-binding protein 4 (RBP-4) in the follicular fluid (FF) of the ovary with follicular cysts was found to be significantly higher than that of normal ovary, thereby suggesting that RBP-4 may be a candidate biomarker for porcine follicular cysts. To study the association of RBP-4 and follicular cysts further, we detected the polymorphisms of the RBP-4 gene and the presence of follicular cysts by PCR-Restriction fragment length polymorphism (RFLP) assay. In this study, we screened the mutations of RBP-4 gene in 79 sows with follicular cysts and 100 normal sows without cysts. Results showed that +249-63G>C polymorphisms were significantly associated with follicular cysts, and sows with CC genotype in RBP-4 gene had a high risk of developing follicular cysts. Hence, our findings further proved that RBP-4 may be a novel biomarker for follicular cysts, which may be valuable for the diagnosis of follicular cysts and molecular breeding of pigs.
Collapse
Affiliation(s)
- Fengge Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Shuxiong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Liang Deng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Meng Tian
- College of Animal Sciences, Jilin University, Changchun, China
| | - Biaobiao Zheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
31
|
Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reprod Toxicol 2019; 87:32-41. [PMID: 31059772 DOI: 10.1016/j.reprotox.2019.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Retinoids are essential for reproduction. Most research has focused on the role of retinoic acid signaling in the regulation of meiosis during early fetal germ cell development. However, less attention has been paid to the possible effects of retinoic acid signaling in adult female gonads. Retinoic acid, its receptors, and the key enzymes required for retinoic acid synthesis are expressed in the ovaries and they are involved in the regulation of folliculogenesis and steroidogenesis. Exposure to compounds that can interfere with normal retinoic acid signaling is associated with adverse ovarian outcomes, including altered steroidogenesis and reduction in indicators of ovarian reserve in women and laboratory animal models. These observations call for more attention to retinoids as regulators of adult ovarian physiology and as possible targets of endocrine disruption by environmental chemicals. In this review, we summarize the current knowledge of retinoids in folliculogenesis and steroidogenesis in post-pubertal mammalian ovaries.
Collapse
|
32
|
Yu GM, Tan W. Melatonin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Stress in Cultured Mouse Mammary Tissue. Mediators Inflamm 2019; 2019:8597159. [PMID: 30890898 PMCID: PMC6390262 DOI: 10.1155/2019/8597159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022] Open
Abstract
To determine whether melatonin can protect cultured mouse mammary tissue from lipopolysaccharide- (LPS-) induced damage, we investigated the effects of melatonin on the mRNA and protein levels of proinflammatory cytokines and chemokines in LPS-stimulated mammary tissue in vitro. This study also examined the IgG level in both cultured mammary tissue and the culture medium. In addition, we investigated the potential benefits of melatonin on the expression of antioxidant relative genes following LPS treatment in cultured mammary tissue and evaluated ROS level in the culture medium. The results demonstrate that melatonin inhibited the mRNA expression of TNF-α, IL-1β, IL-6, CXCL1, MCP-1, and RANTES and the production of these cytokines and chemokines and IgG in LPS-stimulated mouse mammary tissue in vitro. In addition, melatonin increased Nrf2 but decreased iNOS and COX-2 mRNA expression after LPS stimulation. Similarly, the decreased level of dityrosine in the culture medium was increased by treatment with melatonin, while increased nitrite level was suppressed. This study confirms that melatonin inhibited LPS-induced inflammation and oxidative stress in cultured mouse mammary tissue. It might contribute to mastitis therapy while treating antibiotic resistance.
Collapse
Affiliation(s)
- Guang-Min Yu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
33
|
Hoque SAM, Kawai T, Zhu Z, Shimada M. Mitochondrial Protein Turnover Is Critical for Granulosa Cell Proliferation and Differentiation in Antral Follicles. J Endocr Soc 2018; 3:324-339. [PMID: 30652133 PMCID: PMC6330174 DOI: 10.1210/js.2018-00329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Granulosa cell (GC) proliferation is essential for follicular development. FSH is a key factor in GC proliferation, and a continuous supply of high levels of ATP is necessary for cell proliferation. However, genes encoding proteins of the glycolytic pathways are poorly expressed in GCs. Therefore, we hypothesized that mitochondrial gene expression and protein synthesis play a primary role in ATP production during GC proliferation. To test this hypothesis, we performed an in vivo study of GCs collected from 23-day-old mice ovaries with or without equine chorionic gonadotropin (eCG) priming. It was observed that mitochondrial activity with membrane potential, expression of protein-coding genes (Nd1-6, Cytb, Atpase6,8) and transcription-related genes (Polrmt, Tfam, Tfb2m), copy number of mitochondrial (mt-)DNA, and protein synthesis were increased in GCs after 24 hours of eCG injection and mostly maintained elevated up to 48 hours. Therefore, we performed in vitro culture of GCs in DMEM medium supplemented with FSH, testosterone, and serum and containing different glucose concentrations with or without d-chloramphenicol (CRP) for 24 hours. GC proliferation and ATP production were observed to be independent of glucose concentration. Furthermore, FSH-induced mitochondrial activity with membrane potential, ATP content, BrdU-incorporated cell proliferation, intensity of mt-ND1 and mt-ND6 proteins, and expressions of marker genes for proliferation and differentiation were significantly decreased by CRP treatment. These results revealed the crucial role of mitochondria in the supply of ATP and the necessity of mitochondrial gene expression and protein synthesis in not only the proliferation but also the differentiation of GCs during follicular development.
Collapse
Affiliation(s)
- S A Masudul Hoque
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Zhendong Zhu
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.,College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
34
|
Liu Z, Sun Y, Jiang Y, Qian Y, Chen S, Gao S, Chen L, Li C, Zhou X. Follicle-stimulating hormone (FSH) promotes retinol uptake and metabolism in the mouse ovary. Reprod Biol Endocrinol 2018; 16:52. [PMID: 29803227 PMCID: PMC5970539 DOI: 10.1186/s12958-018-0371-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Retinoids (retinol and its derivatives) are required for the development and maintenance of normal physiological functions of the ovary. However, the mechanisms underlying the regulation of ovarian retinoid homeostasis during follicular development remain unclear. METHODS The present study determined retinoid levels and the expression levels of genes involved in the retinol uptake and its metabolic pathway in the ovaries of follicle-stimulating hormone (FSH)-treated mice and in granulosa cells treated with FSH using ultra performance liquid chromatography (UPLC) combined with quadrupole time-of-flight high-sensitivity mass spectrometry (Q-TOF/HSMS) and real-time PCR analysis. RESULTS The levels of total retinoids and retinoic acid (RA) and expressions of retinol-oxidizing enzyme genes alcohol dehydrogenase 1 (Adh1) and aldehyde dehydrogenase (Aldh1a1) are increased in the ovaries of mice treated with FSH; in contrast, the retinyl ester levels and retinol-esterifying enzyme gene lecithin: retinol acyltransferase (Lrat) expression are diminished. In FSH-treated granulosa cells, the levels of retinyl esters, retinaldehyde, and total retinoids are augmented; and this is coupled with an increase in the expressions of stimulated by retinoic acid 6 (Stra6) and cellular retinol-binding protein 1 (Crbp1), genes in the retinol uptake pathway, and Adh1, Adh7, and Aldh1a1 as well as a diminution in Lrat expression. CONCLUSIONS These data suggest that FSH promotes retinol uptake and its conversion to RA through modulating the pathways of retinol uptake and metabolism in the mouse ovary. The present study provides a possible mechanism for the regulation of endogenous RA signaling in the developing follicles.
Collapse
Affiliation(s)
- Zhuo Liu
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Yuqiang Qian
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Shuxiong Chen
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Shan Gao
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Lu Chen
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China.
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
35
|
Kawai T, Richards JS, Shimada M. The Cell Type-Specific Expression of Lhcgr in Mouse Ovarian Cells: Evidence for a DNA-Demethylation-Dependent Mechanism. Endocrinology 2018; 159:2062-2074. [PMID: 29579175 PMCID: PMC5905396 DOI: 10.1210/en.2018-00117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Abstract
The luteinizing hormone receptor (LHCGR) is expressed at low levels in mural granulosa cells and cumulus cells of antral follicles and is induced dramatically in granulosa cells but not in cumulus cells by follicle-stimulating hormone (FSH). Therefore, we hypothesized that FSH not only activates transcription factors controlling Lhcgr expression but also alters other events to permit and enhance Lhcgr expression in granulosa cells but not in cumulus cells. In granulosa cells, the level of DNA methylation in the Lhcgr promoter region was significantly decreased by equine chorionic gonadotropin (eCG) in vivo. However, in cumulus cells, hypermethylation of the Lhcgr promoter remained after eCG stimulation. eCG induced estrogen production from testosterone (T) and retinoic acid (RA) synthesis in granulosa cells. When either T or RA in the presence or absence of FSH was added to granulosa cell cultures, the combined treatment with FSH and RA induced demethylation of Lhcgr-promoter region and Lhcgr expression. FSH-dependent RA synthesis was negatively regulated by coculture of granulosa cells with denuded oocytes, suggesting that oocyte-secreted factors downregulate RA production in cumulus cells where Lhcgr expression was not induced. Strikingly, treatment of cultured cumulus-oocyte complexes with a SMAD inhibitor, SB431542, significantly induced RA production, demethylation of Lhcgr-promoter region, and Lhcgr expression in cumulus cells. These results indicate the demethylation of the Lhcgr-promoter region is mediated, at least in part, by RA synthesis and is a key mechanism regulating the cell type-specific differentiation during follicular development.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Correspondence: Masayuki Shimada, PhD, Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan. E-mail:
| |
Collapse
|
36
|
Paik J, Treuting PM, Haenisch M, Amory JK. Can inhibition of retinoic acid biosynthesis function as a non-hormonal female contraceptive? Contraception 2018; 98:S0010-7824(18)30136-7. [PMID: 29630869 PMCID: PMC6174106 DOI: 10.1016/j.contraception.2018.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Vitamin A deficient females have reduced fertility due to decreased retinoic acid production. WIN 18,446 inhibits retinoic acid biosynthesis and functions as a contraceptive in males. We tested whether WIN 18,446 treatment would suppress fertility in female mice. STUDY DESIGN Female mice were treated with WIN 18,446 and mated. Pregnancy rates were compared using Fisher's exact test. RESULTS WIN 18,446 reduced pregnancy compared with control (p=.03). However, one animal became pregnant with malformed embryos. CONCLUSIONS WIN 18,446 treatment significantly reduces fecundity, but teratogenicity in the setting of contraceptive failure limits the appeal of this approach to female contraception.
Collapse
Affiliation(s)
- Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Michael Haenisch
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Jiang Y, Zhao Y, Chen S, Chen L, Li C, Zhou X. Regulation by FSH of the dynamic expression of retinol-binding protein 4 in the mouse ovary. Reprod Biol Endocrinol 2018; 16:25. [PMID: 29558965 PMCID: PMC5859637 DOI: 10.1186/s12958-018-0348-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ovarian retinoid homeostasis plays an important role in the physiological function of the ovary. Retinol-binding protein 4 (RBP4) acts as the mediator for the systemic and intercellular transport of retinol and is heavily involved in cellular retinol influx, efflux, and exchange. However, the expression patterns and regulatory mechanisms of Rbp4 in the ovary remain unclear. METHODS The expression pattern of ovarian Rbp4 was examined in immature mice during different developmental stages and in adult mice during different stages of the estrous cycle. The potential regulation and mechanisms of ovarian Rbp4 expression by estrogen and related gonadotropins in mouse ovaries were also investigated. RESULTS The present study demonstrated that the ovarian expression of Rbp4 remained constant before puberty and increased significantly in the peripubertal period. In adult female mice, the expression of Rbp4 increased at proestrus and peaked at estrus at both the mRNA and protein levels. The protein distribution of RBP4 was mainly localized in the granulosa cell and theca cell layer in follicles. In addition, the expression of Rbp4 was significantly induced by follicle-stimulating hormone (FSH) or FSH + luteinizing hormone (LH) in combination in immature mouse (3 weeks old) ovaries in vivo and in granulosa cells cultured in vitro, both at the mRNA and protein levels. In contrast, treatment with LH or 17β-estradiol did not exhibit any observable effects on ovarian Rbp4 expression. Transcription factors high-mobility group AT-hook 1 (HMGA1), steroidogenic factor 1 (SF-1), and liver receptor homolog 1 (LRH-1) (which have been previously shown to be involved in activation of Rbp4 transcription), also responded to FSH stimulation. In addition, H-89, an inhibitor of protein kinase A (PKA), and the depletion of HMGA1, SF-1, and LRH-1 by small interfering RNAs (siRNAs), resulted in a dramatic loss of the induction of Rbp4 expression by FSH at both the mRNA and protein levels. CONCLUSIONS These data indicate that the dynamic expression of Rbp4 is mainly regulated by FSH through the cAMP-PKA pathway, involving transcriptional factors HMGA1, SF-1, and LRH-1, in the mouse ovary during different stages of development and the estrous cycle.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Yun Zhao
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Shuxiong Chen
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Lu Chen
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China.
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
38
|
van der Ven AT, Vivante A, Hildebrandt F. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 2017; 29:36-50. [PMID: 29079659 DOI: 10.1681/asn.2017050561] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Congenital anomalies of the kidneys and urinary tract (CAKUT) comprise a large spectrum of congenital malformations ranging from severe manifestations, such as renal agenesis, to potentially milder conditions, such as vesicoureteral reflux. CAKUT causes approximately 40% of ESRD that manifests within the first three decades of life. Several lines of evidence indicate that CAKUT is often caused by recessive or dominant mutations in single (monogenic) genes. To date, approximately 40 monogenic genes are known to cause CAKUT if mutated, explaining 5%-20% of patients. However, hundreds of different monogenic CAKUT genes probably exist. The discovery of novel CAKUT-causing genes remains challenging because of this pronounced heterogeneity, variable expressivity, and incomplete penetrance. We here give an overview of known genetic causes for human CAKUT and shed light on distinct renal morphogenetic pathways that were identified as relevant for CAKUT in mice and humans.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Asaf Vivante
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Potential role of retinoids in ovarian physiology and pathogenesis of polycystic ovary syndrome. Clin Chim Acta 2017; 469:87-93. [DOI: 10.1016/j.cca.2017.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 01/11/2023]
|
40
|
Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary. Dev Biol 2017; 424:208-220. [PMID: 28274610 DOI: 10.1016/j.ydbio.2017.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function.
Collapse
|
41
|
Shannon SR, Moise AR, Trainor PA. New insights and changing paradigms in the regulation of vitamin A metabolism in development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28207193 DOI: 10.1002/wdev.264] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Vitamin A and its active metabolite retinoic acid are essential for embryonic development and adult homeostasis. Surprisingly, excess or deficiency of vitamin A and retinoic acid can cause similar developmental defects. Therefore, strict feedback and other mechanisms exist to regulate the levels of retinoic acid within a narrow physiological range. The oxidation of vitamin A to retinal has recently been established as a critical nodal point in the synthesis of retinoic acid, and over the past decade, RDH10 and DHRS3 have emerged as the predominant enzymes that regulate this reversible reaction. Together they form a codependent complex that facilitates negative feedback maintenance of retinoic acid levels and thus guard against the effects of dysregulated vitamin A metabolism and retinoic acid synthesis. This review focuses on advances in our understanding of the roles of Rdh10 and Dhrs3 and their impact on development and disease. WIREs Dev Biol 2017, 6:e264. doi: 10.1002/wdev.264 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
42
|
Teletin M, Vernet N, Ghyselinck NB, Mark M. Roles of Retinoic Acid in Germ Cell Differentiation. Curr Top Dev Biol 2017; 125:191-225. [PMID: 28527572 DOI: 10.1016/bs.ctdb.2016.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The modalities of gametogenesis differ markedly between sexes. Female are born with a definitive reserve of oocytes whose size is crucial to ensure fertility. Male fertility, in contrast, relies on a tightly regulated balance between germ cell self-renewal and differentiation, which operates throughout life, according to recurring spatial and temporal patterns. Genetic and pharmacological studies conducted in the mouse and discussed in this review have revealed that all-trans retinoic acid and its nuclear receptors are major players of gametogenesis and are instrumental to fertility in both sexes.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
| |
Collapse
|