1
|
Ferreira YAM, Santamarina AB, Mennitti LV, de Souza EA, Prado CM, Pisani LP. Unsaturated fatty acids enhance mitochondrial function and PGC1-α expression in brown adipose tissue of obese mice on a low-carbohydrate diet. J Nutr Biochem 2025; 140:109873. [PMID: 39986635 DOI: 10.1016/j.jnutbio.2025.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/06/2024] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Brown adipose tissue (BAT) exhibits greater resilience against inflammation compared to white adipose tissue. However, chronic consumption of a high-fat diet can render brown adipocytes vulnerable to proinflammatory conditions, leading to a decline in their thermogenic capacity and subsequent dysfunction. The analysis of the effects of type fatty acids intake must be important in the context of the dietary pattern and obesity. This study aims to investigate the impact of a low-carbohydrate/high-fat diet, enriched with different types of fatty acids, on mitochondrial activity on brown adipose tissue in obese mice. Male mice were allocated into different dietary groups: a control diet (CTL), and a high-fat diet (HFD) for a duration of 10 weeks to induce obesity. Subsequently, the HFD group was subdivided into the following categories for an additional 6 weeks: HFD with a low carbohydrate content enriched with saturated fatty acids; HFD with a low carbohydrate content enriched with fish oil; HFD with a low carbohydrate content enriched with soybean oil; and HFD with a low carbohydrate content enriched with olive oil. The findings indicated that in comparison to a low-carbohydrate diet rich in saturated fats, diets rich in unsaturated fatty acids-particularly omega-6 (n-6) and omega-9 (n-9)-resulted in elevated expression of UCP1, a marker of BAT activity. Moreover, there was an increase in the expression of PGC1-α, a protein involved in mitochondrial biogenesis, and enhanced functionality of the oxidative phosphorylation system within BAT mitochondria. These results suggest that n-6 and n-9 fatty acids may confer greater benefits to BAT functionality than saturated fats within the context of a low-carbohydrate diet. Therefore, this study revealed some molecular components that mediate BAT mitochondria function influenced by different fatty acids in a low carbohydrate diet, making it an important therapeutic target in obesity.
Collapse
Affiliation(s)
- Yasmin Alaby Martins Ferreira
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Aline Boveto Santamarina
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Laís Vales Mennitti
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Esther Alves de Souza
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Carla Maximo Prado
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.
| |
Collapse
|
2
|
Xu J, Wang H, Han B, Zhang X. Mechanisms through which laparoscopic sleeve gastrectomy mitigates atherosclerosis risk: a focus on visceral adipose tissue. Eur J Med Res 2025; 30:370. [PMID: 40336107 PMCID: PMC12057030 DOI: 10.1186/s40001-025-02635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Bariatric surgery is currently considered the key treatment method for patients with obesity and related complications. Among the various surgeries, laparoscopic sleeve gastrectomy (LSG) is the most widely used. Obesity is a multifactor chronic disease characterized by the accumulation of visceral adipose tissue (VAT), leading to susceptibility to cardiac metabolic diseases. Many mechanisms, including abnormal lipid metabolism, insulin resistance, inflammation, endothelial dysfunction, adipocytokine imbalance and inflammasome activation, have been identified as the basis for the relationship between obesity and atherosclerosis. Bariatric surgery, such as LSG, reduces the risk of atherosclerosis in people living with obesity by reducing energy intake, disrupting energy balance and reducing the secretion of intestinal hormones to intervene in these risk factors. This review explores the current understanding of how LSG affects VAT and its impact on the risk of atherosclerosis.
Collapse
Affiliation(s)
- Juan Xu
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Heyue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Bin Han
- Shanxi Provincial People's Hospital, Taiyuan, 030032, China
| | - Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
3
|
Abstract
The metabolic benefits of brown adipose tissue (BAT) are well known. Increasing the BAT content and/or activity is a proposed therapeutic approach to combat metabolic disease. Activation and induction of endogenous BAT have achieved varying degrees of success in correcting obesity, insulin resistance, and cardiovascular disease, with some limitations. Transplantation of BAT from healthy donors is another approach proven safe and effective in rodent models. In diet-induced models of obesity and insulin resistance, BAT transplants prevent obesity, increase insulin sensitivity, and improve glucose homeostasis and whole-body energy metabolism. In mouse models of insulin-dependent diabetes, subcutaneous transplantation of healthy BAT produces long-term euglycemia without the need for insulin or immunosuppression. Considering the immunomodulatory and anti-inflammatory properties of healthy BAT, transplantation may be a more effective approach to combat metabolic disease in the long term. Here we describe in detail the technique for subcutaneous BAT transplantation.
Collapse
Affiliation(s)
- Subhadra Gunawardana
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Hu H, Garcia-Barrio M, Jiang ZS, Chen YE, Chang L. Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxid Redox Signal 2021; 34:736-749. [PMID: 32390459 PMCID: PMC7910418 DOI: 10.1089/ars.2020.8103] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Perivascular adipose tissue (PVAT), which is present surrounding most blood vessels, from the aorta to the microvasculature of the dermis, is mainly composed of fat cells, fibroblasts, stem cells, mast cells, and nerve cells. Although the PVAT is objectively present, its physiological and pathological significance has long been ignored. Recent Advances: PVAT was considered as a supporting component of blood vessels and a protective cushion to the vessel wall from the neighboring tissues during relaxation and contraction. Nonetheless, further extensive research found that PVAT actively regulates blood vessel tone through PVAT-derived vasoactive factors, including both relaxing and contracting factors. In addition, PVAT contributes to atherosclerosis through paracrine secretion of a large number of bioactive factors such as adipokines and cytokines. Thereby, PVAT regulates the functions of blood vessels through various mechanisms operating directly on PVAT or on the underlying vessel layers, including vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Critical Issues: PVAT is a unique adipose tissue that plays an essential role in maintaining the vascular structure and regulating vascular function and homeostasis. This review focuses on recent updates on the various PVAT roles in hypertension and atherosclerosis. Future Directions: Future studies should further investigate the actual contribution of alterations in PVAT metabolism to the overall systemic outcomes of cardiovascular disease, which remains largely unknown. In addition, the messengers and underlying mechanisms responsible for the crosstalk between PVAT and ECs and VSMCs in the vascular wall should be systematically addressed, as well as the contributions of PVAT aging to vascular dysfunction.
Collapse
Affiliation(s)
- Hengjing Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yuqing Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zhang J, Hu C, Jiao X, Yang Y, Li J, Yu H, Qin Y, Wei Y. Potential Role of mRNAs and LncRNAs in Chronic Intermittent Hypoxia Exposure-Aggravated Atherosclerosis. Front Genet 2020; 11:290. [PMID: 32328084 PMCID: PMC7160761 DOI: 10.3389/fgene.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the pathological basis of cardiovascular disease. Obstructive sleep apnea (OSA) aggravates atherosclerosis, and chronic intermittent hypoxia (CIH) as a prominent feature of OSA plays an important role during the process of atherosclerosis. The mechanisms of CIH in the development of atherosclerosis remain unclear. In the current study, we used microarray to investigate differentially expressed mRNAs and long non-coding RNAs (lncRNAs) in aorta from five groups of ApoE–/– mice fed with a high-fat diet and exposed to various conditions: normoxia for 8 weeks, CIH for 8 weeks, normoxia for 12 weeks, CIH for 12 weeks, or CIH for 8 weeks followed by normoxia for 4 weeks. Selected transcripts were validated in aorta tissues and RT-qPCR analysis showed correlation with the microarray data. Gene Ontology analysis and pathway enrichment analysis were performed to explore the mRNA function. Bioinformatic analysis indicated that short-term CIH induced up-regulated mRNAs involved in inflammatory response. Pathway enrichment analysis of lncRNA co-localized mRNAs and lncRNA co-expressed mRNAs were performed to explore lncRNA functions. The up-regulated mRNAs, lncRNA co-localized mRNAs and lncRNA co-expressed mRNAs were significantly associated with protein processing in endoplasmic reticulum pathway in atherosclerotic vascular tissue with long-term CIH exposure, suggesting that differentially expressed mRNAs and lncRNAs play important roles in this pathway. Moreover, a mRNA-lncRNA co-expression network with 380 lncRNAs, 508 mRNAs and 3238 relationships was constructed based on the correlation analysis between the differentially expressed mRNAs and lncRNAs. In summary, our study provided a systematic perspective on the potential function of mRNAs and lncRNAs in CIH-aggravated atherosclerosis, and may provide novel molecular candidates for future investigation on atherosclerosis exposed to CIH.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Chaowei Hu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Xiaolu Jiao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yunyun Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Juan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| | - Yongxiang Wei
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China.,Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
6
|
Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis 2019; 18:223. [PMID: 31842884 PMCID: PMC6913018 DOI: 10.1186/s12944-019-1170-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is the most common nutritional disorder worldwide and is associated with dyslipidemia and atherosclerotic cardiovascular disease. The hallmark of dyslipidemia in obesity is low high density lipoprotein (HDL) cholesterol (HDL-C) levels. Moreover, the quality of HDL is also changed in the obese setting. However, there are still some disputes on the explanations for this phenomenon. There is increasing evidence that adipose tissue, as an energy storage tissue, participates in several metabolism activities, such as hormone secretion and cholesterol efflux. It can influence overall reverse cholesterol transport and plasma HDL-C level. In obesity individuals, the changes in morphology and function of adipose tissue affect plasma HDL-C levels and HDL function, thus, adipose tissue should be the main target for the treatment of HDL metabolism in obesity. In this review, we will summarize the cross-talk between adipocytes and HDL related to cardiovascular disease and focus on the new insights of the potential mechanism underlying obesity and HDL dysfunction.
Collapse
Affiliation(s)
- Tianhua Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Qin Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Danyan Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
7
|
Gomez-Hernandez A, Lopez-Pastor AR, Rubio-Longas C, Majewski P, Beneit N, Viana-Huete V, García-Gómez G, Fernandez S, Hribal ML, Sesti G, Escribano O, Benito M. Specific knockout of p85α in brown adipose tissue induces resistance to high-fat diet-induced obesity and its metabolic complications in male mice. Mol Metab 2019; 31:1-13. [PMID: 31918912 PMCID: PMC6977168 DOI: 10.1016/j.molmet.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Objective An increase in mass and/or brown adipose tissue (BAT) functionality leads to an increase in energy expenditure, which may be beneficial for the prevention and treatment of obesity. Moreover, distinct class I PI3K isoforms can participate in metabolic control as well as in systemic dysfunctions associated with obesity. In this regard, we analyzed in vivo whether the lack of p85α in BAT (BATp85αKO) could modulate the activity and insulin signaling of this tissue, thereby improving diet-induced obesity and its associated metabolic complications. Methods We generated BATp85αKO mice using Cre-LoxP technology, specifically deleting p85α in a conditional manner. To characterize this new mouse model, we used mice of 6 and 12 months of age. In addition, BATp85αKO mice were submitted to a high-fat diet (HFD) to challenge BAT functionality. Results Our results suggest that the loss of p85α in BAT improves its thermogenic functionality, high-fat diet–induced adiposity and body weight, insulin resistance, and liver steatosis. The potential mechanisms involved in the improvement of obesity include (1) increased insulin signaling and lower activation of JNK in BAT, (2) enhanced insulin receptor isoform B (IRB) expression and association with IRS-1 in BAT, (3) lower production of proinflammatory cytokines by the adipose organ, (4) increased iWAT browning, and (5) improved liver steatosis. Conclusions Our results provide new mechanisms involved in the resistance to obesity development, supporting the hypothesis that the gain of BAT activity induced by the lack of p85α has a direct impact on the prevention of diet-induced obesity and its associated metabolic complications. The lack of p85α in brown adipose tissue confers obesity resistance. BATp85αKO mice show improved thermogenic function, fatty liver and insulin resistance. High IRB levels in BAT and iWAT browning might explain the improvement of obesity. Increase in BAT functionality has a direct impact on the prevention of obesity.
Collapse
Affiliation(s)
- Almudena Gomez-Hernandez
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Andrea R Lopez-Pastor
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Carlota Rubio-Longas
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain.
| | - Patrik Majewski
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain.
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Vanesa Viana-Huete
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
| | - Gema García-Gómez
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Silvia Fernandez
- Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Italy.
| | - Oscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain.
| |
Collapse
|
8
|
Xiong W, Zhao X, Villacorta L, Rom O, Garcia-Barrio MT, Guo Y, Fan Y, Zhu T, Zhang J, Zeng R, Chen YE, Jiang Z, Chang L. Brown Adipocyte-Specific PPARγ (Peroxisome Proliferator-Activated Receptor γ) Deletion Impairs Perivascular Adipose Tissue Development and Enhances Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2019; 38:1738-1747. [PMID: 29954752 DOI: 10.1161/atvbaha.118.311367] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective- Perivascular adipose tissue (PVAT) contributes to vascular homeostasis by producing paracrine factors. Previously, we reported that selective deletion of PPARγ (peroxisome proliferator-activated receptor γ) in vascular smooth muscle cells resulted in concurrent loss of PVAT and enhanced atherosclerosis in mice. To address the causal relationship between loss of PVAT and atherosclerosis, we used BA-PPARγ-KO (brown adipocyte-specific PPARγ knockout) mice. Approach and Results- Deletion of PPARγ in brown adipocytes did not affect PPARγ in white adipocytes or vascular smooth muscle cells or PPARα and PPARδ expression in brown adipocytes. However, development of PVAT and interscapular brown adipose tissue was remarkably impaired, associated with reduced expression of genes encoding lipogenic enzymes in the BA-PPARγ-KO mice. Thermogenesis in brown adipose tissue was significantly impaired with reduced expression of thermogenesis genes in brown adipose tissue and compensatory increase in subcutaneous and gonadal white adipose tissues. Remarkably, basal expression of inflammatory genes and macrophage infiltration in PVAT and brown adipose tissue were significantly increased in the BA-PPARγ-KO mice. BA-PPARγ-KO mice were crossbred with ApoE KO (apolipoprotein E knockout) mice to investigate the development of atherosclerosis. Flow cytometry analysis confirmed increased systemic and PVAT inflammation. Consequently, atherosclerotic lesions were significantly increased in mice with impaired PVAT development, thus indicating that the lack of normal PVAT is sufficient to drive increased atherosclerosis. Conclusions- PPARγ is required for functional PVAT development. PPARγ deficiency in PVAT, while still expressed in vascular smooth muscle cell, enhances atherosclerosis and results in vascular and systemic inflammation, providing new insights on the specific roles of PVAT in atherosclerosis and cardiovascular disease at large.
Collapse
Affiliation(s)
- Wenhao Xiong
- From the Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang (W.X., Z.J.).,Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Xiangjie Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Luis Villacorta
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Yanbo Fan
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Tianqing Zhu
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| | - Rong Zeng
- University of Michigan, Ann Arbor; and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (R.Z.)
| | | | - Zhisheng Jiang
- From the Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang (W.X., Z.J.)
| | - Lin Chang
- Department of Internal Medicine, Frankel Cardiovascular Center (W.X., X.Z., L.V., O.R., M.T.G.-B., Y.G., Y.F., T.Z., J.Z., L.C.)
| |
Collapse
|
9
|
Fu Z, Löfqvist CA, Liegl R, Wang Z, Sun Y, Gong Y, Liu CH, Meng SS, Burnim SB, Arellano I, Chouinard MT, Duran R, Poblete A, Cho SS, Akula JD, Kinter M, Ley D, Pupp IH, Talukdar S, Hellström A, Smith LE. Photoreceptor glucose metabolism determines normal retinal vascular growth. EMBO Mol Med 2019; 10:76-90. [PMID: 29180355 PMCID: PMC5760850 DOI: 10.15252/emmm.201707966] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neural cells and factors determining normal vascular growth are not well defined even though vision‐threatening neovessel growth, a major cause of blindness in retinopathy of prematurity (ROP) (and diabetic retinopathy), is driven by delayed normal vascular growth. We here examined whether hyperglycemia and low adiponectin (APN) levels delayed normal retinal vascularization, driven primarily by dysregulated photoreceptor metabolism. In premature infants, low APN levels correlated with hyperglycemia and delayed retinal vascular formation. Experimentally in a neonatal mouse model of postnatal hyperglycemia modeling early ROP, hyperglycemia caused photoreceptor dysfunction and delayed neurovascular maturation associated with changes in the APN pathway; recombinant mouse APN or APN receptor agonist AdipoRon treatment normalized vascular growth. APN deficiency decreased retinal mitochondrial metabolic enzyme levels particularly in photoreceptors, suppressed retinal vascular development, and decreased photoreceptor platelet‐derived growth factor (Pdgfb). APN pathway activation reversed these effects. Blockade of mitochondrial respiration abolished AdipoRon‐induced Pdgfb increase in photoreceptors. Photoreceptor knockdown of Pdgfb delayed retinal vascular formation. Stimulation of the APN pathway might prevent hyperglycemia‐associated retinal abnormalities and suppress phase I ROP in premature infants.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chatarina A Löfqvist
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivana Arellano
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rubi Duran
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Poblete
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D Akula
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - David Ley
- Pediatrics, Department of Clinical Sciences, Skåne University Hospital and University of Lund, Lund, Sweden
| | - Ingrid Hansen Pupp
- Pediatrics, Department of Clinical Sciences, Skåne University Hospital and University of Lund, Lund, Sweden
| | | | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Beneit N, Martín-Ventura JL, Rubio-Longás C, Escribano Ó, García-Gómez G, Fernández S, Sesti G, Hribal ML, Egido J, Gómez-Hernández A, Benito M. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis. Cardiovasc Diabetol 2018; 17:31. [PMID: 29463262 PMCID: PMC5819698 DOI: 10.1186/s12933-018-0675-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. We previously demonstrated that overexpression of insulin receptor isoform A (IRA) and insulin-like growth factor-I receptor (IGF-IR) confers a proliferative and migratory advantage to vascular smooth muscle cells (VSMCs) promoting plaque growth in early stages of atherosclerosis. However, the role of insulin receptor (IR) isoforms, IGF-IR or insulin-like growth factor-II receptor (IGF-IIR) in VSMCs apoptosis during advanced atherosclerosis remains unclear. METHODS We evaluated IR isoforms expression in human carotid atherosclerotic plaques by consecutive immunoprecipitations of insulin receptor isoform B (IRB) and IRA. Western blot analysis was performed to measure IGF-IR, IGF-IIR, and α-smooth muscle actin (α-SMA) expression in human plaques. The expression of those proteins, as well as the presence of apoptotic cells, was analyzed by immunohistochemistry in experimental atherosclerosis using BATIRKO; ApoE-/- mice, a model showing more aggravated vascular damage than ApoE-/- mice. Finally, apoptosis of VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs), was assessed by Western blot against cleaved caspase 3. RESULTS We observed a significant decrease of IRA/IRB ratio in human complicated plaques as compared to non-complicated regions. Moreover, complicated plaques showed a reduced IGF-IR expression, an increased IGF-IIR expression, and lower levels of α-SMA indicating a loss of VSMCs. In experimental atherosclerosis, we found a significant decrease of IRA with an increased IRB expression in aorta from 24-week-old BATIRKO; ApoE-/- mice. Furthermore, atherosclerotic plaques from BATIRKO; ApoE-/- mice had less VSMCs content and higher number of apoptotic cells. In vitro experiments showed that IGF-IR inhibition by picropodophyllin induced apoptosis in VSMCs. Apoptosis induced by thapsigargin was lower in IR-/- VSMCs expressing higher IGF-IR levels as compared to IRLoxP+/+ VSMCs. Finally, IRB VSMCs are more prone to thapsigargin-induced apoptosis than IRA or IRLoxP+/+ VSMCs. CONCLUSIONS In advanced human atherosclerosis, a reduction of IRA/IRB ratio, decreased IGF-IR expression, or increased IGF-IIR may contribute to VSMCs apoptosis, promoting plaque instability and increasing the risk of plaque rupture and its clinical consequences.
Collapse
Affiliation(s)
- Nuria Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - José Luis Martín-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carlota Rubio-Longás
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Gema García-Gómez
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Silvia Fernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jesús Egido
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Vascular Research Lab, IIS-Fundación Jiménez Díaz-Autonoma University, Madrid, Spain.,CIBER of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Almudena Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain. .,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain. .,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| | - Manuel Benito
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
11
|
Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol 2017; 816:82-92. [DOI: 10.1016/j.ejphar.2017.03.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
|
12
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Fu Z, Liegl R, Wang Z, Gong Y, Liu CH, Sun Y, Cakir B, Burnim SB, Meng SS, Löfqvist C, SanGiovanni JP, Hellström A, Smith LEH. Adiponectin Mediates Dietary Omega-3 Long-Chain Polyunsaturated Fatty Acid Protection Against Choroidal Neovascularization in Mice. Invest Ophthalmol Vis Sci 2017; 58:3862-3870. [PMID: 28763559 PMCID: PMC5539800 DOI: 10.1167/iovs.17-21796] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Neovascular age-related macular degeneration (AMD) is a major cause of legal blindness in the elderly. Diets with omega3-long-chain-polyunsaturated-fatty-acid (ω3-LCPUFA) correlate with a decreased risk of AMD. Dietary ω3-LCPUFA versus ω6-LCPUFA inhibits mouse ocular neovascularization, but the underlying mechanism needs further exploration. The aim of this study was to investigate if adiponectin (APN) mediated ω3-LCPUFA suppression of neovessels in AMD. Methods The mouse laser-induced choroidal neovascularization (CNV) model was used to mimic some of the inflammatory aspect of AMD. CNV was compared between wild-type (WT) and Apn−/− mice fed either otherwise matched diets with 2% ω3 or 2% ω6-LCPUFAs. Vldlr−/− mice were used to mimic some of the metabolic aspects of AMD. Choroid assay ex vivo and human retinal microvascular endothelial cell (HRMEC) proliferation assay in vitro was used to investigate the APN pathway in angiogenesis. Western blot for p-AMPKα/AMPKα and qPCR for Apn, Mmps, and IL-10 were used to define mechanism. Results ω3-LCPUFA intake suppressed laser-induced CNV in WT mice; suppression was abolished with APN deficiency. ω3-LCPUFA, mediated by APN, decreased mouse Mmps expression. APN deficiency decreased AMPKα phosphorylation in vivo and exacerbated choroid-sprouting ex vivo. APN pathway activation inhibited HRMEC proliferation and decreased Mmps. In Vldlr−/− mice, ω3-LCPUFA increased retinal AdipoR1 and inhibited NV. ω3-LCPUFA decreased IL-10 but did not affect Mmps in Vldlr−/− retinas. Conclusions APN in part mediated ω3-LCPUFA inhibition of neovascularization in two mouse models of AMD. Modulating the APN pathway in conjunction with a ω3-LCPUFA-enriched-diet may augment the beneficial effects of ω3-LCPUFA in AMD patients.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Raffael Liegl
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Chatarina Löfqvist
- Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - John Paul SanGiovanni
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, and Georgetown University School of Medicine, Washington, District of Columbia, United States
| | - Ann Hellström
- Department of Ophthalmology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
González N, Moreno-Villegas Z, González-Bris A, Egido J, Lorenzo Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol 2017; 16:44. [PMID: 28376896 PMCID: PMC5379721 DOI: 10.1186/s12933-017-0528-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Nowadays, obesity is seriously increasing in most of the populations all over the world, and is associated with the development and progression of high-mortality diseases such as type-2 diabetes mellitus (T2DM) and its subsequent cardiovascular pathologies. Recent data suggest that both body fat distribution and adipocyte phenotype, can be more determinant for fatal outcomes in obese patients than increased general adiposity. In particular, visceral adiposity is significantly linked to long term alterations on different cardiac structures, and in developed forms of myocardial diseases such as hypertensive and ischaemic heart diseases, and diabetic cardiomyopathy. Interestingly, this depot may be also related to epicardial fat accumulation through secretion of lipids, adipokines, and pro-inflammatory and oxidative factors from adipocytes. Thus, visceral adiposity and its white single-lipid-like adipocytes, are risk factors for different forms of heart disease and heart failure, mainly in higher degree obese subjects. However, under specific stimuli, some of these adipocytes can transdifferentiate to brown multi-mitochondrial-like adipocytes with anti-inflammatory and anti-apoptotic proprieties. Accordingly, in order to improve potential cardiovascular abnormalities in obese and T2DM patients, several therapeutic strategies have been addressed to modulate the visceral and epicardial fat volume and phenotypes. In addition to lifestyle modifications, specific genetic manipulations in adipose tissue and administration of PPARγ agonists or statins, have improved fat volume and phenotype, and cardiovascular failures. Furthermore, incretin stimulation reduced visceral and epicardial fat thickness whereas increased formation of brown adipocytes, alleviating insulin resistance and associated cardiovascular pathologies.
Collapse
Affiliation(s)
- N González
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Z Moreno-Villegas
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma, Madrid, Spain
| | - A González-Bris
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma, Madrid, Spain
| | - J Egido
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Ó Lorenzo
- Renal, Vascular and Diabetes Laboratory, Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma, Madrid, Spain. .,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| |
Collapse
|
15
|
Vargas D, Camacho J, Duque J, Carreño M, Acero E, Pérez M, Ramirez S, Umaña J, Obando C, Guerrero A, Sandoval N, Rodríguez G, Lizcano F. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue. Int J Endocrinol 2017; 2017:2945012. [PMID: 29209367 PMCID: PMC5676446 DOI: 10.1155/2017/2945012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 12/24/2022] Open
Abstract
Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.
Collapse
Affiliation(s)
- Diana Vargas
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Jaime Camacho
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Juan Duque
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Marisol Carreño
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Edward Acero
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Máximo Pérez
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Sergio Ramirez
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Juan Umaña
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Carlos Obando
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Albert Guerrero
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Néstor Sandoval
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| | - Gina Rodríguez
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana (CIBUS), Chía, Colombia
- Fundación Cardioinfantil-Instituto de Cardiología, Bogota, Colombia
| |
Collapse
|
16
|
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 2016; 174:3425-3442. [PMID: 27761903 PMCID: PMC5610151 DOI: 10.1111/bph.13650] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
Under physiological conditions, perivascular adipose tissue (PVAT) attenuates agonist‐induced vasoconstriction by releasing vasoactive molecules including hydrogen peroxide, angiotensin 1–7, adiponectin, methyl palmitate, hydrogen sulfide, NO and leptin. This anticontractile effect of PVAT is lost under conditions of obesity. The central mechanism underlying this PVAT dysfunction in obesity is likely to be an ‘obesity triad’ (consisting of PVAT hypoxia, inflammation and oxidative stress) that leads to the impairment of PVAT‐derived vasoregulators. The production of hydrogen sulfide, NO and adiponectin by PVAT is reduced in obesity, whereas the vasodilator response to leptin is impaired (vascular leptin resistance). Strikingly, the vasodilator response to acetylcholine is reduced only in PVAT‐containing, but not in PVAT‐free thoracic aorta isolated from diet‐induced obese mice, indicating a unique role for PVAT in obesity‐induced vascular dysfunction. Furthermore, PVAT dysfunction has also been observed in small arteries isolated from the gluteal/visceral fat biopsy samples of obese individuals. Therefore, PVAT may represent a new therapeutic target for vascular complications in obesity. A number of approaches are currently being tested under experimental conditions. Potential therapeutic strategies improving PVAT function include body weight reduction, enhancing PVAT hydrogen sulfide release (e.g. rosiglitazone, atorvastatin and cannabinoid CB1 receptor agonists) and NO production (e.g. arginase inhibitors), inhibition of the renin–angiotensin–aldosterone system, inhibition of inflammation with melatonin or cytokine antagonists, activators of AMP‐activated kinase (e.g. metformin, resveratrol and diosgenin) and adiponectin releasers or expression enhancers. Linked Articles This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue – Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|